
A Typed Operational Semantics Based on GrammaticalCharacterisation of an Abstract MachineRobin PopplestoneVisiting from The Department of Computer ScienceUniversity of Massachusetts at AmherstAbstractIn computation, we often want to represent �nite sequences of objects. Clas-sically, a set of �nite sequences of tokens drawn from an alphabet is a language,and may be characterised by a grammar. It would seem natural therefore to usegrammars as a richer way of specifying types, simply by deciding that tokens canbe the objects from which a type is built . For example, List({Int*String}) isthe type of all lists in which short integers alternate with strings, using fag for theKleene-closure of a.However, one's enthusiasm for this approach might be tempered by the realisa-tion that some questions about some grammars are not e�ectively computable. Acrucial capability required for this work is the ability to divide one grammar ex-actly by another. Exact division is an extension of the concept of division found inHopcroft and Ullman and characterises, at the type-level of abstraction, the acqui-sition of arguments by a function.This approach is valuable for any language or system in which stacking op-erations are explicit, including the Forth, Pop-11 and PostScript languages, andthe Poplog multi-language environment. It has been applied experimentally to thedevelopment of a type-checker for the POP-11 language.1 IntroductionMany of the structures occurring in computation can be regarded as representationsof �nite sequences of objects. Typically therefore a program will contain manyvariables whose legal bindings are drawn from a set of �nite sequences. Classically,a set of �nite sequences of tokens drawn from an alphabet is a language, and maybe characterised by a grammar. It would seem natural therefore to use grammarsas a richer way of specifying the types of variables, simply by deciding that tokenscan be objects of the language. For example, I use List(Int*String) as the typeof all lists of two members, the �rst of which is a (short) integer, and the secondof which is a string. Likewise List({Int*String}) is the type of all lists in whichshort integers alternate with strings.Concatenation of such sequences is a natural operation, leading to the idea thatthe product operation on types should be associative. The grammatical approachsupports this associativity, whereas more standard approaches to type in functionallanguages do not. Of course, associativity is purchased at a cost, since the existence1



of a most general uni�er, which is the basis of the derivation of principal types,cannot be guaranteed.Moreover, one's enthusiasm for the grammatical approach might be temperedby the realisation that some questions about some grammars are not e�ectivelycomputable. For example, we may wish to know if two types are identical. Theseconsiderations have led me to restrict myself to building on a basis of regular gram-mars, although the requirements of parametric polymorphism have mean that usingwhat might be called regular algebras is more appropriate.I have built an experimental grammatical type-checker for the POP-11 language.POP-11, with its open stack has always been regarded as not capable of beingstatically type-checked, but it has proved possible to create a type-checker which,though it restricts the programmer, does so in the direction of requiring that (s)headopts recognised good practice, rather than being irksome. It is based on the ideaof maintaining a grammar which characterises the state of the stack at each step inprogram execution, as speci�ed in the Poplog Virtual Machine.A crucial capability required for this work is the ability to divide one grammarexactly by another. Exact division is an extension of the concept of division foundin Hopcroft and Ullman. Essentially, at the type level of abstraction, a functionright-divides the stack-grammar by its argument grammar, and then multiplies byits result grammar. Left-division is also required, for example the tl function hastype:tl: List of a -> List of Tl(a);where Tl is a grammar-function which yields the left-quotient of a grammardivided by the top monolog, and a is a type-variable.A number of other computer languages, including Forth and PostScript, existin which the method of passing parameters to a function or procedure is explicitlyde�ned to be a stack. The methods discussed in this paper are relevant to type-checking programs in these languages, and has been tested on a Forth subset.A stack-state can be regarded as a sentence in a language characterised by agrammar. Each di�erent point in a program thus determines a set of stack-states,that is to say a language. The alphabet of this language is the set of objects of theprogramming language. Within this framework, the possible values of a variable area language all of whose sentences are of length exactly one. Pushing a variable onthe stack corresponds to taking the product of the stack-language and the variable-language; popping o� the stack into a variable corresponds to taking the exactquotient of the stack-language by the variable-language. The call of a procedure canbe characterised as taking the exact quotient of a stack-language by the argument-language for the procedure, and then multiplying the result by the result-languagefor the procedure.Control constructs in a language can be treated by introducing a new non-terminal symbol to denote the stack-state at a program-point where a conuencecan occur | this will be a statement-label in the lowest level of language. Eachtransfer of control to this point generates a production relating the non-terminal tothe stack-grammar for the point from which control was transferred. This gives rise2



to context-free grammars characterising the behaviour of a code-sequence (normallya procedure-body). The existing type-checker converts linear grammars into regularexpressions. Non-linear grammars are regarded as type-errors.1.1 A guide to the paperFollowing this introduction, the paper is divided into the following major sections:� Languages: sums, products and quotients. This is a treatment of the basicproperties of formal languages as found in [4], but with an emphasis on thequotient operation required for the type-checker.� The Virtual Machine: This introduces the idealised (s; e; c; b; h) machine inwhich instruction bc in a code-block b, taking arguments from a stack s actson a heap h, interpreting variables as speci�ed by the environment e. Wede�ne the exec function which executes one instruction, and the obey functionwhich obeys a complete code-block.� Grammars characterise languages: Languages are treated abstractly, as setsof sequences, in the section above. In this section we introduce ExtendedRegular Word Algebras (ERWA's), which, together with a type-environment,de�ne languages composed of objects in a given machine state. We prove somestability lemmas, which show how these languages vary as parameters such asmachine-state vary.� Describing Machine States: In this section we �rst de�ne a formalism forcharacterising a machine-state using an element of an ERWA together witha term to specify the stack and a type-environment to specify the machine-environment. We then de�ne an annotation of a code-block, and show that anannotation is a correct description of the behaviour of a machine.2 Languages: sums, products and quotientsIn this section we remind readers of the basic properties of languages, and developsome propositions which are intended primarily to support the simpli�cation ofgrammars which characterise languages.There is a considerable advantage in developing our theory of type with languagesrather than the grammars which characterise them since it allows us to identify theoperations we need to perform without being tied to any particular grammaticalapparatus. Consequently we are able to develop an approach to describing associa-tive types which allows us choice of descriptive apparatus. In particular, while theoperations on languages that we introduce will be those of regular grammars, wewill our grammars, which may contain type-variables, are not therefore regular.For de�nitions of operations on languages see [4]We shall use the symbol `1' for the language which consists of the empty string�. This corresponds to the unit type of SML.3



De�nition 2.0.1 (Language) Let � be an alphabet of objects. A language L is aset of sequences of members of �. We write �0(L) for the set of objects that actuallyoccur in a language L.We denote the empty language by ;.De�nition 2.0.2 (Monologs) A language L is said to be a monolog if it is non-empty and contains only sequences of length exactly 1.We will use the capital lettersK; J; L for languages,M;N formonolog languages.If a 2 � is an object, then the sequence of length 1 consisting of a will be written â.De�nition 2.0.3 (Singletons) If � 2 � then the language S(�) = f�̂g is called asingleton.De�nition 2.0.4 (Monotonicity) Let F be a function on languages. We say thatF is monotonic on argument i if Li � L0i implies F(L1; : : : ; Li�1; Li; Li+1 : : :Ln) �F(L1; : : : ; Li�1; L0i; Li+1 : : :Ln). We say that it is monotonic if it is monotonic onall arguments2.1 The product and union of LanguagesLanguages, being sets, have the normal operations of boolean algebra de�ned overthem. We write L � K if every member of L is a member of K. Note that thisincludes the possiblity that the sets are equal. There is a top element >. The unionof languages is of more interest to us than the intersection. There is also a topmonolog >M .The union of languages is the standard set-theoretic union:L [K = fljl 2 L or l 2 KgThe algebraic laws governing union and intersection are of course just those ofboolean algebra, including:L [K = K [ L; (J [K) [ L = J [ (K [ L)The concatenation operation on sequences gives rise to the product of languages.De�nition 2.1.1 If L and K are languages, then their product is:LK = flkjl 2 L; k 2 KgThe product of languages is associative and distributes over union. It is notcommutative.J(KL) = (JK)L (J [K)L = JL [KL; L(J [K) = LJ [ LK4



1 acts as an identity, so that 1L = L = L1 for any language L.For any integer n � 0, we de�ne Ln by L0 = 1, Ln = LLn�1. Thus L1 = L.The operations of union, intersection and product of languages are monotonic.Complementation is not.2.2 The Kleene ClosureDe�nition 2.2.1 (Kleene Closure) If L is a language, thenfLg = 1[i=0Liis called the Kleene-closure of L. We need a modi�ed version of this operation,where the �rst power in the union is Ln, and write:fLgn = 1[i=nLi. >From the de�nition the following lemmas are immediate:Lemma 2.2.1 K = 1 [KfKg = 1 [ fKgKLemma 2.2.2 Kleene closure is monotonicDe�nition 2.2.2 (Regular languages) If � is an alphabet, then any language Lwhich is formed by taking 1, ;, singletons S(�) where � 2 �, combined by union,product, Kleene-closure is said to be regular.Proposition 2.2.1 For any language L, ffLgngm = fLgmnProof: Let l 2 ffLgngm Then l = l1 : : : lm0 , m0 � m where each li = li1 : : : lini ,ni > n, lij 2 L, So l = (l11 : : : l1n1) : : :(lm1 : : : lmnm) Hence, by associativity, giventhat there are at least mn terms in the product, l 2 fLgmnConversely, let l 2 fLgmn. Then l = l1 : : : lk, k � mn where each li 2 L. Byassociativity, we can write this asl = (l1 : : : lm)(lm+1 : : : l2m) : : :(lm(n�1) : : : lmnlmn+1 : : : lk) 2 ffLgngmProposition 2.2.2 If L1 : : :Ln are languages, then the productLnfL1L2 : : :Lngm = fLnL1 : : :Ln�1gmLn5



Proof:Let l 2 LnfL1L2 : : :Lngm Thenl = ln(l11l21 : : : ln1)(l12l22 : : : ln2) : : :(l1m0l2m0 : : : lnm0)where lij 2 Li; m0 � m. Now associativity allows us to rebracket:l = (lnl11l21 : : : l(n�1)1)(ln1l12l22 : : : l(n�1)2) : : :(ln(m0�1)l1m0l2m0 : : : ln�1m0)lnm0Hence l 2 fLnL1 : : :Ln�1gmLnThe converse membership is proved analogously.De�nition 2.2.3 (Regular Algebra) A boolean algebra with an additional prod-uct operation which distributes over union is called a regular algebra.2.3 The quotient of languages.The possible values of variables whose values are representations of sequences arecharacterised by languages. We often manipulate such sequences by taking thingso� one end or the other. For example, an operation that takes things o� a stackwill make any sequence of objects which constitute the state of the stack shorter.We can characterise removal from the right by the right quotient operation.De�nition 2.3.1 If L and K are languages then the right-quotient L=K is de�nedby (H&U p62): L=K = fxj9y 2 K; xy 2 LgThere is, symmetrically, a left quotient operation, which we shall discuss brieylater.Lemma 2.3.1 (Monotonicity of Division) Let L1 � L2 and L be languages.Then L1=L � L2=LL=L1 � L=L2Proof: Let x 2 L1=L Then there exists l 2 L for which xl 2 L1, Hence xl 2 L2,that is x 2 L2=L. Hence L1=L � L2=L.Let x 2 L=L1. Then there exists l1 2 L1 for which xl1 2 L But l1 2 L2. Hencex 2 L=L2.While the �rst monotonicity relation above is certainly to be expected, the sec-ond will be surprising to many readers.We use the convention that multiplication is more binding than division, so thatLK=L0K 0 means (LK)=(L0K 0). 6



Being able to perform division of languages is an essential requirement for ourtype-checker. If L and K are regular languages, then the quotient is regular. How-ever, we need to be able to divide languages which contain variables. Typically thiswill be possible in circumstances in which some kind of special marker has been usedwhich is known not to occur in the language denoted by the variable. In POP-11,this arises in the analysis of functions like sysconslist, whose type-signature is:sysconslist : All a; Stackmark � a � > List(a)Here a is a variable which denotes a language none of whose tokens are the sameas those of the monolog Stackmark.The strategy of the type-checker in performing division is to express division ofcomplex regular expressions in terms of divisions of simpler expressions, that is tosay, the division operation is moved inwards. If necessary, divisions which cannotcurrently be performed are deferred. Such deferral is required in inferring the typeof recursive functions.Division has only weak algebraic properties. In particular, cancellation does nothold in general. That is LK=K is not in general equal to L. This arises from thefact that if l 2 L and ly 2 LK, we cannot conclude that y 2 K, since y mighthave the form gk, where lg 2 L, k 2 K. However we can readily see that if K is amonolog, then cancellation must be possible, an instance of proposition2.3.1 below.Indeed, it is not even true that L=L = 1. Suppose L = fag. L=L = fxj9y 2L; xy 2 Lg = L. The essential strategy in the division of products is to �ndconditions under which cancellation does occur.De�nition 2.3.2 (Exact Division) We say that J is exactly divisible by K ifevery j 2 J has the form gk where k 2 K.When a procedure takes its arguments o� the stack, for type-correctness it isessential that the argument language exactly divides the stack-language.Being able to divide one language by another is crucial to our type-system. Itis easy to see that a simple divide-and-conquer strategy cannot be applied becauseof the fact that cancellation does not always work for products. The lemmas belowsuggest that divide-and-conquer has some hope of being successful for sums. Indealing with products, the general strategy will be to considermonologs, as discussedbelow.Lemma 2.3.2 If J;K; L are languages, then (J [ K)=L = J=L [ K=L, and theleft-hand division is exact if and only if both of the right hand divisions are exact.Proof: Let x 2 (J [K)=L Then there is l 2 L for which xl 2 J [K Supposexl 2 J then x 2 J=L. Alternatively, if xl 2 K then x 2 K=L. In either casex 2 J=L [K=L,Conversely, suppose x 2 J=L [K=L. Suppose x 2 J=L. Then there is an l 2 Lfor which xl 2 J . Thus xl 2 J [K. So x 2 (J [K)=L. Alternatively, if x 2 K=Lwe conclude similarly that x 2 (J [K)=L.7



Now suppose J [ K is exactly divisible by L. Let x 2 J , then x 2 J [ K sothat x = x0l where l 2 L. Thus J is exactly divisible by L. Likewise K is exactlydivisible by L.Conversely, if both J and K are exactly divisible by L, let x 2 J [ K Then ifx 2 J it follows that x = x0l for some l 2 L. Likewise if x 2 K, x = x0l for somel 2 L. Therefore J [K is exactly divisible by L.Lemma 2.3.3 If J;K; L are languages, then L=(J [ K) = L=J [ L=K , and theleft-hand division is exact if one of the right hand divisions is exact.Proof: Let x 2 L=(J [K). Then, there is y 2 J [K for which xy 2 L. Supposey 2 J . Then x 2 L=J . Alternatively, if y 2 K then x 2 L=K. Thus x 2 L=J [L=KConversely, let x 2 L=J [ L=K. Suppose x 2 L=J . Then there is a j 2 J forwhich xj 2 L. But j 2 J [K. So x 2 L=(J [K). Similarly we see that if x 2 L=Kthen x 2 L=(J [K).Now suppose J exactly divides L. Then if l 2 L, there is a j 2 J and an l0 2 Lfor which l = l0j. But j 2 J [ K Hence J [ K exactly divides L. Likewise, if Kexactly divides L, J [K exactly divides L.Note that in distinction to the previous lemma, we cannot conlude the conversefact about exact division.Sometimes, as we shall see, it is possible to perform division easily and explicitlyby relying on the fact that, in our application, many languages are known to bemonologs.Lemma 2.3.4 If J;K; L are languages thenJ=KL = (J=L)=KMoreover, if L is a monolog, then KL exactly divides J if and only if L exactlydivides J and K exactly divides J=LProof: Let x 2 J=KL. Then there is kl 2 KL for which xkl 2 J . Hencexk 2 J=L, and so x 2 (J=L)=K.Conversely, if x 2 (J=L)=K then there is a k for which xk 2 J=L, that is thereis a l for which xkl 2 J , that is x 2 J=KL.Now suppose L is a monolog, and KL exactly divides J . Consider j 2 J . Then,for some x; k 2 K; l 2 L, j = xkl Thus L exactly divides J .Consider now x 2 J=L. Then there is an l 2 L for which xl = j 2 J . Hence,since KL exactly divides J , xl = x0k0l0, for some x0, k0 2 K, l0 2 L. But L is amonolog, so l and l0 have length 1. Hence x = x0k0 and hence K exactly dividesJ=L.Finally, suppose L exactly divides J and K exactly divides J=L. Consider j inJ . Then j = x0l, for some x0, l 2 L. Now x0 2 J=L so x0 = x00k, for some x00, k 2 K.Thus j = x00kl, so that KL exactly divides J .8



Proposition 2.3.1 Let J; J 0 be languages. Let M � N be monologs, and let K � Lbe non-empty languages for which �0(N) \ �0(L) = ;. Then JMK=J 0NL = J=J 0and the division is exact i� J 0 exactly divides J.Proof: Let x 2 JMK=J 0NL. Then there is a j 0nl 2 J 0NL for which xj0nl =jmk 2 JMK. But, m is not a member either of the sequences k; l and neither is n.Hence k = l, and xj0 = j. So x 2 J=J 0.Conversely, suppose x 2 J=J 0. So there is a j 0 2 J 0 for which xj0 2 J . Then,since M is a monolog, and K is non-empty, there exist m 2 M , k 2 K. Hencexj 0mk 2 JMK. Remembering that M � N and K � L we see that j0mk 2 JNL,that is x 2 JMK=J 0NL. Thus JMK=J 0NL = J=J 0.Now suppose J 0NL exactly divides JMK. Consider j 2 J . Now, with m; kfrom the previous paragraph jmk 2 JMK. So there exist x, j0 2 J 0; n 2 N; l 2 Lfor which jmk = xj0nl. But m is not a member of the sequences l; k. Neither is m0.Hence j = xj0, showing that J 0 exactly divides J .Conversely, suppose J 0 exactly divides J . Consider jmk 2 JMK. By thede�nition of exact division, j = xj0 for some j0 2 J 0. So xj0mk 2 JMK, and,because of our inclusion relation, j 0mk 2 J 0NL. Hence J 0NL exactly divides JMK.Corollary 2.3.1 Let J, J 0 be languages, for which J 0 exactly divides J and letM � N be monologs. Then J 0N exactly divides JM andJM=J 0N = J=J 0For we can take K = L = 1 in the previous proposition.Corollary 2.3.2 Let L be a language, M � N be monologs. Then N exactly dividesLM and LM=N = LFor we can take J = 1, K = L in the above corollary.Corollary 2.3.3 Let M � N be monologs. Then N exactly divides M andM=N = 1For we can take J = K = 1 in the above corollary.Proposition 2.3.2 Let J; J 0 be non-empty languages. Let M;N be monologs, andlet K;L be non-empty languages for which �0(M)\�0(K) = ;. �0(M)\�0(L) = ;.�0(N) \ �0(K) = ;. �0(N) \ �0(L) = ;. Let J 0NL exactly divide JMK. ThenK � L and M � N .Proof: Let k 2 K. Since J;M are non-empty, let j 2 J;m 2 M , so jmk 2JMK, Then, by the de�nition of exact division, there is an x for which jmk = xj0nl,j 0 2 J 0; n 2 Nl 2 L. Hence, as before, l = k, that is k 2 L, showing that K � L.Now let m 2 M . Since J;K are non-empty, let j 2 J; k 2 K, so jmk 2 JMK,Then, by the de�nition of exact division, there is an x for which jmk = xj0nl,j 0 2 J 0; n 2 Nl 2 L. Hence, m = n, that is M � N , showing that K � L.9



2.4 The Kleene Closure in DivisionThe Kleene Closure operation presents the most di�culties for division. >Fromproposition 2.3.3 we see, for example thatK=fLgn = 1[i=nK=LiIt is known that when both K and L are regular languages, there is a computablei beyond which no new terms are generated in the union, so that we could thus getrid of Kleene Closures in the `denominator'. However, since we are developing ourtheory with no assumption of regularity, we are left with weaker conclusions.In the case when we are dividing a monolog by a Kleene Closure, we have thefollowing:Proposition 2.4.1 Let M be a monolog, L;K be languages. ThenLM=fKg = L=(fKg(K=M))[ LMProof: Let x 2 LM=fKg. Then there is k1 : : :kn 2 K for which xk1 : : :kn =lm̂ 2 LM .Supposing n > 0, then� either there is kn0 which is the rightmost ki 6= � kn0 = ŷ1 : : : ŷj Then ŷj = m̂ sothat ŷ1 : : : ŷ(j�1) 2 K=M , and xk1 : : :kn�1ŷ1 : : : ŷj�1 = l for some l 2 L, Hencex 2 L=(fKg(K=M))� or ki = � for all i 2 1 : : :n. Here x = lm̂ 2 LM .If n = 0, then x = lm̂ 2 LM .Conversely, let x 2 L=(fKg(K=M))[ LMSuppose x 2 L=(fKg(K=M)). Then, for some k1 : : : kn 2 K and y 2 K=Mxk1 : : : kny 2 L. And, for some m̂ 2 M , ym̂ 2 K. So xk1 : : :knym̂ 2 LM .Hence x 2 LM=fKg.If, on the other hand x 2 LM , then, since the empty sequence � 2 fKg,x 2 LM=fKgWe next address the problem of a Kleene closure in the `numerator'. Notethat the following proposition is stronger thanLfKg=M = L=M [ (LfKgK)=Mwhich can be inferred by expanding out the Kleene closure using 2.2.1Proposition 2.4.2 Let M be a monolog, L;K be languages, thenLfKg=M = L=M [ LfKg(K=M)10



Proof: Let x 2 LfKg=M . Then, for some m̂ 2 M , l 2 L k1 : : : kn 2 K,xm̂ = lk1 : : : kn. Now, if n = 0, or ki = � for i 2 1 : : :n then xm̂ 2 L, so x 2 L=M .Otherwise, let k0n = ŷ1 : : : ŷj be the rightmost non-null sequence of the ki. Thusŷj = m̂, and ŷ1 : : : ŷj�1 2 K=M . Hence x 2 LfKg(K=M)Conversely, suppose x 2 L=M [ LfKg(K=M). If x 2 L=M then x 2 LfKg=M ,since the Kleene closure contains the empty seqence. Alternatively,lk1 : : :knx 2 LfKg(K=M) where xm̂ 2 K, for some m̂, so that lk1 : : : knxm̂ 2 LfKg.Thus lk1 : : :knx 2 LfKg=M .2.5 Converting divisions into inequalitiesIn circumstances where no cancellation is possible the following inequalities are ofuse:Lemma 2.5.1 If K is non-null, then L � (LK)=KProof: Let l 2 L. Let k 2 K. lk 2 LK so that l 2 (LK)=KLemma 2.5.2 If J is exactly divisible by K then J � (J=K)KProof: Let j 2 J . Then, j = gk, so g 2 J=K by the de�nition of division.Hence j 2 (J=K)K.2.6 Left Division - the Rev functionWhile we have regarded stacks as being operated on from the right and so havedeveloped right division, there are structures, such as lists, that we operate on fromthe left with the traditional hd and tl operations. In POP-11 this is not just amatter of convention, since there are constructs like the [% .... %] form whichconvert between a right-access structure (the stack) and a left-access structure (alist). Thus we are going to need a concept of left division.Since there is no intrinsic `direction' to the sequences of our languages, we coulddevelop the concept of left division in a manner exactly analogous to our treatmentof right division. However we prefer the treatment below.De�nition 2.6.1 The language-function Rev is de�ned by x 2 Rev(L) if and onlyif rev(x) 2 L, where rev(a1 : : :an) = (an : : : a1).It is clear that Rev is monotonic.De�nition 2.6.2 (left-quotient)KnL = Rev(Rev(L)=Rev(K))De�nition 2.6.3 Tl(L) = >MnLDe�nition 2.6.4 If L is a language, then Hd(L) = fl̂j9l0: l̂l0 2 Lg11



3 The Virtual MachineThe Virtual Machine presented here is related to the Poplog Virtual Machine whichhas been made the target of a number of compilers. It provides fully automatic (i.e.garbage-collected) storage control, and a range of user functions including arbitraryprecision arithmetic, data-structure construction and access, and incremental codegeneration.The simpli�ed version of the Poplog Virtual Machine which is de�ned below isin some ways closer to the original POP-2 machine, and so is close to the 4130 com-puter. For the type-theory presented here, severe restrictions on that are required.However lexical locals characteristic of the PVM are required, as opposed to thedynamic locals of POP-2 [3]. We characterise the VM in terms of a function execwhich executes one instruction, exec� which executes instructions repeatedly, andobey which obeys a block of code.If � is a mapping, then we use � = �[x 7! y] to mean a mapping for which�(x) = y and �(x0) = �(x0) otherwise. We use dom(�) to mean the domain of �.The function �[x 7! y] may, or may not, have a domain bigger than that of �.A machine state consists of a quintuple (s; e; c; b; h).Here, h is a heap, that is to say, a mapping from addresses to values. Addressesare drawn from a countably in�nite set A, but the domain of any given heap is �nite.A value is either (a) a pair (aProcKey ; p), where p is a primitive function or (b) atuple (a0; : : :an). Here the �rst element of a tuple is always the address of a keyvalue, which determines the basic type of the object. A tuple can be a code-block, inwhich case the components a1 : : : an are instructions as described below. Otherwisethey are addresses.There is always an unde�ned object u, and true and false objects t and f in anyheap.s is the stack, that is to say a tuple of addresses.W � dom(h) is a set of identi�ers. No assumption is made here about whetherW � A, as in POP-2, or not, as is the case in most other languages, where identi�ersare not run-time objects. However, we do not treat those language-capabilities thathinge on identi�ers being run-time objects, namely the valof and popval functions.e is an environment, that is to say a sequence of mappings from identi�ers toaddresses. An identi�er is either local to a code-block or global. Non-locals whichare not global are eliminated by lambda-lifting.1De�nition 3.0.5 (Value of identi�er in environment) The value e 
 w of aidenti�er w is e0(w) if w is non-local to a code-block and en(w) if w is local, whereen is the last member of the sequence. A variable is bound to u to indicate that it is`unde�ned'.1The POP-2 manual instructed programmers to eliminate problematic free variables by making themarguments of the function in which they occurred, which was then to be partially applied to give aclosure. This approach could have avoided the need for globals entirely, but while globals are not logicallynecessary, they are important for e�ciency. 12



We use e[v 7! y] = e[i 7! ei[v 7! y]] where i = 0 for a non-local variable andi = n for a local variable.b is a code-block, that is to say a sequence of instructions. c is an index into b,which determines the current instruction. Associated with each code-block are itslexical variables. The function lvars makes a new environment from e = e1 : : :enand a code-block. lvars(e; b) = (e0 : : : en+1) where en+1 = [v1 7! u; : : :vk 7! u] forall the local variables of b.There is a set of labels which are distinct from the set of identi�ers.In the following two sub-sections we will de�ne the operation of the virtualmachine. We �rst de�ne a function exec which says what it means to execute asingle instruction of the VM. We then de�ne obey which says what it means to obeya code block of the virtual machine.3.1 Executing an InstructionThe instruction set of the VM is: pushq(n), where n 2 h, push(w), pop(w) wherew 2 W . call(w), label(l), goto(l), ifnot(l) where l is a label. The instruction witha given label is unique within a code-block.It is always possible that a call may not terminate. To deal with this case weintroduce ? to be the value of a non-terminating computation. The execution of aninstruction is achieved by the exec function, de�ned below. execd(s; e; c; b; h) means`execute the instruction at location c of code-block b, with stack s, environment eand heap h'. d � 0 is the depth-bound of the computation | if there are � d nestedcalls, then obey will evaluate to ?.execd(s; e; c; b; h) = (sn̂; e; c+ 1; b; h) if b(c) = pushq(n)execd(s; e; c; b; h) = (se
 w; e; c+ 1; b; h) if b(c) = push(w)execd(s0n̂; e; c; b; h) = (s0; e[w 7! n]; c+ 1; b; h) if b(c) = pop(w)execd(�; e; c; b; h) = ?execd(s; e; c; b; h) = (s0; e0; c+ 1; b; h0) if b(c) = call(w)where (s0; e0; h0;S) = obey(s; e; e
 w; h; d� 1)execd(s; e; c; b; h) = ? if b(c) = call(w) andobey(s; e; e
 w; h; d� 1) = ?execd(s; e; c; b; h) = (s; e; c+ 1; b; h) if b(c) = label(l)execd(s; e; c; b; h) = (s; e; c0+ 1; b; h) if b(c) = goto(l)where b(c0) = label(l)execd(sf̂; e; c; b; h) = (s; e; c0+ 1; b; h) if b(c) = ifnot(l)where b(c0) = label(l)execd(sn̂; e; c; b; h) = (s; e; c+ 1; b; h) if b(c) = ifnot(l)and n̂ 6= fexecd(�; e; c; b; h) = ? if b(c) = ifnot(l)13



3.2 Obeying a whole code block or primitiveThe de�nition of obey depends on whether a primitive or a code-block is beingobeyed. If p is a primitive, then it acts on the stack and the heap to produce a newstack and heap.obey(s; e; (aProcKey; p); h; d) = (s0; e; h0; �) where p(s; h) = (s0; h0) (1)Note that a new heap is created as the result of obeying a primitive. It is clearthat this new heap must resemble the old one strongly if we are to be able to makeany predictions whatsoever about the behaviour of the VM.>From the point of view of type-checking, the important thing is that a primitivecannot change the type of any existing object. Since we are allowing parametricpolymorphism this is a tricky condition to maintain if objects are mutable. Thispaper deals only with the case of immutable objects. That is to say, in the abovede�nition h0 = h[a1 7! (a10 : : : a1n1) : : :am 7! (am0 : : : amnm)] where a1 : : :am 62dom(h).If b is a code-block, then obey(s; e; b; h; 0) = ? (2)obey(s; e; b; h; d;S) = exec�d(s; lvars(e; b); b; h) (3)Here the exec�d is de�ned as follows. Suppose there is a sequence of statesS = S0 : : :Sn where S0 = (s; e; 1; b; h) and Si+1 = execd(Si) and Sn = (s0; e0; c; b; h0)where c = jbj + 1 (that is we have `run o� the end of the code block'). Thenexec�d(S0) = (s0; e0; h0;S).The following two lemmas are trivial consequences of the de�nition of the VM.Lemma 3.2.1 If obey(s; e; b; h; d) = (s0; e0; h0;S) thenobey(s00s; e; b; h; d) = (s00s0; e0; h0;S0)where S0 is a state-sequence.Lemma 3.2.2 If e and e0 are environments where e0 = e00. Let obey(s; e; b; h; d) =(s0; e00; h0;S). Then obey(s; e0; b; h; d) = (s0; e000; h0;S0)where env000 is an environment for which e000 = e0000De�nition 3.2.1 (Closed VM State) We say that a VM state S is closed if forevery instruction of the form call(w) occurring in any code-block b of the heap of S,either w is a local variable of b, or h(e
 b) = (aProcKey ; : : :) is a code-block.14



3.3 Record and Vector KeysObjects on the heap are records, of �xed size, vectors of variable size and code-blocks. At the level of abstraction of this paper, all we need to know about a record-key is that it has an associated arity, which determines the number of componentsof each record of the class determined by the key.4 Descriptions of the VMThe purpose of our formal characterisation of the VM is to allow us to make predic-tions about its behaviour. Any prediction about the behavour of the VM requiresus to to be able to describe machine states and annotate code blocks. This is truewhether whatever the nature of the predictions we wish to make | they may servefor type-checking as in the present paper or for less limited kinds of program veri-�cation.4.1 Discussion of annotationThe issue of annotation is quite a complex one. Essentially, we want to annotatea code-block with an adequate description of the state of the machine at eachinstruction. Here, \adequate" means adequate from the point of view of type-checking, that is to say determining whether operations are legal.The descriptive apparatus must include a description of the stack, and an en-vironment which describes the types of VM variables. The primary problem isthat we need type-variables. These will occur both in the stack-description andthe environment; certain type-variables will be known to be monolog-valued. Andconstraints on variables will be generated in various ways. Consider the POP-11sequence ...hd(L) + 2 -> L1;..., which translates into the code-blockb = (: : :push(L); call(hd); pushq(2); call(+); pop(L1); : : :)Now, at b1 = push(L) we may know nothing about the type of L, that is to sayits type is a monolog-valued variable v. Assuming the stack is empty on entranceto the sequence, as we start to execute b2, the stack is described by v. At b2 we tryto divide v by the argument-type of hd, which is List(v1), where v1 is a polylog-valued type-variable. Since List is a monolog-valued type-function, we infer thatv � List(v1). We can express this most generally by unifying v and List(v1), withthe substitution v 7! List(v1), since anything additional we might infer about v canbe expressed in terms of a constraint on v1. For example, when we come to call(+),we can infer that Hd(v1) � Number.The procedure for deriving an annotation must thus examine the instructions ofa code-block, inferring constraints on type-expressions. The order of examinationshould be related to that of execution. When all information relevant to a type-variable has been garnered into constraints, an attempt will be made to resolve15



them, deriving a value for the variable. Within this framework we can treat jumpsand labels. At a label instruction, the stack at the label will derived from the stackat any instruction from which the label can be reached | this can be treated byintroducing a variable for the stack at the label and a production for each way ofgetting to the label. These productions are also, in e�ect, inequality constraints.Another issue that must be addressed is the necessity of deriving more restrictedtypes for some variables arising from the need to exploit the fact that some POP-11 functions serve to recognise data-structures. Consider for example the sequenceif isnumber(x) then x+3 else... We may conclude that x is a number betweenthe then and else. To deal with this issue, we introduce the concept of recognisersinto the type-system, introduce a restricted local typing, and also, in a strictlylimited way maintain an expression (or term) which denotes the actual value of thetop-of-stack.4.2 Grammars characterise languagesSo far we have treated languages abstractly as possibly in�nite sets of sequences. Inorder to compute with such entities, we have to �nd a �nite representation. This isprovided by grammars.Languages can be represented most generally by unrestricted grammars. Butwe want to keep things computable, so aim at regular grammars. How unrestrictedmight our grammars be? First let us observe that a production, � ! � can beconstrued as an inequality � � �. Thus the grammatical quotient, L = J=K,which, if exact, gives rise to the inequality J � LK can be seen as having thecorresponding production LK ! J . Thus we have have unrestricted grammarslurking in the undergrowth.However, we are aiming at reducing all our grammars to being regular algebras.This means that we will introduce productions as a necessary part of the processof type-checking a VM program. But they will be eliminated as a requirement thatthe program is type-correct.In this section we1. Introduce extended regular word algebras as our formalism for expressing type.2. Introduce type-environments as a way of recording information about type.3. De�ne the terminal symbols of our type-formalism as characterising objects ofthe VM.4. De�ne a function L which maps a type-expression into a type-language of se-quences drawn from a heap and using an environment.De�nition 4.2.1 An extended regular word algebra (ERWA) is a set of expressionsformed from a set of monolog-variables Vm, a set of polylog-variables Vp and a setof terminals T .R(Vm; Vp; T ) consists of expressions formed as follows.16



� ; 2 R� 1 2 R� If v 2 Vm [ Vp then v 2 R.� If t 2 T then t 2 R� If r1; r2 2 R then r1 ! r2 2 R� If r1; r2 2 R then r1 [ r2 2 R� If r1; r2 2 R then r1r2 2 R� If r1; r2 2 R then r1=r2 2 R� If r1 2 R then fr1g 2 RIf R = R(Vm; Vp; T ) is an ERWA, then we can associate a language with R bysaying what the variables and terminals \mean". Just as we needed an environmentto say what values variables have in the VM, so we need a kind of environment totell us things about types. This includes both type equations and productions whichwill tell us about what type variables mean, but also, to analyse the type of code-blocks, we will need to know about the types of variables in the VM itself, and alsowhether certain variables have values which can be used to recognise objects.De�nition 4.2.2 Let R be an ERWA. We say that an expression r 2 R is quotient-free if no sub-expression of r is of the form r1=r2The expressions for a legal type will be quotient-free.De�nition 4.2.3 (Type Environments) A type-environment E is a quadruple(�; �; �; P )where � :W ! R speci�es the type of variables. � :W ! R speci�es that a variablerecognises a type, � : V ! R speci�es type-equations and P is a set of productionsof the form v ! r where v 2 Vp and r 2 R.In the above de�nition, � is also written E:, � is also written E?, � is also writtenE= and P is also written E!.The terminals of our type-language are monologs, the members of which aredrawn from a set of objects of the VM, that is to say a set of addresses. There aretwo kinds of terminal, namely singletons and data-classes. A singleton consists ofjust one sequence consisting of a given address. A data-class is drawn from a setof objects which have the same key and may have additional commonality in theircomponents.De�nition 4.2.4 (singleton) A singleton-expression for an ERWA R is a termS(a), where a is an address. 17



De�nition 4.2.5 (dataclass) A dataclass expression is a term D(a; r1 : : :rn) wherea is an address, and r1 : : : rn 2 RWe are now ready to de�ne how an expression of an ERWA denotes a language.The language denoted by an expression r is a set of sequences of addresses. Thereforewe need hardly be surprised that, as well as a type-environment to tell us what thevariables mean, we will also need a heap to allow us to interpret the addresses.However we need to de�ne a meaning for the form r1 ! r2. This is usuallythought of as a function type, and will in our case denote a monolog whose membersare code-blocks, since these �ll the role of functions. This does imply a considerablecomplication of our system. In order to make any predictions about type we willneed signi�cant type stability of objects with respect to the exec and obey functions,and also with respect to the compiler operating as deus ex machina. That is tosay, for us to be able to reason about the types of variables, an object to which avariable is bound must retain its type throughout the period for which the variableis bound to it. The more precise and speci�c the characterisation of type, the lesswe will be able to do to an object without changing its type as characterised.The type of a code block must depend on the way it relates its arguments toits results. So we must provide at least one machine-state for us to observe itsexecution. However the case is worse than this, for the behaviour of a code blockcan change signi�cantly with small changes in the state. Consider the POP-11procedure:define fred(x);if x>2 then 'big' else xendifenddefine;If a heap h contains only the integers 0 and 1 say, then we may observe that fred,when given an integer argument returns an integer result in any state which has has its heap. That is to say, observationally fred:Int->Int. However if we formh0 = h[a 7! 3], for some address a 62 dom(h) then fred may return a string whengiven an integer. This is such a trivial change in h that we would be completelyunable to construct a type-theory.Thus it appears that we should not attempt to assign a type to a code-blockby observing its behaviour with respect to just one machine-state. It is equallyproblematic if we attempt to make use of all machine-states, since the behaviour ofa code-block depends upon its non-local variables, and if we range over all machine-states, we could get almost any behaviour out of a code-block. Happily there is amiddle way. We can de�ne the type of a code-block in terms of its behaviour in agiven state, and all states which can be reached from that state via a sequence oflegal transitions. What constitutes a legal transition can be decided later. Indeeddi�erent type-theories will be associated with di�erent kinds of legal transition.The more restrictive we make the de�nition of a legal transition, the stronger ourtype-theory will be. 18



De�nition 4.2.6 (Legal Reachability) A transitive relation =) de�ned over theset of VM states is said to be a legal-reachability relation if1. =) is transitive2. If S is a VM state, then S =) execd(S).3. If S = (s; e; c; b; h) is a VM state, and S0 = (s; e; c; b; h[a0 7! (akey; a1; : : :an)]),where a0 62 dom(h) then S =) S 0.De�nition 4.2.7 (Non-mutating reachability) A reachability relation =) issaid to be non-mutating ifS = (s; e; c; b; h) =) S 0 = (s0; e0; c0; b0; h0)implies that if a 2 dom(h) then a 2 dom(h0) and h0(a) = h(a)De�nition 4.2.8 (Manifest monolog) We say that r 2 R is a manifest monologif it is of the form S(a), D(akey : : :) or v where v 2 Vm.We are now in a position to de�ne the denotation of type-expressions.De�nition 4.2.9 (L maps from expressions to languages) If r 2 R, E is atype-environment and S = (s; e; c; b; h) is a machine-state, and =) is a legal-reachability relation then L(E; r; S;=); d) is de�ned for integer depth d � 0 asfollows:1. L(E; 1; S;=); d) = 12. L(E; ;; S;=); d) = ;3. For any object a 2 dom(h), L(E; S(a); S;=); d) = fâg4. For any key-object akey 2 dom(h), if akey is a record-key of arity n, thenL(E; D(akey); S;=); d)= fâjh(a) = (akey; a1 : : : an) where a1 : : :an 2 dom(h)g.5. For any key-object akey 2 dom(h), if akey is a record-key of arity n , andr1 : : : rn 2 R are type-expressions for which Li = L(E; ri; S;=); d) are mani-fest monologs, thenL(E; D(akey; r1; : : :rn); S;=); d) = fâjh(a) = (akey; a1 : : : an); âi 2 Li)g6. For any vector-key-object akey 2 dom(h), and r 2 R, thenL(E; D(akey; r); S;=); d) =fâjh(a) = (akey; a1; : : :an); (a1 : : :an) 2 L(E; v; S;=); d)g19



7. Otherwise L(E; D(a; r1 : : :rn); S) = ;8. For any r1; r2 2 R, L(E; r1 ! r2; S;=); d) = L (4)where L =fâjh(a) = (aProcKey ; : : :);8S0 8d1 � d: if S =) S0 = (s0; e0; c0; b0; h0) thenl1 2 L(E; r1; S0;=); d1) implies l2 2 L(E; r2; S 00;=); d1)where (l2; e00; h00;S) = obey(l1; e0; h0(a); h0; d1) and S00 = (l2; e00; c0; b0; h00)g9. if v 2 V and E=(v) = r 6= ? then L(E; v; S;=); d) = L(E; r; S;=); d).10. Otherwise, if v 2 V and 9vjv ! r 2 E! thenL(E; v; S;=); d) =[fL(E; r; S;=); d)jv! r 2 E!g (5)11. Otherwise, if v 2 Vm, L(E; v; S;=); d) = >M .12. Otherwise, if v 2 Vp, L(E; v; S;=); d) = >.13. L(E; r1 [ r2; S;=); d) = L(E; r1; S;=); d) [ L(E; r2; S;=); d)14. L(E; r1r2; S;=); d) = L(E; r1; S;=); d)L(E; r2; S;=); d)15. L(E; r1=r2; S;=); d) = L(E; r1; S;=); d)=L(E; r2; S;=); d)16. L(E; frg; S;=); d) = fL(E; r; S;=); d)gThe de�nition of L above depends on depth of execution, d. We will be concernedto de�ne the limiting behaviour of L as d increases. This behaviour is determinedby equation 4, where the d parameter is handed to an application of obey. Weshould expect that as d increases the value of L decreases, since obey is producingmore results which can fail the test of membership of the language denoted by r2in equation (4).Lemma 4.2.1 (Stability of type-environment) If E and E0 are type-environments for which E! = E0! and r 2 R, S is a machine state, =) is a legalreachability relation and d � 0 is an integer depth for which E=(w) = E0=(w) for allw occurring in either r or dom(E=) or range(E=) or E!L(E; r; S;=); d) = L(E0; r; S;=); d)Proof: This is immediate since the E: and E? components of the type envi-ronment play no direct or indirect role in the de�nition of L, and there are noproductions or equations which could result in di�erent values.20



Lemma 4.2.2 (Stability of local environment) If E is a type-environment forwhich r 2 R, S = (s; e; c; b; h) is a machine-state and e0 is an environment forwhich e0 = e00, and =) is a non-mutating legal reachability relation and d � 0 isan integer depth then L(E; r; S 0;=); d) = L(E; r; S;=); d)where S 0 = (s; e0; c0; b; h)Proof: The only way that a change in environment can a�ect the value of Lis by changing the value of obey in equation 4. But, by lemma 3.2.2 this cannothappen.De�nition 4.2.10 (Derivations and their depth) If h is a heap,E a type-environment and r 2 R, then we can derive â 2 L(E; r; S;=); d) by anumber of applications of the rules above. We de�ne the derivation depth � of aderivation by� If â 2 L(E; r; S;=); d) can be derived by the application of a rule with noreference to L to the right of the equality, then � = 0� Otherwise â 2 L(E; r; S;=); d) must be derived by the application of ruleswhich refer to L to the right of the equality. Then � is the one plus the maxi-mum of the derivation depths associated with these references.We can now state formally:Proposition 4.2.1 (Anti-monotonicity of L with respect to d) Let E be a type-environment, r 2 R and let S be a machine-state. Let =) be a legal-reachabilityrelation. If d0 � d thenL(E; r; S;=); d)� L(E; r; S;=); d0).Proof:We proceed by induction on the derivation-length of l 2 L(E; r; S;=); d).Base case: If the derivation of l 2 L(E; r; S;=); d) is of depth 0, then:� L(E; ;; S;=); d) = ; so l cannot be derived from this.� If l 2 L(E; 1; S;=); d) = f�g then l 2 L(E; �; S;=); d0).� If l = â 2 L(E; S(a); S;=); d) = fâg then, l 2 L(E; S(a); S;=); d0)� Consider l = â 2 L(E; D(akey); S;=); d) where akey 2 dom(h) is a record-keyof arity n. Now L(E; D(akey); S;=); d0)= fâ0jh(a0) = (akey; a01 : : : a0n)forsomea01 : : : a0n 2 dom(h)g. But h(a) = (akey; a1 : : : an),where a1; : : :an 2 dom(h). Hence l 2 L(E; D(akey); S;=); d0).21



Inductive step: Suppose thatE is a type-environment, r 2 R, and S is a machine-state. Suppose that d0 � d, l 2 L(E; r; S;=); d) implies thatl 2 L(E; r; S;=); d0) provided that the derivation-depth is � � Now consider aderivation of â 2 L(E; r; S;=); d) of depth � + 1:� Consider l = â 2 L(E; D(akey; r1; : : :rn); S;=); d) where akey 2 dom(h) is arecord-key of arity n, and r1 : : : rn 2 R are type-expressions for whichLi = L(E; ri; S;=); d) are manifest monologs. NowL(E; D(akey; r1; : : :rn); S;=); d0) = fâ0jh(a0) = (akey; a01 : : :a0n); â0i 2 L0i)gwhere L0i = L(E; ri; S;=); d0)But â 2 fâ0jh(a0) = (akey; a1 : : : an); âi 2 Li)gThus h(a) = (akey; a1 : : : an), ai 2 L(E; ri; S;=); d).But, by the inductive hypothesis, ai 2 L(E; ri; S;=); d0);hence â 2 L(E; D(akey; r1; : : :rn); S;=); d0).� Consider l = â 2 L(E; D(akey; r); S;=); d) where akey 2 dom(h) is a vector-key, and r 2 R, L(E; D(akey; r); S;=); d0) =fâ0jh(a0) = (akey; a1; : : :an); (a1 : : :an) 2 L(E; r; S;=); d0)gBut â 2 fâ0jh(a0) = (akey; a1; : : :an); (a1 : : : an) 2 L(E; r; S;=); d)gso h(a) = (akey; a1; : : :an) where (a1 : : :an) 2 L(E; r; S;=); d).Hence, by the inductive hypothesis, (a1 : : : an) 2 L(E; r; S;=); d0).Thus we see that â 2 L(E; D(akey; r); S;=); d0).� Consider L(E; D(a0; r1 : : : rn); S;=); d) = ;, Now â 62 ;, so that this case iscovered by ex falsa libet.� Consider l = â 2 L(E; rarg ! rval; S;=); d) where rarg; rval 2 R,L(E; rarg ! rval; S;=); d0) =fâ0jh(a0) = (aProcKey ; : : :)and 8S0 8d01 � d0:S =) S0; larg 2 L(E; rarg; S 0;=); d01)implies lval 2 L(E; rval; S 00;=); d01)where S0 = (lval; e0; c0; b0; h0)and obey(larg; e0; h0(a0); h0; d01) = (lval; eval; h0val;S)and S00 = (lval; eval; c0; b0; h0val)gNow h(a) = (aProcKey ; : : :) and8S0 8d1 � d if S =) S0 = (s0; e0; c0; b0; h0)then larg 2 L(E; rarg; S 0;=); d1) implies lval 2 L(E; rval; S 00;=); d1)where obey(larg; e0; h0(a); h0; d1) = (lval; e00; h00;S) and S00 = (lval; e00; c0; b0; h00)22



Since d0 � d, if d01 � d0 then d01 � d and so for any S0 where S =) S0,larg 2 L(E; rarg; S0;=); d01) implies lval 2 L(E; rval; S00;=); d01)where obey(larg; e0; h0(a); h0; d01) = (lval; e00; h00;S) and S00 = (lval; e00; c0; b0; h00)Hence l = â 2 L(E; rarg ! rval; S;=); d0)� Suppose l 2 L(E; v; S;=); d) = L(E; r; S;=); d),where v 2 V and E=(v) = r 6= ?Now L(E; v; S;=); d0) = L(E; r; S;=); d0). But l 2 L(E; r; S;=); d0) by theinductive hypothesis. Hence l 2 L(E; v; S;=); d0).� Otherwise, supposel 2 L(E; v; S;=); d) =[fL(E; r; S;=); d)jv! r 2 E!gwhere v 2 V and 9vjv ! r 2 E!L(E; v; S;=); d0) =[fL(E; r; S;=); d0)jv ! r 2 E!gBut, by the inductive hypothesis,l 2 L(E; r; S;=); d) implies l 2 L(E; r; S;=); d0) for all r in the productionsfor v in E. Hence l 2 L(E; v; S;=); d0).� Otherwise, if l 2 L(E; v; S;=); d) = >M for some v 2 Vm,then l 2 L(E; v; S;=); d0) = >M .� Otherwise, if l 2 L(E; v; S;=); d) = > for some v 2 Vp,then l 2 L(E; v; S;=); d0) = >.� In the case of all other forms for l, L(E; r1 [ r2; S;=); d), L(E; r1r2; S;=); d)and L(E; r1=r2; S;=); d), L(E; frg; S;=); d) the result is immediate from theinductive hypothesis and the monotonicity of union, product, quotient andKleene-closure.Proposition 4.2.2 (Stability of h) Let E be a type-environment, r 2 R and letS = (s; e; c; b; h) be a machine-state. Let =) be a legal-reachability relation. Lethnew = h[anew 7! (a0 : : :an)] be a heap, where anew 62 dom(h).Let Snew = (s; e; c; b; hnew). Then:L(E; r; S;=); d)� L(E; r; Snew;=); d). Proof: Let us note �rst thatdom(h) � dom(hnew) (6)and that, if â 2 L(E; r; S;=); d) thenh(a) = hnew(a) (7)23



Consider l 2 L(E; r; S;=); d).We proceed by induction on the derivation-length of l 2 L(E; r; S;=); d).Base case: If the derivation of l 2 L(E; r; S;=); d) is of depth 0, then� L(E; ;; S;=); d) = ; so l cannot be derived from this.� If l 2 L(E; 1; S;=); d) = f�g then l 2 L(E; 1; S;=); d0).� If l = â 2 L(E; S(a); S;=); d) = fâg then, by inequality (6),â = L(E; S(a); Snew;=); d)� Consider l = â 2 L(E; D(akey); S;=); d) where akey 2 dom(h) is a record-keyof arity n. Now L(E; D(akey); Snew;=); d)= fâ0jhnew(a0) = (akey; a01 : : :a0n) for some a01 : : : a0n 2 dom(hnew)gBut hnew(a) = h(a), and h(a) = (akey; a1 : : : an),where a1; : : :an 2 dom(h) � dom(hnew).Hence â 2 L(E; D(akey); Snew;=); d).Inductive step: Suppose that E is a type-environment, r 2 R, and let h bea heap. Let hnew = h[a0 7! (a0 : : :an)] be a heap, where a0 62 dom(h). Thenâ 2 L(E; r; h) implies that â 2 L(E; r; Snew;=); d) provided that the derivation ofâ 2 L(E; r; S;=); d) is of depth � �.Now consider a derivation of l 2 L(E; r; S;=); d) of depth � + 1:� Consider l = â 2 L(E; D(akey; r1; : : :rn); S;=); d) where akey 2 dom(h) is arecord-key of arity n, and r1 : : : rn 2 R are type-expressions for whichLi = L(E; ri; S;=); d) are manifest monologs,L(E; D(akey; r1; : : :rn); Snew;=); d)= fâ0jhnew(a0) = (akey; a01 : : : a0n); â0i 2 L0i)gwhere L0i = L(E; ri; Snew;=); d)But â 2 fâ0jh(a0) = (akey; a1 : : : an); âi 2 Li)gThus h(a) = hnew(a) = (akey; a1 : : : an), ai 2 L(E; ri; S;=); d).But, by the inductive hypothesis, ai 2 L(E; ri; Snew;=); d);hence â 2 L(E; D(akey; r1; : : :rn); Snew;=); d).� Consider l = â 2 L(E; D(akey; r); S;=); d) where akey 2 dom(h) is a vector-key, and r 2 R. Now L(E; D(akey; r); Snew;=); d)= fâ0jhnew(a0) = (akey; a1; : : :an); (a1 : : :an) 2 L(E; r; Snew;=); d)gBut â 2 fâ0jh(a0) = (akey; a1; : : :an); (a1 : : : an) 2 L(E; r; S;=); d)gso h(a) = hnew(a) = (akey; a1; : : :an) where (a1 : : : an) 2 L(E; r; S;=); d).Hence, by the inductive hypothesis, (a1 : : : an) 2 L(E; r; Snew;=); d).Thus we see that â 2 L(E; D(akey; r); Snew;=); d).24



� If L(E; D(a0; r1 : : : rn); S;=); d) = ;, â 62 ;, hence this case is covered by exfalsa libet.� If l = â 2 L(E; rarg ! rval; S;=); d) where r1; r2 2 R,L(E; rarg ! rval; Snew;=); d) =fâ0jhnew(a0) = (aProcKey; : : :)and 8S0 8d1 � d:Snew =) S0; larg 2 L(E; rarg; S0;=); d1) implieslval 2 L(E; rval; S00;=); d1)where S0 = (lval; e0; c0; b0; h0)and obey(larg; e0; h0(a0); h0; d1) = (lval; eval; h0val;S)and S00 = (lval; eval; c0; b0; h0val)gNow h(a) = (aProcKey ; : : :)and 8S0 8d1 � d if S =) S0 = (s0; e0; c0; b0; h0)then larg 2 L(E; rarg; S 0;=); d1) implies lval 2 L(E; rval; S 00;=); d1)where obey(larg; e0; h0(a); h0; d1) = (l00val; e00; h00;S) and S00 = (lval; e00; c0; b0; h00)Consider S1 where Snew =) S1. Then since S =) Snew, and =) is transitive,then S =) S1.So we conclude that â 2 L(E; rarg ! rval; Snew;=); d)(Note that this case depends on the fact that the type of the code-block isstable with respect to =) and not on the inductive hypothesis).� Suppose l 2 L(E; v; S;=); d) = L(E; r; S;=); d),where v 2 V and E=(v) = r 6= ?Now L(E; v; Snew;=); d) = L(E; r; Snew;=); d) But l 2 L(E; r; Snew;=); d)by the inductive hypothesis. hence l 2 L(E; v; Snew;=); d).� Otherwise, supposel 2 L(E; v; S;=); d) =[fL(E; r; S;=); d)jv! r 2 E!gwhere v 2 V and 9vjv ! r 2 E!L(E; v; Snew;=); d) =[fL(E; r; Snew;=); d)jv! r 2 E!gBut, by the inductive hypothesis,l 2 L(E; r; S;=); d) implies l 2 L(E; r; Snew;=); d)for all r in the productions for v in E. Hence l 2 L(E; v; Snew;=); d).� Otherwise, if l 2 L(E; v; S;=); d) = >M for some v 2 Vm,then l 2 L(E; v; Snew;=); d) = >M .� Otherwise, if l 2 L(E; v; S;=); d) = > for some v 2 Vp,then l 2 L(E; v; Snew;=); d) = >.� In the case of all other forms for l, L(E; r1 [ r2; S;=); d), L(E; r1r2; S;=); d)and L(E; r1=r2; S;=); d), L(E; frg; S;=); d) the result is immediate from theinductive hypothesis and the monotonicity of union, product, quotient andKleene-closure. 25



4.3 Primitives: Constructors and SelectorsDe�nition 4.3.1 (Record Constructor) A primitive p is said to be a recordconstructor for a key-object akey of arity n ifobey(sâ1 : : : ân; e; p; h; d) = (sa; e; h[a 7! (akey; a1 : : : an)]; �)where a is an address which does not occur in dom(h). Moreover, if h(acon) =(aProcKey ; p) then acon is said to be a record-constructor object in the heap h for thekey akey.Proposition 4.3.1 (Constructor Type) Let acon be a record constructor objectfor akey in a heap h, and =) be a non-mutating legal-reachability relation. LetS = (s; e; c; b; h) be a VM-state. Let vi 2 Vm be monolog variables. Then:dacon 2 L(E; v1v2 : : : vn ! D(akeyv1; : : :vn); S;=); d)Proof: We have to show that the conditions speci�ed in equation (4) hold. LetS =) S 0 = (s0; e0; c0; b0; h0). Let d � 0 be an integer and let d1 � d. Since =) isnon-mutating,h0(acon) = h(acon) = (aProcKey; p), say.Let s0 2 L(E; v1v2 : : :vn; S 0;=); d1) then s0 = â01 : : : â0n,where a0i 2 L(E; vi; S 0;=); d1) = L0i, say.Now obey(s0; e0; p; h0; d1) = obey(â01 : : : â0n; e; p; h0; d1)= (â00; e0; h0[a00 7! (akey; a01 : : :a0n)]; �) = (â00; e0; h00; �)where a00 is an address which does not occur in dom(h0). ButL(E; D(akey; v1; : : :vn); S 00;=); d1) = fâjh00(a) = (akey; a001 : : : a00n); â00i 2 L00i )gwhere L00i = L(E; vi; S 00;=); d1).But L0i � L00i by proposition 4.2.2.Hence a00 2 L(E; D(akey; v1; : : :vn); S 00;=); d1) Hence result.Note that in the above proof, we say nothing about whether the vi are dis-tinct or unbound by type-equations or productions. The most general type for theconstructor arises from the case when they are all distinct and unbound.De�nition 4.3.2 (Selector) A primitive p is said to be the i'th selector for arecord-key-object akey of arity n � i if h(a) = (akey; a1 : : :an) impliesobey(sâ; e; (aProcKey; p); h; d) = (sâi; e; h;S)Moreover, if h(asel) = (aProcKey; p) then asel is said to be the ith record-selectorobject in the heap h for the key akey.Proposition 4.3.2 (Selector Type) If asel is the i'th record-selector object for arecord-key akey of arity n � i in a heap h, and S = (s; e; c; b; h) is a VM-state and=) is a non-mutating legal-reachability relation thendasel 2 L(E; D(akeyv1; : : :vn ! vi; S;=); d)26



Proof: Let S =) S0 = (s0; e0; c0; b0; h0). Let d � 0 be an integer, and letd1 � d. Since =) is non-mutating, h0(asel) = h(asel) = (aProcKey ; p), say. Letâ0 2 L(E; D(akey; v1; : : :vn); S 0;=); d) then h0(a0) = (akey; a1 : : :an) where âi 2L(E; vi; S 0;=); d) = Li, say.Now S00 = obey(â0; e; p; h0; d) = (âi; e; h0; : : :) and âi 2 Li. But, by proposition4.2.2, Li � L(E; vi; S 00;=); d). Hence result.4.4 Terms and RecognisersIn the previous section we speci�ed that the E? component of a type-environmentdescribes identi�ers bound to objects which are able to recognise members of aparticular data-class. These are required because we sometimes need to be able todistinguish between objects which belong to a type-union. In order to be able tomake use of such recognisers we need to keep a limited representation of the top ofstack. To this end we introduce terms. A term can be either1. An address in dom(h)2. 00w00, where w 2 dom(h) is an identi�er.3. w, where w 2 dom(h) is an identi�er.4. w(T ), where w 2 dom(h) is an identi�er.5. ?T .De�nition 4.4.1 (Term-evaluation) Let T be a term. Let S = (s; e; c; b; h) be aVM state. Then the value V(T; S) of T in the state S is de�ned as follows.1. If T = a 2 dom(h) then V(T; S) = a.2. If T = 00w00, where w is an identi�er, then V(T; S) = w3. If T = w, where w is an identi�er, then V(T; S) = e
 w4. If T = w(T 0), where w is an identi�er, then let a0 = V(T 0; S). Then V(T; S) =a00 where obey(â0; e; e
 w; h; d) = (â00; e00; h00; : : :) Othewise V(T; S) = u5. If T = ?T , then V(T; S) = u.4.5 Describing Machine StatesWe have seen how a type-environment allows us to give meaning to an expressionof an ERWA as denoting a language whose alphabet is objects of the VM. In thissection we see how the E: and E? components of a type-environment are used todescribe a state of the VM, in conjunction with a grammar describing the stack,and a term which may evaluate to the top of stack.De�nition 4.5.1 (State-description) Let E be a type-environment,let S = (s; e; c; b; h) be a VM-state, and =) be a legal-reachability relation. Let d � 0be an integer, r 2 R and term T We say that (r; T;E) d-describes S = (s; e; b; h),and write (r; T;E) `d S, if the following conditions are satis�ed:27



1. s 2 L(E; r; S;=); d)2. If T 6= ?T then s = s0n̂ where V(T; S) = n3. If w 2 dom(E:) and e
 w 6= u then e
 w 2 L(E;E:(w); S;=); d)4. If w 2 dom(E?) then� e
 w 2 L(E;> ! Bool; S;=); d)� If s = s0â then if a 2 L(E;E?(w); S;=); d) thenobey(s; e; e
 w; h; d) = (s0t; e; h; : : :)otherwise obey(s; e; e
 w; h; d) = (s0f; e; h; : : :)5. If w is bound in e then w 2 dom(E:) [ dom(E?)Note that an occurrence of w in e which is not in scope is not given a type in E.De�nition 4.5.2 (State-description (Universal)) If E is a type-environmentand S is a state, for which (>;?T ;E) `d Sfor all d � 0 then we write E ` S.4.6 Annotations say what each instruction does.Suppose we have a type-environment E, a machine state S = (s; e; c; b; h) where(>;?T ;E) `d S. A compiler will extend the environment and heap of S, giving riseto S 0; it will make new objects on the heap and will bind these to identi�ers in theenvironment2. The question we address in this section is, \how can we determinethat a new type environment E0, derived from E, describes S 0?".In order to validate E0, we introduce the idea of an annotation of a code-block,which will allow us to characterise the execution of the new code-blocks on a step-by-step basis. With an annotation of a code-block we introduce a local type environmentwhich allows us to assign independent types to the local variables and labels of thatblock.Note that we cannot necessarily perform the validation of the addition of thenew bindings on a one-at-a-time basis because they may be mutually recursive.We �rst need to be able to assign a type to a literal occurring in a pushqinstruction. Assigning a type to a literal is problematic. The type which throwsaway the least information about the literal is the singleton type S(h). This turnsout to be too restrictive in our type-inference scheme for local variables3. Thede�nition chosen, in a Poplog VM context, represents the best compromise.2The compiler can be incorporated in the VM, as is in fact done in the Poplog VM. However ourtype-analysis is performed regarding the compiler as the kind of deus ex machina referred to.3Type inference is not covered in this report 28



Instr cnext Stack Term Condpushq(n) c+ 1 r�n npush(w) c+ 1 rE0:(w) wpop(w) c+ 1 r=E0:(w) ?Tcall(w) c+ 1 (r=rarg1)rval1 w(T ) where E0:(w) = rarg1 ! rval1rarg1; rval1 are manifest monologscall(w) c+ 1 (r=rarg1)rval1 ?T where E0:(w) = rarg1 ! rval1label(v) c+ 1 v ?T (v ! r) 2 E!goto(v) c0 + 1 v T b(c0) = label(v)(v ! r) 2 E!)ifnot(v) c0 + 1 v ?T b(c0) = label(v)(v ! r=>M) 2 E!c+ 1 r=>M ?TTable 1: Annotating a Code BlockDe�nition 4.6.1 (The type of a literal) If a 2 dom(h) is an address for whichh(a) = (akey : : :), then the type of the literal a is �a = D(akey)De�nition 4.6.2 (Annotation) Let b be a code block of n instructions. Let E,E0 be type-environments. We say that a sequence B for which Bc = (rc; Tc), whererc 2 R and Tc is a term, is an annotation of b in E0 with speci�cation rarg ! rvaland conformant with E if the following conditions hold:1. If bc = label(v), for some integer c, then v 2 Vp.2. E0:(w) = E:(w) if w is not a local variable of b.3. E0:(w) 6= ? if w is a local variable of b.4. E0?(w) = E?(w)5. E0=(w) = E=(w) for all w occurring in E:, dom(E=), range(E=), E!, rarg ,rval.6. E!(w) = ;.7. B0 = (rarg;?T )8. If Bc = (r; T ) then its successor(s) are annotated according to Table 1. In thetable, the possible next values c are given in the column labelled \cnext". thecolumns labelled `Stack' and `Term' are the value of Bcnext .We write annotates(B; b; rarg ! rval;E;E0).The main proposition of this section shows that an annnotation of a code blockdetermines the type of the code-block. That is to say, if the stack is described byr on entry, then it will be described by (r=rarg)rval on exit, provided the language29



denoted by r is exactly divisible by that denoted rarg. However, one code block maycontain calls to other code blocks, possibly including itself, so our main propositionapplies to collections of code-blocks. However, for the nonce, let us consider theexecution of a single code-block.Lemma 4.6.1 (Stability over lvars) If E and E0 are type-environments for whichE! = E0! and r 2 R, S is a machine state, =) is a legal reachability rela-tion and d � 0 is an integer depth for which E=(w) = E0=(w) for all w occur-ring in r, dom(E=), range(E=), E!, and S = (s; e; c; b; h) is a machine-state andS 0 = (s; lvars(e); c; b; h) thenL(E; r; S;=); d) = L(E0; r; S 0;=); d)Proof: By lemma 4.2.1 L(E; r; S;=); d) = L(E0; r; S;=); d),= L(E0; r; S 0;=); d), by lemma 4.2.2.Proposition 4.6.1 (Correctness of Annotation) Let b be a code block of n in-structions for which pop(w) only occurs for local variables. Let E, E0 be type-environments. Let d > 0 be an integer. Let S = (s; e; c; b; h) be a VM-state. Sup-pose: annotates(B; b; rarg ! rval;E;E0)And suppose s 2 L(E; rarg; S;=); d).Let (s0; e0; h0; (S1 : : :Sm)) = obey(s; e; b; h; d), and suppose that the divisions of table1 are exact for each Sj. Suppose that, for some d:(>;?T ;E) `d S (8)Then (Bc;E0) `d Sjwhere c is the index of the instrution in b involved in deriving Sj.Proof: We proceed by induction on j, and have to show that the conditions ofde�nition 4.5.1 hold, both for the base case j = 0 and for the inductive step.Base Case:S0 = (s; lvars(e; b); b; h) from equation 3 and B0 = (rarg;?T) from de�nition4.6.2, item 6.1. We know that s 2 L(E; rarg; S;=); d). and so by lemma 4.6.1s 2 L(E0; rarg; S0;=); d),2. The term is unde�ned for B0, so there is nothing to prove.3. Consider w 2 dom(E0:). Then 30



� Either w is a local variable of b, in which case e 
 w = u, so there isnothing to prove.� Or E0:(w) = E:(w) If e 
 w 6= u then e 
 w 2 L(E;E:(w); S;=); d)= L(E0;E0:(w); S0;=); d), by lemma 4.6.14. Consider w 2 dom(E0?). Now E0? = E?� e 
 w 2 L(E;> ! Bool; S;=); d) = L(E0;> ! Bool; S0;=); d), bylemma 4.6.1.� If s = s0â then if a 2 L(E;E?(w); S;=); d) = L(E0;E0?(w); S;=); d) thenobey(s; e; e
 w; h; d) = (s0t; e; h; : : :)otherwise obey(s; e; e
 w; h; d) = (s0f; e; h; : : :)� If w is bound in lvars(e; b) then w is bound in e (for we regard uninitialisedlocals as unbound).Hence (B0;E) `d S0Inductive Step: There are 5 clauses to the de�nition of `, and 7 kinds ofinstruction for the VM, so there are 35 possible combinations to consider. Fortu-nately, not all of these combinations involve instructions which change the machineenvironment, and we are not allowing local recognisers, so life is somewhat simpler.Consider Sj+1 = execd(Sj). Let Sj = (s; e; c; b; h). We show, on a case-by-casebasis, that if Bc ` Sj then Bc0 ` Sj+1. for each c0 which is an appropriate successorvalue of c. Let Bc = (r; T )Let Ls = L(E; r; Sj;=); d), so that s 2 Ls.1. If bc = pushq(n) then execd(s; e; c; b; h) = (sn̂; e; c+1; b; h) and Bc+1 = (r�n; n).But s 2 Ls , n 2 L(E0; �n; Sj;=); d) and so sn̂ 2 L(E0; r�n; Sj;=); d). =L(E0; r�n; Sj+1;=); d), since e is unchanged.Considering now the term component, n, we see that V(e; n) = n and so isequal to the top of stack.Hence, since e is unchanged, (E0;Bc+1) ` Sj+12. If bc = push(w) then let a = e
 w.Then execd(s; e; c; b; h) = (sâ; e; c+ 1; b; h) = Sj+1and Bc+1 = (rE0:(w); w)But s 2 Ls and, by the inductive hypothesis,â 2 L(E0;E0:(w); Sj;=); d) = Lw,say.So sâ 2 LsLw = L(E0; rE0:(w); Sj;=); d) = L(E0; rE0:(w); Sj+1;=); d), bylemma 4.2.2.Considering now the term component, w, we see that V(e; w) = aHence, since no environmental changes occur, (E;Bc+1) ` Sj+131



3. If bc = pop(w) then Bc+1 = (r=E0:(w);?T).Since the monolog Mw = L(E0;E0:(w); Sj;=); d) divides Ls exactly (by theconditions of the proposition) s = s0n̂, where n̂ 2Mw.Let e0 = e[w 7! n̂], then execd(s; e; c; b; h) = (s0; e0; c; b; h).Considering the conditions for (E0;Bc+1) ` Sj+1(a) s0n̂ 2 Ls, n̂ 2 Mw, hence s0 2 Ls=Mw = L(E0; r=E0:(w); Sj;=); d) =L(E0; r=E0:(w); Sj+1;=); d), by lemma 4.2.2 recalling that w is local byconditions of theorem, so e0 = e00.(b) The term of Bc+1 is unde�ned. Hence there is nothing to prove.(c) Consider w0 2 dom(E0:(w)). If w0 = w then e0 
 w = n̂ 2 Mw. Otherwisee0 
 w = e
 w.In either case e0 
 w 2 L(E;E:(w); Sj;=); d).Hence L(e0 
 w 2 E;E:(w); Sj+1;=); d) by lemma 4.2.2.(d) Consider w0 2 dom(E0?(w)).� e0 
 w 2 L(E;> ! Bool; Sj+1;=); d) by a similar argument to theabove.� If s = s0â then if a 2 L(E;E?(w); Sj;=); d) thenobey(s; e; e
 w; h; d) = (s0t; e; h; : : :)hence by lemma 3.2.2obey(s; e0; e
 w; h; d) = (s0t; e00; h; : : :)otherwise obey(s; e; e
 w; h; d) = (s0f; e; h; : : :)(e) We have ensured that all variables are given a type in E0 by the de�nitionof annotation.Hence (Bc+1;E) ` Sj+14. If bc = call(w) thenexecd(s; e; c; b; h) = (s0; e0; c+ 1; b; h)where (s0; e0; h0;S) = obey(s; e; e
 w; h; d� 1)There are the following cases:(a) If E0:(w) = rarg1 ! rval1 where rarg1 rval1 are not both manifest monologs.Bc+1 = ((r=rarg1)rval1;?T )Now, since division is exact, s = s0sarg1where sarg1 2 L(E; rarg1; Sj;=); d), by condition 8.Hence, by equation 4, ifobey(sarg1; e; e
 w; h; d� 1) = (sval1; e00; h00; : : :)where sval1 2 L(E; rval1; Sj;=); d). Hence by lemma 3.2.1s0 = s0sval1 2 L(E; (r=rarg1)rval1; Sj;=); d)So (E0; Bc+1) `d Sj+1 32



(b) rarg1, rval1 are manifest monologs. Bc+1 = (r=rarg1)rval1 , w(T )) This issimilar to the previous case, except for the term. Since division is exactand rarg1 is a manifest monolog, s = s0n̂. where n = V(T; Sj).Now V(w(T ); S) = a00 where (â00; e00; h00;S) = obey(â0; e; e
 w; h; d� 1)Hence, by lemma3.2.1 obey(s0â0; e; e
 w; h; d) = (s0â00; e00; h00;S00) That isa00 is the top of stack when we obey the instruction.Hence (E; Bc+1) `d Sj+1Hence (Bc+1;E) `d Sj+15. If bc = label(v) then execd(s; e; c; b; h) = (s; e; c+ 1; b; h)and Bc+1 = (v; T ), v ! r 2 Ei!.But s 2 Ls and Ls = L(E; r; Sj;=); d) � L(E; v; Sj;=); d) by equation (5)so (Bc+1;E) `d Sj+16. If bc = goto(v), then let b(c0) = label(v).Now execd(s; e; c; b; h) = (s; e; c0+ 1; b; h)and Bc0+1 = (v; T ), v ! r 2 Ei!.But s 2 Ls. and Ls = L(E; r; Sj;=); d) � L(E; v; Sj;=); d) by (5). Hence(Bc0+1;E) `d Sj+17. If bc = ifnot(v) then let b(c0) = label(v).Bc+1 = (r=>M ;?T), Bc0+1 = (v;?T), v ! r=>M 2 Ei!.The condition that the division is exact means that only two of the possiblecases in Table 1 can occur. We can write s = s0n̂, and, since >M is a monolog,s0 2 Ls=>M .(a) n = f. Here execd(s; e; c; b; h) = (s0; e; c0+ 1; b; h)But s 2 Ls=>Mand Ls=>M = L(E; r=>M ; Sj;=); d) � L(E; v; Sj;=); d) by (5).Hence (Bc0+1;E) `d Sj+1(b) Otherwise, execd(s; e; c; b; h) = (s0; e; c+ 1; b; h)).But s 2 Ls=>Mand Ls=>M = L(E; r=>M ; Sj;=); d) � L(E; v; Sj;=); d) by (5).Hence (Bc+1;E) `d Sj+1.5 DiscussionThis report has pointed a way towards using the theory of formal languages canto describe data-types occurring in a stack-machine. Our main result has been toshow that an annotation of a code-block accurately describes the behaviour of themachine provided the divisions are always exact.However, an annotation is tedious to construct, and we may not be able to tellimmediately whether the divisions are always exact. While I shall not pursue the33



formal investigation of this problem further in this report, I would like to indi-cate that it is fairly clear what must be done to get a practical treatment of typealong this approach. The results of section 2 give us a basis of simplifying annota-tions. Such simpli�cation can leave all expressions of R occurring in the annotationquotient-free, thus assuring that divisions are exact. For example, if Int is a man-ifest monolog, then L(E; Int=Int; S;=); d) = 1 for any type-environment, stateand legal-reachability relation. So we could replace Int=Int by a Unit type in anannotation, and thus know that the division must be exact.Moreover we can go somewhat further towards easing the generation of theannotations themselves, and indeed towards a limited type-inference. Global envi-ronments can be built up from declarations. The rules of Table 1 can be used togenerate an annotation. We can generate the E0 environment from the E environ-ment by adding the productions derived from the labels, and adding type-bindingsfor local variables derived from declarations to E:. Type inference can be supportedby using the requirement of exact division to introduce constraints on type-variablesinto the type-environment.An experimental study of these problems is described in a separate report. Thetype-checking program described there is able to perform type-inference for localvariables in a range of POP-11 programs, and has been demonstrated to work forsome simple Forth programs as well.References[1] Barrett,R., Ramsay,A. and Sloman A., [1985] POP-11 A Practical Languagefor Arti�cial Intelligence, Ellis Horwood, Chichester, England and John WileyN.Y.,USA.[2] Burstall, R.M. and Popplestone, R.J., [1968] The POP-2 Reference Manual,Machine Intelligence 2, pp. 205-46, eds Dale,E. and Michie,D. Oliver and Boyd,Edinburgh, Scotland.[3] Gordon, M.J.C., [1979] The Denotational Description of Programming Lan-guages. p104. Springer Verlag, New York.[4] Hopcroft and Ullman [1979], \An Introduction to Automata Theory, Languagesand Computation", Addison-Wesley.
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