A Typed Operational Semantics Based on Grammatical

Characterisation of an Abstract Machine
Robin Popplestone
Visiting from The Department of Computer Science
University of Massachusetts at Amherst

Abstract

In computation, we often want to represent finite sequences of objects. Clas-
sically, a set of finite sequences of tokens drawn from an alphabet is a language,
and may be characterised by a grammar. 1t would seem natural therefore to use
grammars as a richer way of specifying types, simply by deciding that tokens can
be the objects from which a type is built . For example, List ({Int*String}) is
the type of all lists in which short integers alternate with strings, using {a} for the
Kleene-closure of a.

However, one’s enthusiasm for this approach might be tempered by the realisa-
tion that some questions about some grammars are not effectively computable. A
crucial capability required for this work is the ability to divide one grammar ez-
actly by another. Exact division is an extension of the concept of division found in
Hoperoft and Ullman and characterises, at the type-level of abstraction, the acqui-
sition of arguments by a function.

This approach is valuable for any language or system in which stacking op-
erations are explicit, including the Forth, Pop-11 and PostScript languages, and
the Poplog multi-language environment. It has been applied experimentally to the
development of a type-checker for the POP-11 language.

1 Introduction

Many of the structures occurring in computation can be regarded as representations
of finite sequences of objects. Typically therefore a program will contain many
variables whose legal bindings are drawn from a set of finite sequences. Classically,
a set of finite sequences of tokens drawn from an alphabet is a language, and may
be characterised by a grammar. It would seem natural therefore to use grammars
as a richer way of specifying the types of variables, simply by deciding that tokens
can be objects of the language. For example, I use List(Int*String) as the type
of all lists of two members, the first of which is a (short) integer, and the second
of which is a string. Likewise List ({Int*String}) is the type of all lists in which
short integers alternate with strings.

Concatenation of such sequences is a natural operation, leading to the idea that
the product operation on types should be associative. The grammatical approach
supports this associativity, whereas more standard approaches to type in functional
languages do not. Of course, associativity is purchased at a cost, since the existence

of a most general unifier, which is the basis of the derivation of principal types,
cannot be guaranteed.

Moreover, one’s enthusiasm for the grammatical approach might be tempered
by the realisation that some questions about some grammars are not effectively
computable. For example, we may wish to know if two types are identical. These
considerations have led me to restrict myself to building on a basis of regular gram-
mars, although the requirements of parametric polymorphism have mean that using
what might be called regular algebras is more appropriate.

I have built an experimental grammatical type-checker for the POP-11 language.
POP-11, with its open stack has always been regarded as not capable of being
statically type-checked, but it has proved possible to create a type-checker which,
though it restricts the programmer, does so in the direction of requiring that (s)he
adopts recognised good practice, rather than being irksome. It is based on the idea
of maintaining a grammar which characterises the state of the stack at each step in
program execution, as specified in the Poplog Virtual Machine.

A crucial capability required for this work is the ability to divide one grammar
exactly by another. Exact division is an extension of the concept of division found
in Hopcroft and Ullman. FEssentially, at the type level of abstraction, a function
right-divides the stack-grammar by its argument grammar, and then multiplies by
its result grammar. Left-division is also required, for example the t/ function has
type:

tl: List of a -> List of Tl(a);

where Tl is a grammar-function which yields the left-quotient of a grammar
divided by the top monolog, and a is a type-variable.

A number of other computer languages, including Forth and PostScript, exist
in which the method of passing parameters to a function or procedure is explicitly
defined to be a stack. The methods discussed in this paper are relevant to type-
checking programs in these languages, and has been tested on a Forth subset.

A stack-state can be regarded as a sentence in a language characterised by a
grammar. Each different point in a program thus determines a set of stack-states,
that is to say a language. The alphabet of this language is the set of objects of the
programming language. Within this framework, the possible values of a variable are
a language all of whose sentences are of length exactly one. Pushing a variable on
the stack corresponds to taking the product of the stack-language and the variable-
language; popping off the stack into a variable corresponds to taking the ezact
quotient of the stack-language by the variable-language. The call of a procedure can
be characterised as taking the exact quotient of a stack-language by the argument-
language for the procedure, and then multiplying the result by the result-language
for the procedure.

Control constructs in a language can be treated by introducing a new non-
terminal symbol to denote the stack-state at a program-point where a confluence
can occur — this will be a statement-label in the lowest level of language. Each
transfer of control to this point generates a production relating the non-terminal to
the stack-grammar for the point from which control was transferred. This gives rise

to context-free grammars characterising the behaviour of a code-sequence (normally
a procedure-body). The existing type-checker converts linear grammars into regular
expressions. Non-linear grammars are regarded as type-errors.

1.1 A guide to the paper

Following this introduction, the paper is divided into the following major sections:

e Languages: sums, products and quotients. This is a treatment of the basic
properties of formal languages as found in [4], but with an emphasis on the
quotient operation required for the type-checker.

e The Virtual Machine: This introduces the idealised (s,e,c,b, h) machine in
which instruction b, in a code-block b, taking arguments from a stack s acts
on a heap h, interpreting variables as specified by the environment e. We
define the exzec function which executes one instruction, and the obey function
which obeys a complete code-block.

e Grammars characterise languages: Languages are treated abstractly, as sets
of sequences, in the section above. In this section we introduce Extended
Regular Word Algebras (ERWA’s), which, together with a type-environment,
define languages composed of objects in a given machine state. We prove some
stability lemmas, which show how these languages vary as parameters such as
machine-state vary.

e Describing Machine States: In this section we first define a formalism for
characterising a machine-state using an element of an ERWA together with
a term to specify the stack and a type-environment to specify the machine-
environment. We then define an annotation of a code-block, and show that an
annotation is a correct description of the behaviour of a machine.

2 Languages: sums, products and quotients

In this section we remind readers of the basic properties of languages, and develop
some propositions which are intended primarily to support the simplification of
grammars which characterise languages.

There is a considerable advantage in developing our theory of type with languages
rather than the grammars which characterise them since it allows us to identify the
operations we need to perform without being tied to any particular grammatical
apparatus. Consequently we are able to develop an approach to describing associa-
tive types which allows us choice of descriptive apparatus. In particular, while the
operations on languages that we introduce will be those of regular grammars, we
will our grammars, which may contain type-variables, are not therefore regular.

For definitions of operations on languages see [4]

We shall use the symbol ‘1’ for the language which consists of the empty string
¢. This corresponds to the unit type of SML.

Definition 2.0.1 (Language) Let Y be an alphabet of objects. A language L is a
set of sequences of members of 2. We write ¥o(L) for the set of objects that actually
occur in a language L.

We denote the empty language by 0.

Definition 2.0.2 (Monologs) A language L is said to be a monolog if it is non-
empty and contains only sequences of length exactly 1.

We will use the capital letters K, .J, L for languages, M, N for monologlanguages.
If @ € 31 is an object, then the sequence of length 1 consisting of @ will be written .

Definition 2.0.3 (Singletons) If o € X then the language S(o) = {6} is called a
singleton.

Definition 2.0.4 (Monotonicity) Let F be a function on languages. We say that
F is monotonic on argument i if L; C L, implies F(Ly, ..., Li_1,L;y Liyy...L,) C
F(LyyoooyLicy, Ll Liyy ... Ly). We say that it is monotonic if it is monotonic on
all arguments

2.1 The product and union of Languages

Languages, being sets, have the normal operations of boolean algebra defined over
them. We write I C K if every member of L is a member of K. Note that this
includes the possiblity that the sets are equal. There is a top element T. The union
of languages is of more interest to us than the intersection. There is also a top
monolog T .

The union of languages is the standard set-theoretic union:

LUK={llleLorle K}

The algebraic laws governing union and intersection are of course just those of
boolean algebra, including:

LUK=KUL, (JUK)UL=JU(KUL)

The concatenation operation on sequences gives rise to the product of languages.
Definition 2.1.1 If L and K are languages, then their product is:
LK ={lklle L,k e K}

The product of languages is associative and distributes over union. It is not
commutative.

J(KL)= (JK)L (JUK)L=JLUKL, L(JUK)=LJULK

4

1 acts as an identity, so that 1L = L = L1 for any language L.

For any integer n > 0, we define L™ by L° =1, L" = LL"~'. Thus L' = L.

The operations of union, intersection and product of languages are monotonic.
Complementation is not.

2.2 The Kleene Closure

Definition 2.2.1 (Kleene Closure) If L is a language, then
{ny=yr
i=0

s called the Kleene-closure of L. We need a modified version of this operation,
where the first power in the union is L™, and write:

JFrom the definition the following lemmas are immediate:
Lemma 2.2.1 K =1UK{K} =1U{K}K
Lemma 2.2.2 Kleene closure is monotonic

Definition 2.2.2 (Regular languages) IfY is an alphabet, then any language L
which is formed by taking 1, 0, singletons S(o) where o € X, combined by union,
product, Kleene-closure is said to be regular.

Proposition 2.2.1 For any language L, {{L},},, = {L}mn

Proof: Let [€ {{L},},, Then { = [;...l,,, m" > m where each [; = l;;...l;,,,
ni >mn, li; € L, Sol=(l1;...44,) . ..(Lp1 ... L,) Hence, by associativity, given
that there are at least mn terms in the product, [€ {L},,,

Conversely, let [€ {L},,,. Then I = 1;...l;, K > mn where each [; € L. By
associativity, we can write this as

Proposition 2.2.2 IfL,...L, are languages, then the product

Ln{Lle . Ln}m — {LnLl . 'Ln—l}an

Proof:
Let l € L,{LiLs...L,},, Then

l - ln(llllzl . 'lnl)(ZIZZZZ . an) . e (llm’ZZm’ . lnm’)

where [;; € L;,m' > m. Now associativity allows us to rebracket:

[= (lnllll21 .. -l(n—l)l)(ln1112122 s l(n—l)Z) s (ln(m’—l)llm’ZZm’ s ln—lm’)lnm’

Hence l € {L,Ly...L,_1}nlL,
The converse membership is proved analogously.

Definition 2.2.3 (Regular Algebra) A boolean algebra with an additional prod-
uct operation which distributes over union is called a regular algebra.

2.3 The quotient of languages.

The possible values of variables whose values are representations of sequences are
characterised by languages. We often manipulate such sequences by taking things
off one end or the other. For example, an operation that takes things off a stack
will make any sequence of objects which constitute the state of the stack shorter.
We can characterise removal from the right by the right quotient operation.

Definition 2.3.1 If L and K are languages then the right-quotient L/ K is defined
by (HEU p62):

L/K ={z|3y € K,zy € L}

There is, symmetrically, a left quotient operation, which we shall discuss briefly
later.

Lemma 2.3.1 (Monotonicity of Division) Let Ly C L, and L be languages.
Then
L/L C L,/L

L/L, CL/L,

Proof: Let © € L,/L Then there exists [€ L for which 2l € L;, Hence zl € L,
that is @ € L,/L. Hence L, /L C L,/L.

Let @ € L/L;. Then there exists [; € L, for which z/; € L But [; € L,. Hence
x € L/Ls.

While the first monotonicity relation above is certainly to be expected, the sec-
ond will be surprising to many readers.

We use the convention that multiplication is more binding than division, so that
LK/L'K" means (LK)/(L'K’).

Being able to perform division of languages is an essential requirement for our
type-checker. If I and K are regular languages, then the quotient is regular. How-
ever, we need to be able to divide languages which contain variables. Typically this
will be possible in circumstances in which some kind of special marker has been used
which is known not to occur in the language denoted by the variable. In POP-11,
this arises in the analysis of functions like sysconslist, whose type-signature is:

sysconslist: All a; Stackmarkka — > List(a)

Here a is a variable which denotes a language none of whose tokens are the same
as those of the monolog Stackmark.

The strategy of the type-checker in performing division is to express division of
complex regular expressions in terms of divisions of simpler expressions, that is to
say, the division operation is moved inwards. If necessary, divisions which cannot
currently be performed are deferred. Such deferral is required in inferring the type
of recursive functions.

Division has only weak algebraic properties. In particular, cancellation does not
hold in general. That is LK /K is not in general equal to L. This arises from the
fact that if [€ L and ly € LK, we cannot conclude that y € K, since y might
have the form gk, where lg € L, k € K. However we can readily see that if K is a
monolog, then cancellation must be possible, an instance of proposition2.3.1 below.

Indeed, it is not even true that L/L = 1. Suppose L = {a}. L/L = {z|3y €
L,zy € L} = L. The essential strategy in the division of products is to find
conditions under which cancellation does occur.

Definition 2.3.2 (Exact Division) We say that J is exactly divisible by K if
every j € J has the form gk where k € K.

When a procedure takes its arguments off the stack, for type-correctness it is
essential that the argument language exactly divides the stack-language.

Being able to divide one language by another is crucial to our type-system. It
is easy to see that a simple divide-and-conquer strategy cannot be applied because
of the fact that cancellation does not always work for products. The lemmas below
suggest that divide-and-conquer has some hope of being successful for sums. In
dealing with products, the general strategy will be to consider monologs, as discussed
below.

Lemma 2.3.2 If J, K, L are languages, then (J U K)/L = J/L U K/L, and the
left-hand division is exact if and only if both of the right hand divisions are exact.

Proof: Let 2 € (J UK)/L Then there is [€ L for which 2/ € J U K Suppose
xl € J then z € J/L. Alternatively, if 2l € K then € K/L. In either case
re€J/LUK/L,

Conversely, suppose @ € J/L UK /L. Suppose & € J/L. Then there is an [€ L
for which 2l € J. Thus 2l € JUK. So z € (J U K)/L. Alternatively, if z € K/L
we conclude similarly that 2 € (JUK)/L.

Now suppose J U K is exactly divisible by L. Let z € J, then z € J U K so
that @ = 2'l where [€ L. Thus J is exactly divisible by L. Likewise K is exactly
divisible by L.

Conversely, if both J and K are exactly divisible by L, let x € J U K Then if
x € J it follows that @ = 2/l for some [€ L. Likewise if z € K, = 'l for some
[€ L. Therefore J U K is exactly divisible by L.

Lemma 2.3.3 If J, K, L are languages, then L/(JUK) = L/JUL/K , and the
left-hand division is exact if one of the right hand divisions is exact.

Proof: Let z € L/(JUK). Then, thereis y € JUK for which 2y € L. Suppose
y € J. Then 2 € L/J. Alternatively, if y € K then 2 € L/K. Thusz € L/JUL/K

Conversely, let « € L/JU L/K. Suppose @ € L/.J. Then there is a j € J for
which zj € L. But j € JUK. Soz € L/(JUK). Similarly we see that if z € L/K
then 2 € L/(JUK).

Now suppose J exactly divides L. Then if [€ I, thereisa j € J and anl’ € L
for which [= l'y. But 5 € J U K Hence J U K exactly divides L. Likewise, if K
exactly divides L, J U K exactly divides L.

Note that in distinction to the previous lemma, we cannot conlude the converse
fact about exact division.

Sometimes, as we shall see, it is possible to perform division easily and explicitly
by relying on the fact that, in our application, many languages are known to be
monologs.

Lemma 2.3.4 If J, K, L are languages then
J/KL=(J/L)/K

Moreover, if L is a monolog, then KL exactly divides J if and only if L exactly
divides J and K exactly divides J/L

Proof: Let @ € J/KL. Then there is kl € KL for which zkl € J. Hence
vk € J/L,and soz € (J/L)/K.

Conversely, if © € (J/L)/K then there is a k for which «k € J/L, that is there
is a [for which 2kl € J, thatis 2 € J/KL.

Now suppose L is a monolog, and K I exactly divides J. Consider j € J. Then,
for some z,k € K,l € L, j = akl Thus L exactly divides J.

Consider now z € J/L. Then there is an [€ L for which 2/ = j € J. Hence,
since K1 exactly divides J, zl = 2'k'l', for some o', k' € K, I’ € L. But L is a
monolog, so [and [’ have length 1. Hence 2 = 2'k’ and hence K exactly divides
J/L.

Finally, suppose L exactly divides J and K exactly divides .J/L. Consider j in
J. Then j = a’l, for some 2/, [€ L. Now 2’ € J/L so 2’ = 2"k, for some 2", k € K.
Thus j = 2"k, so that KL exactly divides J.

Proposition 2.3.1 Let J,J’ be languages. Let M C N be monologs, and let K C L
be non-empty languages for which Xo(N)NXo(L) = 0. Then JMK/J'NL = J/J
and the division is exact iff J' exactly divides J.

Proof: Let © € JMK/J'NL. Then there is a j'nl € J'NL for which 2j'nl =
jmk € JMK. But, m is not a member either of the sequences k,[and neither is n.
Hence k =1, and zj' = j. Sox € J/J'.

Conversely, suppose z € J/J'. So there is a j/ € J' for which zj’ € J. Then,
since M is a monolog, and K is non-empty, there exist m € M, k € K. Hence
zj'mk € JM K. Remembering that M C N and K C L we see that j'mk € JNL,
that is 2 € JMK/J'NL. Thus JMK/J'NL=J/J'.

Now suppose J'NL exactly divides JMK. Consider 7 € J. Now, with m,k
from the previous paragraph jmk € JMK. So there exist z, ' € J',n € N, € L
for which jmk = xj'nl. But m is not a member of the sequences [, k. Neither is m/'.
Hence j = xj’, showing that J' exactly divides .J.

Conversely, suppose J' exactly divides J. Consider jmk € JMK. By the
definition of exact division, j = zj’ for some j' € J'. So z3'mk € JMK, and,
because of our inclusion relation, j'mk € J'NIL. Hence J'N I exactly divides JM K.

Corollary 2.3.1 Let J, J' be languages, for which J' exactly divides J and let
M C N be monologs. Then J'N exactly divides JM and

JM/J'N=J/J
For we can take K = L = 1 in the previous proposition.

Corollary 2.3.2 Let L be a language, M C N be monologs. Then N exactly divides
LM and

LM/N =L
For we can take J =1, K = L in the above corollary.
Corollary 2.3.3 Let M C N be monologs. Then N exactly divides M and
M/N =1
For we can take J = K =1 in the above corollary.

Proposition 2.3.2 Let J,J' be non-empty languages. Let M, N be monologs, and
let K, L be non-empty languages for which So(M)NZ(K) = 0. So(M)NX(L) = 0.
So(N)NEg(K) = 0. So(N)NXg(L) = 0. Let J'NL exactly divide JMK. Then
KCLand M CN.

Proof: Let k € K. Since J, M are non-empty, let j € J,om € M, so jmk €
JM K, Then, by the definition of exact division, there is an & for which jmk = aj'nl,
j e J',ne Nle L. Hence, as before, [= k, that is k € L, showing that K C L.

Now let m € M. Since J, K are non-empty, let j € J, k € K, s0 jmk € JMK,
Then, by the definition of exact division, there is an x for which jmk = zj'nl,
j'eJ'.ne Nle L. Hence, m = n, that is M C N, showing that K C L.

2.4 The Kleene Closure in Division

The Kleene Closure operation presents the most difficulties for division. ;From
proposition 2.3.3 we see, for example that

K/{L}, = D K/L

It is known that when both K and L are regular languages, there is a computable
t beyond which no new terms are generated in the union, so that we could thus get
rid of Kleene Closures in the ‘denominator’. However, since we are developing our
theory with no assumption of regularity, we are left with weaker conclusions.

In the case when we are dividing a monolog by a Kleene Closure, we have the
following:

Proposition 2.4.1 Let M be a monolog, L, K be languages. Then
LM/{K}=L/{K}K/M))U LM

Proof: Let + € LM/{K?}. Then there is k; ...k, € K for which 2k, ...k, =
I e LM.

Supposing n > 0, then

o cither there is k,» which is the rightmost k; # € k,, = 3, ...9; Then §; = 1 so
that g1 ...9;-1) € K/M, and zky...k,_18:...9;-1 = [for some [€ L, Hence
v e L) ({K}(K/M))

o ork,=cforalliel...n. Here x =l € LM.
If n =0, then & =l € LM.
Conversely, let z € L/({K}(K/M))U LM

Suppose @ € L/({K}(K/M)). Then, for some ky ...k, € K and y € K/M
xky...kpy € L. And, for some 1 € M, ym € K. So xk;...k,ym € LM.
Hence x € LM/{K}.

If, on the other hand & € LM, then, since the empty sequence ¢ € {K},
€ LM/{K}

We next address the problem of a Kleene closure in the ‘numerator’. Note
that the following proposition is stronger than

L{K}/M = L/M U (L{K}K)/M
which can be inferred by expanding out the Kleene closure using 2.2.1

Proposition 2.4.2 Let M be a monolog, L, K be languages, then

L{K}/M = L/M U L{K}(K/M)

10

Proof: Let € L{K}/M. Then, for some m € M, € L ky...k, € K,
xm =1k ...k, Now,if n =0,0r k; =efori€ 1...nthen ath € L,sox € L/M.
Otherwise, let £/, = #;...7; be the rightmost non-null sequence of the k;. Thus
g; =1, and gy ...9;-1 € K/M. Hence @ € L{K}(K/M)

Conversely, suppose z € L/M U L{K}(K/M). If 2 € L/M then z € L{K}/M,
since the Kleene closure contains the empty seqence. Alternatively,
lky .. .kpe € L{K}(K /M) where 21 € K, for some 71, so that Ik, ... k,am € L{K}.
Thus (k... kye € L{K}/M.

2.5 Converting divisions into inequalities

In circumstances where no cancellation is possible the following inequalities are of
use:

Lemma 2.5.1 If K is non-null, then L C (LK)/K

Proof: Let [€ L. Let k € K. [k € LK so thatl € (LK)/K
Lemma 2.5.2 If J is exactly divisible by K then J C (J/K)K

Proof: Let j € J. Then, j = gk, so g € J/K by the definition of division.
Hence j € (J/K)K.

2.6 Left Division - the Rev function

While we have regarded stacks as being operated on from the right and so have
developed right division, there are structures, such as lists, that we operate on from
the left with the traditional hd and ¢/ operations. In POP-11 this is not just a
matter of convention, since there are constructs like the [}, %] form which
convert between a right-access structure (the stack) and a left-access structure (a
list). Thus we are going to need a concept of left division.

Since there is no intrinsic ‘direction’ to the sequences of our languages, we could
develop the concept of left division in a manner exactly analogous to our treatment
of right division. However we prefer the treatment below.

Definition 2.6.1 The language-function Rev is defined by x € Rev(L) if and only
if rev(z) € L, where rev(a; ...a,) = (a,...a).

It is clear that Rev is monotonic.
Definition 2.6.2 (left-quotient)
K\L = Rev(Rev(L)/Rev(K))

Definition 2.6.3
TIL)=Ty\L

Definition 2.6.4 If L is a language, then Hd(L) = {i|§|l’. e L}

11

3 The Virtual Machine

The Virtual Machine presented here is related to the Poplog Virtual Machine which
has been made the target of a number of compilers. It provides fully automatic (i.e.
garbage-collected) storage control, and a range of user functions including arbitrary
precision arithmetic, data-structure construction and access, and incremental code
generation.

The simplified version of the Poplog Virtual Machine which is defined below is
in some ways closer to the original POP-2 machine, and so is close to the 4130 com-
puter. For the type-theory presented here, severe restrictions on that are required.
However lexical locals characteristic of the PVM are required, as opposed to the
dynamic locals of POP-2 [3]. We characterise the VM in terms of a function ezec
which executes one instruction, exec* which executes instructions repeatedly, and
obey which obeys a block of code.

If # is a mapping, then we use ¢ = 0z — y] to mean a mapping for which
o(z) = y and ¢(2’) = (2’) otherwise. We use dom(#) to mean the domain of 8.
The function @[z — y] may, or may not, have a domain bigger than that of 6.

A machine state consists of a quintuple (s, e,c,b,h).

Here, h is a heap, that is to say, a mapping from addresses to values. Addresses
are drawn from a countably infinite set A, but the domain of any given heap is finite.
A value is either (a) a pair (apyockey, p), Where p is a primitive function or (b) a
tuple (ao,...a,). Here the first element of a tuple is always the address of a key
value, which determines the basic type of the object. A tuple can be a code-block, in
which case the components a; ...a, are instructions as described below. Otherwise
they are addresses.

There is always an undefined object u, and true and false objects t and f in any
heap.

s is the stack, that is to say a tuple of addresses.

W C dom(h) is a set of identifiers. No assumption is made here about whether
W C A, asin POP-2, or not, as is the case in most other languages, where identifiers
are not run-time objects. However, we do not treat those language-capabilities that
hinge on identifiers being run-time objects, namely the valof and popval functions.

e is an environment, that is to say a sequence of mappings from identifiers to
addresses. An identifier is either local to a code-block or global. Non-locals which
are not global are eliminated by lambda-lifting.!

Definition 3.0.5 (Value of identifier in environment) The value e @ w of a
identifier w is eq(w) if w is non-local to a code-block and e, (w) if w is local, where
e, is the last member of the sequence. A variable is bound to u to indicate that it is

‘undefined’.

!The POP-2 manual instructed programmers to eliminate problematic free variables by making them
arguments of the function in which they occurred, which was then to be partially applied to give a
closure. This approach could have avoided the need for globals entirely, but while globals are not logically
necessary, they are important for efficiency.

12

We use e[v — y] = e[i — e;[v — y]] where i = 0 for a non-local variable and
1 =n for a local variable.

b is a code-block, that is to say a sequence of instructions. ¢ is an index into b,
which determines the current instruction. Associated with each code-block are its
lexical variables. The function [vars makes a new environment from e = ey ...¢,
and a code-block. [vars(e,b) = (ey...€,41) Where e,41 = [— u,...v; — u] for
all the local variables of b.

There is a set of labels which are distinct from the set of identifiers.

In the following two sub-sections we will define the operation of the virtual
machine. We first define a function exec which says what it means to execute a
single instruction of the VM. We then define obey which says what it means to obey
a code block of the virtual machine.

3.1 Executing an Instruction

The instruction set of the VM is: pushq(n), where n € h, push(w), pop(w) where
w € W. call(w), label(l), goto(l), i frnot(l) where [is a label. The instruction with
a given label is unique within a code-block.

It is always possible that a call may not terminate. To deal with this case we
introduce L to be the value of a non-terminating computation. The execution of an
instruction is achieved by the ezec function, defined below. exzec,(s, €, ¢, b, h) means
‘execute the instruction at location ¢ of code-block b, with stack s, environment e
and heap h’. d > 0 is the depth-bound of the computation — if there are > d nested
calls, then obey will evaluate to L.

execy(s, e, c, b, h) = (sn,e,c+1,b,h) if b(c) = pushq(n)

execy(s, e, c, b, h) = (se@w,e,c+1,b,h) if b(c) = push(w)

evecy(s'n,e,c,b,h) = (s,e[wr— n],c+1,b,h) if b(c) = pop(w)

execy(e,e,c,b,h) = L

execy(s, e, c, b, h) = (s',e,c+1,b,1) if b(c) = call(w)
where (s, €/, h/,S) = obey(s,e,e @ w, h,d — 1)

execy(s, e, c, b, h) = 1 if b(c) = call(w) and

obey(s,e,e@w,h,d—1)= L

execy(s, e, c, b, h) = (s,e,c+1,b,h) if b(c) = label(l)

execy(s, e, c, b, h) = (s,e,d+1,b,h) if b(c) = goto(l)
where b(c') = label(l)

exvecy(st,e,c,b,h) = (s,e,d+1,b,h) if b(c) = ifnot(l)
where b(c') = label(l)

evecy(sn,e,c,b,h) = (s,e,c+1,b,h) if b(c) = ifnot(l)

and n # £
execy(e,e,c,b,h) = 1 if b(c) = ifnot(l)

13

3.2 Obeying a whole code block or primitive

The definition of obey depends on whether a primitive or a code-block is being
obeyed. If p is a primitive, then it acts on the stack and the heap to produce a new
stack and heap.

obey(s, e, (aprociey, P)s hyd) = (s', e, 1, €) where p(s, h) = (s, h') (1)

Note that a new heap is created as the result of obeying a primitive. It is clear
that this new heap must resemble the old one strongly if we are to be able to make
any predictions whatsoever about the behaviour of the VM.

JFrom the point of view of type-checking, the important thing is that a primitive
cannot change the type of any existing object. Since we are allowing parametric
polymorphism this is a tricky condition to maintain if objects are mutable. This
paper deals only with the case of immutable objects. That is to say, in the above

definition B = hla; — (ai0...a1n,) - @m = (Gno...0mn,)] Where a;...a, ¢
dom(h).
If b is a code-block, then
obey(s,e,b,h,0)= L (2)
obey(s,e,b,h,d,S) = exec;(s,lvars(e,b),b, h) (3)

Here the execy is defined as follows. Suppose there is a sequence of states
S=5,...9, where Sy = (s,e,1,b,h) and S;;; = execy(S;) and S, = (5, €', ¢,b, 1)
where ¢ = |b| + 1 (that is we have ‘run off the end of the code block’). Then
execy(S) = (¢,€, 1/, 8).

The following two lemmas are trivial consequences of the definition of the VM.
Lemma 3.2.1 If obey(s,e b, h,d) = (s',€',h',S) then
obey(s's,e, b, h,d) = (s"s' e, W, S)
where S’ is a state-sequence.

Lemma 3.2.2 [fe and €' are environments where e, = €. Let obey(s,e, b, h,d) =
(s',e",h,S). Then
obey(s,e' b, h,d) = (s',e" 1 S

where env' is an environment for which e = ef’

Definition 3.2.1 (Closed VM State) We say that a VM state S is closed if for
every instruction of the form call(w) occurring in any code-block b of the heap of 9,
either w is a local variable of b, or h(e @ b) = (aprockey; ---) is a code-block.

14

3.3 Record and Vector Keys

Objects on the heap are records, of fixed size, vectors of variable size and code-
blocks. At the level of abstraction of this paper, all we need to know about a record-
key is that it has an associated arity, which determines the number of components
of each record of the class determined by the key.

4 Descriptions of the VM

The purpose of our formal characterisation of the VM is to allow us to make predic-
tions about its behaviour. Any prediction about the behavour of the VM requires
us to to be able to describe machine states and annotate code blocks. This is true
whether whatever the nature of the predictions we wish to make — they may serve
for type-checking as in the present paper or for less limited kinds of program veri-
fication.

4.1 Discussion of annotation

The issue of annotation is quite a complex one. Essentially, we want to annotate
a code-block with an adequate description of the state of the machine at each
instruction. Here, “adequate” means adequate from the point of view of type-
checking, that is to say determining whether operations are legal.

The descriptive apparatus must include a description of the stack, and an en-
vironment which describes the types of VM variables. The primary problem is
that we need type-variables. These will occur both in the stack-description and
the environment; certain type-variables will be known to be monolog-valued. And
constraints on variables will be generated in various ways. Consider the POP-11
sequence ...hd(L) + 2 -> L1;..., which translates into the code-block

b= (...push(L),call(hd), pushq(2), call(+),pop(L1),...)

Now, at by = push(L) we may know nothing about the type of L, that is to say
its type is a monolog-valued variable v. Assuming the stack is empty on entrance
to the sequence, as we start to execute b, the stack is described by v. At by we try
to divide v by the argument-type of hd, which is List(v,), where v, is a polylog-
valued type-variable. Since List is a monolog-valued type-function, we infer that
v C List(vy). We can express this most generally by unifying v and List(v,), with
the substitution v — List(vy), since anything additional we might infer about v can
be expressed in terms of a constraint on v;. For example, when we come to call(4),
we can infer that Hd(v;) C Number.

The procedure for deriving an annotation must thus examine the instructions of
a code-block, inferring constraints on type-expressions. The order of examination
should be related to that of execution. When all information relevant to a type-
variable has been garnered into constraints, an attempt will be made to resolve

15

them, deriving a value for the variable. Within this framework we can treat jumps
and labels. At a label instruction, the stack at the label will derived from the stack
at any instruction from which the label can be reached — this can be treated by
introducing a variable for the stack at the label and a production for each way of
getting to the label. These productions are also, in effect, inequality constraints.
Another issue that must be addressed is the necessity of deriving more restricted
types for some variables arising from the need to exploit the fact that some POP-
11 functions serve to recognise data-structures. Consider for example the sequence
if isnumber(x) then x+3 else... We may conclude that xis a number between
the then and else. To deal with this issue, we introduce the concept of recognisers
into the type-system, introduce a restricted local typing, and also, in a strictly
limited way maintain an expression (or term) which denotes the actual value of the
top-of-stack.

4.2 Grammars characterise languages

So far we have treated languages abstractly as possibly infinite sets of sequences. In
order to compute with such entities, we have to find a finite representation. This is
provided by grammars.

Languages can be represented most generally by unrestricted grammars. But
we want to keep things computable, so aim at regular grammars. How unrestricted
might our grammars be? First let us observe that a production, & — 3 can be
construed as an inequality / C «. Thus the grammatical quotient, L = J/K,
which, if exact, gives rise to the inequality J C LK can be seen as having the
corresponding production LK — J. Thus we have have unrestricted grammars
lurking in the undergrowth.

However, we are aiming at reducing all our grammars to being regular algebras.
This means that we will introduce productions as a necessary part of the process
of type-checking a VM program. But they will be eliminated as a requirement that
the program is type-correct.

In this section we

1. Introduce extended regular word algebras as our formalism for expressing type.
2. Introduce type-environments as a way of recording information about type.

3. Define the terminal symbols of our type-formalism as characterising objects of

the VM.

4. Define a function £ which maps a type-expression into a type-language of se-
quences drawn from a heap and using an environment.

Definition 4.2.1 An extended regular word algebra (FRWA) is a set of expressions
formed from a set of monolog-variables V,,, a set of polylog-variables V, and a set
of terminals T.

R(Vin, V,, T') consists of expressions formed as follows.

16

0eRr

e 1c R

o IfveV,UV, thenv e R.

o IfteT thent € R

e Ifr,,roe Rthenr, >r, € R

o Ifri,ro € Rthen ryUr, € R
o If ri,ro € R then riry € R
e If ry,ry € Rthen ry/ry € R
o If r; € R then {r;} € R

If R=R(V,,V,,T)is an ERWA, then we can associate a language with R by
saying what the variables and terminals “mean”. Just as we needed an environment
to say what values variables have in the VM, so we need a kind of environment to
tell us things about types. This includes both type equations and productions which
will tell us about what type variables mean, but also, to analyse the type of code-
blocks, we will need to know about the types of variables in the VM itself, and also
whether certain variables have values which can be used to recognise objects.

Definition 4.2.2 Let R be an FRWA. We say that an expressionr € R is quotient-
free if no sub-expression of r is of the form ry/r,

The expressions for a legal type will be quotient-free.

Definition 4.2.3 (Type Environments) A type-environment E is a quadruple

(H7V7¢7P)

where p : W — R specifies the type of variables. v : W — R specifies that a variable
recognises a type, ¢ : V. — R specifies type-equations and P is a set of productions
of the form v — r where v € V, and r € R.

In the above definition, p is also written E., v is also written E,, ¢ is also written
E_ and P is also written E_,.

The terminals of our type-language are monologs, the members of which are
drawn from a set of objects of the VM, that is to say a set of addresses. There are
two kinds of terminal, namely singletons and data-classes. A singleton consists of
just one sequence consisting of a given address. A data-class is drawn from a set
of objects which have the same key and may have additional commonality in their
components.

Definition 4.2.4 (singleton) A singleton-expression for an ERWA R is a term
S(a), where a is an address.

17

Definition 4.2.5 (dataclass) A dataclass expression is a term D(a,ry...r,) where
a is an address, and ry...r, € R

We are now ready to define how an expression of an ERWA denotes a language.
The language denoted by an expression r is a set of sequences of addresses. Therefore
we need hardly be surprised that, as well as a type-environment to tell us what the
variables mean, we will also need a heap to allow us to interpret the addresses.

However we need to define a meaning for the form r; — r5. This is usually
thought of as a function type, and will in our case denote a monolog whose members
are code-blocks, since these fill the role of functions. This does imply a considerable
complication of our system. In order to make any predictions about type we will
need significant type stability of objects with respect to the exec and obey functions,
and also with respect to the compiler operating as deus ex machina. That is to
say, for us to be able to reason about the types of variables, an object to which a
variable is bound must retain its type throughout the period for which the variable
is bound to it. The more precise and specific the characterisation of type, the less
we will be able to do to an object without changing its type as characterised.

The type of a code block must depend on the way it relates its arguments to
its results. So we must provide at least one machine-state for us to observe its
execution. However the case is worse than this, for the behaviour of a code block
can change significantly with small changes in the state. Consider the POP-11
procedure:

define fred(x);
if x>2 then ’big’ else x
endif

enddefine;

If a heap h contains only the integers 0 and 1 say, then we may observe that fred,
when given an integer argument returns an integer result in any state which has h
as its heap. That is to say, observationally fred:Int->Int. However if we form
h' = hla — 3], for some address @ ¢ dom(h) then fred may return a string when
given an integer. This is such a trivial change in h that we would be completely
unable to construct a type-theory.

Thus it appears that we should not attempt to assign a type to a code-block
by observing its behaviour with respect to just one machine-state. It is equally
problematic if we attempt to make use of all machine-states, since the behaviour of
a code-block depends upon its non-local variables, and if we range over all machine-
states, we could get almost any behaviour out of a code-block. Happily there is a
middle way. We can define the type of a code-block in terms of its behaviour in a
given state, and all states which can be reached from that state via a sequence of
legal transitions. What constitutes a legal transition can be decided later. Indeed
different type-theories will be associated with different kinds of legal transition.
The more restrictive we make the definition of a legal transition, the stronger our
type-theory will be.

18

Definition 4.2.6 (Legal Reachability) A transitive relation —> defined over the
set of VM states is said to be a legal-reachability relation if

1. = 1s transitive

2. If S is a VM state, then S = execy(5).

3. If S = (s,e,c,b,h) is a VM state, and 5" = (s, e, ¢, b, hla' — (apey, a1, .. .ay)]),
where a' ¢ dom(h) then S = 5.

Definition 4.2.7 (Non-mutating reachability) A reachability relation — s
said to be non-mutating if

S =(s,e,c,bh) = S" = (s,€,c,0h)
implies that if « € dom(h) then a € dom (k') and W' (a) = h(a)

Definition 4.2.8 (Manifest monolog) We say that r € R is a manifest monolog
if it is of the form S(a), D(akey ...) or v where v € V,,.

We are now in a position to define the denotation of type-expressions.

Definition 4.2.9 (£ maps from expressions to languages) Ifr € R, E is a
type-environment and S = (s,e,c,b,h) is a machine-state, and = is a legal-
reachability relation then L(E,r,S,=,d) is defined for integer depth d > 0 as
follows:

1. L(E,1,5,=.,d)=1

2. L(E,0,5,=,d)=10

3. For any object a € dom(h), L(E, S(a),S,—,d) ={a}

4

. For any key-object ay., € dom(h), if ax., is a record-key of arity n, then
L(E, D(agey), S,=—,d)

= {a

h(a) = (aey, @1 ... a,) where a; . ..a, € dom(h)}

5. For any key-object ay., € dom(h), if aj., is a record-key of arity n , and
ry...r, € R are type-expressions for which L, = L(E,r;, S,=, d) are mani-
fest monologs, then

'C(EvD(akeyvrlv . .T‘n),S,:>7d) = {d

h(a) = (agey, a1 .. .a,),d; € L;)}
6. For any vector-key-object ay., € dom(h), and r € R, then
L(E, D(agey, 1), S, =, d) =
{a

h(a) = (areys a1, .. .an), (a1 ...a,) € L(E, 0,5, =, d)}

19

7. Otherwise L(E, D(a,ry...1,),5) =10
8. For any ri,7, € R,

,C(E7r1 —>7‘27S727d):l/ (4)

where I =
{alh(a) = (@prockeys),
VS'Vd, <d.if S= 5" = (¢,¢e,c,0, 1) then
ly € L(E,ry,S",=>,dy) implies l; € L(E,ry, 8", =, d;)
where ({5,€” h",S) = obey(l,, €',k (a), ', d;) and S = (I5,€", ¢, 0, h")
¥
9. ifveVand E_(v) =r # L then L(E,v, 5, =,d) = L(E,r, 5, =, d).

10. Otherwise, if v € V and Jv|v — r € E_, then

L(E,v,S,=d)=| {LE,r, 5, = d)|lv—reE,} (5)

11. Otherwise, if v € V,,,, L(E,v, S, =,d) = T y.

12. Otherwise, if v € V,, L(E,v,S,=—=,d)=T.

13. L(E,ryUry, S,=,d) = L(E,ry, S, =,d) UL(E, rs, S, =, d)
14 ,C(E7 7‘17‘27 57 27 d) = ,C(E7 7‘17 S, 27 d)ﬁ(E7 7‘27 S, 27 d)

15 ,C(E7 7‘1/7‘27 57 27 d) = ,C(E7 7‘17 S, 27 d)/,(:(:E)7 7‘27 S, 27 d)
16. L(E, {r},S,=,d)={L(E,r,S,=,d)}

The definition of £ above depends on depth of execution, d. We will be concerned
to define the limiting behaviour of £ as d increases. This behaviour is determined
by equation 4, where the d parameter is handed to an application of obey. We
should expect that as d increases the value of L decreases, since obey is producing

more results which can fail the test of membership of the language denoted by rs
in equation (4).

Lemma 4.2.1 (Stability of type-environment) IfE and E' are type-
environments for which E., = E', and r € R, S is a machine state, = is a legal
reachability relation and d > 0 is an integer depth for which E_(w) = E_ (w) for all
w occurring in either r or dom(E_) or range(E-) or E_,

LE,rS, =,d)=L(E rS =,d)

Proof: This is immediate since the E. and E- components of the type envi-
ronment play no direct or indirect role in the definition of £, and there are no
productions or equations which could result in different values.

20

Lemma 4.2.2 (Stability of local environment) IfE is a type-environment for
which r € R, S = (s,e,c,b,h) is a machine-state and € is an environment for
which ey = e}, and = is a non-mutating legal reachability relation and d > 0 is
an integer depth then

LE,rS =, d) =L(E,rS =d)
where S" = (s,€',c, b, h)
Proof: The only way that a change in environment can affect the value of £

is by changing the value of obey in equation 4. But, by lemma 3.2.2 this cannot
happen.

Definition 4.2.10 (Derivations and their depth) If h is a heap,

E a type-environment and r € R, then we can derive a € L(E,r,S,=,d) by a
number of applications of the rules above. We define the derivation depth ¢ of a
derivation by

o Ifa € LE,rS =, d) can be derived by the application of a rule with no
reference to L to the right of the equality, then 6 =0

o Otherwise & € L(E,r,S,=,d) must be derived by the application of rules
which refer to L to the right of the equality. Then § is the one plus the maxi-
mum of the derivation depths associated with these references.

We can now state formally:

Proposition 4.2.1 (Anti-monotonicity of £ with respect to d) Let E be a type-

environment, r € R and let S be a machine-state. Let = be a legal-reachability
relation. If d' < d then

L(E,r,S,=,d) C L(E,r, 5, =,d)

Proof:
We proceed by induction on the derivation-length of [€ L(E,r, S, =, d).
Base case: If the derivation of [€ L(E,r, S,=>,d) is of depth 0, then:

o L(E, 0,5, =,d)=0so !l cannot be derived from this.
o Ifl e L(E,1,S,=,d) ={¢} then [€ L(E,¢,5, =, d').
o Ifl=ade L(E, S(a),5,—,d) = {a) then, | € L(E, S(a), S, =,)

e Consider [= a € L(E, D(axey), S, =>,d) where ay., € dom(h) is a record-key
of arity n. Now

L(E, D(agey), S, =, d')
= {a/|h(d') = (agey, @, . ..d,)forsomed) . ..a,, € dom(h)}

. But h(a) = (agey, a1 ... ay),
where a4, ...a, € dom(h). Hence | € L(E, D(agey), S, =, d').

21

Inductive step: Suppose that E is a type-environment, r € R, and S is a machine-
state. Suppose that ' < d, [€ L(E,r, S,=>,d) implies that
l € L(E,r,S,=,d’) provided that the derivation-depth is < § Now consider a
derivation of @ € L(E,r, S,=,d) of depth § + 1:
e Consider [= a € L(E, D(agey,r1,...70), 5, =, d) where ay., € dom(h) is a
record-key of arity n, and ry...r, € R are type-expressions for which
L; = L(E,r;,S,=>,d) are manifest monologs. Now

’C(Ev D(akeyv Ty .- 'rn)v 57 —, d/) = {d/|h(a/) = (akelﬂ all . .a;), a;' € L;)}

where Ll = L(E,r;, S, =, d)
But a € {d’|h(a’) = (Qkey, a1 ...a,),d; € L)}
Thus h(a) = (akey, @1 ... a,), a; € L(E,r;, 5, =, d).
But, by the inductive hypothesis, a; € L(E,r;, S, =, d');
hence & € L(E, D(ayey, 71, ..70), S, =, d').
e Consider | = a € L(E, D(agey, 1), S, =>,d) where ay., € dom(h) is a vector-
key, and r € R,

L(E, D(agey, 1), S, =, d') =
{@|h(d') = (Apeys 1y - - @), (a1 .. .a,) € L(E,r, S, = d')}

But a € {a'|h(a') = (arey, a1, - .- a,), (a1 ...a,) € L(E,r, S, =>,d)}
so h(a) = (agey, a1, .. .a,) where (a;...a,) € L(E,r, S,=,d).
Hence, by the inductive hypothesis, (a; ...a,) € L(E,r, S, =, d).
Thus we see that @ € L(E, D(ayey, 1), S, =, d').

e Consider L(E,D(a/,ry...1,),S,=>,d) = 0, Now & ¢ (), so that this case is
covered by ex falsa libet.
e Consider [=a € L(E, 4y = Tyar, S, =, d) where 14,4, 7u € R,
'C(E7 rarg — Tvaly 57 :7 d/) =
{a'|h(a’) = (aprockey: - -)
and VS'Vd, < d'.S = 5 1y € LIE, 14y, S, =, d))
implies {4 € L(E, 1y, S", =, d})
where " = (l,u, €', ¢, 0, B')
and Obey(lar97 e/7 h/(a/)7 h/7 dll) = (lvah €val, hlvalv
and S” = (l,a1, €01, ¢, 0 R 0)

s "Yual

S)

Now h(a) = (aprocicey, - - -) and

VS'Vd, <dif S = S = (¢,€,,V, 1)

then l,,4 € L(E, 144, S, =, dy) implies l,oy € L(E, 1y, 5", =, d1)

where obey(l,,4, €', b (a), b, di) = (l,u,€”,h",S) and S” = (l,u,€",, b, 1)

22

Since d' < d, if d} < d' then d| < d and so for any 5" where S = 5,
larg € L(E, 144, 5", =, d}) implies I,y € L(E, 1y, 5", =, d})

where obey(l,,4, €', b (a), b, d}) = (I, €”,h",S) and S = (l,u,€”,, b, 1)
Hence l = a € L(E,r4y — rya, S, =, d')

e Suppose [€ L(E,v,S,=,d) = L(E,r,S,=,d),
where v € V and E_(v) =r # L
Now L(E,v, S, =, d') = L(E,r,S,=,d). But | € L(E,r,S,=>,d') by the
inductive hypothesis. Hence [€ L(E, v, S,=, d).

e Otherwise, suppose
le 'C(E7 v, 57 =, d) = U{'C(E7 ry 57 =, d)|?] —re E—>}

where v € V and Jo|v = r € E_,

ﬁ(Evvv‘Sv:vd/) = U{,C(E,T‘, 57:>7d/)|v —TE E—>}

But, by the inductive hypothesis,
le€ L(E,r,S,=—,d)implies [€ L(E,r,S,=>,d’) for all r in the productions
for v in E. Hence [€ L(E,v,S,=,d').

e Otherwise, if [€ L(E, v, S,=,d) = Ty for some v € V,,,,
then [€ L(E,v,S,=,d') = T y.

e Otherwise, if [€ L(E,v,S,=,d) = T for some v € V,,,
then l € L(E,v,S,=,d') =T.

e In the case of all other forms for I, L(E,r, Urs, S, =, d), L(E, r1r3, S, =, d)
and L(E,ry/rs, S, =, d), L(E,{r}, S,=, d) the result is immediate from the
inductive hypothesis and the monotonicity of union, product, quotient and
Kleene-closure.

Proposition 4.2.2 (Stability of h) Let E be a type-environment, r € R and let
S = (s,e,¢,b,h) be a machine-state. Let => be a legal-reachability relation. Let
hnew = hlanew — (ag...a,)] be a heap, where aye,, ¢ dom(h).

Let Spew = (s,€,¢,b, hyey). Then:

L(E,r,S,=,d) C L(E,r, Spew, =, d)

Proof: Let us note first that

dom(h) C dom(hpew) (6)

and that, if @ € L(E,r,S,=,d) then

h(a) = hyew(a) (7)

23

Consider [€ L(E,r, S,=,d).
We proceed by induction on the derivation-length of [€ L(E,r, S,=>,d).
Base case: If the derivation of [€ L(E,r, S,=>,d) is of depth 0, then

o L(E, 0,5, =,d)=0so !l cannot be derived from this.
o Iflc L(E,1,S,=,d) ={¢} then l € L(E, 1,5, =, d).
o Ifl=a¢ L(E,S(a),S,=>,d) ={a} then, by inequality (6),
a=L(E,S(a), Shew, =, d)
e Consider [= a € L(E, D(axey), S, =>,d) where ay., € dom(h) is a record-key
of arity n. Now L(E, D(ayey); Snew, =, d)
= {d’|hnew(a’) = (Qgey, @) . . .a),) for some d} ...a), € dom(hyey)}
But hyuey(a) = h(a), and h(a) = (agey, @1 ... ay),
where ay,...a, € dom(h) C dom(hy,cy).
Hence a € L(E, D(ayey)s Snew, =, d).

Inductive step: Suppose that E is a type-environment, r € R, and let h be
a heap. Let h,., = hl@’ — (a¢...a,)] be a heap, where o’ ¢ dom(h). Then
a € L(E,r,h) implies that @ € L(E, r, Spew, =, d) provided that the derivation of
a€ LE,r, S, =, d)is of depth < 4.
Now consider a derivation of [€ L(E,r,S,=,d) of depth ¢ 4 1:
e Consider [= a € L(E, D(agey,r1,...70), 5, =, d) where ay., € dom(h) is a
record-key of arity n, and ry...r, € R are type-expressions for which
L; = L(E,r;,S,=>,d) are manifest monologs,

L(E, D(agey, 71, .. .T0), Spew, =, d)
= {@Pnew (@) = (arey, @, .. .a}), af € L})}
where L) = L(E, 7, Spew, =, d)
But & € {d’|h(a’) = (Qkey, a1 ...a,),d; € L)}
Thus h(a) = hpew(a) = (Grey, a1 .. .ay), a; € L(E, 1, S, =, d).

But, by the inductive hypothesis, a; € L(E, r;, Spew, =, d);
hence @ € L(E, D(ayey, 715 -7n)s Snew, =, d).

e Consider | = a € L(E, D(agey, 1), S, =>,d) where ay., € dom(h) is a vector-
key, and r € R. Now

L(E, D(ayey, 1), Snew, =, d)
= {d/|hnew(a/) = (akeyv ay, .. -an)7 (al e ‘an) S ’C(E7 Py Snews == d)}

But @ € {@'|h(a') = (Grey, a1, - - -ap), (a1 ...a,) € L(E,r, S, =>,d)}

50 h(a) = hpew(a) = (Agey, a1, . . .a,) where (ay...a,) € L(E,r, S,=,d).
Hence, by the inductive hypothesis, (a; ...a,) € L(E, 7, Spew, =, d).
Thus we see that @ € L(E, D(axey, 7'); Snew, =, d).

24

o If LIE,D(d’,ry...1,),S,=—>,d) = 0, a ¢ 0, hence this case is covered by ex
falsa libet.
o lfl=a¢eLE,rey;— rya,S,=—,d) where ri,r5 € R,
L(E, 740y = Tyats Snew, =, d) =
(@ e (@) = (@Procices --)
and V5" Vd; < d.Spey = 5, Loy € L(E, 144, 5", =, dy) implies
lyat € L(E,ryq, 5", =, dy)
where " = (l,u, €, ¢, 0, B')
and obey(ly 4. €', W (a'), b dy) =
and S” = (l,a1, €01, ¢, 0 R 0)
Now h(a) = (aprocieys - - -)
and VS'Vd, < dif S = 9" = (s,€,,b, k)
then l,,4 € L(E, 144, S, =, dy) implies l,oy € L(E, 1y, 5", =, d1)
where obey(l,,4, €', b (a), b, dy) = (I, €”,h",S) and S" = (l,u,€",, b, 1)
Consider S; where S,,.,, = S;. Then since S — 5,,.,, and — is transitive,
then S — 5.
So we conclude that & € L(E, 74y = Tyat, Snew, =, d)

(lval7 €yaly h;ah S)

(Note that this case depends on the fact that the type of the code-block is
stable with respect to = and not on the inductive hypothesis).

e Suppose [€ L(E,v,S,=,d) = L(E,r,S,=,d),
where v € V and E_(v) =r# L
Now L(E, v, Spew,=,d) = L(E,r, Spew,=>,d) But | € L(E,r, Spew, =, d)
by the inductive hypothesis. hence [€ L(E, v, Spew, =, d).

e Otherwise, suppose
le 'C(E7 v, 57 =, d) = U{'C(E7 ry 57 =, d)|?] —re E—>}

where v € V and Jo|v = r € E_,

L(E, v, Spew, =, d) = | J{L(E, 7, Spews =, d)|v— r € EL}
But, by the inductive hypothesis,
le L(E,r,S,=>,d) implies | € L(E, 7, Spew, =, d)
for all r in the productions for v in E. Hence [€ L(E, v, S, e, =, d).

e Otherwise, if [€ L(E, v, S,=,d) = Ty for some v € V,,,,
then [€ L(E, v, Spew,=>,d) = Ty

e Otherwise, if [€ L(E,v,S,=,d) = T for some v € V,,,
then | € L(E, v, Spew, =, d) = T.

e In the case of all other forms for I, L(E,r, Urs, S, =, d), L(E, r1r3, S, =, d)
and L(E,ry/rs, S, =, d), L(E,{r}, S,=, d) the result is immediate from the
inductive hypothesis and the monotonicity of union, product, quotient and
Kleene-closure.

25

4.3 Primitives: Constructors and Selectors

Definition 4.3.1 (Record Constructor) A primitive p is said to be a record
constructor for a key-object ay., of arity n if

obey(sd ...dy, e, p,h,d) = (sa,e, hla s (gey, a1 ...a,)],¢€)

where a is an address which does not occur in dom(h). Moreover, if h(acon) =
(@prociey: P) then ac,, is said to be a record-constructor object in the heap h for the
key agey.

Proposition 4.3.1 (Constructor Type) Let a.,, be a record constructor object
for aey 1 a heap h, and = be a non-mutating legal-reachability relation. Let
S = (s,e,c,b,h) be a VM-state. Let v; € V,,, be monolog variables. Then:

Geon € L(E, 105 ... 0, = D(ageyv1,...0,), 5, =, d)

Proof: We have to show that the conditions specified in equation (4) hold. Let
S = 9" = (s,€,,b,1/). Let d > 0 be an integer and let d; < d. Since = is
non-mutating,
h/(acon) = h(acon) = (aProcK€y7p)7 say. R)

Let s € L(E,vivy...0,,5,=>,dy) then s =a}...a,
where a} € L(E,v;, 8", =>,d,) = L}, say.

Now obey(s', €' ,p,h',dy) = ol)ey(d’1 e p ' dy)
= (a", e, W[a" — (Agey, @) .. .al)], €) = (a”,e', b €)
where @’ is an address which does not occur in dom(h'). But

L(E, D(apey, vy, ...0,), 8", =, dy) = {a|h"(a) = (agey, d} ...a"),a! € L)}

where L7 = L(E,v;, 8", =, d,).

But L, C LY by proposition 4.2.2.
Hence a” € L(E, D(agey, v1,...0,), 5", =, d;) Hence result.

Note that in the above proof, we say nothing about whether the v; are dis-
tinct or unbound by type-equations or productions. The most general type for the
constructor arises from the case when they are all distinct and unbound.

Definition 4.3.2 (Selector) A primitive p is said to be the i’th selector for a
record-key-object ay., of arity n > 1 if h(a) = (agey, 1 . .. a,) tmplies

0b€y(8d7 €, (aProcKey7 P)7 h7 d) = (Sdiv €, h7 S)

Moreover, if h(aser) = (@prockey: D) then age is said to be the ith record-selector
object in the heap h for the key ay.,.

Proposition 4.3.2 (Selector Type) If a,. is the i'th record-selector object for a
record-key aye, of arity n > i in a heap h, and S = (s,e,c,b,h) is a VM-state and
= s a non-mutating legal-reachability relation then

Qse1 € L(E, D(ageyvr,...v, = v, 5, =, d)

26

Proof: Let S = S = (¢,€,¢,0,h'). Let d > 0 be an integer, and let
d; < d. Since = is non-mutating, h'(ase) = h(dser) = (@prockey,P), say. Let
a € L(E, D(agey, v1,...0,), 5", =>,d) then IM(a') = (agey,a;...a,) where d; €
L(E,v;, S, =,d) = L;, say.

Now S” = obey(a’,e,p,h',d) = (d;,e,h',...) and d; € L;. But, by proposition
422, L; C L(E,v;, 8", =, d). Hence result.

4.4 Terms and Recognisers

In the previous section we specified that the E; component of a type-environment
describes identifiers bound to objects which are able to recognise members of a
particular data-class. These are required because we sometimes need to be able to
distinguish between objects which belong to a type-union. In order to be able to
make use of such recognisers we need to keep a limited representation of the top of
stack. To this end we introduce terms. A term can be either

1. An address in dom(h)
2. "w", where w € dom(h) is an identifier.
3. w, where w € dom(h) is an identifier.
4. w(T'), where w € dom(h) is an identifier.
5. Lrp.
Definition 4.4.1 (Term-evaluation) Let T be a term. Let S = (s,e,c,b,h) be a
VM state. Then the value V(T,S) of T in the state S is defined as follows.
1. If T = a € dom(h) then V(T,S) = a.
2. If T'= "w", where w is an identifier, then V(T,5) = w
3. If T = w, where w is an identifier, then V(T,5) =e @ w
4

. IfT = w(T"), where w is an identifier, then let ' = V(T',S). Then V(T,S) =
a" where obey(a',e,e @ w, h,d) = (a",e", 1", ...) Othewise V(T,S)=u

5. If T'= Ly, then V(T,S)=u.

4.5 Describing Machine States

We have seen how a type-environment allows us to give meaning to an expression
of an ERWA as denoting a language whose alphabet is objects of the VM. In this
section we see how the E. and E- components of a type-environment are used to
describe a state of the VM, in conjunction with a grammar describing the stack,
and a term which may evaluate to the top of stack.

Definition 4.5.1 (State-description) Let E be a type-environment,

let S = (s,e,c,b,h) be a VM-state, and = be a legal-reachability relation. Let d > 0
be an integer, r € R and term T We say that (r,T,E) d-describes S = (s,e, b, h),
and write (r,T,E) 4 S, if the following conditions are satisfied:

27

s € L(E,rS = d)
If T # Ly then s = ' where V(T,5) =n
If we dom(E.) and e @ w # u then e®@ w € L(E,E . (w), S, =, d)
If we dom(E-) then
e e®we L(E, T — Bool,S,=—,d)
o If s=¢'a then if a € L(E,E+(w),S,=,d) then

= W N

obey(s,e,e@ w,h,d) = (s't,e h,...)

otherwise

obey(s,e,e@ w,h,d) = (s'f, e h,...)
5. If wis bound in e then w € dom(E.) U dom(E-)

Note that an occurrence of w in e which is not in scope is not given a type in E.

Definition 4.5.2 (State-description (Universal)) If E is a type-environment
and S is a state, for which
(T, Lr,E)F4 S

Jor all d > 0 then we write EF S.

4.6 Annotations say what each instruction does.

Suppose we have a type-environment E, a machine state S = (s, e,c,b, h) where
(T,Lr,E) 4 S. A compiler will extend the environment and heap of 9, giving rise
to S’; it will make new objects on the heap and will bind these to identifiers in the
environment?. The question we address in this section is, “how can we determine
that a new type environment E’, derived from E, describes S/77.

In order to validate E’, we introduce the idea of an annotation of a code-block,
which will allow us to characterise the execution of the new code-blocks on a step-by-
step basis. With an annotation of a code-block we introduce a local type environment
which allows us to assign independent types to the local variables and labels of that
block.

Note that we cannot necessarily perform the validation of the addition of the
new bindings on a one-at-a-time basis because they may be mutually recursive.

We first need to be able to assign a type to a literal occurring in a pushg
instruction. Assigning a type to a literal is problematic. The type which throws
away the least information about the literal is the singleton type S(h). This turns
out to be too restrictive in our type-inference scheme for local variables®. The
definition chosen, in a Poplog VM context, represents the best compromise.

?The compiler can be incorporated in the VM, as is in fact done in the Poplog VM. However our
type-analysis is performed regarding the compiler as the kind of deus ex machina referred to.
3Type inference is not covered in this report

28

Instr Cnest Stack Term Cond

pushq(n) c¢+1 rn n
push(w) c¢+1 rE/(w) w
pop(w) c+1 H/Ew) Ly

call(w) c+1 (r/ragi)rean w(T) where E(w) = 1491 = rvan

call(w) c+1 (r/rargi)tean L7 where E/(w) = 491 = Tvann
label(v) c¢+1 v Ly (v—r)eE,
goto(v) d+1 v T b(c') = label(v)
(v—r)eE,)
ifnot(v) d+4+1 v Ly b(c') = label(v)
(v—=r/Ty) € E,
c+1 /Ty Llr

Targls Tvair are manifest monologs

Table 1: Annotating a Code Block

Definition 4.6.1 (The type of a literal) Ifa € dom(h) is an address for which
h(a) = (agey - - .), then the type of the literal a is @ = D(ayey)

Definition 4.6.2 (Annotation) Let b be a code block of n instructions. Let E,
E’ be type-environments. We say that a sequence B for which B. = (r.,T.), where
re € R and T, is a term, is an annotation of b in E' with specification rq.g — ryu
and conformant with E if the following conditions hold:

1.
2.
3.
4.
5.

If b. = label(v), for some integer ¢, then v € V.
E/(w) = E.(w) if w is not a local variable of b.

E/(w) # L if w is a local variable of b.

. BO = (rarg7 J—T)
. If B, = (r,T) then its successor(s) are annotated according to Table 1. In the

table, the possible next values ¢ are given in the column labelled “c,.,;”. the
columns labelled ‘Stack’ and ‘Term’ are the value of B

Crext *

We write annotates(B, b, rorg — 1y, B, E').

The main proposition of this section shows that an annnotation of a code block
determines the type of the code-block. That is to say, if the stack is described by
r on entry, then it will be described by (r/ra.,)rya on exit, provided the language

29

denoted by r is exactly divisible by that denoted r,,,. However, one code block may
contain calls to other code blocks, possibly including itself, so our main proposition
applies to collections of code-blocks. However, for the nonce, let us consider the
execution of a single code-block.

Lemma 4.6.1 (Stability over lvars) IfE and E’ are type-environments for which
E, = E, and r € R, S is a machine state, = s a legal reachability rela-
tion and d > 0 is an integer depth for which E_(w) = EL(w) for all w occur-
ring in r, dom(E_), range(E_), E_,, and S = (s,e,c,b,h) is a machine-state and

S’ = (s,lvars(e),c,b, h) then
LE,rS, =.,d)=LE, rS =,d

Proof: By lemma 4.2.1 L(E,r, S,=,d) = L(E/,r, S,=,d),
= L(E, r, 5 =,d), by lemma 4.2.2.

Proposition 4.6.1 (Correctness of Annotation) Let b be a code block of n in-
structions for which pop(w) only occurs for local variables. Let E, E' be type-
environments. Let d > 0 be an integer. Let S = (s,e,c,b,h) be a VM-state. Sup-
pose:

annotates(B, b, r4g — rya, B, E')

And suppose s € L(E, 14,4, 5, =, d).
Let (s',€', 1, (S1...5n)) = obey(s,e, b, h,d), and suppose that the divisions of table
1 are exact for each S;. Suppose that, for some d:

(T7 J—Tv E) l_d S (8)
Then

(B, E') F4 5

where ¢ is the index of the instrution in b involved in deriving S;.

Proof: We proceed by induction on j, and have to show that the conditions of
definition 4.5.1 hold, both for the base case j = 0 and for the inductive step.
Base Case:
So = (s,lvars(e,b),b, h) from equation 3 and By = (r44, Lr) from definition
4.6.2, item 6.
1. We know that s € L(E, r44, S,=—>,d). and so by lemma 4.6.1
s € L(E, 14y, So, =, d),

2. The term is undefined for By, so there is nothing to prove.

3. Consider w € dom(E’). Then

30

e Either w is a local variable of b, in which case e ® w = u, so there is
nothing to prove.

e Or Ef(w) = E(w) If e®@ w # u then e®@ w € L(E,E.(w),5 =,d)
= L(E',E/(w), Sy, =, d), by lemma 4.6.1

4. Consider w € dom(E}). Now E}, = E,

e e@w € L(E, T — Bool, S, =,d) = L(E',T — Bool, S;,=,d), by
lemma 4.6.1.
o If s=<athenifae L(E,E-(w),S,—,d) = LE,E\(w),S,=—,d) then

obey(s,e,e@ w,h,d) = (s't,e h,...)

otherwise

obey(s,e,e@ w,h,d) = (s'f, e h,...)

e Ifwis bound in lvars(e,b) then w is bound in e (for we regard uninitialised
locals as unbound).

Hence (Bo, E) 4 S

Inductive Step: There are 5 clauses to the definition of F, and 7 kinds of
instruction for the VM, so there are 35 possible combinations to consider. Fortu-
nately, not all of these combinations involve instructions which change the machine
environment, and we are not allowing local recognisers, so life is somewhat simpler.

Consider S;j11 = execy(5;). Let S; = (s,e,¢,b,h). We show, on a case-by-case
basis, that if B, = 5; then B, = .S;4,. for each ¢’ which is an appropriate successor
value of ¢. Let B, = (r,T)

Let Ly = L(E,r, S;,=,d), so that s € L,.

1. If b. = pushq(n) then exec,(s,e,c,b,h) = (sn,e,c+1,b,h)and B,y = (ra,n).
But s € Ly , n € L(E,7n,S;,—.,d) and so sn € L(E,rn,S;,=—,d). =
L(E' rn,S;41,=>,d), since e is unchanged.

Considering now the term component, n, we see that V(e,n) = n and so is
equal to the top of stack.
Hence, since e is unchanged, (E',B.41) F 511
2. If b, = push(w) then let « = e ® w.
Then execy(s,e,c,b,h) = (si,e,c+1,b,h) = S;4,
and B.y; = (rE/(w), w)
But s € L, and, by the inductive hypothesis,
a € ’C(Elv E/(w)7 Sj7 =, d) = Ly ,say.
So sa € L,L, = L(E,rE(w),S;,=—,d) = L(E,rE/(w), S;41,=,d), by
lemma 4.2.2.

Considering now the term component, w, we see that V(e,w) = a
Hence, since no environmental changes occur, (E,B.;1) F 5,41

31

3. If b. = pop(w) then B.y; = (r/E/(w), Lr).

Since the monolog M, = L(E',E!(w),S;,=—,d) divides L, exactly (by the

conditions of the proposition) s = s'n, where 72 € M,,.

Let € = e[w — 1], then execy(s,e,c,b,h)=(5,€,¢,b,h).

Considering the conditions for (E/,B.41) F 5S4,

(a) s’ € Ly, 7 € M,, hence s’ € L,/M, = L(E,r/E/(w),S;,=,d) =
L(E, r/E(w),S;11,—>,d), by lemma 4.2.2 recalling that w is local by
conditions of theorem, so e, = ef,.

(b) The term of B.;; is undefined. Hence there is nothing to prove.

(¢) Consider w' € dom(E/(w)). If w' = w then & @ w =7 € M,,. Otherwise
eQw=e®w.

In either case € @ w € L(E, E.(w), S;, =, d).
Hence L(e' ® w € E,E.(w), Sj+1,=,d) by lemma 4.2.2.

(d) Consider w' € dom(E,(w)).

o ¢ @we L(E, T — Bool, S;41,=—,d) by a similar argument to the
above.
o If s =5 then if a € L(E, E,(w), S;,—, d) then
obey(s,e,e@ w,h,d) = (s't,e h,...)
hence by lemma 3.2.2
obey(s,e',e @ w, h,d) = (s't,e" h,...)
otherwise
obey(s,e,e@ w,h,d) = (s'f,e h,...)

e) We have ensured that all variables are given a ty ein E/ by the definition
g P
of annotation.

Hence (B.y1,E) F S

4. 1If b. = call(w) then
evecy(s,e,c,b,h)=(5,€,c+1,b,h)
where (s', €/, b, S) = obey(s,e,e @ w, h,d — 1)
There are the following cases:

(a) IfE(w) = rapg1 — ryan Where 74,41 701 are not both manifest monologs.
Bc+1 = ((r/rargl)rvalh J—T)
Now, since division is exact, s = 354,41
where sq,51 € L(E, r4r41,.5;, =, d), by condition 8.
Hence, by equation 4, if

obey(Sarg1, e, € @w, h,d—1) = (syu1,€",h",..)
where s,q1 € L(E, ryq1,5;,=>,d). Hence by lemma 3.2.1
s" = s9Spann € LB, (r/Targ1)Tvair, S, =, d)
So (E', Bey1) Fa Sjt1

32

(b) Targts Tvann are manifest monologs. Bey1 = (r/7arg1)Tvann » w(T)) This is
similar to the previous case, except for the term. Since division is exact
and r,,4 is a manifest monolog, s = s'in. where n = V(T', 5;).
Now V(w(T), S) = a" where (a”,€",h",S) = obey(a',e,e @ w, h,d— 1)
Hence, by lemma3.2.1 obey(s'a’, e,e @ w, h,d) = (s'a”,e", h",S") That is
a’ is the top of stack when we obey the instruction.
Hence (E, Boy1) Fa Si41

Hence (B.y1,E) Fq Sj41

. If b. = label(v) then execy(s,e,c,b,h) = (s,e,c+1,b,h)

and B.yy = (v,7),v = r € E;,.

But s € L, and L, = L(E,r,S;,—,d) C L(E,v,S;,=,d) by equation (5)

50 (Bey1, E) Fq Sj41

. If b. = goto(v), then let b(¢') = label(v).

Now execy(s,e,c,b,h) = (s,e, '+ 1,b,h)

and By, = (v, 1), v —=>r € E; .

But s € L. and L, = L(E,r,5;,=,d) C L(E,v,S;,=,d) by (5). Hence

(Berg1, E) Fa Sip

. If b. = ifnot(v) then let b(c¢') = label(v).

BC+1 = (T‘/TM7J_T)7 Bc/+1 = (U7J_T)7 v — T‘/TM € Ez—>
The condition that the division is exact means that only two of the possible

cases in Table 1 can occur. We can write s = s'n, and, since Ty, is a monolog,
s’ € LS/TM

(a) n=f£. Here execy(s,e,c,b,h)=(s',e,c +1,b,h)
But s € L,/Ty
and L, /Ty = L(E, r/Ty,S;,=,d) C L(E,v,S;,—,d) by (5).
Hence (Bo11,E) 4 S5

(b) Otherwise, execy(s,e,c,b,h)=(5,e,c+1,b,h)).
But s € L,/Ty
and L, /Ty = L(E, r/Ty,S;,=,d) C L(E,v,S;,—,d) by (5).
Hence (B.y1, E) Fq Sj41.

5 Discussion

This report has pointed a way towards using the theory of formal languages can

to describe data-types occurring in a stack-machine. Our main result has been to
show that an annotation of a code-block accurately describes the behaviour of the

machine provided the divisions are always exact.

However, an annotation is tedious to construct, and we may not be able to tell

immediately whether the divisions are always exact. While I shall not pursue the

33

formal investigation of this problem further in this report, I would like to indi-
cate that it is fairly clear what must be done to get a practical treatment of type
along this approach. The results of section 2 give us a basis of simplifying annota-
tions. Such simplification can leave all expressions of R occurring in the annotation
quotient-free, thus assuring that divisions are exact. For example, if Int is a man-
ifest monolog, then L£(E,Int/Int,S,=,d) = 1 for any type-environment, state
and legal-reachability relation. So we could replace Int/Int by a Unit type in an
annotation, and thus know that the division must be exact.

Moreover we can go somewhat further towards easing the generation of the
annotations themselves, and indeed towards a limited type-inference. Global envi-
ronments can be built up from declarations. The rules of Table 1 can be used to
generate an annotation. We can generate the E’ environment from the E environ-
ment by adding the productions derived from the labels, and adding type-bindings
for local variables derived from declarations to E.. Type inference can be supported
by using the requirement of exact division to introduce constraints on type-variables
into the type-environment.

An experimental study of these problems is described in a separate report. The
type-checking program described there is able to perform type-inference for local
variables in a range of POP-11 programs, and has been demonstrated to work for
some simple Forth programs as well.

References

[1] Barrett,R., Ramsay,A. and Sloman A., [1985] POP-11 A Practical Language
for Artificial Intelligence, Ellis Horwood, Chichester, England and John Wiley
N.Y.,USA.

[2] Burstall, R.M. and Popplestone, R.J., [1968] The POP-2 Reference Manual,
Machine Intelligence 2, pp. 205-46, eds Dale,E. and Michie,D. Oliver and Boyd,
Edinburgh, Scotland.

[3] Gordon, M.J.C., [1979] The Denotational Description of Programming Lan-
guages. pl04. Springer Verlag, New York.

[4] Hopcroft and Ullman [1979], “An Introduction to Automata Theory, Languages
and Computation”, Addison-Wesley.

34

