
 UIDE.BHAM.T910.1.20/8/93 1 UIDE

USER INTERFACE DESIGN ENVIRONMENT

DTI/SERC Project: IED 4/1/1577

Information Engineering Advanced

Technology Programme

Recursive HyperMenus

(The Hypermenu Command Interface)

Aaron Sloman

The University of Birmingham

UIDE.BHAM.T910.1.20/8/93

 UIDE.BHAM.T910.1.20/8/93 2 UIDE

REPORT DATA SHEET

Report Reference - UIDE.BHAM.T910.1.20/8/93

Author - Aaron Sloman

Partners Involved - UoB

Date - Aug 20 1993

 UIDE.BHAM.T910.1.20/8/93 3 UIDE

Uide Report UIDE.BHAM.T910.1.20/8/93

RECURSIVE HYPERMENUS
Aaron Sloman

The University of Birmingham
21 Aug 1993

CONTENTS
 -- Introduction

 -- -- NOTE on relevance to the UIDE project

 -- The general problem

 -- Types of option spaces

 -- The need for a better theory

 -- Purposes of an interface

 -- The Hypermenu Command Interface

 -- Assumptions about user requirements: activities, contexts, actions

 -- -- Contexts

 -- -- Action families and control panels

 -- -- Direct and mediated actions

 -- -- Action categories

 -- Problems with menu-based action systems

 -- -- Partial counter-example: TWM menus

 -- How the recursive hypermenu system helps

 -- Interface issues

 -- The RHM solution

 -- -- NOTES on the current implementation

 -- Unintended side-benefit: an extendable menu interface to Unix

 -- A menu notation for RHM

 -- Format of menu definition list

 -- -- Menu Label

 -- -- Optional Screen Location

 -- -- <Menu description>

 -- -- <buttonlabel>

 -- -- Format of <action> specifiers

 -- -- -- A word:

 -- -- -- A string:

 -- -- -- A procedure

-- -- -- A vector containing a string

 UIDE.BHAM.T910.1.20/8/93 4 UIDE

-- -- -- A list

-- -- -- 1. [ENTER <commandstring> {xloc yloc} <explanation>]

-- -- -- 2. [MENU <menuname>]

-- -- -- 3. [POP11 <pop11 code>]

-- -- -- 4. [UNIX <unix command> <shell specification>]

-- -- Additional special keywords

-- Unsolved problems

-- Acknowledgements

-- Incomplete bibliography

-- Trade Marks

-- Introduction
The Hypermenu Command Interface is a menu-based mechanism which combines a number of
ideas from different sources, in particular (in no significant order):

Command menus

Control panels

Interaction/task contexts

Option spaces

Option space structures

Action families

User tailorability

Recursive data structures

Cyclic menus

Search lists

Autoloadable (dynamically linked) program libraries

Incremental compilation and re-compilation

Hypertext

Virtual memory

Garbage collection

 -- -- NOTE on relevance to the UIDE project
Although this was not part of the original UIDE project plan, the idea arose when the author
considered how best to provide a menu-based interface to the powerful new Poplog Graphical
Object (GO) library developed as part of the UIDE project. It soon became clear that this was just
an instance of a more general problem. Thus, although the paper is directly relevant to and arose
out of the UIDE project, it addresses more general issues, and reports on a partial and tentative
solution, for which a prototype implementation exists.

This could have been based on GO, which would have provided great flexibility as regards
menu format and forms of interaction. However, since GO was still under development, and was

 UIDE.BHAM.T910.1.20/8/93 5 UIDE

not yet generally available, it was decided to use the existing “propsheet” library in the X subset
of Poplog, which will make the system more widely available in the short run.

One disadvantage of the current implementation is that it works only with OpenLook.
Extension to Motif would simply be a matter of digging into the Poplog PROPSHEET library
(Meyer 1991) to extract and modify some of the code. However, an implementation based on GO
would work equally well in both Motif and OpenLook implementations.

The system has already been tested by some students, colleagues and secretaries at
Birmingham university, which led to considerable revisions. After further refinement it will
probably be used by new students at Birmingham, starting October 1993, as a general interface to
Poplog and its facilities.

 -- The general problem
The general problem addressed by this package is to provide the user with help in driving a
sophisticated computer system with many hundreds or thousands of possible commands,
including commands for invoking utilities that have been produced by different people and have
different combinations of arguments, flags and the like, so that there is no presumption that the
total set of commands forms a well structured family.

Examples of such facilities include the complete (but constantly growing) collection of
facilities provided on a modern multi-user computing system or workstation (e.g. a unix system),
the facilities in a sophisticated software development environment such as Poplog, or the facilities
in a powerful editor, such as Emacs or VED, which also provides access to other facilities, e.g.
mail, news, printing.

Often each of the sub-facilities offers a variety of options and one has to learn to drive each of
them separately. Some sub-facilities provide only a few commands, whereas others are large and
sophisticated packages with very many commands.

In such systems the set of possible commands can number hundreds, or even thousands,
especially if all the different combinations of flags and arguments are taken into account. This set
of possibilities can be referred to as the “option space.” (Edmondson 1993 defines the notion of
“selection space” which is very similar to this, though he constrains the space to be a pre-existing
set of options. Since in many cases the user cannot tell whether the items do pre-exist or are
created on demand, as sometimes happens with fonts, I prefer to use the more general concept.)

The task of finding out what is available and remembering how to drive all the different
facilities can be daunting, imposing a considerable learning task and memory load.

Normally, for someone starting to use such a system there is documentation (on-line or off-
line) pointing at various facilities and explaining how to use them (e.g. the Unix “man” files,
Emacs “info”, Poplog “help” or “ref” files), though the documentation can be daunting for
beginners and non-trivial even for experts to search rapidly. Even when there are many megabytes
of information, finding out what facilities are available, or whether there is something that meets a
current requirement can be a time-consuming process. (For instance, Poplog has about 10 Mbytes
of on-line documentation.)

The “recursive hypermenu” (RHM) system described here is designed to provide a
mechanism within the Poplog environment to help people learn about and develop fluency with
facilities available in or via Poplog, including its editor. It can also be used to extend Poplog in
various ways described below.

It is intended to provide a mechanism that can be used by people who design packages or

 UIDE.BHAM.T910.1.20/8/93 6 UIDE

libraries, to help new users drive those packages and become familiar with their facilities. In some
cases RHM will provide a temporary interface, providing a path to learning about a more direct
command interface. In other cases they may provide the only interface.

Because Poplog can itself invoke other Unix utilities RHM can be used as a mechanism to
drive not only Poplog facilities, but also other facilities available on the system. For example, it is
trivial to add a menu to invoke X facilities, such as xfontsel [Swick 1989], FrameMaker, a clock,
or open a new xterm window.

Some of the features of RHM are already available in sophisticated window managers that
allow users to define and modify the menu structure, for instance the “TWM” window manager
[LaStrange 1989] provided with the MIT X11 distribution, and its predecessors and derivatives.

These, however, require the complete menu structure to be built into the running process, and
every change, no matter how small, requires the complete structure to be rebuilt, which can be
slow and cumbersome. Moreover, the “programming” language provided with such systems is
generally very limited (it could not easily be used to implement an expert system, for example).
More generally, a user-extendable menu system is not easy to provide without incremental
compilation and automatic store management facilities of something like Poplog or a typical AI
language.

The RHM system is not offered as an ideal or complete solution. Nevertheless it has a
number of advantages over currently available alternatives, including simplicity, “softness” (easy
tailorability by individual users or groups of users), sharing of subsets of menus between users,
incremental modification whilst in use, and almost indefinite extensibility.

It makes use of X facilities now provided in Poplog together with several features of the Pop-
11 sub-language, including list syntax, incremental compilation, autoloading and dynamically
modifiable search lists. Automatic garbage collection is used to reclaim space when menus are
recreated, for instance during development of a collection of menus.

In other respects RHM may be inferior to particular interfaces for particular applications. But
as a general tool, it appears to be very useful. Mayhew(1993) writes:

 “Finally, because menus are such a rigid, structured, dialog style, they are best
suited to tasks that are themselves highly structured, that is, in which a set sequence of
steps is always or usually followed. Tasks that are highly unstructured, in which any
sequence of individual steps or functions is possible and desirable, do not lend
themselves well to a menu-driven interface, which forces the user into set sequences
of steps.”(p.120)

The RHM system is designed to show how this might be refuted.

-- Types of option spaces
The mechanism described here is not necessarily the ideal solution to all interface problems. It is
not, for example, aimed specifically at a well structured space of possibilities defined by a number
of orthogonal dimensions within each of which there is a fixed set of choices. For such a system a
specially tailored interface might be far superior.

For example, for font selection RHM offers no advantages over the “xfontsel” utility
provided as part of the MIT X11 system. The latter depends on the fact that the space of possible
fonts has nearly orthogonal dimensions like foundry, family, weight, slant, pixelsize, and so on:
by allowing users to make independent selections in different dimensions (and then propagating

 UIDE.BHAM.T910.1.20/8/93 7 UIDE

the effects of such selections to remove incompatible options from other dimensions) xfontsel
provides a convenient way to bypass the usual awkward tree-structured menu mechanism that
forces one to make decisions in a particular order, which often does not match one's needs or one's
knowledge or the current task.

There are many other types of option spaces besides the N-dimensional space exemplified by
fonts. For example there are trees, networks, and graphs, which may be cyclic or acyclic. The
space may have some systematic structure, or it may be a largely unstructured collection of
options. The total number of options may be small, or very large, or in the case of commands with
a grammar it may be potentially infinite.

One common space of possibilities is a file system. Usually this is tree structured, so that
finding a particular file requires a unique set of choices from the root of the tree down a path to the
file. Some file systems, such as Unix, allow cross-links so that the same file or directory1 can be
reached via more than one route, thereby reducing the memory load on the user (and the
complexity of commands to access files that are commonly needed in different contexts.

Another type of option space is provided by a command language which has a well defined
grammatical form. An interface to a calculator that allows the usual arithmetic expressions such
as

(3+55)*88/45.732

is an example, with a potentially infinite set of possible commands. It would be pointless to try to
provide a menu system to cover all the possible arithmetic expressions. On the other hand a menu
of templates with facilities for combining them to produce more complex templates which could
then be filled in with particular numbers could be a useful interface for people who did not wish to
type in the expressions. An example might be a graphical device for building a parse tree to
specify the desired computation.

Each space described above has a coherent structure deriving from its function. Usually when
there is a simple and coherent structure a specific tool tailored to that structure will provide the
best interface.

Some tools (e.g. dialogue boxes, expressions to be evaluated) allow the user to build up a
description which then uniquely identifies the item to be selected (typically an action from a large
or potentially infinite repertoire of possible actions).

Other tools (e.g. some bibliography interfaces) do not necessarily lead immediately to a
unique selection, but support specification of constraints which prune the option space, allowing
the user eventually to be presented with a very small sub-space that can be scanned quickly and a
selection made explicitly. Depending on the structure of the space, different kinds of pruning are
possible.

Some tools provide a coarse grained overview of the space which one can traverse in order to
select a sub-space, which is itself treated the same way recursively, until the desired location is
finally identified and activated or selected. Thus each choice prunes the space simply by
eliminating paths to sub-spaces, unlike the kind of choice that prunes the space by removing some
or all of a dimensions -- for instance choosing a point size in a font selector. One difference is that
where a menu system is not tree structured but includes cycling networks, removing some routes
may in fact not remove any nodes in the option space!

RHM is a tool of that kind: choices select routes and thereby eliminate other routes, but that
may or may not eliminate nodes or subspaces, depending on the particular menu structure.

Note: RHM does not provide graphical support for navigation and route selection. It would

 UIDE.BHAM.T910.1.20/8/93 8 UIDE

not be difficult to add this, using the new GO library in Poplog, but so far resources required for
this work have not been available, and it is not obvious in advance what the benefits would be and
whether they would outweigh the costs of additional screen space for the selections mechanism
rather than applications.In any case the layout of menus and the use of a persistent “pile” of
menus, described below, is intended to reduce (though not necessarily to eliminate) the need for
additional aids.

 -- The need for a better theory
It would be helpful to have a complete overview of option space topologies, which then could be
combined with a taxonomy of types of users and types of tasks to provide a basis for deciding
which sort of tool or interface is best suited to a combination of option space, user and task.

This would require advances in cognitive science to provide the required analysis of users
and tasks. Our work in Birmingham on architectures for intelligent agents indicates a need to
distinguish all the following concurrent activities, all of which might require support in an
interface:

o monitoring of current actions and the consequences

o monitoring of other “external” events (e.g. produced by other agents)

o generation of new goals

o evaluation and sequencing of goals

o selection or creation of plans

o internal or external execution of plans (including communication with external
agents)

o triggering of internal or external “reflex” actions

o modification or expansion of plans (e.g. during execution)

o “meta-management” processes concerned with decisions about which higher level
management (mental) tasks to perform when

o reasoning

o updating or accessing short term or long term memory

o learning of many kinds (new concepts, new facts, new skills, new heuristic short
cuts, new ways of comparing priorities or importance of goals, etc.)

Designing interfaces on the basis of this sort of theory is currently beyond the state of the art,
which is one reason why all interfaces require so much testing by real users and subsequent
revision or refinement.

The RHM system provides a flexible tool that requires users and designers to address subsets
of the problem according to their personal and changing evaluations of what is needed. It does not
attempt to accommodate itself automatically to the user, as adaptive interfaces do, but it does
allow the user (or an expert helping the user) to drive the adaptation, thus providing a way to meet
the objectives of adaptive interfaces prior to the solution of all the long term research problems
raised by attempting to automate the process.

 UIDE.BHAM.T910.1.20/8/93 9 UIDE

 -- Purposes of an interface
Many interfaces are designed to meet the following objectives:

(a) helping the user discover the structure and contents of the space of possibilities
(this includes helping someone who is already familiar with part of the space to
find out about new regions)

(b) helping the user who is already familiar with part of the space to access a desired
item in the space, with minimal effort and delay.

Devices that serve (a) include paper manuals, on-line documentation, “help” commands that
show which actions are available in the current context, menu interfaces, and other users.

Devices that serve (b) include function keys, commands based on key sequences (as in
Emacs, and Framemaker accelerators), menus, “help” commands that show which actions are
available in the current context, and, above all, command languages that allow the user who
knows the name of a command to type it directly. There may or may not then be help available
regarding the formats for use of the command.

RHM is aimed at both (a) and (b). It is designed to help users of system based on commands,
(possibly with a lot of on-line documentation.) It can be used to help new users become familiar
with a particular subset of the system, and when they know that region well and can drive it from
commands and function keys (if desired) then an extended modified version of the set of
hypermenus can be provided to help them gain familiarity with a new subregion of the option
space.

This is not a solution to the total problem of making complex systems usable, but should help
considerably in many cases. Full testing of that conjecture would require a lengthy and very
complex experiment, with diverse types of users. This, unfortunately, will be infeasible in the
foreseeable future, although feedback from real users has already influenced the design and will
continue to do so.

 -- The Hypermenu Command Interface
RHM is not designed to compete with special purpose interfaces to specialized command spaces.
Rather it is a tool for coping with more messy collections of options, such as Unix, or Poplog. It
does not offer a single general solutions for all users of the system, but provides a menu-based
mechanism that makes it easy to help users with the particular subsets of commands that they
need to use frequently, which will be different for different users.

The assumption is that for each user there will typically be a relatively small number (e.g.
between about 10 and 20) subsets of commands that need to be readily accessible, and that each
subset can be usefully accessed via a menu system that does not go very deep and is tailored to
meet the preferences of the individual user. The menu system will typically help the user to find
out which options are available in the chosen subsets and gradually learn to bypass them by using
the more direct command level or function key interface.

When that happens the user will often be learning about new sets of facilities available within
the system. (That is true of most but not all Poplog users -- some learn a small subset and stick
with them forever.)

When learning a new subset, the user can (often with help from a library package designed
for the purpose, or help from expert users) replace old menus that have become unnecessary
(because more direct commands have been learnt) with a new set of options.

 UIDE.BHAM.T910.1.20/8/93 10 UIDE

Changes made during a login session can be stored in the user's private menu library and will
be invoked automatically in future.

 -- Assumptions about user requirements: activities, contexts, actions
The user is assumed to be interacting with a system that supports:

o a variety of types of activities

 E.g. browsing documentation, creating text, testing programs, reading mail,
sending mail, etc.

o for each activity a variety of contexts

 e.g. switching from one file to another, or switching modes

o for each context a variety of actions that can be performed in that context, some of
which may be parametrized.

 -- -- Contexts
The notion of context is not easy to define precisely. To a first approximation a context is defined
by:

o an object with which the user interacts, and

o a family of actions available for interacting with that object.

The context may also include a number of state variables that can be used to control the actions or
the behaviour of the object. A sub-context would be defined by a portion of the object and/or a
subset of the actions.

Thus the text creation activity has different contexts depending on which file you are working
on. Some files may provide action sub-contexts, e.g. checking spelling, searching, typing input,
producing or modifying a diagram, etc.

Actions available in different contexts and different activities may overlap. For example the
action of searching for a text string is relevant to actions as different in their objectives as
browsing through on-line documentation, examining the output of test runs of programs,
developing code, developing documentation, reading mail, etc. It is partly because of a desire to
use the same tool in all such contexts that many users of Emacs, and VED, prefer to use the editor
as a general interface to all other facilties.

Similarly there may be families of actions that are equally relevant in a lot of different
contexts. For example “cursor move” options (next page, previous page, next line, previous line,
word right, etc.) form a family relevant to many different contexts.

(Some of this “sharing” between contexts is what makes the statechart formalism attractive.)

 -- -- Action families and control panels
I assume that it is useful to group the actions available in an activity into relatively small families
of actions, where each family can be presented in a single menu, which is a sort of control panel
for getting things done by choosing an item, i.e. pressing a button.

Presenting a group of actions together helps to remind users of what is possible partly
because the juxtaposition of related options supports mutual disambiguation of potentially
ambiguous short labels. This idea is already used in systems like FrameMaker, where different
clusters of options (paragraph formats, character formats, graphical tools, etc.) are offered in

 UIDE.BHAM.T910.1.20/8/93 11 UIDE

different selection panels, where each panel presents a related set of facilities, often with
switchable sub-panels.

However, for a very large and complex system such as Poplog, or Unix, there is no uniquely
correct way of grouping facilities into action packets. So a requirement for an acceptable system
is that it should be easy to provide different ways of grouping for different people. This
requirement for tailorability is met by RHM, because of the role of search lists in locating menus
dynamically.

 -- -- Direct and mediated actions
Some buttons in a menu, or control panel, will immediately cause actions, whereas others will
invoke a dialogue box to get a bit more information from the user (e.g. file name, search string, or
other parameters), or allow constraints to be set, before the action is done.

-- -- Action categories
Actions to be supported by control panels can be categorized in various ways.Eg

o do something in the current context:
E.g. insert a line, delete a character, compile a file

o specify an action, where the action admits variants:
E.g. a dialogue box could prompt for more detailed specification, such as the search
and replace dialogue box in RHM which allows the user to choose whether the
searching should included embedded strings, whether the it should be interactive
or automatic, and whether it should have as its scope the whole file, a marked
range, the current procedure (or paragraph) or the current line.

o modify the current context:
E.g. toggle line-break mode

o switch to another context or sub-context:
E.g. go from writing code to reading mail, or from editing to interacting with a
spelling checker/corrector, or from one file to another.

o get help/information:
There are many different kinds of help, including meta-help about the help
facilities, or help about the menu system, or help on a particular button, as well as
help about the facilities the user is ultimately interested in.

o quit current context:
This can either take you back to a previous context, or leave you in a neutral state
where you have to decide what to do next. Quitting can either be back to a previous
state, or to the top of some previous intermediate subnet, or to the top level of the
whole system, or right out of the whole system. RHM provides mechanisms to
support all of these.

 A good command system should support all of these action types (and more). sIn principle, RHM
allows them all to be invoked via menu buttons or dialogues in the context of any package
implemented in Poplog, as long as the package itself supports the required action type.

 UIDE.BHAM.T910.1.20/8/93 12 UIDE

 -- Problems with menu-based action systems
Menus are often a useful device for people who cannot remember available commands: They aid
recognition, which is generally much easier than recall. However, there are well known problems
with using a menu interface to gain access to a very large number of possible actions.

Many menu systems require a menu tree that (a) must be built at compile time, (b) is hard to
change while the program is running, (c) cannot be recursive: i.e. menus must usually form a strict
tree, not a graph, still less a graph with cycles.

Often users cannot get at any of the sub-menus or actions except by starting with a top-level
menu and making selections, i.e. walking down (or up) the tree.

 In many case it is difficult to get a good structure for a menu tree (or graph) that makes a
collection of options available in a way that suits all users, except where the collection is very
small (e.g. at most a few tens of commands, rather than a few hundreds).

Normally, if user-defined menus are supported then a fixed set of functions is provided that
can be associated with menu options: it is not usually easy to extend the option space dynamically
by defining new functions while the system is running.

-- -- Partial counter-example: TWM menus
One partial exception to the above limitations is the “TWM” (or “TVTWM”) menu system
[LaStrange 1989] which:

a. allows a menu to point to another menu by name, so that two menus can point to
the same third menu, or to each other.

b. allows the menu definitions to be re-read if you wish to change the menu structure
at run time.

c. allows simple definitions of new functions by combining old ones.

The main snag is that if you wish to change any menu you have to get TWM to re-read the
whole initialization file and the whole collection of menus has to be re-built, which can be a slow
process, and if there is an error in the file it is possible to end up without a window manager
running.

Moreover, if a large number of menus is specified, then they will take up a lot of space in the
window manager process. In TWM you can't have menus added incrementally, as needed. Rather,
if you need to have a very large number of menus they all have to be compiled at the same time.

Finally, the language available for building new functions in TWM is very limited.

 -- How the recursive hypermenu system helps
RHM gets round some of these problems. It is implemented using the incremental compilation
and autoloading facilities in Pop-11. Because of this it has the following features:

o A sub-menu is always accessed via its name, allowing arbitrary cycles in the menu graph. One
consequence is that each menu can include a pointer to the top level menu so that from any menu
one can quickly get back to the top from any sub-menu. (Or to the top of some suitable
intermediate sub-graph.)

o When a menu is accessed, if the name has no value it will be autoloaded by Pop-11 from a file,
found in a suitable directory on a user-modifiable search list. Similarly if a menu invokes a Pop-11
procedure or library, it need not be pre-compiled as it will be autoloaded from the source file(s)

 UIDE.BHAM.T910.1.20/8/93 13 UIDE

when that option is first invoked. Thus, very large numbers of menus and menu-invoked utilities
can be made readily available with very little run-time cost as they are not compiled until needed.
Only those menus and library procedures actually used will involve any extra cost in time taken to
load menus or process space. An individual user or group of users can, however, reduce start-up
time by building a saved image containing frequently used menus precompiled.

o Autoloading uses search lists, and different users use different search lists. Thus it is possible
for all users to share a large collection of generally useful menus (control panels) while
individuals or groups have local extensions (like the local library directories, or user directories,
in Poplog or $PATH in Unix).

o Recompilation of any menu definition can be forced after the menu has been edited, without
recompiling anything else. The next time that menu is invoked the new definition will be used.
Thus editing and changing one menu is very quick. This both simplifies and speeds up testing
during development of a collection of menus and also makes it very easy for a user to modify a
menu or add a new one.

o The actions associated with a menu button can be arbitrary Pop-11 procedures, including
procedures that run Unix commands and read the output into an editor window. Users can define
arbitrarily complex actions to be invoked by selecting a menu button, either by defining a new
procedure to be associated with a button, or by using the notation for specifying complex actions,
described below.

o Because menus are accessed via global identifiers, it is not necessary for the user to start with a
top level menu and crawl down a tree to get a particular menu. A command is available for getting
directly to a menu by using its name.e.g. “ENTER menu news” will get the menu that gives news
reading options.

So the designer of a new package that provides a new collection of commands doesn't have to
make those commands fit into an existing menu hierarchy. The package can have its own top-level
menu.

 -- Interface issues
What is the best way to make available a set of menu-driven commands when the total number of
commands is very large?

Clearly any deep tree structure will be hard to use because people usually cannot decide
which branch to take near the top of the tree, and searching in deep trees can be a very slow and
confusing process. There is considerable evidence that shallower broader trees are easier to use
because people take the wrong option less often. This is probably because when a larger
collection of options is displayed at each choice point, the mutual disambiguation of options
makes it less likely that the wrong choice will be taken.

In any case, having to go down several branches to get to the required option is likely to be
tedious especially for options that are often required.

Suppose each menu has at most about 15 entries (excluding Help, Dismiss, and access to the
top level menu): then by using a hierarchy with only two layers below the top level, it is possible
to accommodate 15*15 = 225 commands. Implementors of packages that need more options than
can be accommodated in this way can choose between:

 - allowing more than two steps to an option

and

 - allowing a larger number of options per menu.

 UIDE.BHAM.T910.1.20/8/93 14 UIDE

E.g. allowing a maximum of three steps from the top level would permit 3375 actions.
Allowing four steps and a maximum of ten items per menu would permit 10,000 actions.

The RHM system does not in itself limit the number of steps required to get to an action nor
the menu size: that is up to the designer of a particular menu family, or a user who extends it.

However, the default demonstration version manages to provide a great deal of commonly
required VED-based functionality within a maximum of two or occasionally three steps from top-
level and using many menus with fewer than 15 items.

 -- The RHM solution
The draft RHM package attempts to get round the problems of using menus to drive a system, by
means of the following combination of features and conventions (though the mechanisms used
will allow other solutions):

1. A particular package has a top-level menu and several other menus accessible from the top-
level package (or more directly).

2. All the other menus can be invoked from the top-level menu in at most two, or occasionally
three, steps.

3. Each submenu includes an option to get back directly to the top-level menu.

4. Some sub-menus in a package are directly accessible from other sub-menus.

5. Several sub-menus, from different parts of the RHM network can be on the screen
simultaneously. When a menu is invoked it automatically remains on the screen until it is
dismissed (e.g. by clicking on its Dismiss button or clicking on the DismissAll button on the
top level menu, or by using a suitable keyboard accelerator). Thus repeated commands from the
same action family can be given quickly because they are on the same menu, which need not be
re-invoked. Some of the menu buttons produce an action immediately. Some of them invoke a
temporary control panel (dialogue box) that can be used to refine the action before it is executed:
e.g. for search and replace, the user can specify the search and replacement patterns, and also
various options such as whether embedded strings are to be replaced and the scope of the
operation (whole file, current procedure, current line, marked range.)

6. The current convention in RHM is that all the menus for a package will appear in
approximately the same place (e.g. bottom right of screen), except for the top level menu which
appears to side. Thus after several menus have been selected there will be a pile of them, all of
which are obscured except for the one at the top of the pile, and the top-level menu which is left
uncovered. Then any desired menu in the pile can be summoned to the top of the pile instantly by
selecting it from the toplevel menu, if it is included there, or alternatively by dismissing (or
iconizing) others till the desired menu is re-exposed. If a particular sub-menu is used sufficiently
often, it can be moved to one side so that it doesn't get covered by others. (If the window manager
is “TWM” there is also the “raiselower” mouse option that can be used to cycle round a pile of
overlapping menus.)

(Note: At present selecting a menu will not de-iconify it, but I think that's a bug in the
propsheet_show library procedure, which calls XtPopup, which apparently doesn't de-iconify.
Using “grep” on the x/pop/ref directory gave no clues as to how to do de-iconify a widget.)

7. Additional conventions to simplify navigation are as follows:

(a) Each menu ends with the “Dismiss” option, which removes the menu from the
screen.

 UIDE.BHAM.T910.1.20/8/93 15 UIDE

(b) All but the top level menu have as the second last option a button to get the top
level menu visible. Some may also include pointers to intermediate “top level”
menus for sub-packages.

(c) The top level menu has a DismissAll option, which removes all menus from the
screen.

(d) Near the top of the menu is a button that will display a help file on the actions (or
sub-menus) listed in the menu.

8. Because menus normally remain on the screen once invoked, and they remember where they
were moved to if they are moved then dismissed, the user can add extra spatial structure to the
menus by grouping them in particular locations on the screen.

(In the initial implementation using propsheets, options are constrained by the fact that all
menus are vertical columns of labelled buttons. It should be possible to add an option to make
certain menus horizontal, or to make then contain N rows and K columns, if that is preferred. This
would add to the variety of spatial structures that users can deploy to help them remember where
different sorts of commands are available on the screen. Use of a “virtual desktop” like TVTWM
or OLVWM also helps.)

9. Many of the commands made available through the RHM package are of a type that
experienced users would normally access directly via an ENTER command on the editor
command line. To facilitate learning of these accelerated commands many of the RHM
procedures put the appropriate command on the editor command line. So the user can then use
REDO to repeat the command, or edit the command line to give a slightly different command.
Some users have reported that this provides very useful learning.

10. A VED procedure, ved_menu, is provided that allows any menu whose name is of the form
ps_menu_<name> to be invoked by the VED command “ENTER menu <name>”

(The prefix ‘ps_menu’ was chosen because the implementation uses Poplog's LIB PROPSHEET
[Meyer 1991].).

11. It is easy for users to associate particular frequently used menus with VED function keys or
key sequences, so that they can be invoked directly, without having to traverse a menu graph.

12. It would be easy to arrange the same family of actions in different forms for users with
different degrees of expertise. E.g. for beginners only a subset of options might be shown. For
experts, actions that are normally easily invoked from the keyboard might be excluded from the
menu options and more advanced options shown as reminders. Users can also easily make
changes such as moving a frequently used menu closer to the top level menu.

More generally, instead of having arbitrary numerical measures for degrees of expertise, or
fragile automated restructuring by an “adaptive” system, user-driven re-structuring can be used
to tailor the system closely to different kinds of expertise or lack of expertise.

-- -- NOTES on the current implementation
a. Desirable but not yet available is a simple menu mechanism for reorganizing menus. At present
this has to be done in the editor VED. However, it is fairly easy to create a new menu from
existing menus by copying lines from the menu definition, or to modify a menu definition by
rearranging lines, adding lines from another definition, etc. VED’s facilities for marking ranges
and moving them or copying them are already accessible from one of the default menus.

b. All the above works in VED in an xterm window on a sun or X terminal, and is especially

 UIDE.BHAM.T910.1.20/8/93 16 UIDE

useful in conjunction with LIB VEDXGOTOMOUSE, which allows the mouse to be used to
move the cursor in the window..

c. Most of the package works with Xved, but sometimes the action selected will not be done
immediately. There seems to be an unfortunate interaction between Xved and the general X
callback mechanism. The unfortunate proliferation of windows in Xved might be made more
tolerable if the menu mechanism were extended to produce a new version of vedfileselect. I have
not tried to do this, though ved_rb (rotate buffers) is available already as a menu option.

d. The expectation is that the layout of menus on the screen, in the form of a “persistent pile” of
recently accessed and not yet dismissed menus, with the top level menu visible alongside them,
reduces the need for additional navigational aids. So far this has been borne out in informal tests.
There is no “stack” of current menus although the pile of menus roughly corresponds to a stack. It
is not really a stack because the user can invoke a menu, look at it, then without dismissing it
invoke another menu from the “top level” menu, on the left. At that stage the second menu on the
pile is not one used to get to the current state: it was merely inspected then left on the pile.

So the notion of going back to the previous node on the route to the current menu is not
explicitly supported, though it is often achieved simply by dismissing one or more menus from
the top of the pile.A more explicit stack could very easily be added, though because the set of
menus includes cycles and graphs there is no statically determined predecessor for a menu: the
actual sequence traversed would need to be recorded.

It would be trivial to modify the mechanism to keep a list of menus used (including those
accessed and dismissed) and to provide tools to allow the user to go back to an earlier menu or to
cycle through the list. This would deal with the case where one vaguely remembers seeing an
option which now seems to be relevant, but where one cannot recall exactly where it appeared.
The record of menus traversed could be maintained in an easily examined and edited history file
that persisted across login sessions. Whether this will be useful is a matter for further research.

 Additional navigational tools may actually not be worthwhile if the network doesn’t get very
deep. If the maximum depth is about 3, then going back to toplevel and working down again is not
much of a problem. Alternatively the “raiselower” function in the TWM and TVTWM window
managers can make cycling through a pile of menus by clicking on title bars very fast (faster than
selecting a “lower” option from a window manager menu.)

However, visual reminders of previous selections could be useful in some cases, and it would
be possible to use the Poplog GO facilities to implement this. A map of the complete system
would take up too much screen space as the total set of nodes is very large. However a submap
related to the user's recent choices might be manageable. There is no implementation of this at
present. Further experiments with users may reveal a pressing need, or may show that it is not
urgent.

e. Another desirable extension would be automatic (but suppressible) help on each menu as the
cursor is moved over it. LIB PROPSHEET does not provide an easy way to support this, but when
the package is reimplemented in GO it should be a simple addition, as would allowing clicking
with a different mouse button to produce a help message. The real difficulty lies not in providing
the mechanism, but in finding a good conceptual grouping for the options and finding good
wording for such help messages.

 -- Unintended side-benefit: an extendable menu interface to Unix
Although this was not part of the original intention, the menus can also be used to invoke unix
commands, either via Pop-11 procedures like sysobey, or via ved_sh, ved_csh or

 UIDE.BHAM.T910.1.20/8/93 17 UIDE

vedgenshell (as described in the Poplog HELP PIPEUTILS file). This means that unix
commands can be given via menu options with output then read into a VED file. This makes it
very easy to create a user-tailorable menu-driven interface to Unix utilities (e.g. who, ls, ps, etc.).

In fact, through the use of Unix pipes it is easy to link together several Unix utilities and
invoke them via RHM buttons. It may be desirable to extend the notation described below to
support this, though most things are already easy for an experienced Unix user to set up. E.g. a
menu button to show who is currently logged in could be defined thus:

 [WHO 'csh who']

when invoked this would run the 'who' command using the C shell, and read the output into a
VED buffer.

A button labelled “NewFiles” to show the 15 most recently created or modified files or
directories in the current directory could be defined by

 [NewFiles [UNIX 'ls -lt | head -15']]

This facility is described more fully below.

 -- A menu notation for RHM
For setting up a large number of menus it is desirable to have a textual formalism that allows users
to specify, for each menu, where it should go, what its label is, what explanatory or descriptive
text it has, which set of buttons it has, what the labels are on the buttons, and which actions should
be invoked if a button is selected. (For that reason it is not expected that the UIDE SIBAL
mechanism would be used for initial creation of menus, though special menu-creation tools to
help users who are new to VED would be useful.)

Currently each menu is specified by a Pop-11 list structure, with the following format, which
is provisional, and may change.

(In Pop-11 it is so easy to define an extension to the compiler that almost any desired
alternative notation could be implemented easily. The non-trivial part is not so much
implementing a syntax but deciding what needs to be expressed in it.)

 -- Format of menu definition list
Each menu definition (at present) has the following format:

global vars ps_menu_<name> =

 [<menulabel> ;;; Label for title bar

 {<x> <y>} ;;; optional screen location specifier

 <menu description> ;;; string, with newlines for line
 ;;;breaks, displayed at top of menu.

 [<buttonlabel> <action>]

 [<buttonlabel> <action>]

];

By convention many or all menus will end with the button specifier:

 ['MENUS...' [MENU ps_menu_toplevel]]

 UIDE.BHAM.T910.1.20/8/93 18 UIDE

making it possible to go quickly to the toplevel menu. However, this is not a compulsory feature,
and sometimes an intermediate “top level” can be used instead.

Each <buttonlabel> can be either a word or a string. Certain conventions are suggested but not
prescribed regarding the formats used for different kinds of labels. A more detailed description
follows.

 -- -- Menu Label
The <menulabel> is a string that will appear at the top of the menu and specifies what the menu is
about. E.g. 'Marked range'. Whether and how it actually appears will depend on the window
manager. Typically it will be on the title bar. Choose a short label, as title bars are usually quite
short on menu panels.

 -- -- Optional Screen Location
The (optional) {<x> <y>} specification is a vector of two integers, representing pixel row and
column of the top left of the menu box in screen co-ordinates, with {0 0} representing top left of
the screen. Note that if you wish the title bar to be visible you should add its height to the y
coordinate.

[[It should be possible for the coordinates to be incremental, e.g. of the form {+<x> +<y>} or
possibly with “-” instead of “+”. This would allow relative placements to be specified, either
relative to previous menu or relative to the current toplevel.]]

If the specification is not given then a default location will be used (at present based on the
resource Poplog*geometry, though this may change).

 -- -- <Menu description>
<menu description> should be a string which will be displayed in a panel at the top of the menu.
The string can contain newline characters (as in 'Large\nMoves') to represent line breaks. Lines
should not get too long as the menus should be narrow.

-- -- <buttonlabel>
Each <buttonlabel> is a word or string and should be a mnemonic to remind users of the action
that will be invoked by clicking on that label. (The same label can be used with slightly different
meanings in different contexts. E.g. buttons labelled “HELP” might get different sorts of help in
different contexts.)

The labels should be short, as the width of the whole menu column will be determined by the
widest label.

In the current menus the following conventions are used:

o labels indicating other menus all end with '...', e.g. 'ReadNews...'

o labels that correspond to advice on VED ENTER commands all end with an asterisk,
e.g. 'Search*'

o The label 'MENUS...' is used to indicate a button that invokes the “top level” menu.

(Any of this could easily be changed.)

 UIDE.BHAM.T910.1.20/8/93 19 UIDE

 -- -- Format of <action> specifiers
The <action> element following a button label can be any of the following forms:-

 a string

 a word

 a procedure

 a vector containing a string

 a list starting with a keyword that specifies how the list is to be interpreted.

More detailed specifications follow.

 -- -- -- A word:
This should be the name of a variable whose value is one of the other structures described below.
It will be de-referenced and the appropriate action taken. (recursive_valof is used to get the
value.)

-- -- -- A string:
The string will be given as argument to veddo. I.e. the string can be anything that could be put on
the command line in VED. For multiple commands see HELP VED_DO. Example of such a
button specifier could be

 [HELP 'help ved']

I.e. pressing the button labelled “HELP” would cause veddo to be applied to the string 'help ved'.
Thus it is easy to add help or teach options to a menu.

NOTE: if you are using Xved, then instead of veddo being applied to the string immediately, the
action is put in the input queue for VED to be obeyed when control next returns to VED. It seems
to be quite difficult to make a menu-driven command interface interact properly with Xved. It
feels as if there is a design flaw somewhere, either in Xved, or in the callback mechanism.

-- -- -- A procedure:
The procedure will be invoked. E.g. a menu specification could include the following item:

 [QGoIndex ^(ved_q <> ved_g)]

If selected, this button will cause the procedure ved_q and the procedure ved_g to be run.

-- -- -- A vector containing a string
The string is treated as Pop-11 text and is compiled. An example equivalent to the above would
be:

 [QGoIndex {'ved_q();ved_g();'}]

This is useful for defining compound actions without having to define a new procedure to be
invoked.

 -- -- -- A list:
The list defining a menu action can take one of the following forms

 UIDE.BHAM.T910.1.20/8/93 20 UIDE

-- -- -- 1. [ENTER <commandstring> {xloc yloc} <explanation>]

Where the {xloc yloc} vector and the <explanation> are optional.

An explanation box will pop up. If the location vector is not provided the centre of the screen will
be used. The explanation box will give default instructions and in addition will display the
<explanation>, if that is provided. The <explanation> can either be a string (including newlines)
or a list of strings. In the latter case each string will be displayed on a separate line.

The <command string> will be displayed in an editable text field. The user can then modify the
command, and then press RETURN or the “Do” button.

If the location vector is not given, the centre of the screen is used.

Examples of ENTER action specifications are

 ['NewFile*' [ENTER 'ved <filename>' 'Editing a new file']]

 ['GetHelp*' [ENTER 'helpfor <word>'
 ['Get a list of help files'
 'possibly relevant to' 'a word']]]

 ['GetRef' [ENTER 'ref <topic>']]

 ['Rename*' [ENTER 'dired -mvd <newname>' {600 20}

 ['Rename the file to right'

 'of current line to <newname>'

 '(i.e. rename in same directory).'

 'See "man mv" (and HELP DIRED)']

]]

 -- -- -- 2. [MENU <menuname>]

Here <menuname> should be an identifier whose value is a menu, either a list defining a
menu, or the propbox created to correspond to the menu. Examples of action specifications using
this format are:

['Mark1...' [MENU ps_menu_mark1]]

['Mark2...' [MENU ps_menu_mark2]]

['Dired...' [MENU ps_menu_dired]]

['Move1...' [MENU ps_menu_move1]]

If one of these options is selected by the mouse, then, if the menu does not yet exist the name
(e.g. ps_menu_dired) will cause its definition to be autoloaded, and the list defining the menu
will be transformed into a propbox with menu buttons on it which then becomes the value of the
variable, instead of the list. If the propbox already exists, it is merely displayed.

 -- -- -- 3. [POP11 <pop11 code>]

The tail of the list can contain Pop-11 text items and is given as argument to the procedure
compile. Arbitrary actions are possible. Although there will often be no benefit in using a list
action of this form rather than a vector containing a string, this option is useful where the contents
of the list (i.e. the command) should be in part be determined (at compile time) by the value of a
global variable, or an embedded procedure call.

Moreover, if a string is used it will require itemization as well as compilation to be
performed, whereas a list already contains separate items. However, the itemization process

 UIDE.BHAM.T910.1.20/8/93 21 UIDE

should not make a noticeable difference. It is possible that in some cases the list format will allow
advantage to be taken of sections or lexically scoped variables.

 -- -- -- 4. [UNIX <unix command> <shell specification>]

The <unix command> is run using vedgenshell and the output is read into a VED buffer.

If the <shell specification> is not given, then it defaults to systranslate('SHELL'). For example,
here is a specification for a button that will list all the processes belonging to the current user (on
SunOS 4.1.x):

 [MYPROCS [UNIX 'ps -aux | egrep "$USER|USER"']]

On clicking on the button labelled “MYPROCS” the user would spawn a shell process to run
“ps -aux”, the output of which would be filtered through the command

 egrep "$USER|USER"

and the output of that read into a VED buffer, where it can be inspected or processed further.
(Note that the first occurrence of “|” creates a Unix pipe, whereas the second expresses a
disjunctive search string for egrep.)

This ability to link applications easily seems to be similar to that provided in the Microcosm
system [Hill et al. 1992]. As I have seen only a short overview document I cannot comment on
relative ease of use, though RHM potentially provides a lot more options because it is embedded
in a powerful software development system.

And here is one that specifies the C shell, so that “~” can be interpreted properly: it lists all
the directories in the user's top level directory.

 [MYDIRS [UNIX 'ls -l ~ | egrep "drw"' '/bin/csh']]

 -- -- Additional special keywords
It is possible that additional special keywords and formats will be introduced later to deal with
frequently occurring types of actions.

There are various global variables and user settable resources that control defaults, e.g.
colour and font of menu displays or explanation boxes.

 -- Unsolved problems
There are many unsolved problems. Some of them are merely a matter of finding the time to
implement an additional facility. Some of them require empirical research or detailed task
analysis. (In some cases research has already been done elsewhere though typically only in
connection with toy problems.)

1. Should the items within a menu be organized alphabetically or grouped logically? (Let the
user decide?) With this system it is easy to experiment.

2. Is it better to accommodate a large number of options via several small static menus or via
a single large scrolling menu?

3. Is it useful to allow string search to operate on long menus to help users find items? Or is it
better to avoid long menus?

4. When, if ever, are icons preferable to textual labels on options? (Conjecture: icons are
useful only when the number of items to be discriminated is no more than about 10. In part it
depends on whether the options remain permanently on display. Icons tend to require more screen
space. Large amounts of permanently occupied screen space can be intolerable.)

 UIDE.BHAM.T910.1.20/8/93 22 UIDE

5. What is a good way to let the user specify where different collections of menus should
appear on the screen? (Currently screen coordinates can be part of the individual menu
specification.)

6. Can the basic menu system be naturally built up using a menu-based interface for creating
menus?

7. Should the user be provided with some kind of graphical map of available actions, showing
which bits of the map he/she has already used and which other bits are readily accessible from
those?

8. How can mnemonic menu labels be chosen to suit lots of different kinds of users?
(Answer: it's impossible?)

 -- Acknowledgments
The current implementation makes heavy use of facilities provided in the Poplog PROPSHEET
library implemented by Jon Meyer, at Integral Solutions Ltd. Adrian Howard, at Sussex
University, provided a number of additional utility procedures to help drive the X facilities from
Poplog.

I would also like to acknowledge help, comments, suggestions, testing of the implementation and
consequential suffering contributed by Kath Bale, William Edmondson, Bob Hendley, Petra
Hickey, Tom Khabaza, Sophia Langley, Jane Littlehales, David Mallaburn, Keith Marlow, John
Williams, and student testers at Birmingham.

 -- Incomplete bibliography
 W.H.Edmondson (1993) A taxonomy for Human Behaviour and Human-Computer Interaction.

Internal report, School of Computer Science, the University of Birmingham.

 Gary Hill, Rob Wilkins, Wendy Hall, Open and reconfigurable Hypermedia Systems: A Filter-
Based Model Report CSTR92-12, Dept of Electronics and Computer Science, University of
Southampton 1992

Thomas E. LaStrange (1989) TWM - a window manager for X11 (Tom's Window Manager), (On-
line X11 MAN file), Hewlett Packard Company Graphics Technology Division Fort
Collins, Colorado

Debora J Mayhew (1992) Principles and Guidelines of Software Interface Design, Prentice Hall,
New Jersey.

Jon Meyer (1991) TEACH PROPSHEET, Poplog on-line documentation file

Jenny Preece (ed) A guide to Usability: Human factors in computing Addison-Wesley 1993

Ben Shneiderman Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison Wesley, Reading Mass, 1987. (There is a more recent addition.)

A. Sloman (1993) HELP VED_MENU, Draft on-line Poplog documentation file for users of the
RHM system

Ralph R. Swick (1989) Xfontsel- point & click interface for selecting X11 font names (on-line
X11 MAN file), Digital Equipment Corporation/MIT Project Athena (1989)

 UIDE.BHAM.T910.1.20/8/93 23 UIDE

-- Trade Marks
“Unix” is a trade mark of AT&T Bell Labs

“Poplog” is a trade mark of the University of Sussex.

“X Window System” is a trademark of the Massachusetts Institute of Technology.

“FrameMaker” is a trademark of Frame Technology Corporation.

