
NOTES ON PRESENTING THESES
http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses.pdf

Aaron Sloman
School of Computer Science

The University of Birmingham
Last updated 29 Mar 2009

Available Internally in CS AT Bham
/bham/doc/research_students/theses.txt
/bham/doc/research_students/theses.pdf

CONTENTS

– {0} A fresh view of doing a PhD
– {1} Introduction
– {2} Some general comments
– {3} Good communication is extremely important
– {4} Motivate the reader
– {5} Structure the thesis
– {6} Commonly required sections of a thesis
– {7} Issues concerning length
– {8} The opening chapter(s)
– {9} Surveying related work
– {10} Two kinds of literature survey: scene-setting and critical
– {11} Criticising the work of others
– {12} Scenarios and examples
– {13} Describing programs: a formal description
– {14} Describing programs: saying WHAT they do
– {15} Describing programs: saying HOW they work
– {16} Further information about the program
– {17} Criteria for evaluating your thesis
– {18} Program style
– {19} Program output and tracing
– {20} Proof-reading is very important
– {21} Avoid embarrassing omissions (proofread carefully)
– {22} Try out the thesis on a friend or colleague
– {23} Bibliography and references
– {24} Quotations
– {25} If English is not your native language get help
– {26} Encouraging final comment!
– {27} References (Good scenarios)
– {28} Further reading

1

{0} A fresh view of doing a PhD

In answer to a question from a PhD student about the knowledge a PhD student
should produce Ata Kaban wrote:

I’ve just started to supervise so I’ve spent a few thoughts on the issue. A concise Bayesian charac-
terisation, in terms of a ‘necessary condition’ would be that a PhD is a process, which even if it may
start with the prior belief that your supervisor is right in everything, it must end with the posterior
belief (i.e. after accumulating evidence) that several researchers - including your supervisor - were
wrong or ignorant in at least one scientific aspect.

Included here with Ata’s permission: 20 Nov 2003.

Comment from Peter Coxhead:

My more metaphorical definition is that a PhD involves (as a minimum) putting at least one brick
into the wall of knowledge which constitutes one area of science/engineering.

Occasionally PhD students start new walls, but this is NOT expected.

A few new bricks are quite enough. It’s important not to get over-hung-up on the idea that a PhD
must involve massive originality.

Another test I’ve used when acting as a PhD Examiner, particularly an External, is “Is this student
now one of us?”.

Interestingly, I think both of my tests are consistent with Ata’s: “one scientific aspect” = “one
brick”; “several researchers were wrong or ignorant” = you are are now one of the researchers who
are right and not ignorant (at least as regards that brick).

Included here with Peter’s permission: 21 Nov 2003

The following is also relevant:

http://www.cs.bham.ac.uk/˜axs/misc/cs-research.html

This arose out of a conference in Manchester in January 2000 to discuss how the Computing Science
community should present its research objectives and achievements to EPSRC and the bodies which
award funding to EPSRC.

With help from people at the conference and others who commented subsequently, a list of five
types of research was drawn up, with comments on how different criteria of evaluation were relevant
to the five types. That also applies to evaluation of different types of PhD research.

{1} Introduction

These notes are intended to guide, but not direct, research students when planning and writing
their theses. The notes are primarily concerned with research theses (MPhil and DPhil/PhD). For
course-based MA or MSc students the requirements are not so stringent, but the notes may be of
some use to them too.

It is assumed that the topic of research is AI, Cognitive Science, or Computer Science (including
HCI), though many of the comments are more generally relevant.

I have produced this document (with help from several other people) because too many research
students are being asked by their examiners to re-submit theses after substantial modification.
This is wasteful for everyone and we should try to move to a situation where most theses are
accepted first time, and where none of the re-writing requested is simply to improve presentation
or organisation. I.e. only modifications of substance should be necessary.

2

There is no fool-proof way to ensure that no re-writing will be required: No matter how good
the student and the supervisor, examinations are always chancy and there is always the risk that
examiners will require additional substantive work to be done, e.g. to extend the range of a program,
fix a flaw in a proof, extend the generality of some notation, include discussion of some relevant
literature not considered, etc.

Most of the points below are not concerned with the substance of a thesis but with its presentation.
They complement TEACH PSTYLE which makes general points about project descriptions, ap-
plicable to a variety of levels e.g. undergraduate, masters, doctoral, etc. (TEACH PROGSTYLE
discusses programming style.)

Presentation may seem relatively unimportant, but part of what is being assessed is your ability to
communicate (Doctor once meant teacher). Moreover, a presentation that makes the structure of
your work clear can reveal gaps in arguments and other deficiencies, thereby helping to improve the
substance. It can also help others appreciate the real strengths of your work, and how it contributes
to our knowledge or understanding.

This document does not live up to its own standards as regards presentation! It needs to be re-
written with a clearer and more logical structure, with hierarchical section headings, etc. But I
have not had time.

Comments and suggestions for improvement are welcome.

{2} Some general comments

{2.1} You are not expected to write a world-shaking thesis, nor a mammoth tome. Avoid any
temptation to add bulk simply to make the thesis look more substantial.

{2.2} The object of the thesis is to demonstrate to the examiners that you can do research of
a quality that should lead to one or two refereed journal publications. Be prepared at the oral
examination to say which bits, if any, you think are publishable in that form. In rare cases you
can argue that it is publishable only as a whole, because all the bits are too closely connected for
separate publication. (That can be a sign of poor organisation in your thinking.)

{2.3} NB it is not enough simply to develop some useful software or programming technique. Lots
of people working for commercial organisations do that. They may make a lot of money, but
they don’t get PhDs for it. A PhD thesis must advance KNOWLEDGE in some way. So you
must include an analysis of the new knowledge embodied in your program or technique. This
requires comparing your work with work done by others, as described in later sections in this file.
It also requires you to provide an analysis of the strengths and weaknesses of your program or
technique, clearly identifying its limitations, explaining why it succeeds where others have failed,
etc. Merely demonstrating that you can do something new has been described as the Look ma, no

hands! approach. It isn’t enough.

{3} Good communication is extremely important

{3.1} The thesis should also demonstrate that you can communicate effectively, not only to narrow
specialists in your field but also to others who can be expected to find the results interesting. This
means that obscure jargon should be avoided (unless it is explained first) and the same goes for
notation.

{3.2} It also means using examples all over the place to illustrate the general points you are making.
Examples should be clear and pointed, and preferably very short and memorable. Try to avoid
cluttered examples: a good example should be the simplest one that illustrates the problem you
are addressing or the idea you are presenting.

{3.3} If you use a formal notation that is not widely known, then it is a good idea to give English

3

translations of any formula that is at all complex (e.g. has more than a dozen symbols or has a
deeply nested structure). Even if the notation is well known, not everyone will be familiar with it,
so when in doubt give a translation. (But don’t overdo it.)

{3.4} If you introduce a lot of technical terminology that is not generally known to all workers in
the field (not just your specialised sub-field, but the discipline as a whole) then you should have a
special section summarising the terminology with cross references to places where terms are defined.

{3.5} Try to think of your reader as intelligent but given to wilful misunderstanding. Try, especially,
to anticipate the main forms of prejudice that could produce misunderstanding and guard against
them with persuasive explanations, examples, etc.

{3.6} Remember: if anything can be misunderstood it probably will be!

(I’ve incorporated a number of comments by Alan Bundy in this section.)

{4} Motivate the reader

{4.1} An important aspect of communication is always making sure that the reader wants to read
on. So in the very first chapter, and at intervals thereafter, you should make sure that you say
why what you are doing is interesting or important. It may be because it solves some important
theoretical problem. It may be because it solves an important practical problem. It may be because
it reveals an underlying unity in a variety of previous theories and techniques. If you can’t give
good reasons why people should be interested in your work, then you probably shouldn’t be doing
it.

{4.2} Another aspect of motivation is making sure that the reader knows WHAT you are doing, as
well as why. Good illustrative examples are important for this. The section on scenarios, below,
expands on this. But it is not enough to give examples: you must present both illustrative examples
and a general characterisation of the scope of your work. This includes negative characterisations:
i.e. state clearly what the programs cannot do, which facts the theories, cannot explain, etc. This
will lead into the section on possible further work. (See below)

{5} Structure the thesis

{5.1} Good communication does not necessarily imply writing in the style of a novel. The work
should be structured so that important points (e.g. definitions, examples, theses, proofs, etc.) are
easy to find if one looks back at the thesis. So make sure that they are numbered or labelled in
some way that facilitates cross reference. (E.g. this document is numbered so that you can easily
communicate with the author – or others – by complaining about paragraph (4) for instance.)

It is also advisable to have lots of section headings with a numbering scheme that shows the
structure (e.g. chapter 4 section 3 first sub-section will be numbered 4.3.1). All section headings
should be listed in the main table of contents giving page numbers.

{5.2} If you have tables or figures, number them according to the chapters they are in. E.g. the
first figure in chapter 4 is Fig 4.1, the first table is Table 4.1. Alternatively base the numbering on
subsections. This will help with their location in large chapters. E.g. the third figure in section
4.3.2 is Fig 4.3.2.3.

{5.3} It is not customary to include an alphabetic index of subjects in a thesis, but your examiners
will probably be grateful if you do. Certainly if you define technical terms (the frame problem) or
abbreviations (ATMS) or acronyms make sure you have a list giving page numbers where they are
defined. It is probably also wise to assume that the reader will NOT remember an acronym last
used 60 pages earlier. So whenever you use an abbreviation ask yourself whether the reader should
be reminded of its definition or given a cross reference to the definition.

4

{6} Commonly required sections of a thesis

The following section or chapter headings are required in most theses, though you may find it
preferable for some of the items to be spread across several chapters. Some of the points made in
this section are expanded in later sections.

{6.1} Introduction This should give an overview of the main objectives of the thesis, including an
account of why the work is worth doing (see section on motivating the reader), and a summary of
what has and has not been achieved. It may also be helpful for the reader to have an indication
of how you solved your problem, even if you can’t yet give full details. The introduction should
include an overview of the whole thesis, helping the reader to understand what is coming later, and
providing information on which bits to read if he wants to take short cuts.

{6.2} Review of related work Sometimes this needs a separate chapter sometimes not, e.g. where
you have such reviews in a number of different chapters dealing with different topics. However, it
is very important in a thesis that you demonstrate that you are familiar with relevant literature,
that you can expound it properly and that you know exactly what your own work adds to the work
of others. (See sections on surveying related work).

{6.3} More detailed statement of the problem you have worked on The first chapter need not go in
to full technical detail. It should be readable by people who are not experts in your field. A later
chapter, which may come before or after the literature review, or be combined with it, can go into
full technical detail on the nature of the problem.

{6.4} One or more chapters outlining your own solution. There are two main strategies that can
be followed.

(a) Give a high level overview of the solution, then a more detailed overview, then a still more
detailed description. I.e. this is the method of progressive deepening.

(b) Present your solution in stages, e.g. describing different techniques or partial solutions sepa-
rately, followed by a chapter showing how they are combined.

Even if you adopt (b) it is probably a good idea to have an element of (a) - i.e. start with a high
level overview before going into the details.

{6.5} Illustrations/Demonstrations of what the solution achieves This may consist of examples of
the execution of the program, solutions to theoretical problems, uses of the new notation you have
developed, etc. It is important that you don’t merely provide the examples but also give some
analysis showing what they are examples of. Be sure that the reader understands the scope of your
thesis. This includes being honest about what the work does not achieve. If you claim complete
generality then then you are almost certain to fall flat on your face when someone provides a
counter-example later on.

{6.6} Discussion of possible further developments No PhD thesis is ever complete. There are always
limitations to the concepts, theory, technique, or program. Make sure that you have looked for
such limitations and that you have some ideas about how further work may reduce them. This
could be part of a concluding chapter.

{6.7} Discussion of how to evaluate the thesis This could either be a separate chapter, or part of the
introduction and concluding chapters. Show that you know how someone should assess your work.
Explain what would count as success or failure for your project. Evaluation of a theory in cognitive
science might include doing experiments on people (even if you have not done them you should say
which experiments would be relevant.) Evaluation of theoretical work in computer science might
include attempting to apply it to design of new languages or hardware, or to software engineering
techniques, or simply to the solution of other theoretical problems. Evaluation of a new program or

5

technique would include comparing what it achieves with what is achieved by previously existing
software and techniques. There are several different dimension in which software can be evaluated:
generality, usability, portability, maintainability, understandability, efficiency, etc. Make sure you
and your readers know which dimensions are relevant to assessing your work.

{6.8} Conclusion This should summarise the main points of the thesis, evaluate what has been
achieved (see discussion of evaluation), summarise the way it compares with prior work, mention
limitations and failings, and sketch possible future developments or future research suggested by
your work.

{6.9} Acknowledgements It is conventional, though not absolutely necessary, to have a section
acknowledging the people who have helped, inspired, advised you, the institutions that have sup-
ported you etc. E.g. if you have a research council studentship say so and give the studentship
number. If you have taken someone else’s idea and developed it, this should be stated in the main
text, though a brief note can also be included in the acknowledgements section. Most people ap-
preciate acknowledgements, but don’t go over the top and include everyone you know, including
the bus-driver who gets you to work....

{6.10} Bibliography Every item referred to in the thesis must be included here. There are different
styles for bibliographies and citations, as described below.

{6.11} Appendices These may include detailed mathematical proofs, detailed definitions of for-
malisms, detailed descriptions of programs or techniques used, and examples of the program’s
execution if you have developed a program. Opinions differ on whether actual code should be an
appendices. I strongly recommend that where there are any interesting algorithms or techniques
the code should be included. But don’t include all the trivial details of your program, including
low level routines (e.g. concatenate two lists).

{7} Issues concerning length

{7.1} Length limits in exam regulations are UPPER BOUNDS, not targets to aim at. If the main
text of your thesis is over 150 pages or 55000 words, then there’s a good chance that it is too long.
Trim all waffle and repetitions.

{7.2} If thesis plus appendices is much over 220 pages or 80,000 words then it is probably too long
and you risk making busy examiners upset at having to be burdened with it - unless the whole
thing is fascinating, from beginning to end.

If you have lots of diagrams or pictures (e.g. for a thesis on vision or image processing), that can
justify additional bulk. Similarly if there’s lots of empirical data that you have collected, e.g. for
input to your program. Even then ask yourself whether it ALL needs to go into the thesis, or only
a sample that makes the points adequately.

If you have empirical data that are too bulky to go into the thesis, make sure they are preserved
in a form that will allow others to access them, e.g. to check out the claims in your thesis or other
publications.

{7.3} Include the INTERESTING parts of the program in an appendix. Include only enough to
enable a competent programmer to replicate your program if necessary.

Do NOT include obvious and trivial procedures (e.g. defining a procedure to intersect two lists,
or join two lists, or count the elements of a list satisfying a predicate, etc. are all trivial. Don’t
include them. A procedure to compare two networks and build a description of the difference is
not trivial. Include that, unless you can refer to a widely available publication that describes the
algorithm very clearly.) If in doubt about what to include ask your supervisor for advice - then use
your own judgement - it’s YOUR thesis.

Even if you do not include all your program code in the thesis, you should be willing to make it

6

available to others so that they can test your claims, criticise your work, or build on it. (Sometimes
software cannot be made available in this way because it is commercially valuable.)

{8} The opening chapter(s)

{8.1} Start with a good, clear, compact, complete overview. By the end of the first few pages of
chapter 1, your reader should have a very good idea of your main achievements, including whether
you have written a program and if so what sorts of things it can and cannot do (at least at a high
level of abstraction).

Alan Bundy has suggested to me that it is useful if students who are starting to write up their
theses first compose what he calls a ‘thesis message’: a sentence (or more) per chapter playing two
roles: as a description of the chapter and as a part of an argument when read in sequence. This
helps the student locate gaps in the argument, ensures that the chapters are in the right order,
ensures that there IS a message rather than a collection of disconnected thoughts, etc.

This message should then be reflected in the title, abstract, introduction, conclusion and thesis as
a whole.

{9} Surveying related work

{9.1} A literature survey is a necessary part of any thesis. It can take different forms, e.g. bunched
in one place or distributed across several chapters so that literature is discussed in the context
where it is relevant (make sure the reader knows which you are doing - e.g. after the first portion
of a literature survey state that remaining literature will be surveyed in other chapters where it is
relevant).

{9.2} One thing you should avoid is a very superficial survey in which you cover 25 authors in
10 pages giving a potted summary of each that will give little information to readers who do not
already know the work.

{9.3} Choose a few of the authors who have made the main contribution to the field and give an in
depth discussion that will show the examiners that you are able to expound the work of someone
else clearly, accurately, and critically. Then, if necessary, give a list of other work in the field saying
that you don’t have space to survey it in detail. At least that will show that you are aware of it.
Better still if there are different approaches, different views, or different kinds of results, etc. then
organise the list into different categories.

If possible choose at least one author whose views are opposed to yours and discuss the issues in
detail.

{9.4} Imposing a new structure on previous work in the field is one way of making a contribution
to knowledge.

{9.5} Tracking down relevant literature is less fun than working on your program, and therefore
too many students don’t do the job properly. It is your responsibility to make sure that you have
covered all the main relevant work. By the end of the first year or so, any good research student
should know more about recent literature in the field than his or her supervisor, who is probably
too busy to keep up properly. So don’t just depend on your supervisor to tell you what to read.
Your survey must include both recent work and the most important earlier work, which you can
track down by following up references in other people’s bibliographies. If you don’t look at the
history of your topic you are in danger of re-inventing wheels, including wheels that other people
have demonstrated don’t work. (This happens too often.)

{9.5} The next two sections are also relevant to the literature review.

7

{10} Two kinds of literature survey: scene-setting and critical

{10.1} It’s up to you whether you expound your ideas before or after the literature survey. Some-
times discussion of other work nicely sets the stage for your solution. In other cases your own
analysis provides a conceptual framework that makes it easier to expound and classify or criticise
the work of others.

{10.2} It may be useful (as Alan Bundy pointed out) to distinguish two kinds of literature survey:
scene-setting and comparative evaluation. An early chapter (e.g. chapter 1 or chapter 2) can
include a scene setting survey to help the reader understand what problems you are addressing
and how they relate to the work of others. Later on, either in a separate chapter, or distributed
over several chapters, you can include comparative evaluation surveys to show in detail how your
work extends or improves on others (or how it doesn’t!) This is part of the process of convincing
examiners that you have done something original and significant.

{11} Criticising the work of others

{11.1} Remember that before refuting X you should present the views of X in as strong and
convincing a form as possible: otherwise you risk being accused of refuting a caricature or straw
man. (I owe this point to the writings of Karl Popper.) There is no point arguing against a view
that only a fool would support. If possible improve on X’s own arguments before you try to refute
them - i.e. anticipate possible ways of wriggling out of your criticisms. Too often people write
criticisms of a particular view without asking How would I react to this criticism if I were a

really intelligent and well informed person on the other side?.

{12} Scenarios and examples

{12.1} Many AI theses have made good use of sample scenarios (a) to demonstrate what the
problem domain is and (b) to demonstrate what the program can do. A scenario is an example of
a hypothetical or actual piece of behaviour, e.g. solving a problem, making a plan, engaging in a
dialogue. Good examples of expositions using scenarios are the theses by Winograd and Sussman.

{12.2} It is important that scenarios serving these two purposes are clearly distinguished, unless
the same one serves both. I.e. if you use a scenario to define the problem domain, but your program
cannot cope with it, say so, so that your reader is not given false expectations. I.e. If you give
examples of scenarios make sure you indicate clearly which can and which cannot be done by your
program. Also make clear whether the input and output are as they would be for your program,
or whether you have tarted them up for the purpose of communication.

{13} Describing programs: a formal description

{13.1} If you have written a program make sure that in addition to a scenario giving examples of
what it can do, you also give a fairly formal account of its capabilities. Mere examples don’t, by
themselves, make clear what the program cannot do. Also, readers don’t want to have to plough
through lots of verbiage when a concise formal account will suffice.

{13.2} If there is a way of explaining an algorithm or relationship in a well known formalism, e.g.
algebra or predicate calculus do so - don’t just witter on in English. However, if you use formulae
or equations, re-state them in English if they are at all complex, for instance if there are more
than two implicitly or explicitly quantified variables or more than a dozen or so symbols, or if the
notation is not widely known.

{13.3} Avoid vagueness, imprecision, etc. If you say that there is a relationship between two
observables say WHAT it is. E.g. don’t just say that measuring X enables you to infer Y - give
the formula or relationship. (But be clear whether this is an empirical or a mathematical result.)

8

{13.4} If there are difficult new concepts, include the verbal explanations, with illustrative examples,
but make sure that there is a formal summary for quick reference later. E.g. someone doing related
work wanting to check that she has covered all the cases you’ve dealt with should be able to go
through an explicit check list without having to dig it out of the main expository text.

{13.5} Formal does not necessarily mean expressed in a formal language. E.g. it may be enough
to lay out the information in a formal way, using tables, charts etc. It must be concise, clear, and
well structured.

{14} Describing programs: saying WHAT they do

{14.1} As far as possible separate out your description of WHAT a program does from HOW it
does it. A common mistake is to muddle these two up.

The account of WHAT the program does (not HOW it does it) should include at least the following:

What kind of domain(s) it is concerned with.
What objects, properties, relationships, events etc. in that domain

it can deal with.
(Make sure you give an EXHAUSTIVE specification of the types of
things, not just a few examples. Although the TYPES should be
exhaustively specified, you need not include all the INSTANCES
of those types.
For the sake of clarity list those things it cannot do that
readers might be tempted mistakenly to assume it does do.)

What inputs it can have initially.
If possible, give a formal specification (e.g. a grammar) as
well as examples and descriptions in English.

Where it gets its inputs from:
The user at a terminal? Another procedure that invokes it
with arguments? A global database or set of files on disk?

What interactions can occur (if it is an interactive program)
If possible give a grammar or other formal specification
for its possible behaviours.

What (final) outputs it produces.
If possible give a grammar for the output, and a formal account
of the relations between input and output. If it is not possible
to give a formal account that is clearer and more concise than
the program itself say so and explain why. (How did you know
what program you were trying to write?)

Where the output goes
Printed on the terminal? Results returned to a calling
procedure? Stored in a global database or disk file?

What operations it can do. E.g if it is a simulation program,
what exactly are the actions it simulates. If it is a problem
solving program what kinds of solutions can it generate.

{14.2} A summary account of what your complete program does should occur near the beginning
of the whole thesis. Descriptions of smaller components can be left to chapters outlining the
implementation.

{14.3} If you have a Prolog predicate that has lots of different rules to handle different cases, then
don’t SIMPLY include all the rules - explain the principle on the basis of which you have produced all

9

those cases. (e.g. There is one case for each type of insect, and 300 types of insects are

dealt with, or The predicate handles different types of vehicles and there is one case for

possible number of wheels, from 2 to 20.... etc.)

{15} Describing programs: saying HOW they work

{15.1} The account of HOW the program works should be presented in a manner that is, as far as
possible, independent of the particular programming language used, so that someone could use the
description to re-implement the program in another language.

{15.2} Don’t mix up levels. Choose a level of description and stick to it. If you refer to a sub-system
in that description, then you can describe it somewhere else, again sticking to a suitable level. A
very common way to make descriptions unintelligible to the reader is to switch rapidly between a
high level overview and gory details.

{15.3} At each level of description you can explain how a program, or part of a program works by
presenting:

a. A specification of its main components (e.g. main datastructures
or databases and the main processing components) and

1. their tasks (what sort of things they do)
2. the data-flow between them
3. the control relations (what calls what)

(including how much is conceptually parallel even if
implemented sequentially).

b. How the different kinds of objects, etc. etc. are represented
(i.e. what sorts of data-structures are used - i.e. how many
different types there are, what their components are, how they
are related, etc.)

c. What algorithms are employed (except where they are trivial)

d. How the main program is broken up into smaller ones, at the
next level of detail.

e. What limitations the program has and why.

f. A formal or informal complexity analysis: How its performance
scales up with problem size - e.g. is it linear, exponential etc

g. The implementation environment: machine, operating system,
language and compiler/interpreter used. (e.g. not just Lisp,
but whose Lisp system.)

h. Some indication of times for typical problems on the system
described in (g).

Use block diagrams and flow charts where this will help to make things clear, but be sure the
semantics of such diagrams are not left unspecified. Don’t use the same kind of diagram for two
different purposes (e.g. a state transition diagram and a block diagram showing components).

10

Don’t use the same kind of box for two different kinds of components, e.g. a database and a
processing module. Don’t use the same kinds of arrows or links to represent different relationships,
e.g. flow of data and flow of control.

{16} Further information about the program

{16.1} If you have a program state clearly what it achieves: is it something that others could make
use of either as a sub-program, or as a template for a family of programs? For what purposes can it
be used - does it have practical applications or is it only of theoretical interest? Does it test some
hypothesis? Did it help you clarify certain concepts?

{16.2} If there is a program say whether it is in a form in which others can run it, what user
documentation there is, etc. Give a brief outline of what one has to do to run it. Don’t include
user documentation in the thesis (unless that is a major result of the research, e.g. for a project
on human-machine interface design).

However, user documentation should exist somewhere, and examiners should be able to request it.
They MAY also ask for a demonstration of the program as part of the oral examination, so make
sure that the program is working and demonstrable.

{16.3} Explain the relationship between the implementation and your requirements for the program.
Is it provable that your program does what you intend it to do, or can you simply claim that you
have tested it exhaustively? In the latter case give a description of the range and variety of the
tests used. Don’t include them all in the thesis if that would make it too bulky - just give an
overview.

{16.4}* Try to motivate the design decisions for your program. Don’t bother to comment on all the
details, but for all the main features, or at the least the features that you think worthy of mention,
be very clear as to whether you chose them because

a. You are trying to model something that you think works in the
same manner as your program.

b. You chose that design in order to explore its possibilities
(Suggested by Luc Beaudoin)

c. There were several different options, and no rational way of
choosing between them, so you have made an arbitrary choice.

d. It is just an implementation detail where the choice is of no
theoretical significance anyway.

e. It was chosen for efficiency, or clarity, or maintainability
(i.e. for some good engineering reason.)

f. The choice was largely determined by the available hardware and
software. (E.g. there was a library and you just used it.)

g. You couldn’t think of any other way to do it.

h. You can’t remember why you chose that method....

Don’t waste time explaining details that are of no theoretical interest in the main part of the thesis.
If they are worth reporting because they are not obvious put them in an appendix.

11

{17} Criteria for evaluating your thesis

{17.1} Make clear how YOU think your work is to be assessed. What would have counted as
an unsuccessful outcome for your research? The mere fact that you have written a program that
meets your specification or that you have written down some axioms and definitions is not in itself
evidence of success.

{17.2} Why should someone want a program to do that? Why should anyone be interested in your
axioms and symbols? What is the new knowledge? Is there a new useful design technique? Have
you discovered some new important algorithms or heuristics for dealing with a class of problems?
Have you found new ways of representing information usefully? Have you got a new model of some
kind of human cognitive ability? Does the model suggest new kinds of empirical research that can
be done? Does the model explain previously known facts better than previous theories? What
does the program add to the theory? Does the program simply help to check that your theory is
consistent and workable? Does the program allow new predictions of human behaviour to be made
when given appropriate inputs? Does it merely explain a range of possibilities without predicting
which ones will actually be realised (in the sense explained in chapter 2 of A.Sloman The Computer
Revolution in Philosophy)?

I.e. Make clear what new knowledge you have discovered, and its nature, e.g.

previously unrecognised flaws in the work of others
new requirements for a design or simulation
a new formalism or programming language
a new computer representation
a new algorithm or heuristic
improvements on the work of others
new facts about how people work
new concepts / taxonomy /conceptual framework for thinking about

a particular domain
a new previously unrecognised problem for AI or cognitive science
a new design for human/machine interface
new relationships between old problems
a new generalisation of things previously thought to be

different or unrelated (e.g. techniques, representations,
problems, etc.)

new predictions about human behaviour
new negative results - concerning what won’t work.

{17.3}* If you have collected empirical data explain what their significance is, and why anyone
should be interested. Remember: it is terribly easy to do experiments on people and collect data.
Unlike physical or chemical apparatus almost anything you ask people to do will produce some
response because they are intelligent and will interpret your instructions. For the same reason
there is likely to be individual variation. But merely collecting data, finding averages, drawing
graphs, etc. is of little scientific value. There must be some interesting theoretical implication,
or the data should illustrate some important concept. If the data refute some previously believed
theory then that can be a useful piece of research.

Also when you have collected data beware of wild and woolly speculation as to how they are
produced. If you offer an explanation, be sure that it is the sort of explanation that is sufficiently
precise and detailed to be the basis of a construction of a working mechanism. E.g. to say of
someone He solved the problem by constructing an image in his mind and examining is to say
something pretty worthless. It is not at all clear what it means to construct an image in one’s

12

mind: is it just a metaphorical way of speaking, like The pressure was building up in him, or He

was pulled in two directions at once, or is there something like a 2-D surface within his brain, on
which visual processes of analysis and interpretation operate? All too often psychological writings
use such pseudo-explanations because they make people feel they understand. The ancients thought
they understood what it meant to say that different kinds of matter (Earth, Air, Fire and Water)
all sought out their natural place. Don’t fall into similar traps.

{18} Program style

{18.1} In your program do not use incomprehensible abbreviations for procedure names or variables.
E.g. use top left corner NOT tlc You may be able to remember what tlc stands for but you
can’t expect readers to do so. If you have done this in your code, then expand it into something
intelligible for readers in the thesis. (Saying you have done so.)

See also TEACH PROGSTYLE

{18.2} Include comments with the programs, and where appropriate give examples as well as general
explanations in your comments. But don’t mix up the program with extensive examples of trace
printing.

{19} Program output and tracing

{19.1} Give examples of trace printing produced by your program running, but make sure the
examples are carefully selected to highlight interesting points. Nothing is more offputting than
pages and pages of indigestible program output. You can’t expect readers to plough through
masses of tedious detail. If necessary, add comments by hand to draw attention to interesting
points. Also edit out repetitive output, but indicate that you have so.

{19.2} Don’t assume that the output of standard tracing (or spying) facilities is adequate for readers
just because it is adequate for you, the program developer. In 99% of cases it is better to devise
special-purpose printing procedures that will print things out in a form that is both clear and
interesting to read.

{19.3} For a trivial example, look at the trace output produced by the following Pop-11 instructions
(mark and load them):

lib river
start();
trace putin, getin, crossriver, getout, takeout;
putin(chicken);
getin();
crossriver();
getout();
takeout(chicken);

{19.4} You may represent things in a compact form e.g. using numbers, or using an ordered list
of names, but don’t expect readers to remember that the first number in the list represents the
number of children and the second name is the name of the spouse. Make sure your trace output
includes all relevant information to help the reader, even if it was not necessary for you. But don’t
assume the reader is STUPID. Think of the reader as a bright second year doctoral student in the
same general area as yourself - but not working on the particular sub-topic.

{19.5} Choose appropriate bits of illustrative output to work into the main text. You can include
more details in an appendix. But don’t put it ALL into appendices: examples of the program
behaving should be part of your main exposition if the program is worth reporting on at all.

13

{20} Proof-reading is very important

{20.1} Before submitting the thesis read through it carefully, asking yourself - how would I feel
about having to read this if I were a very busy and over-worked academic who doesn’t necessarily
know this sub-field in great detail. Look for opportunities to improve clarity, remove repetition,
correct errors, etc.

{20.2} Use an automatic spelling checker if possible, to help you find most errors. Many errors e.g.
grammatical errors, cannot be checked automatically (yet). Get a friend to read the thesis looking
for typographical and other errors.

Double check the spelling of EVERY proper name, e.g. every author’s name in your bibliog-
raphy. Too many people are sloppy about spelling of names. E.g. do not confuse things like
Jonson/Johnson/Johnstone Ramsay/Ramsey, Allan/Alan/Allen, etc.

Examiners get VERY annoyed if they are used as proof-readers compiling long lists of minor errors
for you to correct.

If you have any figures or tables that are referred to in the text make sure that the figures (e.g.
lettering, captions) are consistent with the text. Too often either the text or a figure is changed
without the other being changed too. It is infuriating to read in the text about the item labelled
X in Figure 4.5 when there is no label X in Figure 4.5.

Sometimes there are reasons for putting figures or tables separately from the text that discusses
them (e.g. you want to put several figures on successive pages, and the text discussing them is
fairly lengthy). In that case make sure that someone turning to a figure or table who has not yet
read the text can either tell what it is about or will know where to look for an explanation (e.g.
the caption to the figure or table should mention the section where it is explained.) For examples
of how to do this look at the journal: Scientific American.

A good text formatter will enable you to avoid most of these problems, including, for example,
labelling of figures.

{21} Avoid embarrassing omissions (proofread carefully)

{21.1} If not everything can be inserted by the text processor you are using be prepared to write
things in by hand in black ink. But make sure there are NO omissions. While you are preparing
the text keep a file listing all the items to be inserted by hand, then before you make photocopies
go through that list carefully, ensuring that you have made all the inserts. Leaving such things out
(e.g. figure captions, references, etc.) gives an impression of sloppiness.

{21.2} Similarly if you don’t have a detailed reference when you write something and leave a gap
in the text MAKE SURE you fill in the gap for the final version. Again, keep all such things in a
to be done file and check them carefully before submitting.

{21.3} Make sure that every item that you refer to in the text is included in your bibliography. It
is very irritating for the reader to find a reference to (Bloggs 1903) then not find the entry in the
bibliography.

A good text formatter should help you avoid this.

{21.4} Don’t put items in the bibliography simply because they are relevant. Include ONLY those
things you refer to explicitly somewhere. A bulky bibliography is of no intrinsic merit. The only
exception is the case where production of a new bibliography on the material of your thesis is itself
part of the work, in which case say so.

{21.5} Use footnotes only to give details of references to literature, or possibly to remind the less
well informed reader of some technical point. Do not use them for substantive extensions to the
discussion, qualifications, etc. If you have something important to say work it into the main text,

14

even if you label it as a digression from or parenthetical insertion into your main. This is one way
in which clear section headings are useful.

{22} Try out the thesis on a friend or colleague

{22.1} Try to find the right balance between excessive terseness and excessive verbosity. Try out
your draft thesis on at least one other D.Phil student who should be able to say whether it is
readable interesting, clear, convincing, etc.. (Similarly you should be prepared to read at least one
draft thesis written by another student.)

{22.2} In particular don’t assume that everything you have explained will always be remembered by
your reader. So if the reader is likely to need a reminder say something like the floozle strategy

(defined in section 3.4.2) can be used.... Don’t repeat points just because they are relevant in
different contexts. It is unkind to confront examiners with a repetitive and therefore unnecessarily
bulky thesis.

{23} Bibliography and references

{23.1} There are different conventions about format for references and bibliography. Look at
journals in your field and see what they do. Often there are instructions for authors inside the
back or front cover. Choose a set of conventions and stick to them. E.g. some bibliographies put
initials after surname, some before. Some people put the publication date immediately after the
author’s name, some at the end of the entry. It is important to distinguish titles of book chapters
or journal articles from titles of books or journals.

- Use ‘single quotes like this’ or ‘like this’ for the titles of
chapters or articles. (Not all printers can handle ‘‘‘’’ nicely,
so check that out before you use it. Using an asymmetrical pair
of single quotes can look very silly in the printout.)

- Titles of books or journals should be italicised or underlined.

{23.2} There are different conventions for bibliographical references within the main text. The
most compact is by a numerical reference (e.g. [45] would refer to bibliography entry number 45.)
Alternatives are name and date (Smith 1975, Jones 1932a) or name and number (Smith [45]). As
a reader I prefer name and date since very often that will suffice to tell me what is being referred
to whereas if it is just a number then I am forced to turn to the bibliography. Also there is more
chance that you will get numbers wrong as you update the bibliography.

A good text formatter can ensure that you follow uniform citation conventions, and will often give
you a choice of formats.

{24} Quotations

{24.1} If you include a quotation from another author make sure you give a FULL reference
including page number so that it can be found quickly and easily. E.g. the reader may wish to
check the context to see whether you have misunderstood.

{24.2} Don’t assume that just because you can understand French, Urdu, or Latin, or whatever,
your readers can. If you include a quotation in a foreign language you MUST give a translation
into English as well.

15

{25} If English is not your native language get help

{25.1} If you are not a native speaker of English you are STRONGLY advised to pay someone who
is a native speaker to work carefully through your thesis improving the spelling, syntax, etc. where
necessary. The examiners have to be convinced that the English is at least up to the standard
required for publication in an English language journal.

Examiners differ on the importance that they attach to linguistic competence. Some examiners
insist that the thesis be written in good English even if you are not a native speaker of English.
Others are willing to make allowances for language if the scientific and technical content is good
enough. The best advice is to take no chances and assume you are going to get the first kind of
examiner.

{25/2} Even if you don’t speak English there is no excuse for spelling errors, as there are spelling
checkers available on most computers. Make sure that you double-check the spelling of names of
other authors.

{26} Encouraging final comment!

{26.1} If you find these comments daunting, remember that many other people, not all of them
geniuses, have succeeded in getting PhD.s However, too many of them have been asked by examiners
to do substantial chunks of re-writing first.

{27} References (Good scenarios)

G.J. Sussman A Computer Model of Skill Acquisition. New York: American Elsevier, 1975.

T.S. Winograd, Understanding Natural Language. Edinburgh: Edinburgh Univ. Press, 1972.
(Winograd’s scenario is re-printed in many books, e.g. M .Boden’s Artificial Intelligence and Natural
Man.)

{28} Further reading

This list was compiled a long time ago, and there are probably many other useful references.
If you find something useful to add to the list, please email A.Sloman[AT]cs.bham.ac.uk

Estelle Phillips and D.S. Pugh
How to get a PhD

Open University Press
ISBN 0 335 155367 (paper back)

Bundy, A. du Boulay, J.B.H., Howe, J.A.M. & Plotkin, G.,
‘How to get a Ph.D. in A.I.’, in
{\em Artificial Intelligence: Tools, Techniques and Applications,}
O’Shea, T. Eisenstadt, M. (eds.),
Harper & Row: London, 1984.

Chris Johnson has some useful suggestions for PhD students at his web site:

http://www.dcs.gla.ac.uk/~johnson/papers/phd.html
What is a PhD in HCI?

http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html
What is Research in Computer Science?

16

Compare that with

http://www.cs.bham.ac.uk/~axs/misc/cs-research.html
Types of research in computing science software engineering
and AI.

There’s also useful stuff by Marie desJardins, http://www.cs.umbc.edu/~mariedj/

Dept. of CS & EE, University of Maryland, Baltimore County
She has a web site with pointers to a useful guide she has written
and other things:

http://www.cs.umbc.edu/~mariedj/papers/advice-summary.html

NOTE
Students who do not already know about LaTex and BibTex are strongly encouraged to learn to
use them, in order to reduce the work involved in producing a well-formatted thesis and in order
to produce better results than you can achieve by other means.

Students who do not already know about LaTex and BibTex are strongly encouraged to learn to
use them, in order to reduce the work involved in producing a well-formatted thesis and in order
to produce better results than you can achieve by other means.

The following Poplog TEACH files are also relevant.

TEACH PROPOSALS
TEACH PSTYLE
TEACH PROGSTYLE

Acknowledgements

Several people at Sussex, and Alan Bundy in Edinburgh, have contributed useful suggestions, which
led to revisions of early drafts. Ben Smyth identified several typos, now fixed.

$poplocal/local/teach/theses

The University of Birmingham 1992.

17

