
Chapter 1

Introduction

This book is an exposition of the POP-11 language. In this introductory chapter we discuss

the requirements which a computer language should meet, the view of computation presented

to the user by the POP-11 language, how it meets the requirements, what its advantages are

relative to other languages, and in what directions it should develop.

POP-11 was developed from POP-2[1]; since we will need to have some discussion of the

development of the language we shall use the term POP to refer to POP-2 and to what

might be called its nearly parthenogenetic descendents such as POP-11 and WonderPop.

A computer language is a formalism by which a user creates a computer program. A

language can thus be regarded as providing a user a view of a computer. A language should

meet the following requirements:

� A language should be convenient to use. A user should be able to express his require-

ments in a form that is reasonably succinct, and, where possible, in a form that is

consonant with existing, non-computer-oriented forms, e.g. English and mathematics.

The language should lend itself to a rapid comprehension by the human eye and brain.

Some measure of user-extensibility of the language should be provided.

Language designers should bear in mind Occam's Razor | Non sunt multiplicanda

entia praeter necessitatem. While it is desirable to provide a wealth of capabilities,

1

2 CHAPTER 1. INTRODUCTION

these should be built on a minimal set of basic constructs.

Compared with the succinct style of mathematics

1

, computer languages tend to be ver-

bose. Some of this verbosity is perhaps inevitable, since programs have the complexity

of engineered structures, rather than the simplicity of the single aspects of engineering

for which relevant mathematics can be developed. Much however arises from language

weaknesses, from the typographic impoverishment

2

.

of traditional program presentation, restricted as it is to the typescript paradigm, and

the limited context sensitivity of programmning languages.

� A language should aid the production of reliable programs, that is to say it should

prevent the user from making certain errors, and it should support programming dis-

ciplines that make others unlikely. One aspect of this is the provision of the capability

of writing programs as modules with restricted, and carefully speci�ed dependencies.

� A language should be conveniently powerful: Any serious language is of course ca-

pable of expressing any computation, but not necessarily in a convenient or e�cient

form. In particular, any truly general-purpose language should support that class of

computations that can be regarded as symbolic, e.g. natural language processing or

mathematical reasoning. We justi�y this requirement by the fact that almost all com-

puting of any sort is nowadays dependent on the symbolic computations performed by

a compiler, or at least an assembler | the days of prestidigitation at the hand-keys

are past. Thus
exible support for various aspects of compilation should be part of

the language capability, as providing a view of the code-creation capabilities of the

machine.

� A language should be acceptably e�cient. Since any language e�ectively constrains

which programs, out of all possible programs, a user may create, any language can be

expected to degrade the performance of a computer, although if we consider instead

the programs that a user might be prepared to write in a given language, we may well

�nd that performance is enhanced. However a language in which it is not possible

conveniently to express a given algorithm so that its complexity class with respect to

a standard model of computation is maintained should be regarded as unacceptably

ine�cient.

1

Thoughout this book, the word \mathematics" is used in the modern sense, of a formalism in which

propositions are subject to a process of proof. Mathematics is thus not necessarily about entities constructed

out of numbers.

2

This typographical impoverishment is even compounded in languages like Common Lisp, and the antique

technology of the single case teletyp preserved, by the convention of converting, by default, lower case input

to upper case

3

� A language and its implementation should support the straightforward development of

programs. In particular, the most common operations required in developing a program

should be capable of being done incrementally in constant time, so that the task of

creating a large program does not become unbearably tedious.

These requirements are in some measure opposed, although developments in Computer

Science are making it easier to implement languages with good all-round performance. For

example, convenience, power and safety are to some extent opposed to e�ciency.

POP-11 addresses the requirements in a way that can be summarised as:

� POP-11 supports symbolic processing in an idiom that is close to that understood

by the great majority of computer scientists: the syntax is stylistically close to that

of ADA, Pascal and C, as opposed to the minimalist syntax of LISP, while the se-

mantic constructs are far less foreign than those of Prolog. This encourages users to

perceive a continuum between symbolic and non-symbolic processing, facilitating es-

sential cross-fertilisation between parts of Computer Science that are often perceived

as being disjoint. Thus POP-11 is powerful and convenient.

� POP-11 supports, but does not mandate, the functional paradigm in programming.

That is to say, it is possible to write POP-11 procedures which accurately represent

mathematical functions over appropriate domains. More than any pure functional

language, POP-11 provides support for the use of the functional paradigm in a way

that o�ers competitive performance. It does this by providing structured access to the

machine memory especially through properties and vectors which can be wrapped in

functional clothes using its e�cient closure mechanism based on partial application.

Functional programming facilitates good software engineering by employing concepts

whose formal properties are well-understood, and amenable to formal veri�cation, and

is the primary means by which POP-11 combines reliability with power.

� The incremental compiler, developed originally for the POP system, provides for the

constant time modi�cation of programs, as compared with the O(n) time associated

with conventional linkers. This supports the interactive development of POP-11 pro-

grams, forms the basis of the implementations of Common Lisp, Prolog and ML in the

POPLOG system, and contains features especially intended for the support of Prolog.

This kind of power, pioneered by the POP language, is not available in any direct way

in conventional language systems, which always require some awkward interaction with

the operating system, and do not normally support dynamic linking of code.

4 CHAPTER 1. INTRODUCTION

1.1 Engineering Advanced Software

For many important purposes a computer program needs to be regarded as an engineered

artefact, that is to say an entity aspects of whose behaviour can be predicted in advance

of its performance in the �eld. Programming languages have an important role to play in

support of good software engineering, provided that there is some preferably formal basis for

predicting that their behaviour will be satisfactory.

In any area of design, appropriate design methodologies depend not only upon the phys-

ical and logical laws underlying the subject of the design, but also upon how ambitious the

artefact to be designed is. An architect designing a building will be at pains to assure his

customer that whatsoever rains may beat upon that building, whatsoever winds may blow, it

will stand. As a basis of this assurance, and as a defence in any malpractice suit subsequent

to his assurance being ill-founded, he will rely upon codes of practice. An aircraft designer

speci�es an artefact subject to the same physical laws of mechanics and aerodynamics as the

architect. However, since
ying rather than standing is what his artefact is destined for he

will employ di�erent codes of practice, di�erent design methodology, in which for example

the properties of materials are much more tightly controlled.

Likewise, a more sophisticated computer program will need a more sophisticated language

to develop it. This is especially true when a signi�cant component of symbolic processing is

to be embodied.

1.1.1 Data-Structures

Many of the basic operations of a computer, e.g. adding, subtracting, multiplying and

dividing can be regarded as implementing mathematical functions. It is thus not surprising

that programming languages should be proposed which aim to provide an extensible range

of mathematical functions. Such languages would be amenable to simpler formal analysis,

and provide a ready way of implementing more advanced mathematical theories (e.g. matrix

multiplication as opposed to multiplication of integers).

However the memory of a computer does not present a simple functional model to a user.

We may specify memory using a function mem of two arguments, applied thus: mem(a; s),

1.1. ENGINEERING ADVANCED SOFTWARE 5

where a is an integer address, and s is a machine state. a is an integer 0 � a < a

max

,

where a

max

is the memory size of the machine. The essential di�erence between the addition

function and the memory function is that in the case of performing the evaluation of x + y

the programmer has direct control of both arguments, whereas in the case of the evaluation

of mem(a; s) he only has direct control over the a argument. The s argument, although

determined by the user's program

3

, depends upon the input data in a way that makes

reasoning about the behaviour of the machine very di�cult

4

Access to memory is fast | typically it is modelled as taking constant time, although

O(log(a

max

)) or O(a

1=3

max

) is perhaps more accurate, the �rst value being based on the number

of stages required to decode the address, and the second on the physical space required to

hold a

max

words of memory.

Designing a time-e�cient algorithm for a given computation can often be achieved by

avoiding the repetition of certain sub-computations. This can sometimes be done simply

by re-arranging the order of computation, e.g. the evaluation of the polynomial a

n

x

n

+

a

n�1

x

n�1

: : : a

0

can be performed using O(n) multiplications by employing the recurrence

relation.

a

n

x

n

+ a

n�1

x

n�1

: : : a

0

= x(a

n

x

n�1

+ a

n�1

x

n�2

: : : a

1

) + a

0

This can then be massaged into a non-recursive form, placing no additional requirements

on memory. More often, however, repeating a sub-computation can only be avoided by

making use of memory to store the result of the �rst instance of a given sub-computation

for future reference, particularly when the laws underlying the computation are weaker than

the commutative ring laws used in the above example.

Thus a (possibly sophisticated) use of memory is the key to achieving acceptable time-

e�ciency of many programs. But we have observed that memory is state-dependent, and is

thus hard to reason about. This can have deleterious e�ects on the reliability of programs.

In order to mitigate this, all computer languages structure the data held in memory in order

to ease the analysis (formal or informal) of the behaviour of programs.

3

At least if we speak of the state of a suitable virtual machine

4

There is an interesting analogy with the frame problem which arises in reasoning about the ordinary

world[4].

6 CHAPTER 1. INTRODUCTION

The Functional Paradigm

In general, the data-structures provided by programming languages retain the dependence on

machine-state that is present in `raw' memory, and thus some of the problems of reliability

are still present. However there is an approach, due to John Mc.Carthy, which allows all

properties of data-structures to be state-independent. In this approach, as generalised for

POP and other languages, a user has available constructor functions. When a constructor

function c is applied to multiple arguments, c(x

1

; x

2

; : : : x

m

), the storage allocator provides

a unique address a, and stores x

1

; : : : x

m

in memory locations a + � : : : a + � +m� 1 where

� is an increment allowing some housekeeping information to be stored

5

. In subsequent

constructor applications, none of the addresses a : : : a + � +m � 1 will be returned by the

allocator, nor is the programmer provided with a means of changing their contents. This

provides a means of representing mathematical objects that are more complicated than a

single number in a purely functional, or state-independent way.

A simple allocator would use memory only once, moving a free pointer on at each construc-

tor function application. However this is not a practical proposition for most applications,

and systems usually embody a garbage collector to recover the memory space occupied by

objects which have been constructed but can no longer be accessed by the programmer.

The arguments of the constructor functions, encapsulated in the data-structure created

by the constructor function, are accessed by selector functions.

1.1.2 The Modi�ed Functional Paradigm

POP-11 (in common with LISP and ML) provides a modi�ed functional paradigm. This is

motivated by two considerations:

� Sometimes it is necessary to have an object which supercedes a given object, but

which is almost the same. If the object concerned is large, it is more e�cient to modify

the appropriate location in memory, thus updating the object, than to construct a new

5

In many LISP implementations � = 0 because of extensive use of tag bits associated with the pointer.

POP-11 makes restricted use of tags, which has advantages in 32-bit architectures with current memory

growth

1.1. ENGINEERING ADVANCED SOFTWARE 7

object. Thus the data-structure that an editor uses to store the text a user is operating

on may well be of this nature.

� The connection between the program and the world outside the computer (e.g. the

user of the computer) is made through �xed locations in memory, which have to be

updated. Or, to put it another way, users want a state-dependent protocol in their

transactions with the machine.

Thus POP-11 provides a compromise. Store is administered by an allocator that fully

supports the functional paradigm, but the data-structures so created may be updated at

the user's discretion, as may be variables, using an assignment statement. This means that

the user has a choice of paradigm. A large amount of a given program may be written

functionally, but with some low-level operations being written non-functionally, and the

operations necessary to provide the interaction with the external environment also written

using data-structure updating.

The availability of the functional paradigm makes it much easier to write sophisticated

software, even in circumstances in which it might seem a priori to be inappropriate. While

the conventional VED editor of POPLOG is written using a bu�er which is updated at

every change to the document, the advanced typesetting Pantechnicon system is written

using the functional paradigm, so that the edit bu�er is reconstructed at every key stroke

that changes the bu�er. Even large structures can be e�ciently reconstructed if they are

held in an appropriate tree form.

Updating data-structures in POP-11 is accomplished in a uniform way, by de�ning up-

dater procedures for the corresponding selectors. Thus hd is the selector which returns the

�rst member of a list whilst updater(hd) is the corresponding updater procedure. A spe-

cial syntactic form is provided for applying these updaters: if s is a selector function then

v ! s(x) applies the corresponding updater (i.e. performs updater(s)(v; x)).

The modi�ed functional paradigm can also be expressed in terms of the common prop-

erties that an object in such a language must have. In [?] this was expressed as an Object's

Charter of Rights

67

.

6

The term used in the original description of POP-2 was item

7

The term \�rst class object" was used rather earlier

8 CHAPTER 1. INTRODUCTION

Anything which can be the value of a variable is an object. All objects have certain

fundamental rights.

1. All objects can be the actual parameters of functions

2. All objects can be returned as results of functions

3. All objects can be the subject of assignment statements

4. All objects can be tested to see if they are identical.

1.1.3 Structure Identity in the Modi�ed Function Paradigm

There are two natural notions of the equality of objects O

1

and O

2

, represented as data-

structures in store, namely

1. two objects may be equal if their components are equal. In POP-11 this is tested by

O

1

= O

2

2. two objects may be equal if they have the same address in memory, i.e. they are

identically equal. This is tested by O

1

== O

2

It is clear that O

1

== O

2

) O

1

= O

2

. The converse is not necessarily true. These operation

have di�erent time-complexity, O

1

== O

2

takes constant time, O

1

= O

2

is O(n) in the size

of the smaller object.

1.2 Stack Based Languages

The main storage allocation mechanism of POP-11 makes no assumption about any relation-

ship between the order in which data-structures are obtained from the allocation mechanism

and the order in which they are garbage-collected. In general, there is no relation. However

1.2. STACK BASED LANGUAGES 9

many languages, which are descendents of ALGOL 60, require the order of freeing of mem-

ory for re-use to be the inverse of the original order of allocation. This is simpler and more

e�cient to implement than the fully general garbage collected mechanism that POP-11 has

available

8

.

The use of stacks in programming languages arose because they provide a simple way

of evaluating mathematical expressions. Indeed, a stack provides a fully general way of

implementing a functional language, but at the cost of copying (possibly large) data-structures

up and down the stack, as indeed is done in the call by value paradigm in the ALGOL 60.

The allocation method used in POP-11 avoids this cost because data-structures are referred

to indirectly by an address or pointer.

In stack-based languages, it is conventional to use one stack in which space allocated for

user data-structures is intermixed with procedure activation records. The e�ect of this is

that the lifetime of a data-structure is contained in the lifetime of the procedure in which

it was created. That is to say that a procedure P cannot return a data-structure that it

has created to the procedure, P

1

say, that called P . This is acceptable for many numerical

algorithms where it is trivial to predict what size of data-structure will be required to hold

the results of a procedure in advance of calling the procedure. E.g. if you want to take the

cross-product of two 3-vectors you know that you will need a 3-vector to hold the result, so

you can allocate the space before you call the cross-product procedure.

It is characteristic of symbolic processing that there is no simple relationship between

the size of the arguments to a procedure and the size of the result. This holds whether the

symbolic operation be the di�erentiation or integration of a mathematical expression or the

parsing of a sentence. This is why John McCarthy developed the LISP language, and it is

why stack-based languages have never been popular for symbolic processing.

1.2.1 Extended Stack Based Languages

Given the limitations of stack-based languages it is not surprising that they should be ex-

tended. The usual approach is to provide for allocation of data-structures o� a heap, that

is an area of store distinct from that administered by the stack. In the C language for ex-

8

However, if space available is increased by a constant factor generally the time required will also be

increased by a (di�erent) constant factor

10 CHAPTER 1. INTRODUCTION

ample, the malloc procedure serves to allocate data o� the heap. However implementations

of these languages seldom preserve enough information to enable a garbage collector to be

implemented, so that freeing of storage for subsequent re-use has to be done by an explicit

procedure call. This can lead to bizarre program errors which are very hard to �nd, arising

from two distinct data-structures sharing the same store. Thus these languages cannot be

regarded as fully supporting a functional paradigm.

1.2.2 Stacks in POP-11

Since stack allocation is cheap to administer, almost all languages make some use of stacks.

The normal
ow of control during procedure call and return is naturally handled by a stack

mechanism. There are some exceptions to this rule | in an implementation of the Prolog

language the execution of a predicate may terminate with the possibility of subsequent re-

sumption, so that the normal stack-discipline cannot be applied to the activation records for

the procedures which represent the de�nitions of Prolog predicates in an e�cient implemen-

tation of that language.

Likewise any implementation of a language that supports multiple processes cannot be

handled by the provision of a single stack.

For these reasons POP-11 makes use of the stack mechanism to support procedure call

and return. Unusually, it makes use of two stacks working in opposition | an argument

passing stack and a stack which holds procedure activation records. The argument passing

stack provides a simple, explicit method of access to the arguments of a procedure, which

is the basis of an e�cient implementation of variadic functions, as described later. It also

supports the e�cient implementation of the signi�cant range of algorithms that require direct

access to a stack.

1.3 Abstraction

If you want to buy a new refrigerator you will specify only the details that are relevant to

you | the capacity say and limits on height, depth and breadth. That is to say, you have

1.3. ABSTRACTION 11

abstracted the relevant details.

In the design of a complex program, abstraction should be used, so that the program

can be speci�ed in a modular manner, leaving the issue of details to the implementers of the

modules. Many language designers regarded the procedure or block as a su�cient capability

for modularisation, and indeed these constructs do provide important capabilities which are

adequate for many purposes.

However some capabilities are best provided by a collection of procedures and possibly

data-structures which share some common, hidden, attributes. The concept of section was

introduced in POP-2 as a way of meeting this di�culty

9

.

POP-11 supports abstraction:

� A collection of procedures to operate on the abstract objects can be speci�ed.

� Internal details of the operation of a set of procedures to operate on such objects can

be hidden from the outside by using the section mechanism.

One of the more attractive features that has been incorporated in programming languages

in recent years has been pattern based de�nition and call of procedures. This has been

incorporated in languages such as Prolog and ML. It is not a standard facility of POP-11,

although it is easily implemented as a macro. However it does have pitfalls when it comes

to supporting abstraction. Consider the ML:

datatype Vec = vec of (real*real*real)

fun add_vec(vec(x1,y1,z1),vec(x2,y2,z2)) = vec(x1+x2,y1+y2,z1+z2);

ML requires vec to be a concrete data-type, which prevents it being abstracted as a

constructor function.

One feature of POP-11 that can assist in the support of abstraction over pattern matching

is the destructor function. This is the inverse function to the constructor function. I.e. if c

9

This concept, when introducted into LISP, is known as a package

12 CHAPTER 1. INTRODUCTION

is an constructor function and d is a destructor function then d(c(x

1

: : : x

n

)) = x

1

: : : x

n

and

c(d(X)) = x, where = means elementwise equality.

Pattern matching can be supported by providing 3 procedures for each data-type, a

constructor, a recogniser and a destructor. It is a straightforward exercise to translate

add

v

ec into the following POP-11:

define add_vec(v1,v2);

if isvec(v1) then destvec(v1) -> z1 -> y1 -> x1;

if isvec(v2) then destvec(v2) -> z2 -> y2 -> x2;

consvec(x1+x2,y1+y2,z1+z2)

else mishap('vector needed',[^v2])

endif

else mishap('vector needed', [^v1])

endif

enddefine;

1.4 Data-structures,Arrays, Memo functions and Vari-

adic Functions

We have said that an e�cient algorithm makes use of the memory of a computer to avoid re-

peating a computation. In the functional paradigm, this mostly means that there are de�ned

selector functions [1] which execute in near constant time. These selector functions, together

with constructor, destructor and recogniser functions provide the main implementation of an

object class in POP-11 (for ways in which common properties of the class can be clustered,

see Chapter ??.

However, not all uses of memory can be handled by selector functions. The most elemen-

tary use of memory is simply to bind a variable, as when vec(x=sqrt(a

2

+b

2

); y=sqrt(a

2

+b

2

))

is rendered in POP-11 as lvarsd = sqrt(a

2

+ b

2

); vec(x=d; y=d).

Non-local uses will require some function.

1.5. THE POP-11 NOTATION 13

Where data-objects are pre-de�ned, there is no scope for providing selector functions.

Thus for example a function de�ned over a range of integers cannot be implemented by

adding a new �eld to the integer data-structure, because there is no such structure for

(short) integers. And anyway, such an addition would require re-linking of the POP system.

This capability is provided instead by arrays. In POP-11, an array is essentially a procedure

de�ned over ranges of integers, and implemented by associating access code with a section

of memory.

In POP, a more general kind of use of memory was introduced by Michie[3]. If a function

is memoised, it is modi�ed so that before it is evaluated in the ordinary way, its value when

applied to the given arguments is �rst looked up using a property function. It is easy to

write a macro memoise

memoise f;

1.5 The POP-11 notation

POP-11 supports symbolic processing in an idiom that is close to that understood by the

great majority of computer scientists: the syntax is stylistically close to that of ADA, Pascal

and C, as opposed to the minimalist syntax of LISP, while the semantic constructs are far less

foreign than those of Prolog. This encourages users to perceive a continuum between sym-

bolic and non-symbolic processing, whereas most of the symbolic processing languages used

for Arti�cial Intelligence have the appearance of being radically di�erent from conventional

languages. This gulf has hindered cultural di�usion within Computer Science: for example

the incremental compilation techniques developed for POP-2 (the precursor for POP-11)

over 20 years ago, and similar techniques subsequently employed for LISP, still have not

found their way into standard computer science text-books, which insist on presenting the

generation of code as a static process occurring during a compile-time which has no overlap

with run-time.

Other symbolic processing languages used for Arti�cial Intelligence have the appearance

of being radically di�erent from conventional languages. This gulf has hindered cultural

di�usion within Computer Science: for example the incremental compilation techniques

developed for POP-2 (the precursor for POP-11) over 20 years ago, and similar techniques

14 CHAPTER 1. INTRODUCTION

subsequently employed for LISP, still have not found their way into standard computer

science text-books, which insist on presenting the generation of code as a static process

occurring during a compile-time which has no overlap with run-time.

LISP is an interesting case. The heavily bracketed notation is derived from that of the

�-calculus. This notation serves a particular mathematical purpose very well | namely to

provide a formal apparatus for reasoning about functions. E.g. one may wish to show that

a particular set of rules for simplifying � calculus expressions is con
uent, i.e. you always

get the same result no matter in which order you apply your rules.

LISP also serves to emphasise the functional view of programming. Every expression is

explicitly written as a function application. Writing (+ x y) serves to emphasise that the

same process is occurring as when you write (sin x) or (fred x y). So far an unimpeachable

didactic case exists for LISP.

However the human engineering of LISP is poor when the aim is not to reason about the

fundamentals of computation but to specify a complex computation. Human mathematicians

depend very heavily on having a notation that is well human-engineered. Consider the

expression

Discuss case confusion.

1.6 Lazy Languages

POP-11 is an eager language, that is, the arguments of a function are evaluated whether or

not they will be needed. The conditional form and certain boolean forms are exceptions to

this rule.

There is considerable interest in the literature in lazy or non-strict languages. These only

evaluate the arguments of a function when absolutely necessary. Call by name in Algol 60

had something of this nature. They o�er theoretical advantages, since they correspond to

reduction in the �-calculus, and practical advantages, particularly in the support of in�nite

structures, e.g. in�nite sequences. The addition function is strict, so that x + y always

has its arguments evaluated. Constructors are treated as non-strict, e.g. the arguments of

1.6. LAZY LANGUAGES 15

cons(l; L) will only be evaluated when a selector function is applied to the result.

Lazy languages, by only evaluating arguments as and when they are actually needed

might appear to o�er e�ciencies, and indeed they do by some absolute measure, for some

computations which are non-terminating when evaluated eagerly, do terminate when evalu-

ated lazily.

More mundane considerations, alas, make laziness less desirable. Procrastination, as we

all know, is a thief of time. Lazy evaluation involves the computer amassing upon the heap

records of thoughts for the morrow which are a great burden upon the storage allocator.

This can be mitigated by strictness analysis, by which the requirements of strict functions

are propagated throughout a program.

POP-11 provides some of the capabilities of lazy languages within its essentially eager

framework. In particular, POP-11 lists are designed to be capable of representing in�nite

sequences of objects. This can be useful in writing parsers, which can be made pure functions

on lists of tokens.

Below are shown lazy and eager representations of matrices.

vars n_rows = newassoc([]), ;;; Maps from matrix to the

n_cols = newassoc([]); ;;; number of rows and cols.

define new_lazy_matrix(m,n,A) -> A; ;;; A lazy matrix is simply

m -> n_rows(A); ;;; a function with associated

n -> n_cols(A); ;;; dimensions.

enddefine;

define new_eager_matrix(m,n,A) -> A1; ;;; An eager matrix is an array

lvars m,n,A,A1 = newarray([%1,m,1,n%],A);

enddefine;

define n_rows(A);

A.boundslist.tl.hd;

16 CHAPTER 1. INTRODUCTION

enddefine;

define n_cols(A);

A.boundslist.tl.tl.tl.hd

enddefine;

define mult_mat(A,B);

lvars m = n_cols(A);

new_matrix(n_rows(A),

n_cols(B),

procedure(i,k) -> s;

lvars i j k s=0;

for j from 1 to m do

A(i,j)*B(j,k) + s -> s;

endfor

endprocedure)

enddefine;

1.7 The development of POP-11

Since this book deals in detail with POP-11, it is best to explain the development of the

language by reference to its current state.

The major structural features of the language were developed by 1968, including the

functional treatment of arrays, dynamic lists, the incremental compiler, records and record-

classes.

Subsequent development of POP-11 fall into the following categories:

1. provision of additional language features

2. providing user-accessibility to facilities that existed in the system but were not `seen'

by the user

1.7. THE DEVELOPMENT OF POP-11 17

3. providing a more complete `view' of computer and operating system.

involved

� A move to using upper and lower case characters, distinguishing between the two (c.f.

LISP). This was also provided on the DEC-10 dialect.

� The provision of a pattern matcher.

Lisp family - much in common with Pop Readability Clean treatment of procedures as

objects (like Scheme) A short list of features only in Pop (described in more detail later):

stack, VM, processes, partial application, matcher, dlocal, compiler routines, layered saved

images, POPC??....

The original POP-2 code-generator was capable of emitting a very restricted set of in-

structions. This was partly motivated by the fact that it ran in a time-sharing system in

which a user would crash not just his own process but the entire machine. This inhibited

portability of the language, since an implementation on a new machine would require a

sizable kernel of primitive procedures to be written.

Part of the original vision for POP-2 had been as an implementation language for other

languages. Thus the paper [5] contains a discussion of the development of a logic-based

language. POP-2 provided good support for the initial stages of this work. Work by Boyer

and Moore explored structure sharing in logic | an essential component of any practical

logic-based language. Burstall and Darlington and others worked on developing the Hope

language, based on recursion equations. However the further development of POP-2 based

systems was hindered by (a) lack of portability and (b) the inability of the system to generate

good quality code.

This problem was attacked in the development of POPLOG. In this, a system dialect of

POP was developed which supports extended code generation. Thus system portability is

greatly enhanced.

Intended for the education of the sons of gentlemen. Research was administered by civil

servants to whom publication appears to be an unnatural vice.

18 CHAPTER 1. INTRODUCTION

1.7.1 Comparison with LISP

LISP was one of the most signi�cant in
uences in the design of POP-2.

� In POP-11 and SCHEME the binding of procedures to procedure names uses the same

mechanism as the binding of other objects to variable names.

�

�

Bibliography

[1] Burstall, R.M. and Popplestone, R.J., [1968] The POP-2 Reference Manual, Machine

Intelligence 2, pp. 205-46, eds Dale,E. and Michie,D. Oliver and Boyd, Edinburgh,

Scotland.

[2] Burstall, R.M., Collins, J.S. and Popplestone, R.J., 1971, Programming in POP-2,

Edinburgh University Press, Edinburgh.

[3] Michie,D. 1968 "Memo functions and Machine Learning, Nature, 218 19-22.

[4] Mc Carthy, J. and Hayes, P.J. [1969] Some Philosophical Problems from the Standpoint

of Arti�cial Intelligence, in Machine Intelligence 4 (eds Meltzer B. and Michie, D),

Edinburgh University Press.

[5] Popplestone,R.J. 1968 \The Design Philosophy of POP-2" in Machine Intelligence 3,

ed. D.Michie.

19

20 BIBLIOGRAPHY

Chapter 2

In which we learn All about

Procedures

\Well," said Owl, \the customary procedure in such cases is as follows."

\What does Crustimoney Proseedcake mean?" said Pooh. \For I am a Bear of Very Little

Brain, and long words Bother me."

\It means the Thing to Do."

\As long as it means that, I don't mind," said Pooh humbly.

Copyright R.J.Popplestone and the University of Sussex, 1988.

Somewhere we should have a discussion of `call by value' and copying. NOTE

- Cog App should look at dlocal, active.

From johng

In fact

21

22 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

de�ne foo(); lvars x, y; de�ne fred(); -> y -> x; lvars x, y; ...

DOES give an error, i.e. when lvars are used non-locally and then redeclared as local.

The problem arises when the preceding non-local use references permanent variables; at

the moment, the VM compiler doesn't check for this case (I agree it probably should, but it

means maintaining a list of all permanent identi�ers referred so far in the current procedure).

From aarons

I have just found this in an old email message from Robin Popplestone. Robin said: |{

>I had trouble with the following (machine generated) de�nition, which >worked OK with

vars. > >de�ne fred ; -> y -> x ; lvars x y ; + (x , y) endde�ne ; |{ My feeling is that this

should not work.

Currently Pop-11 treats the �rst occurrences of x and y as non-local non-lexical, declaring

them if necessary.

Wouldn't it be better if it gave an error?

Compare de�ne fred; lvars y = (), x = (); +(x,y) endde�ne;

which does what Robin probably wanted. Aaron

2.1 What are procedures?

Recall that any behavior of a POP system is achieved by procedures. In POP a procedure

is a kind of data-object which can be \called" in order to make it exhibit behavior. For

example

2.1. WHAT ARE PROCEDURES? 23

sqrt(0.5) =>

calls the procedure sqrt to extract the square-root of the number 0:5

1

There are a number of synonyms for calling a procedure. We may speak of applying,

calling, running, invoking, obeying, executing or activating a procedure. We shall con�ne

ourselves to referring to the terms \calling" and \applying", \running" and \executing". In

a POP context \calling" and \applying" are synonymous, but they do have a di�erent back-

ground, with di�erent connotations. We will mostly use \calling" when we are concentrating

on the mechanics of what happens when we get a procedure to do something. Mathemati-

cians speak of \applying" a mathematical function to its arguments. In many cases it is

useful to think of a POP procedure as implementing a mathematical function, and to speak

of applying it to its arguments. The essential di�erence between a function and a procedure

is that a function always produces the same result when it is applied to the same arguments,

whereas a procedure does not necessarily do so. In addition, a mathematical function always

produces a result when it is applied to any arguments in its domain.

In mathematics, if we apply a function f to an argument x obtaining a value y, we say

that y is, or is equal to, f(x), and write y = f(x). In computing we tend to speak of a

procedure as returning or producing a result.

The idea of a partial function which does not always produce a result is much employed

in the theory of computation, since if a formalism is su�ciently powerful to de�ne many

\interesting" functions, it is a real problem to know whether a particular de�nition expressed

in that formalism does indeed de�ne a function, or only de�nes a partial function.

In POP the addition procedure + is a partial function, since x + y always gives the

same result if x and y have the same values, whereas the procedure oneof for choosing a

member of a list randomly is not a partial function since oneof([1 2 3]) can yield a di�erent

result on di�erent occasions. The procedure + is only a partial function, since it may fail to

perform addition on numbers which are too big.

2

A full theoretical treatment of procedures

1

In fact it is possible to associate behavior with any POP object, using the class apply �eld of the data-

key. But this behavior is always accomplished by a procedure associated with the object class, as described

in Chapter 3.13.

2

Note that POPLOG POP-11 provides arbitrary precision integer arithmetic | however even with this

capability it is still possible for the procedure + to fail to produce a result, since the system may run out of

memory.

24 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

has to take into account the state of the machine that is executing the procedure, and is

consequently much more complicated than a applicative theory. Those familiar with digital

electronic circuits will recognise a close analogy here. Circuits composed of logic gates in

which there is no feedback from the output of one gate to an input of a preceding gate can

be analysed using Boolean algebra, whereas circuits with such feed-back can have internal

states, and cannot be analysed using Boolean algebra alone. However, just because Boolean

algebra is not applicable to the complete analysis of every circuit does not mean that it is

useless for analysing any part of any circuit, and likewise an applicative understanding of

procedures is a valuable way of analysing the behavior of all of some programs and of parts

of others.

Many mathematical functions take several arguments. Addition, for example takes 2.

We can regard this however as mapping from a tuple of arguments to a result, that is to

say, the domain of such a function is a Cartesian Product. It is usual in mathematics to

suppose that the arity of a function is known and constant in any particular theory - sin

for example only ever takes one argument. It is useful computationally to extend this idea

to allow functions which are variadic | i.e. they may take a tuple of unspeci�ed size as

argument. POP in particular does allow variadic functions, and also vari-result functions

which may produce tuples of arbitrary size as result.

3

.

A POP procedure has a standard written form, which is a sequence of ASCII characters.

This is translated by the POP compiler into Virtual Machine Code (VMCODE), which may

be further translated into the actual code of the computer on which POP is implemented. The

serious POP user does need an understanding of the Virtual Machine, but this is a su�cient

model for his understanding | details of the actual machine code are not important for users

who are not concerned with implementing a POP system. We will speak of a procedure as

running when it has been called and its VMCODE is currently being executed. We will use

the term executing for the process of executing VMCODE.

Every POP system comes with many built-in procedures. For example hd and tl, sin

and cos are built in procedures. Other procedures are available in the library, are de�ned in

POP-11 and autoloaded as needed, so that they appear to be built-in. The library mechanism

is described in 14.

4

3

The POP treatment of such functions does however di�er signi�cantly from that of LISP

4

In fact, in POPLOG, most of the built-in procedures are also written in the system-dialect of POP, but

their text is not available to the user in the way that library procedures are.

2.1. WHAT ARE PROCEDURES? 25

The running of a procedure can be regarded as having three phases

� Entry to the procedure: this serves to set up the computer's memory before:

� Executing the body of the procedure: this is when the main computation is done, whether

speci�ed by the user or as part of a built-in procedure.

� Exiting from the procedure: this usually sets up the computers memory to permit the

computer to carry on doing what it was doing before the procedure was called.

Immediate execution of POP text outside of an explicit procedure de�nition, either as

typed in commands, or from a �le, is accomplished by treating POP text up to a semicolon

(;) or printarrow ()) as a kind of anonymous procedure de�nition which is called as soon

as the terminating word is encountered, and then thrown away.

When we speak of compile time we mean any time during which the POP compiler, which

is simply a built-in procedure, is running. In conventional languages like Pascal, compiling

is an entirely separate activity from running a program, but in POP the two are closely

interleaved.

Some other interactive languages require no compilation at all. Basic is perhaps the best

known example. The text of a Basic program is interpreted by the computer running Basic.

5

Some programming languages allow the user only to de�ne procedures which are partial

functions; these are called applicative languages. The language ML [?] is an example of such

a language. It is possible to use POP and LISP as applicative languages by never updating

data-objects and by only making one assignment to any variable. This makes for programs

which are less e�cient, but does not seriously restrict the programmer except for applications

in which complex interactions with the outside world are taking place.

POP and LISP can return any data-object as the result of a procedure. This is made

practicable by the garbage collector, a concept �rst developed for LISP. The garbage collector

is a built-in procedure which discovers data-objects that the user can no longer access, and

collects up the storage that they occupy for re-use. It is not usually necessary for the POP

5

It is possible to obtain improved performance in Basic by compiling each line of Basic before it is executed

the �rst time, and continuing to use the compiled version until the text is edited by the human user.

26 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

user to call the garbage collector explicitly | it will be called as necessary by any procedure

which creates a data-object. Languages like Pascal which do not have a garbage collector

restrict the user to being only able to write applicatively those procedures which return a

restricted range of data objects as result. In particular it is di�cult to express symbolic

computation in such languages in the applicative form which makes it (relatively) easy to

know that the program is correct.

As we shall see later, it is much easier to reason about the behavior of programs written

applicatively because the usual mathematical rule that things which are equal can be freely

substituted for each other.

POP was strongly in
uenced by mathematics during its design | it is perhaps accurate

to characterise POP as a blend of mathematical and computational ideas, whereas LISP

is a purely mathematical core upon which has been grafted a great deal of computation.

Some of the procedure names of POP (apply, partapply) are derived, via LISP, from the

mathematical ideas, although they are not restricted to working with purely applicative

programming.

During our systematic treatment of procedures in this chapter we address ourselves to

the following questions:

� What is the written form of procedure de�nitions?

� How can we begin to reason about procedures?

� What actually happens when we run a procedure?

� A procedure is a data-object | what procedures can we use to access its �elds?

� How can we write procedures which create other procedures?

2.2 The form and role of a procedure de�nition

A procedure de�nition can be best thought of as a special kind of an initialised variable

declaration, and thus it does two main things; it declares an identi�er (the name of the

procedure) and assigns it a value (a data-object of type procedure). Thus for example:

2.2. THE FORM AND ROLE OF A PROCEDURE DEFINITION 27

define sumsq(x,y);

x**2 + y**2

enddefine;

de�nes a procedure which takes two arguments x and y and returns the sum of their

squares. The name \sumsq" is de�ned as an ordinary variable, a procedure data-object is

created and assigned to the variable.

6

The original text that de�ned a POP procedure

object is not embodied in the procedure object when a procedure de�nition is processed (in

most of the machines in which POP runs, it would be too expensive to keep it around except

on disc).

7

It is however important for a procedure object to have a name, so that the user

can recognise it if he prints it out. Hence a procedure de�nition takes an additional third

action, it updates a �eld of the procedure object called the pdprops �eld to be the name of

the procedure.

To illustrate that a procedure de�nition does indeed create a variable which has a pro-

cedure object as value, try typing in the de�nition above, and try:

sumsq =>

** <procedure sumsq>

That is, the value of a procedure variable can be printed in the same way as the value

of any other variable. There is an exception to this rule in the case of certain procedures

variables such as operations and macros | see 2.7.1 and 2.26.1. The default way of printing

a procedure object is as above, i.e. the word \procedure" followed by the name of the

procedure all enclosed in angle brackets.

Built in procedures are likewise the values of variables, although the variable concerned

is usually protected to prevent it being accidentally changed (see 5.3.7).

6

POP-2 departed from LISP in making the binding from procedure-name to procedure object be the same

as the binding from variable to data-object. The POP convention was subsequently adopted for the SCHEME

dialect of LISP, but COMMON-LISP preserves the original convention. Arguably the POP/SCHEME con-

vention comes closer to treating procedures as \�rst class citizens".

7

In a later chapter ?? we shall show how it is possible to to provide the user with the capability of seeing

the text which gave rise to a particular procedure.

28 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

sin =>

** <procedure sin>

Just as we do not have to make every list we create be the value of a variable, there is a

way of creating an \anonymous" procedure-object without an associated procedure valued

variable, for example:

procedure(x,y); x**2 + y**2 endprocedure

creates the procedure object which performs the sum-of-squares operation de�ned above.

Indeed the following is almost equivalent to the procedure de�nition at the beginning of this

section

vars sumsq = procedure(x,y); x**2 + y**2 endprocedure;

You will notice that there is a di�erence if you try printing out the value of sumsq.

The general forms of the named procedures created with define and the anonymous

procedures created with procedure are the same apart from a short sequence which names

the variable and may associate certain special properties with it (e.g. that it is an operation).

The speci�cation of the syntax of a POP-11 procedure de�nition in BNF is:

<definition> = define {<defn_spec>} <args>{<rtarrow> <results>}{<with_specs>} ;

<expression_sequence>

enddefine

<procedure> = procedure <args><results>{<with_specs>} ;

<expression_sequence>

endprocedure

<rtarrow> = '->'

2.2. THE FORM AND ROLE OF A PROCEDURE DEFINITION 29

The < defn spec > is usually absent. However it can be used to specify that a procedure

identi�er should behave as an in�x operator such as + (see section 2.7.1) or to modify the

language syntax using a macro (see section 2.26.1) or syntax (see section 2.27). de�nition,

or to de�ne what happens when a procedure occurs as the destination of an assignment

statement (see section 2.10). The syntax of < defn spec > is given below. The procedure

option is used to restrict the identi�er to being procedure-valued | it must not be confused

with the anonymous procedure form.

<defn_spec> = {updaterof} | <identprops>

<identprops> = macro | syntax | syntax <precedence>

| procedure | <precedence>

<precedence> = <decimal>

As in the above examples, < args > is a speci�cation of the variables which are the

arguments (or formal parameters or input variables of the procedure. Usually they provide

a pattern for how the procedure should be called. For example the sumsq procedure de�ned

above can be called by:

sumsq(3,4) =>

** 25

sqrt(sumsq(2+1,4)) =>

** 5.0

The essential idea is that the variables in < args > are given values determined by

the call of the procedure (in the above example x = 3 and y = 4 in both cases), and the

< expression sequence > is then executed to determine the result of the procedure. However

for some purposes it is necessary to have a more detailed understanding than this, and what

actually happens when a procedure is called is explained in section 2.5. In particular, we

explain how the system avoids confusing the values of variables which have the same name

in di�erent procedures. Occasionally you may need to write POP procedures in which the

arguments in the procedure heading do not match the call.

The formal syntax of the < args > is as follows:

30 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

<args> = (<word> { {,} word}*) | <word> {{,}word}*}

This is pretty free. Parentheses, if present, must match, and the words may be separated

by commas. It is better to use both parentheses and commas if you are de�ning a normal

procedure, since this indicates the pattern of how it should be called.

Note that the word \procedure" immediately preceding a word < word > in an < args >

statement is used to restrict the variable < word > to being of type procedure, and not to

declare an argument called procedure.

The < results > may not be present (more precisely they may be an empty sequence).

They serve (a) to make it clear what the result of a complicated procedure is and (b) to allow

a procedure conveniently to return more than one result. They are described in section 2.5.

The < with spec > is rather seldom used. It allows the user to modify certain aspects

of the procedure object, and is described in section 2.21.1.

The < expression sequence > is what does the actual work of the procedure, and is often

referred to as the body of the procedure. Unless the procedure is trivial, it will call other

procedures | either built-in procedures or user-de�ned ones | to accomplish its purpose.

E.g. the sumsq procedure de�ned above, the < expression sequence > is x � �2 + y � �2

which calls the procedures + and �� (twice each) to perform addition and exponentiation.

In many cases constructions will be used which will choose alternative procedures to call,

or repeat sequences of procedure calls. We shall explain the possible forms of a statement

sequence in section 2.12.

2.3 The ordinary syntax for calling procedures

A normal procedure identi�er is simply an identi�er that has a procedure as its value. See

5.3.5 for how to �nd out about the properties of an identi�er using identprops. A procedure

is called by the syntax:

2.4. AN APPLICATIVE MODEL OF PROCEDURE CALLING 31

<word>({<expression>}{,<expression>}*)

here < word > is the name of the procedure identi�er.

Other forms of procedure calling are discussed in section 2.7

2.4 An applicative model of procedure calling

We can regard the calling of sumsq as simply substituting the actual arguments 3 and 4

for the formal arguments x and y, in the expression sequence x � �2 + y � �2 thus obtaining

3��2+4��2. In some sense, this expression then evaluates to 25, via applications of + and ��.

Being able to understand the process of calling a user-de�ned procedure as being a process

of substitution is the essence of applicative programming, and underlies the simplicity of

reasoning about applicative programs.

In a later chapter we will develop objects called terms which allow us to treat procedure

call as substitution, and reason about procedures. This opens up a number of possibilities

| that of being able to prove that a procedure is correct, and being able to craft a complex

procedure from a number of simpler standard ones without sacri�cing e�ciency.

8

8

It has to be admitted that LISP provides a more direct treatment of the applicative model than POP

does, since LISP function de�nitions are lists with a very direct representation of the applicative structure.

During the design of POP-2, Rod Burstall did advocate that POP should have a de�ned abstract syntax

which would provide a similar capability. However it seemed di�cult to incorporate variadic functions into

this framework, and these functions were needed for some important capabilities, such as de�ning newarray.

In addition, we needed to get the language implemented on what was a tiny machine by today's standards,

and an abstract syntax representation of every procedure would have taken more room, and would have

had to be interpreted. The Prolog language provides an abstract syntax, which is interpreted in some

implementations, but compiled (and decompiled!) in others (CHECK). In this book, we will explore the idea

of an abstract syntax for POP in ??

32 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

2.5 But procedures actually operate o� the stack

POP-11 uses a portion of its memory known as the user stack, abbreviated usually as the

stack, for procedures to store information temporarily when communicating with other pro-

cedures. Besides the user stack, there is also a call-stack used by the procedure calling

mechanism mostly to support the implementation of local variables. The use of this is de-

scribed in section 2.6.1. Detailed knowledge of this second stack is not required for most

applications of POP.

The stack is so called because, like a stack of plates, you can add things on the top, and

you can take things o� the top. The thing you take o� will always be the last thing that

was put on. Such a structure is sometimes called a Last In First Out, or LIFO, structure.

Usually computer scientists speak of pushing data-objects on a stack | the image is that

of a spring-loaded stack of plates. The action of taking items o� the stack is referred to as

popping | no pun intended. So procedures communicate information with one another as

follows. If procedure P

1

wants to execute procedure P

2

giving it certain arguments, it pushes

those arguments on the stack and then just calls P

2

, leaving it to P

2

to take them o�, as

needed.

If when P

2

has �nished it has any information for P

1

, it should push the information on the

stack, and P

1

can pop it o� as needed. The syntactic forms of POP are intended to express

these stack actions in a form that aids an understanding of the process in applicative terms,

and indeed it is possible to show that an applicative language can be correctly implemented

using stack operations [?].

We will illustrate the stack operations in discussing the operation of POP by drawing

our stack horizontally, with the top to the right. Thus

1 2 3

is the result of pushing the numbers 1, 2 and 3 on the stack. Sometimes we will label a

stack box with the name of the variable that has been pushed in it, if we have not stated

what its value is, or the result of a computation, such as x+3. The empty stack is displayed

as

2.5. BUT PROCEDURES ACTUALLY OPERATE OFF THE STACK 33

Recall our old friend sumsq. We will rewrite it in a slightly di�erent form:

define sumsq(x,y) -> r;

x*x + y*y -> r;

enddefine;

The top line of the procedure de�nition says a number of things:

� This is a de�nition of a procedure, whose name is \sumsq".

� It has three local variables, called x, y and r. Local variables are in some sense private

9

to the procedure, so that they do not get in the way of other variables of the same name.

Indeed, when a procedure calls itself recursively, we have to keep distinct versions of

local variables for di�erent calls of the same procedure. Local variables are discussed

in section 2.6.1. The �rst action that is taken when a procedure is called is to ensure

that local variables do not interact with other variables of the same name, and the

last action before control is returned from sumsq to the procedure that called it is

in some sense to restore the local-variable accessing mechanism to its state before the

procedure was called.

� Two of the local variables x and y are also arguments, so when sumsq runs, there should

be two (or more) data-objects on the user stack. (There might be more, because other

procedures have stored information which is to be used later.) The top two data-

objects will be removed from the stack, the top one being assigned to y and the next

one to x (compare the order in the procedure heading).

� When the procedure �nishes running, but before the local variables are restored, the

value of the variable r, whatever it is, should be left on the stack. (N.B. the procedure

heading does not state that anything will be assigned to r. That has to be done inside

the procedure body)

All of the above is implied in just the �rst line of the procedure de�nition. Look at the

procedure heading again and see how it gives all that information. The rest of the procedure

says how the values given to x and y are to be used to work out what number to assign to

r, so that it can be produced as the result at the end.

9

We are not using private in a special technical sense here, as it is used in ADA.

34 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

Now suppose you ask sumsq to �nd the sum of the squares of 3 and 4, and assign the

result to z;

sumsq(3,4) -> z;

Notice how this has the same general format as the procedure heading in the de�nition

define sumsq(x,y) -> r;

The statement sumsq(3; 4)! z; translates into the following:

1. push 3 on the stack 3

2. push 4 on the stack 3 4

3. call the procedure sumsq 25

4. remove the top item from the stack and store it in the variable z,

We shall see in Chapter 16 that each of the operations 1{4 above is one VMCODE

instruction.

If you then type z) this translates into \Push the value of z on the stack, then run

the print arrow procedure". The print arrow procedure simply prints out two asterisks, and

then all the items on the stack.

As implied in step 4 above, the assignment arrow! is used to cause the top of the stack

to be moved to somewhere else, usually to a variable. The ! should not be confused with

)

2.5. BUT PROCEDURES ACTUALLY OPERATE OFF THE STACK 35

2.5.1 Nested Procedure Calls

In general, if you call a procedure, by typing its name, then various expressions between

parentheses, then this means push the values of all the expressions (i.e. the things denoted

by the expressions) onto the stack, then call the procedure. E.g. if fred is a procedure that

adds three numbers then:

fred(10, sumsq(3,4), 99)

Means:

� push 10 on the stack 10

� push the result of sumsq(3,4) on the stack 10 25

� push 99 on the stack 10 25 99

� call the procedure called fred 134

Getting the result of sumsq(3,4) itself can be expanded in similar fashion, so the expression

fred(x; sumsq(3; 4); 99) translates to

� push the value of x on the stack x

� push 3 on the stack x 3

� push 4 on the stack x 3 4

� call the procedure sumsq x 25

� push 99 on the stack x 25 99

36 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

� call the procedure fred 134

In general, any word or other data-object or expression terminating with parentheses

immediately preceding an opening parenthesis will be treated as follows:

� Push the values of all of the expressions enclosed within the parentheses on the stack

� Call the object as though it were a procedure.

Usually the object will be a word which is the name of a variable whose value is a procedure-

object, as in the example above. It is however possible to associate procedural behavior with

any data-object, as described in chapter 3.13. For example if L is a list and i is a number,

then L(i) is the ith member of L.

In particular, a procedure call may produce a procedure-object as result which may itself

be applied.

vars F_trig = [^sin ^cos ^tan];

F_trig(2)(0.1) =>

Translates to

� Push 0.1 on the stack. 0.1

� Push 2 on the stack. 0.1 2

� Call F trig 0.1 cos

� Call apply | a special procedure for calling the procedure object on the top of the

stack. 0:995004

When a list is called as a procedure it replaces the number which is the head of the stack

by the list-member indexed by that number. The e�ect of the above sequence is to evaluate

cos(0:1), where the angle is measured in radians (assuming popradians = true).

2.5. BUT PROCEDURES ACTUALLY OPERATE OFF THE STACK 37

2.5.2 Procedures which act just on the user stack

The following procedures allow you to perform various useful manipulations on the user

stack.

identfn()! ()

The identity procedure does absolutely nothing when called and so leaves the user stack

untouched. This might appear to be a useless procedure, but it is useful when passed as a

procedure argument to other procedures, e.g. applist described in Chapter ??.

erase(O)! ()

This procedure removes the top item from the user stack. This can also be achieved by an

isolated assignment, ;!;.

erasenum(O

1

; O

2

; : : : ; O

n

; n)

This procedure removes the top n items from the user stack.

dup(O)! O! O

This procedure duplicates the top item on the user stack.

There are some procedures which tell you something about the state of the user stack as

a whole, or allow you to manipulate it as a whole:

stacklength()! n

This procedure returns the number of items on the user stack.

setstacklength(n)

This procedure sets the user stack length to n. If the current stacklength m is greater than

n, then m�n items are erased, otherwise n�m nils ([]s) are pushed on (the reason for using

38 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

[] is that this procedure is principally used by the Lisp compiler).

clearstack()

This procedure clears all items from the user stack.

subscr stack(n)! O

O! subscr stack(n)

Return or updates the n-th element on the user stack, where the element on top of the stack

(the most recently pushed) has subscript 1.

Finally note the existence of this constant:

popstackmark

The value of this constant is a stackmark record (whose conventional use is by the POP-11

list constructor to mark a position on the stack for sysconslist { see ??). This item is the

only stackmark record available to the user (although others are used inside the system); it

prints as < popstackmark >.

2.5.3 A comparison between procedure calling in POP and other

languages

Readers who have an understanding of other languages, or of computer architectures should

understand that the POP stack contains data-objects represented by one machine word each.

This is usually 32 bits, or 4 bytes.

The procedure call mechanism in many languages is supported by a single stack. This is

possible because the number of arguments to and results of a procedure are known at compile

time. POP allows you to write procedures in which this is only determined at run-time, and

indeed there are some built in procedures like this, for example consword (see 8.1).

2.6. WHAT HAPPENS INSIDE A PROCEDURE WHEN IT IS CALLED 39

Lisp also has a capability of passing a variable number of arguments to a procedure and

returning a variable number of results. The Lisp model for doing this is to pass them as a

list. In the Symbolics implementation of Common Lisp, this list is actually built by pushing

the arguments on one of the machine stacks. The stacked arguments can then be made

to appear as a list by using the technique of \CDR coding", which allows a sequence of

pointers in store to be regarded as a list if they are suitably
agged. This technique however

is contentious, because this \list" is very volatile | it only exists for the duration of the

procedure call.

A detailed discussion of the POP implementation is given in Chapter 16.

2.6 What happens inside a procedure when it is called

The following is a su�cient model for understanding what happens when a procedure is

called from the point of view of a POP user. For implementation it may be possible to make

use of certain shortcuts where a procedure that is normally constant, such as +, is being

called.

� The procedure prepares the memory locations that will hold its local variables, that is

any variables declared between the define and enddefine or procedure and endprocedure.

The nature of the preparation depends on whether the variables are dynamically or

lexically local, as described in section 2.6.1 Arguments and results are treated as vari-

ables declared in the procedure.

� The actual values of the arguments are taken o� the stack and assigned to the argument

variables. The top of the stack is assigned to the last argument variable, the top-but-

one of the stack to the penultimate argument variable etc.

� The VMCODE derived from the < expression sequence > that forms the body of the

procedure is executed.

� When this has �nished, either by a return, described in section 2.12.4 or by reaching

the end of the

< expression sequence >, the result variables are placed on the stack, in inverse order

to that in which they were declared.

40 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

� The procedure restores the memory locations that have held the local variables, and

returns control to the procedure which called it.

There are certain exceptions to this behavior. A procedure can be called to update a

data-object, and what happens in this case is described in section 2.10. A procedure may

return control to a procedure other than that which immediately called it. This behavior is

described in section 2.24, and in Chapter 12.

Thus entering a procedure means the behavior necessary to protect the local variables

and give the argument-variables their values, and exiting from a procedure to mean the

behavior necesary to restore the state of the local variables and return the results as ap-

propriate. A normal exit is that accomplished by a return statement, or by completing the

execution of the procedure body. An abnormal exit is one accomplished by any other means.

2.6.1 Local variables and expressions

As we have indicated above, a procedure needs local variables to have somewhere \private"

to keep data-objects away from accidental interference by another procedure. There are two

basic strategies for accomplishing this:

� The value of the variable can be saved on entry to the procedure and restored on exit.

In this case, the variable is said to be dynamically local.

10

� For the duration of the procedure execution, the value of the variable can be held in a

place in store unique to that call of the procedure. In this case the variable is said to

be lexically local.

It is important to realise that these categories refer to the manner in which a variable is

local to a procedure, and not to the variable itself. In particular, a variable that is lexically

10

Special variables in Common Lisp are dynamic in this sense.

2.6. WHAT HAPPENS INSIDE A PROCEDURE WHEN IT IS CALLED 41

local to a procedure P

1

can be dynamically local to a procedure P

2

de�ned within the body

of P

1

.

11

A variable is said to be a lexical variable if it is lexically local in some procedure. Oth-

erwise it is said to be a permanent variable. Further information about how variables are

stored and accessed is to be found in Chapter 5 and Chapter 16. Note that it is important

to distinguish between di�erent variables with the same name | essentially a variable is one

location in memory that stores a value associated with a word, which is the name of the

variable. One word can be associated with many di�erent locations at di�erent times.

For historic reasons, arguments and results of procedures are dynamically local by default.

You are urged to use lexical locality if it is available in your implementation, since it is more

e�cient and avoids some name-clashes which are still possible with dynamic variables.

Another reason for preferring lexical locality is to do with processes, described in Chapter

12. You will need processes if you want to have a number of procedures each of which may

have to stop running because it needs some data, typically from an external source. When

this happens, the process can be suspended until a later occasion in which data is available,

when it may be resumed. Process swapping is more e�cient if lexical variables are used in

the procedures used in the processes, since the state of a process is neatly encapsulated in

the user and save stacks.

12

If you want to write code that will make use of lexical locality if available but default to

dynamic locality if not, you can de�ne suitable macros (see 2.26.1) which will allow you use

the forms for declaring lexical locality while actually implementing dynamic locality. If you

do this, you should be careful to ensure that your programs will work with either kind of

variable | there are real di�erences between them.

11

The return-address of the procedure call is also saved on the call-stack, although it has to be saved

as a (pointer to a procedure data-object) + o�set, since the garbage collector cannot accept pointers to

the middle of a data-object. Whether is can be properly regarded as dynamically local will depend on the

computer hardware. However POP users do not have direct access to it.

12

When we designed POP-2 we considered lexical variables as an option. We chose dynamic variables

because: (a) We were working on the Elliot 4100 series machines in which the single index register doubled

as as stack pointer. Now e�cient implementation of lexical locality requires that an index register be used

as a base address to access them. So we couldn't both have a user stack and lexical locals and compact,

e�cient (by AI language standards) machine code. (b) It is easier to provide information about the values

of the local variables of a procedure after a mishap (or error as we called it then) if dynamic locals are used,

since the actual values are in the locations named by the variables).

42 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

Dynamic Locality

In POP-11 expressions as well as variables can be dynamically local. The syntax word dlocal

provides the most general form to introduce dynamic locality, that is to specify expressions

(including variables) whose values are to be saved on entry to a procedure and restored on

exit. Thus any assignments to the variable or expression while the procedure is running

do not a�ect the value the variable has when the procedure has returned control to its

caller. The restoration involves an assignment operation, so the only expressions that can be

dynamically local are those that can be assigned to. Section 2.10 tells you about assignment

to expressions.

The term exit refers both to the normal return from a procedure and also to the abnor-

mal exits described in section 2.24, and those associated with the suspension of a process,

described in Chapter 12. Full details of the mechanisms involved are given in ??.

The simplest form of a dynamic local declaration is the ordinary vars declaration when

used within the body of a procedure. The syntax is given in Chapter 5. In AlphaPop this

is the only form currently available. It has the e�ect of (re)declaring a permanent variable,

and should only be used if you are sure that the variable should be permanent. dlocal,

described below, is more
exible, and should be used if available. You can in any event

permit its simpler uses by de�ning it as a macro if not available.

The syntax of a dlocal declaration is:

<declaration> = <variable_class> <varspec>* ;

<dlocal_decl> = dlocal <dloc_varspec>*;

<dloc_varspec> = <word> {,}

| <word> = <expression>,

| nonactive <varspec>

| nonactive (<varspec>*){,}

| {<n>}%<expression>%

| {<n>}%<expression 1> = <expression 2>%

| {<n>}%{<expression 1>}, <expression 2>%

A dlocal declaration must be made within a procedure body, and it may specify that the

2.6. WHAT HAPPENS INSIDE A PROCEDURE WHEN IT IS CALLED 43

value of any of the following be saved and restored:

1. a permanent variable.

2. a lexical variable.

3. an active variable, as described in section 2.28

4. an arbitrary expression, sandwiched between % and %.

5. an expression with a multiplicity indicated by a pre�xed integer < n >.

6. two expressions, separated by a comma, one to be saved and one to be restored. The

�rst expression is optional.

The multiplicity of an expression is the number of results it is expected to produce. This

must be known and constant, and the expression must be capable of being updated with

the same number of results. The default multiplicity for expressions is 1. The multiplicity

for variables is always known to the compiler, and is 1 except for active variables. You can

give a multiplicity for variables using the < n > % : : :% construction, but is almost always

inappropriate to do so.

The declaration may also specify an initial value to be assigned to the expression when

the procedure is run.

An example of a dlocal declaration is the following

dlocal

var1, active_var1, ;;; ordinary or active identifiers

var2 = x+4, ;;; initialise var2 with <expression>

nonactive active_var2, ;;; nonactive value of active identifier

active_var3=(3,4,5), ;;; does: 3,4,5 -> active_var3

%hd(L)%, ;;; expression to be saved and restored

%hd(L2)%= 4, ;;; L2 is initialised (after saving)

3 %explode(L3)%, ;;; Multiplicity 3, so list L3

;;; must have 3 members

2 %explode(L4)%=(1+x,2+y),;;; does: 1+x, 2+y -> dest(L4) on entry

44 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

3 %hd(L5),hd(L6)%, ;;; different expression run on exit

0 %,[]->tl(L7)%; ;;; only an exit action

Thus, in the case when only one expression is given between % and % then the updater

of its main procedure or operator is run when the procedure exits. So

dlocal 3 %f(x,g(y))%=(a,b,c);

Means

1. On entry, evaluate f(x; g(y)) and save its 3 results as sv

1

; sv

2

; sv

3

, say. These sv

i

are

held in the save stack, so they are in e�ect anonymous lexicals of the procedure.

2. Where the declaration occurs, do a; b; c! f(x; g(y)).

3. On exit do: sv

1

; sv

2

; sv

3

! f(x; g(y))

The procedure test below saves and restores the value of the expression hd(tl(List)),

where List is a global identi�er.

vars List =[1 2 3];

define test;

dlocal %hd(tl(List))%;

[original List ^List]=>

5 -> hd(tl(List));

[updated List ^List] =>

enddefine;

test();

** [original List [1 2 3]]

** [updated List [1 5 3]]

2.6. WHAT HAPPENS INSIDE A PROCEDURE WHEN IT IS CALLED 45

But the value of hd(tl(List)) has been restored on exit:

list =>

** [1 2 3]

It would also be restored if the procedure call terminated abnormally, e.g. as a result of

a mishap.

Since there are various ways in which the execution of a procedure may terminate, in-

cluding process suspension as described in Chapter 12 and exitto as described in section

2.24, it is important to be able to determine what has happened. To this end the active

variable dlocal context is provided. It has an integer value, the integer de�ning the context.

Moreover the active variable dlocal process points to the process undergoing suspension or

resumption.

So procedures run on entry or exit can use dlocal context and dlocal process to determine

what actions to perform.

When and how to use dynamic locality

If you have the option of using lexical variables, then you should only use dynamically locality

when you want to change the state of some variable or data-object that has meaning outside

the current procedure, just for the duration of that procedure. The most common cases will

be that of permanent system variables like cucharout, described in Chapter ??, which are

used to switch the behavior of the system. If, for example, you want to direct output to an

output stream charout 1, de�ned locally, you should say:

dlocal cucharout = charout_1;

Declaring cucharout as lexical (q.v.) would be wrong | you would simply create a new

lexical variable, and that would be initialised, leaving unchanged the memory location that

the system uses to determine how it is to output characters.

46 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

The di�erence between vars and dlocal

This section may be skipped on �rst reading, and depends on you having read Chapter 5.

Prior to the introduction of dlocal into POP, only permanent variables (i.e. those declared

with vars) could be made dynamically local to a procedure, and this had to be done with

a vars statement inside the procedure. However, this was unsatisfactory inasmuch as a

vars statement, being committed to declaring a permanent variable with the identprops

as speci�ed within the vars statement may alter the identprops of a previous permanent

declaration. In other words, vars statements inside procedures have the appearance of

making the identprops of variables local to the procedure, when in fact they do not.

dlocal however enables both permanent and lexical variables to be made dynamically local

to a procedure (without any redeclaration), and thus means that the use of vars statements

inside procedures can be avoided altogether; all permanent variables can be declared outside

of procedures, and then made procedure-local with dlocal, e.g.

vars honey;

define Pooh();

dlocal honey;

...

enddefine;

Note that this way of doing things makes permanent and lexical variables (q.v.) inter-

changeable, except insofar as lexical variables can be accessed only in the �le in which they

are declared.

So the above example could just as well have used lvars honey; instead of vars honey;.

No procedure invoked by Pooh would then be able to access honey unless declared in the

same �le.

If a procedure P

1

calls another procedure P

2

, then P

2

can make use of the dynamic local

variables of P

1

. Consider the following example:

define fred(x);

2.6. WHAT HAPPENS INSIDE A PROCEDURE WHEN IT IS CALLED 47

joe()

enddefine;

define joe();

x=>

enddefine;

vars x = "bunny";

x=>

** bunny

fred("cat");

** cat

Thus the argument x of fred which is a dynamic local variable of fred is visible to

joe. Readers familiar with a language like Pascal will know that this behavior could only

be obtained in such a language if de�nition of the procedure joe were contained within the

body of the de�nition of the procedure fred, that is to say, the occurrence of the variable x

in joe is within the lexical scope of the variable x in fred.

This kind of use of dynamic variables should be treated with circumspection, but it can

be useful, especially if one has a procedure which, in some sense, sets up an \environment"

of dynamic locals in which other procedures can operate.

Lexical Variables

A variable is said to be lexical if it is lexically local to some procedure, that is to say it is

declared by a variable declaration beginning with the word lvars or dlvars. The full syntax

is given in Chapter 5. Lexical variables di�er from dynamic variables in that it is impossible

to refer to them by name outside of the text of the procedure in which they are declared.

For the duration of the procedure in which they occur a lexical declaration of a word will

override any non-lexical declaration for the same word.

Using the dlvars form can be more e�cient than lvars in cases in which the variables

so declared are used non-locally in a lexically embedded procedure. This is described in

Chapter 16.5.

48 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

For reasons of compatibility with earlier POP systems, argument and result variables

are taken by the compiler to be dynamically local, unless they are explicitly and separately

declared as lexically local. This lexical declaration must immediately follow the procedure

header, and it is recommended that you declare all arguments and results in this way, e.g.:

define Pooh(x, y, z) -> P;

lvars x a y b c d procedure P;

...

enddefine;

POP lexical variables correspond to the variables of Scheme and Common-Lisp. They

di�er from the variables of Pascal and Ada in that they may be referred to in closures, and

so are more complicated to implement | they may continue to exist after a return from

their procedure.

So if we run our fred� joe example using lexical locality we obtain:

define fred(x);

lvars x;

joe()

enddefine;

define joe();

x=>

enddefine;

vars x = "bunny";

x=>

** bunny

fred("cat");

** bunny

That is, the variable x in joe is outside the scope of x in fred.

On modern computers it will be possible to access some lexically scoped variables faster

2.6. WHAT HAPPENS INSIDE A PROCEDURE WHEN IT IS CALLED 49

than dynamically scoped variables, and the instruction to do so will take less memory. This

will certainly be true if a lexical is fully local.

13

A lexical variable v is said to be fully local

if

� v is not referenced by any procedure which lexically nested within the procedure in

which v is declared.

� v is not referred to using the ident construction 5.3.

In particular, it may be possible to hold the value of some lexicals in the machine-

registers | ie. within the Central Processing Unit (CPU or mill) of the computer rather

than main memory. In POPLOG the �rst two lexical variables to be declared in a procedure

are normally allocated to registers, this allows a user to determine which variables should be

in the registers (i.e. x and a in the example above).

In order to aid you in making the above recommended declarations, there is a variable

provided in the POPLOG system. This variable, pop args warning has a default value of

false, but if you set it to true then any procedure whose formal parameters or output locals

are not explicitly declared as vars or lvars will produce a warning message, e.g.

true -> pop_args_warning;

define Pooh(x,y) -> z;

. . . .

enddefine;

;;; y DEFAULTED TO VARS IN PROCEDURE Pooh

;;; x DEFAULTED TO VARS IN PROCEDURE Pooh

;;; z DEFAULTED TO VARS IN PROCEDURE Pooh

If you write one procedure within the body of another, then the inner procedure can

access the lexical variables of the outer. This kind of layout is, of course, standard for

13

Fully local lexical variables can be e�ciently implemented since they can be allocated either to registers

or to cells in the procedure stack frame (giving faster access and compacter code). For more details on the

implementation see 16.

50 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

Pascal or Ada. In general it has a disadvantage in POP in that the procedures so enclosed

are not accessible outside the enclosing procedure, so they cannot be called independently,

e.g. for debugging. However we shall see that there is an important use of this nesting of

procedures for the creation of closures. The control of the scope of non-lexical variables is

better accomplished using sections, described in chapter 13

Restrictions on the use of lexical locals

The following restrictions can be expected on the use of lexical local variables:

� Their values cannot be accessed during a break, e.g. if popready is called. (see Chapter

??).

� Their values cannot be accessed or updated via calls of valof .

� Lexical variables cannot be used as settable pattern variables (i.e. those that begin with

\?" and \??") with matches and procedures that call matches, for example present,

lookup, remove, foreach. See ??. However lexical identi�ers can occur after " and ""

in lists

A reminder about things you can do with variables

Both lexical and dynamic variable can be used in initialised declarations, as described in 5.

For example you can say

lvars x = y+3, L = [];

which is equivalent to

lvars x, L; y+3 -> x; [] -> L;

2.6. WHAT HAPPENS INSIDE A PROCEDURE WHEN IT IS CALLED 51

Care is needed in using this construction, since if you put a semicolon instead of a comma,

you get a di�erent meaning:

lvars x = y+3; L = [];

will put the boolean result of evaluating L = []; on the stack. Note that the initialisation is

done at the place in the procedure body where the declaration occurs, whereas the actions

required to make the variable local, i.e. saving and restoring in the case of dynamic locality,

are done on entry and exit to the procedure.

The construction ident < word > available in POPLOG can be used to access a data-

object in which the actual value of the variable is kept. It is described in ??

A procedure can specify that one or more of its local variables parameters is to be a

variable of type procedure, thus

define applyto (list, procedure P);

vars x;

for x in list do P(x) endfor

enddefine;

would de�ne a procedure equivalent to the system procedure applist. It would be more

e�cient and would reduce the risk of a clash of identi�ers if lexical identi�ers were used

locally:

define applyto (list, P);

lvars x,list,procedure P;

for x in list do P(x) endfor

enddefine;

52 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

2.7 Other syntactic forms for calling procedures

2.7.1 Operators

Some procedures have names which are de�ned as operators. Examples are +, �, =, <>, : : .

They are most commonly placed between their arguments, and do not need parentheses to

indicate that they are to be called. Operators that are intended to be placed between their

arguments are informally referred to as in�x operators.

So x � y translates as

� push the value of x on the stack x

� push the value of y on the stack x y

� call the procedure � x*y

You can de�ne new operators by making use of the< defn spec > option in the procedure

de�nition syntax. Restricted for operator de�nitions, this is:

<defn_spec> = {updaterof} | <identprops1>

<identprops1> = <precedence>

<precedence> = <decimal>

Thus < defn spec > can be a numerical < precedence > and it is this that signals that

an operator is being de�ned. The < precedence > is a number between �12:7 and 12:7.

Only one digit after the point is signi�cant. It is used, as described below, to determine

which operator applies to which arguments when there is more than one operator in an

expression. E.g. x � 2 + y is interpreted as (x � 2) + y and not x � (2 + y) because � has a

precedence that is less than the precedence of +.

2.7. OTHER SYNTACTIC FORMS FOR CALLING PROCEDURES 53

The recommended syntax for the de�nition of an in�x operation with two arguments and

no result variables is:

<definition> = define <precedence> <argument> <word> <argument>;

<expression_sequence> enddefine;

<argument> = <word>

Note that this is syntactically included in the procedure de�nition syntax given earlier,

but the second of the three words is the actual name of the procedure being de�ned.

Thus in�x operators are de�ned in POP-11 by using the word \define" followed by an

integer specifying the precedence. For example, we might wish to de�ne an in�x operator

+ + + which takes the average of two numbers. The two permitted and equivalent formats

are:

define 4 x +++ y;

(x+y)/2

enddefine;

and

define 4 +++(x,y);

(x+y)/2

enddefine;

Operators can take more than two arguments, although this is rare. In this case the

format using parentheses must be used in the de�nition, though parentheses are not required

in the call, e.g.

define 5 list5(p,q,r,s,t);

[^p ^q ^r ^s ^t]

54 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

enddefine;

1, 2, 3, 4 list5 5 =>

** [1 2 3 4 5]

Result variables are speci�ed as for normal procedures, for example:

define 4 x foo y -> z;

The precedence of an operator is used to determine whether one operator is called before

another. The rule is simple | an operator moves to the right until it encounters an operator

of a higher precedence, when it is called. This re-arranging of the textual order is done at

compile time.

14

Apart from the various kinds of brackets, syntax words like \;", \,", \!"

behave as if they have a high precedence, with \!" having a lower precedence that the

others. The syntactic properties of brackets are discussed later.

Thus x � 3 + y � 5; translates to

� push the value of x on the stack x

� push 3 on the stack x 3

� call the procedure � (since + has a higher precedence) x*3

� push the value of y on the stack x*3 y

� push 5 on the stack x*3 y 5

14

Thus POP has a rather cruder syntactic scheme for dealing with operators than Prolog, where the user

can specify that operators are in�x, pre�x or post�x, and restrict possible parsings according to accord with

these speci�cations. In fact, there are a variety of equivalent constructions in POP, e.g. x+y; x;+y; +(x; y),

x; y;+. In practise relatively few are used, and relatively little trouble is caused by this lack of structure in

the language.

2.7. OTHER SYNTACTIC FORMS FOR CALLING PROCEDURES 55

� call the procedure � (since the syntax word \;" has a higher precedence than �)

x*3 y*5

� call the procedure + (since the syntax word \;" has a higher precedence than +)

x*3+y*5

The absolute value of the precedence is used in comparing di�erent operators. The sign

of the precedence is used to control the association of the operator, that is what happens

when the same operator occurs in an expression (at the same level). A positive precedence

means \associate to the left", that is to say the instance of the operator that occurs to the

right is done �rst. Thus, since we de�ned +++ with positive precedence, x+++ y+++ z

means (x+++ y) + + + z and not x+++ (y +++ z).

2 +++ 3 +++ 4 =>

** 3.25

(2 +++ 3) +++ 4 =>

** 3.25

2 +++ (3 +++ 4) =>

** 2.75

Some kinds of bracket serve to make the program text enclosed within behave syntacti-

cally as an independent unit of low precedence. Thus x � (y + z); translates as

� push the value of x on the stack x

� push the value of y on the stack x y (the call of � is postponed because

(y+z) has a low precedence, and we are now dealing with the text y+z isolated within

the parentheses)

� push the value of z on the stack x y z

� call the procedure + (a closing parenthesis behaves as a operator of high precedence)

x y+z

56 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

� call the procedure � (The word \;" has a high precedence). x � (y + z)

The if : : : endif brackets, described in section 2.12.3 also work this way, so that such a

conditional expression can act in the right way e.g. you can say

x + if y=3 then 2 else 1 endif -> z

and the value of x is added to 2 or to 1 depending on whether y is or is not equal to 3.

It is possible to �nd out if a word has been declared an an operator by making use of the

identprops procedure described in Chapter 5.3.5.

There is one special case of an operation. In certain circumstances, the minus sign is

interpreted as denoting a unary operation, that is a procedure that takes just one argument

o� the stack. This interpretation occurs when the minus sign immediately follows a syntax

word or an operation. E.g. in x + �y and (�x + 3) the � is interpreted as unary. In that

case a procedure negate is called. So the �rst sequence translates as:

� push the value of x on the stack x

� push the value of y on the stack x y

� call the procedure negate x -y

� call the procedure + x - y

However, if the minus sign immediately preceds a number with no intervening space,

the two will be combined by the itemiser ?? into one negative number, so that x + �1; is

translated as

� Push the value of x on the stack. x

2.7. OTHER SYNTACTIC FORMS FOR CALLING PROCEDURES 57

� Push �1 on the stack. x -1

� Call the procedure + x-1

A list of the built-in operators and their precedences is to be found in Appendix ??

An operation identi�er O may be called with any number of arguments, in any of the

following forms

O no arguments | a nonary operator

O a

1

one argument | a pre�xed unary operator

a

1

O one argument | a post�xed unary operator

a

1

O a

2

two arguments | a binary operator

a

1

; a

2

; :::; a

n�1

O a

n

n arguments

O(a

1

; a

2

; :::a

n

) n arguments

Be careful with nonary operators. A call of a nonary operator looks just like a variable

access.

Normally, any mention of an operator in an expression causes it to be called. This can

be a cause of stack under
ow mishaps (see section 2.8) Calling can be suppressed by placing

the word nonop immediately before the operator:

nonop +++ =>

** <procedure +++>

Using nonop a value may be assigned to the identi�er. E.g.

conspair -> nonop +++;

3 +++ 4 =>

** [3|4]

58 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

Nonop can also be used to pass an operation as a parameter to a procedure that needs

a procedure as argument. E.g.

vars A = newarray([1 10 1 10], nonop *);

creates an array which is a multiplication table. See Chapter 10 for a description of

newarray.

Only a procedure may be assigned to an operation identi�er so there need be no run-time

checking that + + + has a procedure value, as there is with ordinary procedure names not

declared with vars procedure.

See appendix ?? for information about built-in in�x operators.

Boolean Operators

There are two boolean operations and and or which appear syntactically as ordinary oper-

ators. Thus you can say

if x=1 and y=3 then 23 else 25 endif

A common ine�ciency is to use these operations unnecessarily in a conditional. For

example:

define eligible(person);

if age(person)>65 and income(person)<10000 then true

else false

endif

enddefine

2.7. OTHER SYNTACTIC FORMS FOR CALLING PROCEDURES 59

can be much better rendered

define eligable(person);

age(person)>65 and income(person)<10000

enddefine;

The words and and or can be thought of for most purposes as ordinary operators, but

they are not. The expression p and q is evaluated as follows. Firstly p is pushed on the

stack. If it is false then the whole conjunction p and q is false, that is the evaluation of q

is skipped. If it is not false then it is popped o� the stack, and the value of q is pushed on

the stack.

p or q is evaluated in a similar manner. The value of p is pushed on the stack and if it

is false it is popped o� and the value of q is pushed on. Otherwise q is not evaluated, and

the value of the disjunction is the value of p.

The fact they are not ordinary operators is important in two ways

1. Both \arguments" of and and or are not necessarily evaluated. This makes for greater

e�ciency, and also allows some recursive de�nitions that would not otherwise work.

For example:

define member(x,L);

L/=[] and (x = hd(L) or member(x,tl(L)))

enddefine;

2. and and or cannot be passed as parameters to a procedure using nonop, or rather they

should not, because they are syntax procedures and can cause very peculiar behavior if

called out of context.

2.7.2 Calling any procedure in post-�x form

If you put a full-stop before any word, or indeed any procedure object or anything that can

act as a procedure by virtue of class apply, this is equivalent to procedure call. Thus

60 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

x.tl.hd

is equivalent to

hd(tl(x))

This allows you to access data-objects in the manner of Pascal.

15

It is recommended that

you only use this form for procedures that take one argument and return one result, since

any other use can be di�cult to understand.

2.8 Mishaps and the Stack

There is a very common mishap message associated with the stack

MISHAP - STACK EMPTY (MISSING ARGUMENT? MISSING RESULT?)

this happens when a procedure, or the assignment arrow, is trying to take something

o� the stack when there is nothing left on the stack.

16

Suppose you gave the command

sumsq(3) ! z; This would push 3 on the stack, then call sumsq. sumsq would pop the

number 3 o� the top of the stack and assign it to y. It would then try to pop the top of

the stack and assign it to x and �nd nothing left. You would then get a stack error, with a

message as above.

15

The precursor of POP-2, POP-1, was written using the reverse Polish form, subsequently popularised in

Forth and PostScript. This was a convenient form to write data-object access, since in e�ect you can follow

the pointers in the same order as the procedures occur in the text, and was consequently preserved as an

option in POP-2, with the full-stop pre�xing an identi�er to indicate application. Independently the form

was used in PL/1, and subsequently in Pascal

16

Stack errors do represent one of the more di�cult features of POP for the novice (and experienced)

programmer. They are the penalty one has to pay for the succinct constructions available for building

variable length data objects via the stack, and being able to write procedure like newarray which return as

result procedures which can take a number of arguments not known at compile time.

2.8. MISHAPS AND THE STACK 61

This is an example of a missing argument. Note that the `DOING' line of the mishap

message will tell you that sumsq was running at the time the stack was found to be empty.

Try it, and look at the mishap message carefully.

It may also be the case that a procedure fails to produce a result when one is expected.

For example you might write:

define sumsq(x,y);

x * x + y * y -> x;

enddefine;

If you type sumsq(3; 4), x and y get the values 3 and 4 respectively (via the stack). Then

the result of the expression x � x + y � y is assigned to x (which is local to sumsq so x will

not have that value when sumsq is �nished). At this stage, nothing is left on the stack.

Moreover, the heading of the de�nition does not specify that x is an output local variable for

sumsq, so the value of x is not left on the stack. Nor is anything else left on the stack. So

if you type

sumsq(3,4) -> z;

sumsq runs, using up the 3 and the 4, then �nishes with nothing on the stack. But the

assignment arrow! tries to take something o� the stack to give to z, and at this point �nds

the stack empty. The machine prints another stack-empty mishap message. This time the

problem is the missing result from sumsq, and the `DOING' line of the mishap message will

not mention sumsq. This is because sumsq has �nished running when the error is detected.

This can sometimes make it di�cult to track down errors due to procedures failing to return

a result. Usually you can get clues by looking at which procedures were running at the time.

You are advised to try the examples above, looking carefully at the error messages.

As we mentioned in the section on operators, you will sometimes get the stack-empty

mishap as a result of applying an operator without providing it with arguments:

+ =>

62 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

;;; MISHAP - STE: stack EMPTY (missing argument? missing result?)

;;; DOING : mishap + compile

2.9 Specifying the results of a procedure

As we have stated, a POP procedure leaves its results on the stack. This means that it can

produce as many results as it likes, and the number of results is not necessarily determined

at compile-time. There are two ways in which results can be pushed on the stack:

1. The procedure can have result variables speci�ed in the header, using the < results >

syntax.

2. The procedure may push results on the stack in its body.

The formal syntax for the declaration of result variables, which are sometimes known as

output locals, is:

<results> = {-> <word>}*

The variables are pushed on the stack in the inverse order to that in which they occur in the

declaration. This means that the declaration serves as a kind of pattern for using the result

variables. For example if we have a procedure

define stats(L) -> x_bar -> sigma;

lvars x_bar = average(L), sigma = stdev(L);

enddefine;

This can be called by

2.10. WE CAN DEFINE PROCEDURES WHICH UPDATE DATA-OBJECTS 63

stats(L1) -> x_bar1 -> sigma1;

It is good practice to declare result variables for a procedure except for the following

cases.

� The procedure is very short, and it is obvious what the result is. This is especially so

if only built-in procedures are used in the body.

� The procedure produces a variable number of results. This in itself can be an unde-

sirable thing to do, since a simple applicative model of the behavior of the procedure

is lost. On the other hand, the stack does make a very e�cient short-term storage

mechanism, since no garbage-collection overhead ?? is generated by placing a variable

number of entities on the stack, whereas constructing a variable size data-object such

as a list does generate garbage.

Thus, for example, the following is acceptable style

define sumsq(x,y);

x * x + y * y

enddefine;

since it is manifest that this procedure produces one result, and it could be considered

pedantic to give it a result variable.

2.10 We can de�ne procedures which update data-objects

A procedure for accessing a data object has two independent tasks to perform. One is to

extract the contents of the appropriate �eld ; the other is to change the contents of the �elds.

Both these capabilities are treated thoroughly in Chapter 3.7. Thus:

64 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

hd(x) -> v; ;;; get hd of x and assign it to v

v -> hd(x); ;;; set the value of v to be the hd of x

The procedure hd is referred to as a selector for the list data-type, but in the second use

above it is acting as an updater. What actually happens in this case is that instead of calling

the procedure hd the system calls another procedure object held in a special updater �eld

of the hd procedure object (see section 2.10). Indeed, whenever a procedure is apparently

called when it is immediately associated with the ! symbol, its updater is called instead.

When a procedure call follows an assignment arrow (i.e. !) the updater part of the

procedure is called, so that instead of executing:

v -> f(x);

we could execute:

updater(f)(v,x);

Note that in a command such as 23 ! hd(tl(x)) the updater of the hd procedure is

called, but the tl procedure is called normally.

Updaters take their arguments o� the stack (see 2.5) in the same way as other procedures.

Moreover, items occuring before the assignment arrow can be merely additional arguments

for the updater. So

x,y -> f(p,q,r)

is equivalent to

-> f(x,y,p,q,r)

2.10. WE CAN DEFINE PROCEDURES WHICH UPDATE DATA-OBJECTS 65

and to:

x,y,p,q,r -> f();

If we call the updater of f; g,

updater(f) -> g;

then the above are also equivalent to:

g(x,y,p,q,r)

However, you should write calls to updaters in a way which enhances the clarity of your

program, which means that what follows the assignment arrow should have the same form

as you would use if you were selecting from the data-object rather than updating it.

Most procedures, of course, have no updater. If we de�ne a new data object accessing

procedure it is sensible to give it an updater, for example:

define second(list);

hd(tl(list))

enddefine;

define setsecond(value,list);

value -> hd(tl(list))

enddefine;

setsecond -> updater(second);

vars l; [a b c d] -> l;

66 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

second(l) =>

** b

"e" -> second(l);

l =>

** [a e c d]

A more convenient syntax for declaring updaters uses the < defn spec > syntax | you

will recall that a procedure de�nition had the form define < defn spec > :::, which can be

define updaterof:::

<defn_spec> = {updaterof} | <identprops>

for example:

define updaterof second(value, list);

value -> hd(tl(list))

enddefine;

The form define updaterof sets the pdprops of the updater to be the name of the

procedure, as described in section 2.21.1.

Every POP-11 procedure has an updater �eld. However, for most procedures the default

updater is merely a procedure which produces an error.

define test(x);

x * x

enddefine;

test(3) =>

** 9

2.10. WE CAN DEFINE PROCEDURES WHICH UPDATE DATA-OBJECTS 67

9 -> test(3);

;;; MISHAP - EXECUTING NON-EXISTENT UPDATER

;;; INVOLVING: <procedure test>

;;; DOING : compile nextitem popval compile

Thus if a procedure has not been given an updater, and your program attempts to run its

updater, an error message will result.

Since every procedure can have an updater, the use of updaters is not restricted to proce-

dures which access �elds of data-objects. Updaters can be used to associate two procedures

which do related computations. For instance if procedure F does some elaborate computa-

tion to solve a problem, the updater of F could then be used to store a solution to be found

by F by direct lookup (but see 11.5 for ways of combining these two ideas).

2.10.1 Calling the updater of an operation

If an operation identi�er is used on the right of an assignment, its updater will be called. If

there is no updater, an error occurs:

99 -> 3 +++ 4;

;;; MISHAP - EXECUTING NON-EXISTENT UPDATER

;;; INVOLVING: <procedure +++>

When you have a nested operator and procedure calls associated with an assignment

arrow, what happens? The best way of understanding this is to consider the arrow as an

operator of high precedence (just below that of semicolon). The assignment arrow causes the

call of the updater only of that procedure immediately below it in the application structure.

3+99 -> 3*x +++ 4^y;

can be bracketed as

68 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

(3+99) -> ((3*x) +++ (4^y));

and so the updater of + + + is called.

2.11 Procedure Identi�ers

In normal use, a procedure de�nition sets up the procedure name as the name of an ordinary

variable whose values just happens to be a procedure. Since the procedure de�nition sets up

a variable, the value can be changed by assignment, which is exactly what happens if you

recompile the procedure de�nition.

We have already seen that if we de�ne an operator the variable created, as well as having

di�erent syntactic properties, is restricted to having procedure objects as its value. The

procedure header-line can specify the type of the identi�er naming the procedure. There are

several main types of procedure identi�er, ordinary, operation, macro, syntax, and active.

In addition the identi�er may be lexical or non-lexical, variable or constant, global or not.

2.11.1 Making a procedure name a procedure identi�er

If Pooh is an ordinary identi�er whose value is a procedure, then an instruction to run

Pooh, for instance in another procedure de�nition, compiles into machine code operations

that include a check to ensure that the value really is a procedure, in case something else

has been assigned to the identi�er. This will detect errors like this.

define Pooh(list);

hd(tl(list))

enddefine;

define test(list);

Pooh(list)

enddefine;

2.11. PROCEDURE IDENTIFIERS 69

test([a b c]) =>

** b

999 -> Pooh;

test([a b c])=>

;;; MISHAP - ENP: EXECUTING NON-PROCEDURE

;;; INVOLVING: 999

;;; DOING : mishap C test compile

This run-time procedure check will slow programs down. In order to avoid it, users can

declare certain identi�ers to be of type procedure, so that the check is done only when a

value is assigned to the identi�er, not when the procdure is run. Such a declaration can be

made as part of a variable declaration as speci�ed in Chapter 5, which will commonly be

placed at the beginning of a �le, or it can be combined with the procedure de�nition, using

the syntax of section 2.2. Thus you can say:

vars procedure Pooh;

or, if you have several procedures:

vars procedure(Pooh, Piglet);

Alternatively you can say:

define procedure Pooh(list);

hd(tl(list))

enddefine;

define test(list);

Pooh(list)

70 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

enddefine;

test([a b c]) =>

** b

So far as before. But now

999 -> Pooh;

;;; MISHAP - ASSIGNING NON-PROCEDURE TO PROCEDURE IDENTIFIER

;;; INVOLVING: 999 Pooh

;;; DOING : mishap compile

popdefineprocedure

As we have seen, in the default state of the POP system, procedure de�nitions do not create

variables that are restricted to be of type procedure. However this can be changed. If the

variable popdefineprocedure is not false then any procedure de�nition will create procedure

variables that are restricted to being of type procedure.

Constants and lexical identi�ers may also be declared to be of type procedure, as in

define constant procedure Pooh(...)

define lvars procedure Pooh(...)

define lconstant procedure Pooh(...)

2.11.2 Making procedure identi�ers constant and/or lexical

It is possible for procedure identi�ers to be constant, and for them to be lexical variables.

These options will mostly be useful when you are modifying a working program to put it

in a library, since they generally provide a saving in time and space but make debugging

harder.

2.11. PROCEDURE IDENTIFIERS 71

Making a procedure name a constant

popdefineconstant

If the variable popdefineconstant is not false then the procedure identi�er created by a

procedure de�nition will be a constant and not a variable. It is not usually a good idea to

de�ne constant procedures when you are �rst developing a program, since if you rede�ne

them during debugging of a program you will not a�ect any calls that you previously made

to them | so to make the rede�ned procedure take e�ect you will have to recompile all

of the procedures that called it. Moreover, it will not be possible to trace the procedure

However, using constant procedures will save an indirection in the procedure call, with a

slight speed advantage.

Examples of how to de�ne the procedure Pooh to be a constant are given below:

constant Pooh;

lconstant Pooh;

define constant Pooh;

define constant procedure Pooh;

define lconstant Pooh;

Making the procedure name a lexical identi�er

By default, a procedure de�nition creates a permanent variable. However, procedure vari-

ables can themselves be lexical. This has two possible uses:

1. Declaring a procedure as a lexical variable in a �le but outside of any other procedure

declaration in e�ect makes the procedure inaccessible outside of the �le. This means

that there is no danger of a name-clash with procedures de�ned in other places. Thus

auxiliary procedures, which do not need to be referenced outside of a library program,

can have their names made unavailable outside. This provides a similar capability to

that provided by sections (see Chapter 13) but is simpler to do, and uses less store.

To indicate that a lexical identi�er is required, follow define with one of

72 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

lvars - a lexical variable: may be re-assigned

lconstant - a lexical constant: may not be re-assigned

E.g.

define lvars proc(a,b) -> c;

define lconstant proc(a,b);

2. A procedure variable may be lexical because it is actually intended to vary in use. For

example, in Chapter ?? we see that maplist(L

1

; P)! L

2

takes a list and a procedure

and produces a new list. The procedure parameter of maplist should be declared to

be a lexical.

define maplist(L,P);

lvars L P;

if null(L) then [] else

P(L.hd)::maplist(L.tl,P)

endif

enddefine;

Making P and L to be lexical avoids possible name clashes between non-local variables

of the procedure provided as actual parameter to maplist.

2.11.3 Making the procedure name global to sections

As described in Chapter 13, sections provide a way of controlling the scope of permanent

variables. If it is required that the procedure should be acessible in all sections below the

one in which it is being de�ned, or to which it is exported, then the name should be declared

as a global identi�er. Hence it must not be lexical. E.g.

define global Pooh(a,b)

Constants and lexical identi�ers may also be declared to be of type procedure, as in

2.12. THE BODY OF A PROCEDURE 73

define constant procedure Pooh(...)

define lvars procedure Pooh(...)

define lconstant procedure Pooh(...)

In�x operations, macro names, syntax words, and active identi�ers, are automatically of

type procedure. If the variable popdefineprocedure is not false, then all procedure names

are automatically declared to be of type "procedure".

Once an identi�er has been declared to be of type procedure it cannot be re-declared not

to be, e.g. using vars. This is because non-checking invocations of its value may already

have been compiled.

2.12 The Body of a Procedure

In this section we consider how the body of a procedure is written.

<statement_sequence> = {<statement> <statement_sep>}

<statement_sep> = ; | '=>' | '==>'

<statement> = <expression_sequence>

<expression_sequence>= <expression>|<expression>,<expression_sequence>

<expression> = <lambda> |

<literal> |

<expression> <operator> <expression>|

<syntax_operator_form> |

<syntax_form>

The < syntax

f

orm > has the generic form

<syntax_opener><body>

74 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

2.12.1 Assignment

Ordinary assignment using ! has been treated earlier. There is also a form:

<expression 1> ->> <expression 2>

which evaluates < expression1 > and transfers the value to < expression2 > without

popping it o� the stack. This is particularly useful with those POP predicates that return

either false or some non-false value that has some signi�cance. Another use is illustrated

by

while (P_rep() ->> c) /= termin do ...

where the result of the character repeater procedure P rep is tested for termin, which would

indicate that the end-of-�le has been reached, but the character is assigned to the variable

c.

!;

The assignment arrow appearing immediately before a semicolon takes the top item o� the

stack, and is equivalent to erase(), as described in section 2.5.2.

2.12.2 Forms which start with a syntax word

These have the form:

<syntax_form> = <syntax_opener> <body>

2.12. THE BODY OF A PROCEDURE 75

where < syntax

o

pener > is a word whose identprops is

00

syntax

00

, and whose value is a

procedure. < body > is dependent on the particular syntax opener, and can be one of the

forms speci�ed in the following table:

Syntax Form Where described.

< assignment > 2.12.1

< conditional > 2.12.3

< for iteration > 2.15.1

< while iteration > 2.14

< until iteration > 2.14

< repeat iteration > 2.15

< goto > 2.20.1

< go on > ??

< quit > 2.19.2

< next > 2.20

< return > 2.12.4

< quoted word > ??

< var prefix > ?? ?? 2.28 2.7.1 ??

< const construct > ??

< declaration > 5??

< section decl > 13

< definition > 2

< procedure > 2

2.12.3 Conditional Forms

A conditional expression is one in which certain sub-expressions, the conditions are used to

determine which of certain other sub-expressions are executed. For example:

if is_haycorns(food) then

give_to(food,"Piglet")

else

give_to(food,"Pooh")

endif

76 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

When this statement is executed, the POP11 system �rst executes the condition that

is is haycorns(food); if this evaluates to false then give to(

00

Pooh

00

) is executed, otherwise

give to(

00

Piglet

00

) is executed. The full syntax of allowable conditional expressions is quite

complex, and is given below:

<conditional> =

if <condition> then <conditional_body endif |

unless <condition> then <conditional_body> endunless

<conditional_body> =

<expression_sequence>

{<else_term><condition>then<expression_sequence>}*

{else <expression_sequence>}

<else_term> = elseif | elseunless

<condition> = <expression>

Note the following about this syntax.

� If a conditional statement starts with if it must end with endif . If it starts with

unless it must end with endunless. Either form may include elseif , elseunless, or

else clauses.

� There can be as many elseif and elseunless clauses as needed, and they can be freely

intermingled.

� There may be a �nal else clause.

� A < condition > is any expression, which should normally return one value.

The execution of an if conditional is as follows: The < condition > should, when

executed, produce a result. If the result is other than false then the expression sequence

following the then is executed, and after that, the < expression sequence > which follows

the endif (this may be a null < expression sequence >, in which case the procedure returns

control to its caller).

2.12. THE BODY OF A PROCEDURE 77

If the result of the < condition > is false, then execution commences after the next

elseif , elseunless, else, or endif . Execution following an elseif is the same as that following

an if | the < condition > is executed and used to choose whether to carry on execution

immediately after the then which follows the < condition >, or whether to carry on after

the < endif > which terminates the whole conditional expression. Note however that elseif

can occur in a condition that begins with unless, so that it is possible in this case to resume

execution after an endunless. Execution after an elseunless is the same as that following

an unless, discussed below. The expression sequence following an else is executed, and then

that following the endif or endunless that goes with the else.

Conditionals which begin with unless behave in the opposite way to those that begin

with if , that is if the < condition > evaluates to false execution proceeds after the then,

and if it evaluates to anything other than false execution proceeds after the next elseif ,

elseunless, else or endunless.

The course of execution of conditionals described above can of course be changed if an

expression which causes a return from the current procedure, or a quitting from the current

loop, or a goto is encountered.

Note particularly that if the the result of executing a < condition > is anything other

than false, then it is treated as if it were true, e.g.:

if 3 then "three" endif =>

** three

An elseif clause of the form

elseif not (<condition>) then....

e.g.

elseif not(list matches[??x ison ??y]) then...

78 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

can be expressed as

elseunless <condition> then....

Note that not is a procedure and needs parentheses around its argument.

It is permissible, but unusual, for an < expression sequence > to contain no code at all,

for example:

define prlist(list);

if list == [] then

else

hd(list) =>

prlist(tl(list));

endif

enddefine

It is sometimes clearer to use unless in this case.

unless <condition> then <conditional-body> endunless

is equivalent to:

if not(<condition>) then <conditional-body> endif

A conditional expression behaves like any other expression, and in particular can be

nested within another conditional, either in the < condition > or in the < conditional �

body >. For example

2.12. THE BODY OF A PROCEDURE 79

if if x=2 then true elseif x=4 then true else false endif then 4

else 3

endif

Although this is much better expressed as

if x=2 or x=4 then 4 else 3 endif;

2.12.4 Returning control to the calling procedure

As we have stated earlier 2.6, when the < expression sequence > that forms the body of a

procedure P

2

has been executed, after a certain \tidying up", execution of the procedure P

1

(say) which called P

2

is resumed, immediately after the call of P

2

. It is sometimes convenient

to be able to accomplish this return of control to the calling procedure somewhere in the

middle of the body of P

2

. To this end, a special return construct is provided. There are two

syntactic forms:

return

return(<expression_sequence>)

In either case, the return from the procedure is accomplished in exactly the same way as

if the execution of the body of the procedure had been accomplished in the usual way, that

is the output locals are put on the stack and the state of the local variables of P

2

is restored

to that which pertained prior to the call of P

2

.

The second form of the return construct is really just a notational convenience, and is

equivalent to:

<expression_sequence> return

80 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

It is conventionally used to emphasise what values are actually returned by the procedure.

If there are output locals, they may be assigned values in this < expression sequence >,

and if the result of the procedure is just to be pushed on the stack, then it should also be

done here. An example of the use of return is given below. The procedure char ident is

supposed to recognise a character that can form part of an identi�er in a simple language:

define char_ident(c);

if c>= `a` and c=<`z` then

return(true)

endif;

if c>= `A` and c=<`Z` then

return(true)

endif

false

enddefine;

In many cases, including this one, the use of return is not justi�ed. A neater construct

would be

define char_ident(c);

if c>=`a` and c=<`z` then true

elseif c>=`A` and c=<`Z` then true

else false

endif

enddefine

Look at section 2.7.1 and see if you can see how to write the above de�nition without

using if at all | it is neater still.

2.12.5 Iteration

Iteration is the repetition of an < expression sequence > a number of times in succession

| with mathematical perversity we include in this the possibility of zero or one repetition.

2.12. THE BODY OF A PROCEDURE 81

We also use the more mechanical term looping for iteration. Iteration is often the most

convenient way of performing a computation that depends upon a data-object whose length

we do not know in advance. For example, we saw in Chapter ?? that we could add up the

members of a list using a recursive de�nition:

define sum(L);

if L=[] then 0 else L.hd + sum(L.tl)

endif

enddefine;

or an iterative de�nition:

define sum(L) -> s;

lvars l,L,s=0;

for l in L do l+s -> s

endfor

enddefine;

Many people will �nd the second de�nition more intuitive, although a mastery of the

techniques of recursive programming is necessary for many applications of POP.

The most primitive kind of iterative construct is goto < label > which allows you to

specify that execution should immediately be recommenced at some new place in a procedure

(or even outside it). This new place must be labelled by < label >:. It should almost never be

used by human programmers, although it has a place in POP code that is being automatically

generated by a procedure. Instead, POP provides a range of iterative constructs, all of which

have a distinct bracketing, so that it is clear to the reader what sequence of expressions is

being repeated.

The most general of these are the while and until constructs, which allow iteration to

take place depending on some arbitrary < condition > being satis�ed. Where iteration is

taking place over a �nite sequence of numbers, or a list, it is more convenient to use the for

construction.

82 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

It is sometimes convenient to be able to stop the execution of an iteration immediately.

For example suppose we are forming the product of a list of numbers. If we encounter a zero

in this list, we may stop the iteration, since we know that the product must be zero. To this

end, constructions are provided to quit an iteration.

Finally, some constructs are provided to allow a programmer to specify that the exe-

cution < expression sequence > should be started again immediately, provided that the

< condition > holds.

2.13 However you may not need to have an explicit

iteration

An alternative to using the iterative constructs described in this chapter is to make use of the

procedures such as sysrepeat, lit, maplist, applist, mapdata, appdata described in Chapter

??. These procedure typically take as arguments a structure and a procedure and apply the

procedure systematically to the �elds of the structure.

2.14 The while and until iterative constructs

The form of a while iteration is:

<while_iteration> = while <condition> do <expression_sequence>

endwhile

To execute this, POP evaluates the< condition > and if it is true executes the < expression sequence >,

then goes back to test the condition again. This iteration continues until the condition is

false, for example

10 -> n;

2.14. THE WHILE AND UNTIL ITERATIVE CONSTRUCTS 83

while n > 0 do

ppr(n);

n - 1 -> n

endwhile;

will print out:

10 9 8 7 6 5 4 3 2 1

The statement

<until_iteration> = until <condition> do <expression_sequence>

enduntil

is equivalent to:

while not(<condition>) do <expression_sequence> endwhile

It evaluates the condition, and if it is < false > executes the < expression sequence >.

It then goes back to test the condition again. The iteration continues until the condition is

not < false >. For example

10 -> n;

until n <= 0 do

ppr(n)

n - 1 -> n

enduntil;

will print out

10 9 8 7 6 5 4 3 2 1

84 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

2.15 Simple iteration using repeat

The word repeat is one way of building a loop in POP-11. The statement

<repeat_iteration> = repeat {<expression> times} <expression_sequence>

endrepeat;

is executed as follows: If the < expression > is present it is evaluated and should give

a number n (if not a mishap occurs). The < expression sequence > is then performed the

appropriate n times. If the < expression > is not present, then the sequence is repeated

inde�nitely (i.e. until it is interrupted by a quit or by you typing an interrupt character or

power failure...).

For example:

repeat 4 times pr(".") endrepeat;

will print four dots. Inde�nite repetition is illustrated by:

repeat

[isnt this boring] =>

endrepeat;

2.15.1 Iteration through a sequence

The iteration constructs based on for all have the basic form

2.15. SIMPLE ITERATION USING REPEAT 85

<for_iteration> = for <for_seq_spec> do <expression_sequence>

endfor

The < for seq spec > serves two purposes: it determines whether the

< expression sequence >

will be evaluated, and binds some variables, which would normally occur in it. It should be

noted that in no case does for declare a variable | declarations must be done separately

17

The permissable forms are:

for <forvars> in <lists> do <expression_sequence> endfor

for <forvars> on <lists> do <expression_sequence> endfor

for <variable> in <object> using_subscriptor <procedure_expr> do

<expression_sequence>

endfor

for <variable> {from <number>} {by <number>} to <number> do

<expression_sequence>

endfor

for <expression_sequence> step <expression_sequence>

till <condition> do

<expression_sequence>

endfor

These di�erent forms will be discussed separately below.

17

In retrospect this seems to be a mistake | more recent languages like Ada do make for loops declare the

iteration variables, and this, while it prohibits access to the values of the variables outside the loop, which

can be useful in determining how a premature quitting from the loop may have occurred, is likely to catch

certain errors which can arise in POP

86 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

Iteration through lists

To complete the syntactic speci�cation of the < for

i

teration >, in the case of an iteration

through lists, we need:

<forvars> = <variable>{<variable>}*

<lists> = <expression_sequence>

The < forvars > should normally be distinct. We will denote the jth such variable by

v

j

. The < lists > should evaluate to as many lists as there are < forvars >. We will denote

the jth such list as L

j

. The construct iterates through the lists in parallel. That is to say,

at the ith iteration, each variable v

j

is bound to the ith member of the corresponding list

L

j

, i.e. L

j

(i)! v

j

. Iteration terminates when i > min(length(L

j

)).

for x in [a b c] do x => endfor;

** a

** b

** c

Use of the multiple variable form to iterate over elements of several lists at once is

illustrated by:

for x y z in [a b c d], [e f g], [h i j k] do

[^x ^y ^z] =>

endfor;

** [a e h]

** [b f i]

** [c g j]

Note that the loop terminates when the end of the shortest list has been reached.

2.15. SIMPLE ITERATION USING REPEAT 87

The iterative construct:

for <forvars> on <lists> do <expression_sequence> endfor

should be used when access to the list cells that contain the data-objects which form the

members of the lists is required | perhaps because it is necessary actually to update the

list itself. Thus it di�ers from the construction for < forvars > in < lists > only in that

the variables are bound to the list-cells containing the members. E.g.

for x on [a b c] do x => endfor;

** [a b c]

** [b c]

** [c]

In other words, at iteration i, v

j

is bound to tl

i

(L

j

), where the exponentiation denotes

repeated application of tl.

A case where we would need to use the on version is the following procedure which

updates a list of numbers to be a list of the squares of the numbers:

define dest_square_list(L);

lvars L_i,L;

for L_i on L do

lvars l = hd(L_i); l*l -> hd(L_i);

endfor

enddefine;

/*example

vars L_num = [1 2 3];

dest_square_list(L_num);

L_num =>

** [1 4 9]

*/

88 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

An example of the use of the multiple variable form to iterate through several lists at

once is:

for x y z on [a b c d], [e f g], [h i j k] do

[^x ^y ^z] =>

endfor;

** [[a b c d] [e f g] [h i j k]]

** [[b c d] [f g] [i j k]]

** [[c d] [g] [j k]]

As with \in" the loop terminates when the shortest list is exhausted.

2.16 Iteration through data-objects other than lists

If you need to iterate through any data-object other than a list, you need to specify to POP

how it is to access the �elds of the data-object. The iterative construct provided for this

purpose is:

for <variable> in <expression> using_subscriptor <procedure_expr> do

<expression_sequence>

endfor

Here < expression > should evaluate to a single data-objectObj, and< procedure expr >

should evaluate to a procedure P

sub

which subscripts the object, i.e. P

sub

(i; Obj) is de�ned

for 1 =< i =< length(Obj). The < expression sequence > is iterated length(Obj) times,

binding the < variable > v = P

sub

(i) at the ith iteration.

for item in {[a] vector [of words] and [lists]}

2.17. ITERATION OVER A SEQUENCE OF NUMBERS 89

using_subscriptor subscrv

do item=>

endfor;

** [a]

** vector

** [of words]

** and

** [lists]

2.17 Iteration over a sequence of numbers

The iterative construct:

for <variable> {from <expression 1>}

{by <expression 2>}

to <expression 3>

do

<expression_sequence>

endfor

binds the < variable > to the result of evaluating < expression1 >. If < expression2 >

is positive it then performs < expression sequence >; < expression2 > is then re-evaluated

and added to the < variable >. If it is less than or equal to < expression3 > the actions

are performed again. The addition, testing and execution of actions is repeated until the

variable exceeds the value of the third expression.

If < expression2 > was negative (before the loop was entered) then the termination test

uses < instead of >.

The by and from portions may both be omitted; in either case, the missing value is

assumed to be 1.

90 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

2.18 The most general for construction

The iterative construct:

for <action 1> step <action 2> till

<condition> do <expression_sequence>

endfor;

Here < action1 > and < action2 > are just < expression sequence >'s. POP �rst

executes < action1 >. Next < condition > is checked to make sure it is false. If it is

false, the < expression sequence > is repeatedly executed, each execution being followed

by the execution of < action2 > and the checking of the condition. This continues until

the < condition > no longer evaluates to false, when the execution of the for loop is

terminated. Thus:

for "steve" -> person step father(person) -> person

till person = "adam" do

person =>

endfor

would print out:

** steve

** frank

** tom

.....

** cain

2.19. EQUIVALENCE OF THE ITERATIVE CONSTRUCTS 91

2.19 Equivalence of the iterative constructs

Notice that the �rst three forms of the for command could all be accomplished using the

last, thus:

for <variable> in <expression> do <expression_sequence>

endfor

is equivalent to:

for <expression> -> <temporary_variable>

step tl(<temporary_variable>) -> <temporary_variable>

till <temporary_variable> = []

do

hd(<temporary_variable>) -> <variable>;

<expression_sequence>

endfor

and:

for <variable> on <expression> do <expression_sequence>

endfor;

is equivalent to:

for <expression> -> <variable>

step tl(<variable>) -> <variable>

till <variable> = []

do

<expression_sequence>

endfor

92 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

and:

for <variable> from <expression1>

by <expression2>

to <expression3>

do

<expression_sequence>

endfor

is equivalent (when < expression2 > is positive) to:

for <expression1> -> <variable>

step <variable> + <expression2> -> <variable>

till <variable> > <expression_3>

do

<expression_sequence>

endfor

Finally, the for ... step format can be re-written using until, thus:

<action1>;

until <condition> do

<expression_sequence>;

<action2>

enduntil

2.19. EQUIVALENCE OF THE ITERATIVE CONSTRUCTS 93

2.19.1 Iteratively stacking up values

The for construction can be used to push or pop a variable number of items on the stack.

For example:

for x from 1 to 10 do x endfor;

leaves the integers 1 to 10 on the stack. A for loop, like any POP-11 code, can be

enclosed in decorated list or vector brackets. An example is:

[% for x from 1 to 10 do x endfor %] =>

** [1 2 3 4 5 6 7 8 9 10]

The while, until and repeat constructs can be used similarly. This technique is often

useful when combined with variadic procedures like consword, described in ??.

2.19.2 Interrupting an iteration

As we have mentioned above, it is possible to stop the execution of a POP iteration by using

a quitting construct. The most basic is quitloop which is equivalent to goto < label >, where

the < label > is placed just after the terminating bracket (endwhile, endfor, enduntil or

endrepeat) of the iterative construct.

For example:

define Pi_list(L)->x;

lvars l, L, x=1;

94 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

for l in L do

if l=0 then 0->x; quitloop

endif;

x*l->x;

endfor

enddefine;

/*example

Pi_list([2 3 4]) =>

** 24

Pi_list([2 0 4]) =>

** 0

Of course, we could have replaced the quitloop construction by

return(0->x)

We can also quit a number of loops at once using this construction:

quitloop(<integer>)

where < integer > must be a positive integer (= n say), and not an expression, causes

POP to quit the n loops which enclose the expression. N.B. quitloop is not a procedure and

cannot be called by a procedure inside the loop | it must be used inside the loop body

itself.

The statement:

quitif(<expression>)

translates to:

2.20. CAUSING THE NEXT ITERATION TO HAPPEN IMMEDIATELY 95

if <expression> then quitloop endif;

The parentheses surrounding the expression are essential.

To quit the < integer >th enclosing loop do:

quitif(<expression>)(<integer>)

There is a quitunless form which is analogous to the quitif form.

2.20 Causing the next iteration to happen immediately

It is possible to get POP to begin a new iteration immediately by using the construct:

nextloop(< integer >)

nextloop

If the < integer > is absent, then control jumps to just before the syntax word closing

the loop, for example endwhile in a while loop, and endfor in a for loop. This causes the

enclosing loop to be restarted.

If an < integer >, n say, is present, control is transferred to just before the syntax word

closing the n'th enclosing loop.

N.B: nextloop is not a procedure and cannot be called by a procedure inside the loop:

it must be used in the loop body itself. Moreover, the integer cannot be represented by a

96 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

variable or an expression evaluating to an integer. If you need a `computed jump', this e�ect

can be achieved using go on.

There are also conditional forms:

nextif(<condition>){(<integer>)}

is equivalent to

if <condition> then nextloop{(<integer>)} endif

and

nextunless(<condition>){(<integer>)}

is equivalent to

unless <condition> then nextloop{(<integer>)} endunless

2.20.1 Arbitrary transfers of control

It is possible to cause POP to `transfer control' to almost any place in the current procedure,

or any procedure which has called it. When POP encounters the goto < label > statement

statement below, it will not execute the statement following, but will execute the statement

which has been `labelled' using the following syntax:

<statement> = <label>:<statement> | <label>:*<statement>

2.20. CAUSING THE NEXT ITERATION TO HAPPEN IMMEDIATELY 97

For most purposes the form of label which uses just a colon is appropriate. Certain

non-local jumps are made more e�cient by using the second form, as described in Chapter

??.

A goto statement in POP-11 transfers control to the instruction labelled by the following

word. For example:

define laugh();

l: ppr("ho");

goto l

enddefine;

laugh();

ho ho ho ho ho ho ho ho ho

Here l : labels the following instruction and goto l transfers control to the labelled point.

Labels in POP-11 are represented by any legal identi�er followed by a colon, e.g.

loop:

l3:

+++ :

Naturally, space is needed if the label consists of sign characters | see Chapter 19.

The label referred to in a goto statement may be either a local label (somewhere in the

current procedure) or a non-local one (somewhere in a lexically-enclosing procedure). A

non-local goto is like doing an exitto to the target procedure, as described in section 2.24,

followed by a local jump to the label.

The use of labels is hardly ever necessary. If you have to use labels to write a program

this may be because you don't really understand the problem the program is solving, or you

haven't thought hard enough about how to express the program clearly. Occasionally goto

98 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

is useful, e.g. as a way of representing a �nite state machine, but even then there may be

better ways of doing it.

Non-local goto is sometimes useful for terminating a search deep in recursion. For details

see Chapter 16 describing the implementation of non-local jumps.

A go on statement in POP-11 allows you to `switch' control to one of several labels

depending on an integer value an expression. The form is

<go_on_expr> = go_on <expression> to <labseq> { else <word>};

<labseq> = word {word}*

< labseq > is thus a sequence of words (w

i

) which should be labels. < expression >

should evaluate to produce an integer i from 1 to n. Control is transferred to the label w

i

.

If i is not between 1 and n inclusive, then < word >, which should be a label, is jumped to

if present, otherwise a mishap results. A mishap will also result if < expression > doesn't

produce an integer.

All the labels speci�ed, including < elselab >, may be either local to the current proce-

dure or non-local, that is they are somewhere in a lexically-enclosing procedure.

2.21 Procedures as Data Objects

It is recommended that you read Chapter 3.7 before you read this section, which is placed

in this chapter to provide a complete description of procedures.

procedure key

Like any other object, a procedure has a datakey, < keyprocedure >. This key is the value

of the constant procedure key.

The main bulk of information contained in a procedure object is the code which de�nes

2.21. PROCEDURES AS DATA OBJECTS 99

the behavior of the procedure. This may be actual native machine code i.e. the instructions

that the computer hardware executes, or it may be POP Virtual Machine Code which is

interpreted by an interpreter program. POPLOG systems normally use native machine code

and current AlphaPop interprets VM code.

2.21.1 The �elds of a procedure

Apart from the code of a procedure P it has a number of other �elds. These are:

updater(P

1

)! P

2

is another procedure which is called instead of P when P occurs as the immediate object of

an assignment statement. The statement ! P (a

1

; a

2

; :::a

n

) causes the arguments a

1

:::a

n

to

be evaluated in the usual way, but instead of P being called, its updater is. The procedure

updater itself has an updater, so that the statement P

ud

! updater(P); can be used to

change the updater of the procedure P to be the procedure P

ud

. The default value for the

updater of a procedure is false, and attempting to use the updater of a procedure with false

as an updater will cause a mishap. Note also that an updater will usually have one more

argument than the procedure it is the updater of.

From: Aaron Sloman <aaronsDate: Sun, 11 Nov 90 13:17:35 GMT Cc: pop-forum@lb.hp.CO.UK

Robin's message to popforum said: > > Should pdnargs have an updater?

It does in the latest version V13.9 (shortly V14).

The HELP �le is out of date and should be corrected. REF procedure now states

pdnargs(P) -> N [procedure] N -> pdnargs(P) Returns or updates the number of argu-

ments N of the procedure P, where N is an integer in the range 0 - 254. When P is a proper

procedure, the default value of N is the number of formal arguments given when the pro-

cedure was constructed. A closure, on the other hand, is initially set up so that until an

explicit value is assigned to it with the updater of -pdnargs-, the value returned is

100 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

pdnargs(pdpart(P)) - datalength(P)

i.e. the number of arguments of its -pdpart- minus the number of frozen values. For

either a procedure or a closure, assigning an explicit value to its -pdnargs- causes that value

to be returned by -pdnargs- thereafter.

Aaron

pdnargs(P)! n

This procedure returns the number of arguments of the procedure P . If P a procedure

de�ned using the define or procedure syntax, pdnargs(P) is initialised to the number of

formal arguments given in its de�nition; if P is a closure created by partial application (see

section 2.25.1 on closures):

pdnargs(P) = pdnargs(pdpart(P))� datalength(P)

i.e. the number of arguments of its pdpart minus the number of frozen values. You can

assign to pdnargs(P) | this can be useful if you are making some special use of the stack.

Note that variadic procedures will have a value of pdnargs which doesn't truly indicate what

they do to the stack.

pdprops(P)! O

The object O that this procedure returns can be any data object. It is initialised by

the define syntax to be the word which is the name of the procedure; other procedure

constructions initialise it to false. It can be updated to be any data object. pdprops can

be used to attach various additional data to a procedure, although it is usually better to

use a property procedure for this purpose (see chapter 11) since this is less likely to cause

interaction between diferent uses. The default printing procedure sys syspr will print a

procedure P with pdprops(p) = w

P

as < procedure w

P

>.

In creating a procedure, the user can specify the pdprops and pdnargs �elds of the

procedure data object to be other than the default values by using the construction

<with_spec> ::- with_props <word> {<with_spec>} |

with_nargs <integer> {<with_spec>}

2.22. GENERIC DATAOBJECT PROCEDURES ON PROCEDURES AND CLOSURES101

2.21.2 Predicates on Procedures

The following predicates are available for recognising procedures, and distinguishing di�erent

kinds of procedures. Closures are described in section 2.25.1, arrays in Chapter 10.

isprocedure(Obj) = true i� Obj is a procedure (i.e. a proper procedure or a closure),

false if not.

isclosure(Obj) = true i� Obj is a closure, false if not.

isarray(Obj) = true i� Obj is an array, false if not.

2.22 Generic Dataobject Procedures on Procedures and

Closures

The generic dataobject procedures described in Chapter 3.7 (datalength, appdata, explode,

fill, etc, and others de�ned in terms of those) are all applicable to closures (see section

2.25.1) but not to proper procedures. They treat a closure as if it were a vector of its

frozvals, e.g. if a closure P

close

has n frozen values, then datalength(P

close

) = n.

copy may be applied to proper procedures and closures, providing they are user con-

structed ones, i.e. not part of the system. Note that, as usual with copy, only the top-level

object is copied. Thus if you copy a closure the pdpart and the frozvals remain identical

with those of original.

The concatenation operator <> is also applicable to all kinds of procedures (see the

chapter on data-objects for its action on other data types). Thus P

1

<> P

2

! P

3

; constructs

a (proper) procedure which is the functional composition of its arguments P

1

and P

2

, i.e. P

3

is a procedure which will call P

1

followed by P

2

. P

3

is thus equivalent to

procedure();

102 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

P_1();

P_2()

endprocedure;

If P

2

has an updater, then the updater of P

3

will be a procedure which calls P

1

and then

calls the updater of P

2

, i.e.

procedure();

P_1();

-> P_2()

endprocedure;

If P

2

has no updater then neither will P

3

.

2.23 Procedures which tell you how a procedure was

called

A procedure can discover how it itself was called. This is particularly useful in developing

debugging tools | it allows you to de�ne a new procedure for handling mishaps which allows

the user to discover how the mishap occurred.

All of the procedures described in this section examine the call-stack to �nd the details

of how a particular procedure call occurred. The call-stack is organised into frames each of

which corresponds to one procedure call. The frame is created on entry to the procedure,

during the process of setting up its local variables, and is freed on return from the procedure.

caller(n) is the n'th procedure up the calling chain from the current procedure. I.e.

caller(0) is the current procedure, and caller(n) is the procedure which called caller(n� 1).

caller(n) = false if there are less then n procedures in the calling chain above the current

one. For example:

2.23. PROCEDURES WHICH TELL YOU HOW A PROCEDURE WAS CALLED 103

define fred(x);

joe(x);

enddefine;

define joe(x);

lvars i;

for i from 0 to x do caller(i) =>

endfor

enddefine;

fred(4);

** <procedure joe>

** <procedure fred>

** <procedure>

** <procedure sysEXECUTE>

** <procedure pop11_exec_stmnt_seq_to>

You may �nd procedures on the end of the calling chain that you did not expect to!

What you are seeing in the last 3 lines of the above output is the sub-procedures of the POP

compiler which were involved compiling the expression fred(4). Note that the standard

prmishap procedure suppresses the printing of some of the procedures on the calling chain.

A procedure iscaller is provided to assist in interrogating the call stack, e.g. to �nd out

how many recursive calls of a given procedure have been made. iscaller(P;m) is the caller

number of P in the calling chain, starting from caller(m), and is false if P is not in the

calling chain. iscaller(P) = iscaller(P; 0).

E.g. a procedure to count the number of currently active calls of a given procedure P :

define count_calls(p) -> count;

lvars p, count = 0, n = 0;

while iscaller(p, n) ->> n do

count + 1 -> count;

n + 1 -> n ;;; skips this call of p

endwhile

enddefine;

104 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

syscallers() is a list of all procedures currently in the calling chain, starting with caller(2)

inside syscallers (i.e. the caller of the procedure calling syscallers). It is de�ned as:

define syscallers() -> L;

lvars L, n = 2, p;

[% while caller(n) ->> p do

p;

n + 1 -> n

endwhile

%] -> L

enddefine;

We now consider a procedure which allows us to access dynamic local variables in the

current call context. Recall that if w is a word, then valof(w) is the current value of the

variable named by w 5.3. caller valof(w; P

caller

) is the valof of the word w as it would be in

the environment of the currently-active procedure speci�ed by P

caller

. The argument P

caller

may be either

� An actual procedure or a caller number as input to caller

� false, meaning that the value outside all procedure calls is denoted.

This procedure has an updater. [N.B. in POPLOG, as of September 1988, this procedure

does not deal with active variables].

The procedure call set global valof(Obj; w) uses caller valof to assign Obj to be the

valof w in the context of every currently active procedure for which the identi�er associated

with w is a dynamic local.

callstacklength(n) is the length of the call stack at the stack frame for the n-th caller of

the current procedure.

18

18

The procedures which refer to the length of either stack give the length in terms of POP data objects,

which in all current implementations occupy 32 bits each

2.24. NON-STANDARD WAYS OF CALLING PROCEDURES 105

pop callstack lim This (active) variable holds an integer specifying the maximum length

to which the call stack may expand when this value is exceeded, the mishap `RLE: RECUR-

SION LEVEL EXCEEDED' results. Its default value is 90000, but for very deeply nested

recursive programs you may need to assign it a larger value.

2.24 Non-Standard ways of calling procedures

On occasions it is desirable to be able to return from the call of a procedure in a non-standard

way. The simplest case in which this occurs is the procedure setpop which is called by default

when a mishap occurs, and which returns from all the procedures that the user has called

without executing any further code (and which clears the stack). Sometimes it is desirable

to have a more controlled exit than this (for example to carry on in a de�ned way after a

mishap), and the procedures de�ned in this section, apart from apply, provide for this need.

The procedure call apply(P) calls the procedure P . If P has known arguments, it is

better to write apply(a

1

; a

2

:::a

n

; P), but since this is equivalent to P (a

1

; a

2

; :::a

n

) you will

hardly want to write it. Most uses of apply are now obsolete | early versions of POP did not

allow syntactic constructions such as hd(L)(2), and required you to write apply(2; hd(L))

instead. However an implicit call of imply is generated whenever a computed procedure-

object is applied, as in hd(L)(2). However you might on occasion want to supply apply as an

argument to a procedure. apply has an updater, with the obvious meaning that! apply(P)

calls the updater of P .

The procedure call chain(P) returns from the current procedure, restoring the environ-

ment of its caller, and then calls the procedure P . Thus P is e�ectively `chained' onto the

current procedure.

The procedure call chainfrom(target; P) returns back up the calling chain until imme-

diately inside a call of the target procedure speci�ed by target, exits from this call, and then

calls the procedure P . The argument target may be either an actual procedure (in which

case exiting terminates on reaching a call of the given procedure), or a call stack length

as returned by callstacklength (in which exiting terminates when the call stack length is

� target).

106 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

The procedure call chainto(target; P) returns back up the calling chain until immediately

inside a call of the target procedure speci�ed by target, and then calls the procedure P . The

value of target is as for chainfrom, i.e. an explicit procedure or a call stack length.

The following demonstrates the use of caller and chainto to modify the system error

procedure, so that when the user attempts to do certain arithmetic operations on items which

are not numbers, the result is a \formal combination" of the items, rather than an error. A

list of the operations which are to be formally combined is contained in simp symbolic fns.

vars old_prmishap = prmishap;

define simp_prmishap(Message,Culprits);

lvars c f, n = 3, name;

while not(pdprops(caller(n)->>f) ->> name) do n+1 -> n

endwhile;

unless member(name, simp_symbolic_fns) then

return(old_prmishap(Message,Culprits))

endunless;

prolog_maketerm(

for c in Culprits do c.pr; 3.sp;

if c.isundef then c.undefword else c

endif

endfor,

pdprops(f),

length(Culprits));

chainto(f,identfn);

enddefine;

simp_prmishap -> prmishap;

The procedure calls exitfrom(target) and exitto(target) are equivalent to

chainfrom(target; identfn) and chainto(target; identfn) respectively.

2.24. NON-STANDARD WAYS OF CALLING PROCEDURES 107

jumpout(P; n)! P

jumpout

This procedure creates a new procedure P

jumpout

which when applied will cause a return

from all procedures up to and including the procedure that called jumpout in the �rst place.

Before e�ecting the return, P

jumpout

�rst calls the given procedure P (with no arguments),

and this is expected to return n results. If the user stack length excluding those top n items

is then greater than it was at the time of the jumpout call, a su�cient number of items

above the top n are removed to reset it to that value. I.e. when the exit is e�ected, the

user stack should be in its state at the time of the jumpout, but with the n results added.

jumpout is a library procedure de�ned using the chaining operations de�ned above.

19

.

There are two library procedures catch and throw which are used to provide an exit to

a place de�ned by a pattern. Their calls are:

catch(P; P

caught

; O

catch

)

throw(O

throw

)

These two procedure work in conjunction: catch `catches' calls of throw. catch applies the

procedure P , which make then take further arguments o� the stack, inside an environment

which retains the values of the P

caught

and pattern

catch

arguments for later use with a call of

throw occurring inside P or inside procedures that it calls, etc. Such a call of throw then

`throws' the argument O

throw

to the most recent call of catch that will catch it, that is, it

repeatedly exits through all procedures upto the next call of catch, until it reaches a call of

catch for which

O

throw

matches O

catch

is true. When this happens, the P

caught

argument to the catch call is then applied if it

is a procedure, or simply returned as result from that catch otherwise. A mishap results if

there is no call of catch whose O

catch

matches O

throw

.

An application of catch and throw is discussed in Chapter 25 on the implementation of

Prolog.

19

jumpout was a feature of POP-2 inspired by Landin's J operator [?]

108 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

2.25 How procedures can make other procedures

One of the crucial ideas of modern computing is that due to Von Neumann that program and

data can occupy the same storage. Thus at the lowest level of computing these two are the

same. This identi�cation is often lost in high level languages | a Pascal program cannot

create a Pascal procedure which it itself procedes to call. It can of course generate a text �le

which is a procedure to be called. That is Pascal can be used to write compilers, but one

of the essential steps in executing the compiled program has to be done by the operating

system, namely the linking, loading and execution of the compiled program.

LISP originally maintained the dual nature of program and data by making use of an

interpreter to execute LISP programs which are simply lists | essentially the same as POP

lists, which are indeed modelled on LISP lists. However, in order to be able to obtain greater

speed, it is common to compile LISP into machine code.

In POP there are 3 ways in which a procedure can generate other procedures. These are

1. A procedure can generate text, either as a �le, or as a string which is converted into a

repeater procedure. It then compiles this text using the procedure compile.

2. A procedure can generate a list, which is then compiled by the procedure popval.

3. A procedure can be in some sense `specialised' by having some of its variables bound.

This is called creating a closure.

Of these (1) and (2) do not need any special discussion in this chapter. They di�er in

that (1) generates program text at a �ne grain of characters, whereas (2) generates program

text as items, or tokens as they are called in the literature on compilers [?]ompilers. We

shall use them in subsequent chapters. We discuss (3) below.

2.25.1 Closures

We create a closure P

close

from a procedure P by binding some of its variables so that they

have determined values. There are two ways in which this can be done in POP.

2.25. HOW PROCEDURES CAN MAKE OTHER PROCEDURES 109

� We can bind some of parameters of a procedure, by using a process referred to as

partial application

20

.

� We can bind the non-local lexical variables of a procedure P

2

which are local to an

enclosing procedure P

1

by the simple act of calling P

1

The second way of creating closures corresponds to that of CPL

21

, Scheme and Common

LISP, and generally results in clear, but less e�cient, code

22

.

The usual construction for partial application is

<expression>(% <expression>{,<expression>}* %)

The �rst < expression > must evaluate to a procedure-object, with say m arguments.

The result is a closure which is the procedure-object with its last n arguments bound (or

frozen) to be the n objects left on the stack by the execution of the expressions between the

(% and %) parentheses. For example:

nonop + (% 1 %)

is equivalent to procedure(x); 1 + x endprocedure.

A closure can be thought of as a kind of procedure object which pushes the frozen

arguments on the stack and then immediately calls the procedure from which the closure

was constructed. In practice it di�ers in that some of the overhead of calling it as a separate

procedure can be avoided, since there is no need to return to the closure after the procedure

has been called. In addition, as described below, the frozen arguments can be accessed.

20

This has always been the term used in POP since it was introduced in POP-2, although partial calling

might be a little less contentious from the mathematcial point of view

21

Combined Programming Language, or possible Christopher's Programming Language | a precursor of

POP and C

22

Thus it is possible to eliminate free variables from procedure bodies by using partial application. In the

functional programming literature this is known as the technique of using supercombinators [?]

110 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

For example, you can de�ne the combinator C by

define C(c);

identfn(%c%)

enddefine

/*example C

vars two = C(2);

two() =>

*/

It is possible to access the procedure-object from which a closure was created, and its

frozen values: pdpart(P

close

) is the procedure part of the closure P

close

, i.e. the procedure

on which the closure P

close

was constructed. Note that P

close

can be a proper procedure, in

which case false is returned. pdpart can be used in the update sense.

frozval(n; P

close

) is the n-th frozen value of the closure P

close

. frozval can be used in

the update sense.

partapply(P; L) ! P

close

Another way of creating a closure is to use the procedure

partapply. This constructs and returns a closure whose pdpart is the procedure P , and

whose frozen values are the elements of the list L. This is equivalent to

P(%x,y,z,...%) where L = [%x,y,z,...%]

If P has an updater P

ud

, then the updater of the constructed closure will be partapply(P

ud

; L)

Closures are very useful, but this is not manifest at �rst sight! You will �nd examples of

how they can be used in the chapter on Lists ?? and the chapter on properties 11.

The most perspicuous technique for generating a closure is to make use of lexical variables

non-locally. For example, we could de�ne a procedure addn by:

define addn(n);

2.25. HOW PROCEDURES CAN MAKE OTHER PROCEDURES 111

lvars n;

procedure m; m+n

endprocedure

enddefine;

/*example

vars add23 = addn(23);

add23(2) =>

** 25

*/

A more complicated example is a procedure that makes a content repeater for a vector

(a procedure which will return the next content in the vector each time it is invoked).

define vectorin(vector) -> P;

lvars vector, P,

i = 1,

n = datalength(vector),

P = procedure; ;;; The result of vectorin

if i > n then ;;; Have we exhausted vec?

termin ;;; Yes - return termin

else ;;; No -

subscrv(i, vector); ;;; return next item

i + 1 -> i; ;;; increment index i

endif;

endprocedure;

enddefine;

/*example vectorin

vars rep;

vectorin({1 2 3}) -> rep;

rep() =>

** 1

rep() =>

** 2

rep() =>

** 3

112 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

rep() =>

** <termin>

*/

2.26 Modifying the syntax of POP |Macros and Syn-

tax procedures

You can create new syntactic forms in POP by using macros and syntax procedures. Both

of these are essentially procedures that are called as soon as their names are encountered

by the POP compiler, rather than being called when the procedure being de�ned is run.

These capabilities should be used with caution, since they may give rise to programs that,

while they seem elegant to the creator, may be hard to understand for a reader who does

not appreciate that they are being used.

2.26.1 Macros

A macro de�nition looks just like a normal procedure de�nition, except that the word macro

occurs after the define. The recommended syntax for a macro procedure is:

<def_macro> = define macro <word 1> {<macargs>};

<statement_sequence>

enddefine;

<macargs> = <word> | <word><macargs>

Notice that the arguments are not separated by commas or put in parentheses. Result

variables (if any) are speci�ed as for normal procedures though it is unusual for macros

to have result variables. The word < word1 > will be declared as a macro variable. A

procedure-object is created to be the value of the variable, but as soon as the POP compiler

reads its name it immediately calls the procedure, rather than taking its normal action of

2.26. MODIFYING THE SYNTAXOF POP|MACROS AND SYNTAX PROCEDURES113

planting VMCODE to call the procedure, or push it on the stack depending on context.

23

This procedure may read things from the input item-stream, perhaps using itemread (see

Chapter ??), and the results of the procedure are inserted into the input stream in place of

the macro name and items read.

For example:

define macro swap;

vars x y;

itemread() -> x;

itemread() -> y;

x, ",", y, "->", x, "->", y;

enddefine;

Creates a macro swap which can be called thus:

swap a b;

which is equivalent to

a, b -> a -> b;

Any POP11 word may be used as a macro name provided it has not already been declared

as an ordinary variable or procedure name. Once used as a macro a word cannot later be

used as an ordinary variable without being explicitly reintroduced by a vars statement or

being cancelled.

Words can be declared to be macros by using the pre�x macro in a global variable

declaration. If a word declared as a macro name turns out not to have a procedure as its

23

Thus POP macros di�er from LISP macros in that the latter take as argument a the list in which they

occur.

114 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

associated value, it is treated just like a procedure that always produces that value as its

result. That is, when the compiler hits the word, it just adds the value to the front of the

input stream. For instance:

vars macro pi; 3.1416 -> nonmac pi;

is a slightly more concise way of getting the e�ect of:

define macro pi;

3.1416

enddefine;

This is di�erent from:

vars pi; 3.1416 -> pi;

The di�erence is that if you have a program with pi de�ned as this macro, the compiler

will e�ectively substitute the number 3.1416 for every occurrence of the word pi in the

program. So the procedure:

define circle_area(r);

pi * r**2

enddefine;

would be saying \To �nd the area of a circle, multiply 3.1416 with the square of the

radius". If pi was an ordinary variable, it would say instead \to �nd the area of a circle,

multiply the value of the variable pi with the square of the radius". In this case there would

be nothing to stop the value of pi changing between calls of circle area. So the di�erence

is that in the macro case the looking-up of the value is done while the program is being

compiled, and not while the program is being run.

2.26. MODIFYING THE SYNTAX OF POP|MACROS AND SYNTAX PROCEDURES115

If the value associated with a macro is a list, the compiler puts all the elements of the

list individually on the front of the input stream, rather than just considering the list as a

single item. For instance, each time the macro

vars macro debug;

[if debugging then database ==> endif;] -> nonmac debug;

is used, a conditional statement will be inserted into the program. This statement has

the e�ect that, when the program is running, if the variable debugging has a non-false value

then the database (see ??) will be printed out at this point.

Macros created with define can have formal parameters. These are set by calling

itemread the appropriate number of times before invoking the macro. Thus

define macro swap x y;

x, ",", y, "->", x, "->", y;

enddefine;

is equivalent to the de�nition give earlier.

Note that the itemread procedure expands macros, that is to say, any macro names that

are encountered by itemread will have the corresponding procedures executed, or values sub-

stituted. So the parameter mechanism should not be used for macros which may themselves

read in macros, but don't want to expand them. Instead, use readitem, which just reads

text items o� proglist without expanding macro items.

POP11 macros can be traced. e.g. tracePooh; will change Pooh so that when it runs it

shows the text is is creating. This is described in chapter 4.

A detailed account of macro expansion is given in Chapter 15.2.2. If you want to avail

yourself of the full capibilities of the POP system in de�ning macros, you should read Chapter

15. An extended macro de�nition is given in Chapter ??.

116 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

Warning - if you are using code planting procedures described in Chapter 16 you should

use syntax procedures and not macros, or code may be planted in places you didn't intend.

2.27 Syntax Procedures

The recommended form for the header-line of a syntax procedure is:

define syntax <name>;

Syntax procedures should have neither arguments nor results. They achieve their e�ects

by calling compiler routines to plant VMCODE instructions. Like macros, syntax procedures

are called at compile time. System syntax words, such as if , define, until correspond to

syntax procedures.

define syntax Pooh;

<expression_sequence>

enddefine;

define syntax 5 Pooh;

<expression_sequence>

enddefine;

Each of these de�nes \Pooh" as a syntax word, the latter as a syntax operator of prece-

dence 5.

When syntax words have a precedence this is used in parsing the input stream during

compilation. E.g

00

(

00

is a syntax word of precdence -1,

00

!

00

a syntax word of precedence 11.

See 5.3.5 for a the meaning of these values. While syntax words and macros can do rather

similar things, there is an especial advantage in using syntax words with precedence in that

you will get more informative error messages.

2.28. ACTIVE VARIABLES 117

When a syntax identi�er is read by the compiler, the procedure it names is run immedi-

ately. Normally this will call code-planting procedures of the kinds de�ned in 16 to compile

an expression, or expression sequence, or perform declarations, etc. ObjREAD does not run

syntax procedures itself. Closing brackets can be declared as syntax identi�ers, in order that

they may trigger syntax checking.

For an example of the de�nition of a new syntax word for looping over items in the

POP-11 database, see Chapter 16, where a complete de�nition of the foreach construction

is given.

2.28 Active variables

2.28.1 Description

Active variables, which strictly speaking should be called active identi�ers, are those whose

names are used as if they were ordinary identi�ers, but which in fact are associated with

procedures.

The base procedure is run when the identi�er is used normally and the updater is run

when the identi�er occurs on the right of \!".

This makes it possible to associate side-e�ects with the process of accessing or updating

the identi�er. E.g. the updater can call the error handler if the wrong type of object is

assigned. Alternatively the procedures can keep track of the number of accesses.

An active identi�er has a multiplicity specifying how many results it produces when

accessed, and how many items have to be supplied when it is updated. Active identi�ers

can be made local to a procedure with dlocal, as described in section ??. In this case, the

multiplicity is used to determine storage requirements for the saved values.

Active variables can be declared with a variable declaration, whose syntax is given in

Chapter 5, or a procedure de�nition, whose syntax is given in section ?? can be used to

118 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

de�ne an active variable. The word active, possibly followed by a < multiplicity > is the

indication that an active variable is being de�ned. If no multiplicity is speci�ed, it is taken

to be 1.

For example:

vars active av1;

vars active:3 av2;

declares two active variables, av1 with multiplicity 1, and av2 with multiplicity 3.

Let us now de�ne an active variable av3 to store three values, and to count the number

of accesses in the permanent variable acc

a

v3 and the number of updates in the permanent

variable upd

a

v3. The three values will be stored in an inaccessible vector held in a lexical

identi�er vec

a

v3.

vars acc_av3 = 0, upd_av3 = 0;

lconstant L_av3 = [1 2 3];

define active:3 av3;

acc_av3 + 1 -> acc_av3; ;;; Increment access count

explode(L_av3) ;;; Return all members of L_av3.

enddefine;

define updaterof active:3 av3(x1,x2,x3);

lvars x1,x2,x3;

x1,x2,x3 -> explode(L_av3); ;;; Update all members of L_av3

upd_av3 + 1 -> upd_av3; ;;; Increment update count

enddefine;

av3 =>

** 1 2 3

4,5,6 -> av3;

2.28. ACTIVE VARIABLES 119

av3 =>

** 4 5 6

av3 + 4 -> av3;

av3 =>

** 4 5 10

For a description of explode, see 3.11.

How many times has av3 been accessed?

acc_av3 =>

** 4

and updated?

upd_av3 =>

** 2

In this example the values are stored in a list. The active variable mechanism does not

presuppose this. For example the values might be obtained from a generator function, or

read in from a �le. Values given to the updater might be output to a device by the updater.

In that case the active variable would function as a stream. All that is required is that for

an active variable of multiplicity n, the base procedure produces n results and the updater

takes n arguments. There need not be any relationship between what they do.

2.28.2 Accessing the nonactive value

The syntax word \nonactive", analogous to \nonop", \nonsyntax" can be used immediately

before an active identi�er to suppress its invocation, e.g. to discover the real value, as opposed

120 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

to its active value:

nonactive av3=>

** <procedure av3>

2.28.3 Making an active identi�er local: dlocal

If an active identi�er is to be used as local to a procedure it must be declared local using

\dlocal". E.g

define test;

dlocal av3=(99,100,101);

av3

enddefine;

test() =>

** 99 100 101

av3 =>

** 4 5 10

vars should not be used to declare an identi�er as dynamically local. This is because

vars av3; would re-declare

00

av3

00

as an ordinary non-active identi�er, and prevent it working

properly as an active identi�er thereafter.

2.29 System active identi�ers

Examples of active identi�ers in POPLOG are: current directory, current section, popdeverr,

popdevin.

2.30. HISTORY OF THE OPEN STACK 121

2.29.1 Finding the multiplicity and identprops of active identi�ers

isactive(W)! n

isactive(W)! false

This procedure returns the multiplicity of an active identi�er, or false if it not active, e.g.

isactive("av3") =>

** 3

isactive("acc_av3") =>

** <false>

Note that the identprops (see Chapter 5.3.5) of an active identi�er do not reveal its

activeness, although other attributed will be indicated. For further information about active

variables see Chapter ??.

2.30 History of the open stack

The following two sections are written by R.J.Popplestone.

The POP stack goes back to POP-1 and its predecessors. These were reverse polish

languages, much in the style of Forth[?], but with list processing capabilities. When Rod

Burstall and I designed POP-2, there were signi�cant arguments in favour of hiding the

explicit stack from the user. For example it is then possible to determine the applicative

structure of a program at compile time, and provide more error checking. There are two

arguments in favor of an open stack:

� It serves as a useful temporary data object e.g.

122 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

[%for i from 1 to n do i endfor%]

� It readily allows one to handle variable numbers of arguments to a procedure, and also

to write procedures which return procedures as results which have variable numbers of

arguments (e.g. newarray).

The �rst argument is not really clinching, but the second one seemed very important to

us. LISP, which comes from an interpretive tradition, is implemented on a LISP machine

using stacks, and has to make of CDR coding to provide a way of passing variable numbers

of arguments without a big store turnover.

Subsequent language development o�ers ways forward. The ML language [?] has a tuple

type which means that the arguments of a function are a distinct data-type in their own

right, and are not confused with lists.

2.31 The history of the POP procedure

POP-11 di�ers considerably from POP-2 in the syntactic form of procedures, but conceptu-

ally the main di�erence is the introduction of lexical variables. Other modi�cations include

the introduction of user-de�nable syntax procedures, the direct generation of VMCODE by

users, and the addition of a pdnargs �eld to a procedure record. The following example of

POP-2 code is taken from [?]

FUNCTION FACT N;

IF N=0 THEN 1 ELSE N*FACT(N-1) CLOSE;

END;

The decision to make lower-case available, and be the case used for keywords, was taken

in the early 1970's. Procedures with typed arguments (integers and reals) were embodied in

WonderPop, developed in Edinburgh University in the 1970's. The syntax was considerably

revised by Sussex University to obtain POP-11. They it was who introduced the systematic

matching brackets (if::endif etc) and the current form of writing result variables. Both

these innovations were intended to reduce the error rate among their students.

2.32. EXERCISES 123

See also

2.32 Exercises

Try de�ning the combinators C K S ...

124 CHAPTER 2. IN WHICH WE LEARN ALL ABOUT PROCEDURES

Chapter 3

In which we learn how to use Data

Objects

NOTES

Equality does not, however, follow the usual mathematical axioms, e.g. cons(2; 3)= ==

cons(2; 3), where cons is the LISP list-cell constructor. The impracticability of providing

a computed version of mathematical equality is clear if one considers tha case of functions.

Nevertheless, care is taken in the de�nition of the language to make sure that the meaning

of the equality is clearly de�ned. It corresponds to the LISP EQ, or the concept of equal

address in mechanistic terms.

The introductory discussion of simple and compound is unsatisfactory (despite rewrit-

ing).

The idea of pair is introduced too baldly.

zero indexing for LISP vectors

Introduce boxes to represent data structures.

It is a Useful Pot to Keep Things In. | Winnie the Pooh

125

126 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

3.1 Introduction

In this chapter we will consider POP data objects in general in a systematic way. We have

already met a number of di�erent kinds of data-object, e.g. numbers, lists, words. We will

see how these �t into a general framework, and how you can de�ne new types of data object

within this framework.

When talking about data-objects, we will use the terms \data-type" and \data-class".

We are using these terms as follows:

� We use the term \data-type" to mean a set of POP objects together with procedures for

recognising them and operating on them. Thus what constitutes a data-type is really

a matter of convention. It is open to users to build their own conventions about data-

types. This includes the possibility of developing formal conventions for describing

type-hierarchies, for example in the manner of the Common Lisp Object System [?].

� The term \data-class" is much more restrictive. Associated with each POP object O

is another object called its key which is used to provide a number of capabilities. For

example the procedure to print out an object O is held in its key. A data-class is a set

of POP data-objects all of which have the same key. If O is an object, then datakey(O)

is its key. To see the data-key for integers, try typing datakey(23) =>.

In POP, numbers, which are described in Chapter 6, form a data-type, consisting of

several classes, of which integers are one. Likewise POP lists are a data-type, built out of

the classe of pairs, and the class which consists of [].

POP11 has a number of built in primitive data classes including integers, integers, words,

strings, booleans, procedures, vectors, processes. There are some one-element classes. The

class which consists of [] (the empty list), and the class which consists of termin are one-

element classes.

From the user's point of view, POP data objects can be thought of as falling into to two

broad categories

� Simple objects which do not have any sub-object e.g.(short) integers.

3.2. IDENTITY AND ASSIGNMENT 127

� Compound objects which do have sub-objects.

This categorisation is something of an oversimpli�cation | the real distinction between

simple and compound objects is explained in section 3.7.

The sub-objects of compound objects are referred to as components or fields. These

are accessed by POP procedures, referred to as selector or access procedures. For example,

the procedures to access the two components of a pair are front and back | not hd and tl

which are for lists (see ??). The selector procedures can be used to update the component

of the record that they access. E.g. 3! front(Pair) will give the front of the pair record

held in the variable Pair a new value of 3.

3.2 Identity and assignment

In POP there is an in�x operator == which is used to determine whether two objects are

identically equal. If O

1

and O

2

are two objects then O

1

== O

2

implies the ordinary equality

O

1

= O

2

. In implementation terms, if O

1

== O

2

then O

1

and O

2

are the same bit pattern

1

The following facts are true about identical equality:

� If V

1

and V

2

are (non-active) POP variables, then immediately after the assignment

statement V

1

! V

2

, the statement V

1

== V

2

will always evaluate to true, and will

continue to evaluate to true at least until either of the variables is again assigned

to. In implementation terms this means that assignment to a variable in POP only

transfers the bit-pattern object identi�er from one location to another

2

.

� If (V

i

) is a sequence of POP variables, and (V

local;i

) are the input-local variables of a

procedure P , and if P is called by P (V

1

; V

2

; : : : ; V

i

; : : :), then within the body of P ,

1

The concept of identical equality is the same as that of the eq function in LISP. The concept is not

present in Prolog, which makes that language rather further removed from the real machine than either

LISP or POP.

2

This di�ers from other languages, in which copying of the �elds of a data-object may take place. The

POP model of assignment to a variable is the same as that of LISP

128 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

V

i

== V

local;i

evaluates to true, provided neither has been assigned to since the call.

In terms of other programming languages, this states that simple objects are passed

by value, compound ones by reference.

� We shall see in sections 3.4.1 and 3.4.2 how strict equality is a�ected by assignment to

�elds of members of record or vector classes.

3.3 Fixed and variable size objects

Classes of compound objects themselves fall into three categories,

1. Those for which all members of the class have a �xed number of �elds, and each

occupies a �xed amount of the computer's memory in standard implementations. These

are called records. For example pairs and references are records. There is a macro

recordclass described in 3.4.1 which allows a user to create his own class of records.

2. Those which for which the number of �elds can vary between one member of a class

and another, and for which the �elds are accessed by an integer subscript, sometimes

called an index. These are called vectors. For example strings belong to a class of

vectors. There is a macro vectorclass, described in section 3.4.2, which allows a user

to create his own class of vectors.

3. Other objects which occupy a variable amount of memory but whose �elds are not

accessed, or not all accessed, by an integer subscript. These include words and proce-

dures.

3.3.1 Procedures associated with records

Records are built by constructor procedures. E.g. the constructor for pairs is conspair. Each

constructor takes as many arguments as there are components in the record, and creates a

new record which has components as speci�ed by the arguments. E.g. conspair(2; 3) makes

a pair whose front is 2 and whose back is 3.

3.3. FIXED AND VARIABLE SIZE OBJECTS 129

Every record-class also has an associated destructor procedure. This is perhaps a mis-

nomer | the record itself is not at all changed by the destructor procedure, but all its

components are put on the user stack (see Chapter 2.5.2) in such an order that an imme-

diate call of the constructor function would make a copy of the original record. Thus the

constructor and destructor are inverse functions.

There is also a recogniser procedure associated with a record-class, which returns true

only when applied to an argument which is a member of the class.

3.3.2 Procedures associated with vectors

There are two ways of making a member of a vector class.

1. The initialisation procedure P

init

may be applied to an integer n to give a vector P

init

(n),

which has n elements, each of which is a standard value.

2. The constructor procedure P

cons

is a variadic procedure. P

cons

(O

1

; O

2

; : : : O

n

; n) is a

vector of n elements, of which the �rst is O

1

, the second is O

2

, etc.

The destructor procedure for a vector class is the inverse of the constructor procedure,

it takes a vector and pushes its components on the stack, and �nally pushes the number of

components.

The components of a vector class can be accessed individually by subscriptor procedures.

P

subscr

(i;v) returns the ith component of v, supposing that 1 � i � length(v). Fast sub-

scripting procedures are available, which, at the peril of your POP system's life, you may

employ instead.

Finally, vector classes have a recogniser procedure in the same way that record classes

do.

130 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

3.3.3 The data-key

We have stated above that each data class has a key associated with it. The key is a record

that contains information common to all objects in the class, including procedures associated

with the class. For example each class has a procedure to print members of that class. In

addition there is a word associated with each class, called the dataword.

The main data-types that POP objects are considered as belonging to are given in the

table below. The standard data-classes are tabulated in section 3.7.

array A kind of procedure, allowing data to be

accessed by multiple numeric indices e.g. A(i,j,k)

boolean A data-class containing the truth values true or false

device This data-class contains devices for input and output

key Contains information common to all members of a data-class

list A derived data-type built out of linked pairs

nil The unique item [] in the variable nil, | the empty list.

number The various kinds of numbers are detailed in Chapter6

pair A record with two �elds, used mostly to make lists

procedure Procedures,including closures, properties, arrays

process These store the saved state of a computation

property Generalised association tables masquerading as procedures

reference These are one-element records

section Structures with information for the compiler

about the scope of variables

string Strings, i.e. vectors of characters.

termin The unique item in termin, used to indicate the end of a �le

vector A vector is an object whose components are accessed by a

single integer index.

word A word is an object that can be the name of a variable.

3.4 Declaring your own class of data-objects

You youself can create new classes of data-object. The most convenient way of doing this is

to use the macros recordclass and vectorclass.

3.4. DECLARING YOUR OWN CLASS OF DATA-OBJECTS 131

3.4.1 Declaring your own records

The macro recordclass allows you to declare your own class of records. The syntax of its

use is as follows:

<recordclassdef>

= recordclass {<identspec>} <classname> <fields>;

<classname> = <word>

<fields> = {<fieldname>{:<fieldspec>}{,}}*

<fieldname> = <word>

<fieldspec> = "full" | <n>

recordclass is a library macro | if you want to understand the built-in POP capabilities

that it uses, turn to section 3.13. It automatically de�nes constructor, destructor, and

recogniser procedures for the new class, a variable containing its key, and selector/updater

procedures for each �eld.

The < classname > speci�es the dataword of the class. The name of the constructor

procedure is obtained by appending to the word

00

cons

00

the < classname >, the name of the

destructor procedure is similarly obtained by appending to the word

00

dest

00

, and the name

of the recogniser is obtained by appending to the word

00

is

00

.

The access procedures all have names which are the < fieldname > of each �eld. The

optional < fieldspec > speci�es the type of object that may be stored in the given �eld.

The possibilities are

� The word

00

full

00

. This is also the default if there is no < fieldspec >. It indicates

that the value of the �eld can be any POP item.

� An integer < n >. This indicates that the �eld can only have a value which is an

integer of a maximum size speci�ed by < n >. For the full meaning of < n > see

section 3.13.7.

Note that the < field >'s may be separated by commas.

132 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

The optional < identspec > speci�es the status of the identi�ers created by recordclass.

One of constant and vars may be used, to indicate that the identifers should or should not

be made constant, and one of procedure or 0 may be used, to indicate their identtype. If

neither constant nor vars is speci�ed, the identi�er status is defaulted from the variable

popdefineconstant; if neither procedure nor 0 is speci�ed, the identi�er type is defaulted

from the variable popdefineprocedure.

For example, the statement

recordclass point colour xof:16 yof:16 ;

creates procedures

conspoint, destpoint, ispoint, colour, xof, yof

and declares the variable point key with the new key as its value. The colour �eld of a

point record may be any object, but the xof and yof �elds must be integers in the range 0

to 2

16

� 1.

Recompiling a recordclass declaration

The subscriptor, destructor and recogniser procedures for a record class only accept records

for which the key is identically equal to the key with which the members of the class were

created. The macro recordclass is de�ned so that if you re-compile a �le containing a

call of recordclass it will not construct a new key, unless the speci�cation of the class has

changed.. More precisely, when a recordclass declaration is executed the value of the word

< name > key is examined and if the value is a key and its speci�cation is the same as

the speci�cation in the declaration then a new key will not be constructed, although the

procedures associated with the key (selectors, constructors etc.) will be reassigned to the

variables that should contain them.

3.4. DECLARING YOUR OWN CLASS OF DATA-OBJECTS 133

This behavior ensures that, if the declaration has not changed, then the old constructors,

selectors, etc. will continue to work on objects already created. If for any reason you do

wish to create a new key, then you should assign some non-key object (e.g. undef) to the

key name. E.g., having compiled the code given above:

undef -> point_key;

will force the construction of a new key. Any previously constructed records using the old

constructor will not work with the new �eld selectors/updaters and will not be recognised

as instances of the new data-class.

3.4.2 Declaring your own class of vectors

Just as you can declare your own class of records with recordclass, so also you can declare

your own class of vectors with vectorclass, using the syntax:

<vectorclassdef>

= vectorclass {<identspec>} <classname> <field>;

<field> = <fieldname>{:<fieldspec>}*

vectorclass automatically de�nes initialisation, constructor, destructor, subscriptor, fast

subscriptor and recogniser procedures for the new class, and a variable containing its key.

The < classname > speci�es the dataword of the class.

The optional < fieldspec > speci�es the type of elements of this class of vectors, and has

exactly the same form and meaning as that for recordclass, described in section 3.4.1and

3.13.7. Likewise the optional < identspec > speci�es the status of the identi�ers created

by vectorclass, according to the conventions de�ned in 3.4.1. Again, the names of the

procedures are obtained by appending the class name to the words

00

init

00

,

00

cons

00

,

00

dest

00

,

00

is

00

,

00

subscr

00

and

00

fast subscr

00

.

134 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

For example the statement

vectorclass short 16;

creates procedures

initshort, consshort, destshort, isshort

subscrshort, fast_subscrshort,

and declares the variable short key with the new key as its value. Vectors of type short

can only contain integers in the range 0 to 2

16

� 1.

Recompiling a vectorclass declaration

As in the case of recompiling a recordclass de�nition, discussed above, the macro vectorclass

is de�ned so that if you re-compile a �le containing a call of vectorclass it will not construct

a new key unless the speci�cation has been changed.

3.5 Standard Full Vectors

There is a class of vectors built-in to POP systems called standard full vectors, abbreviated

to SF vectors. Being full vectors, they can have any object as component. A constant SF

vector has a syntactic form very like that of a list, but with curly brackets rather than square

ones. E.g.

{1 {2 3} ^L}

3.5. STANDARD FULL VECTORS 135

is a SF vector, with �rst component the integer 1, second component the SF vector f23g

and third component the value of the variable L.

vector key [constant] This constant holds the key object for standard full vectors. Keys

are described in section 3.13.

3.5.1 Predicates on S.F. Vectors

isvector(O)! b

This procedure returns true if O is a standard full vector, false if not.

3.5.2 Constructing New S.F. Vectors

consvector(O

1

; O

2

; : : : ; O

n

; n)! v

This procedure constructs and returns a standard full vector of size n. Thus the top object

of the stack is used to specify the size of the vector v, and the n objects below the top are

used for the components of v, in such a way that v(i) = O

i

. n must be a (short) integer.

initv(n)! v

This procedure constructs and returns a standard full vector vof length n whose elements

are all the word

00

undef

00

.

sysvecons(O

1

; O

2

; : : : ; O

n

; m)! v

This procedure constructs and returns a standard full vector v containing all the items on the

stack except the last m, i.e. it performs consvector(n) where n = stacklength() �m. This

procedure is used by the POP-11 vector constructor, which saves the stacklength m before

compiling a vector constructor expression, and then calls sysvecons(m) after compiling it,

thus producing a vector of all the items in the expression.

136 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

3.6 Accessing S.F. Vector Elements

destvector(v)! n! O

n

: : :! O

2

! O

1

This is the destructor procedure for the standard full vector v, i.e. it puts all its elements

on the stack, together with its length.

destvector({A B C D}) =>

** A B C D 4

subscrv(n;v)! O

O! subscrv(n;v)

This procedure returns or updates the n-th element of the standard full vector v. Since

subscrv is the class apply of standard full vectors (see section 3.13), this can also be called

as v(n)! O and updated using O! v(n)

3.6.1 Applying generic object manipulation procedures to S.F.vectors

The generic object manipulation procedures described in section 3.11 (datalength, appdata,

explode, fill, copy, etc) are all applicable to standard full vectors, as are the generic vector

procedures (initvectorclass, move subvector, sysanyvecons, etc) described in section 3.12.

3.7 Representation of POP objects in a machine

This section explains how POP data-objects are usually represented in a real computer. So

you will need to have some knowledge of machine architectures to read this.

3.7. REPRESENTATION OF POP OBJECTS IN A MACHINE 137

Because word in POP means a data-object which can be the name of a variable, e.g.

00

x

00

, as described in Chapter 8.1, we will use the term \machine-word" to mean that unit of

storage which is commonly referred to as a \word" in talking about machine architecture.

For most POP implementations this will be 32 bits. The Symbolics LISP machine uses a 40

bit word, and is the only likely exception to this rule.

In existing implementations of POP, a compound object is represented as a contiguous

block of the computer's memory which will contain �elds for the sub-objects. A �eld may

contain a pointer to a compound sub-object, or the bit-pattern which constitutes a simple

object. It is possible to restrict �elds to containing only simple sub-objects, as we saw in

section 3.4.1.

Thus the conventional implementation of POP compound objects is to have them be

pointers to blocks of store in a Von-Neumann architecture. There is no obligation to im-

plement them in this way, and indeed in some parallel architectures it would be better to

regard them simply as object identi�ers | unique bit patterns to which the component ac-

cessing procedures can be applied. An example of a system where objects are treated thus

is X-windows system[?], where the window objects are simply passed between processes as

unique identi�ers.

In many programming language systems, the types of data objects are not encoded

explicitly within the objects, but are merely implicit in the way in which they are processed;

that is, objects are not identi�able at run-time, although they may have detailed descriptions

at compile-time.

In POP, however (as in most AI programming languages), data objects carry around with

them an explicit representation of type | or to be more accurate data class | which all

procedures in the system can use in deciding how to process a given object. This is achieved

by representing all objects to be manipulated as encoded bit patterns, one machine-word in

size which identify themselves as either

1. directly containing the actual data (`simple' objects), or

2. as pointers to data objects (`compound' objects).

The latter pointer types are then further distinguished by the key �eld in the data objects

138 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

to which they point (as explained in 3.13). Simple objects also have keys, but this is achieved

by testing for them in the datakey procedure.

3 4

For e�ciency of implementation it is important to give some thought to the location of

the key �eld within the record. The most important aspect of this is that procedures are

data-objects and it is important to be able to call them with a machine-code subroutine

call instruction. On many machines this will not admit an o�set, so that this means that

the pointer to procedure objects should not point to the machine word that holds the key

pointer, but to another word. In POPLOG the convention is to have the key pointer be held

in the second word of the object record. In the case of procedures, the �rst word will hold

a jump around the �xed set of �elds (pdprops, updater etc.) that begin the procedure.

While POP compound data-objects are, in current implementations, pointers to store, it

is important to bear in mind that these pointers may change as a result of garbage collection.

The garbage collector reclaims store that is no longer in use. This could leave a lot of `holes'

which might be the wrong size to hold new data-items, so the garbage collecter relocates

objects so that they are contiguous. Currently this is done at every collection.

Simple and compound objects are distinguished by the procedure iscompound. Note that

some apparently simple objects, such as ddecimals have to be implemented as compound

objects, since they take up too much space in memory to be simple items. Thus ddecimals

require 64 bits of data.

Note that the above scheme does not apply to integer or
oating-point data held in packed

vectors and records (e.g. strings). The POP system knows the types of the �elds of these

objects by virtue of the class description held in the datakey of the objects. Thus the �elds

3

The idea of a key �eld is due to Dr Foster[?], who used it in the ABSYS constraint propagation system.

The original plans (c.1967) for the implementation of POP-2 involved keeping a \zoo" in which data-objects

would be held in \cages". Each cage would hold only one type of object, so the type of an object could be

determined from the address. This plan was rejected in favor of Foster's key-cells because the latter was

much simpler to implement. Later, the WonderPop system made use of cages.

4

Thus POP implementations may use only a minimal set of tag bits, namely su�cient to distinguish

between simple and compound items, and to distinguish between classes of simple items. Usually POP will

need to distinguish between false, short integers and short decimals (
oats), and compound items. Thus

2 tag bits often su�ce. This is in contrast to most LISP implementations, which use a rich set of tag bits

(typically 8). The AlphaPop implementation makes use of a richer set of tag bits. One advantage of a rich

set of tag bits is that many type tests do not require a memory access. The disadvantage of using many tag

bits in a 32-bit machine is that the virtual address space is restricted to say 24 bits, which is starting to look

small.

3.7. REPRESENTATION OF POP OBJECTS IN A MACHINE 139

can be represented as they would be in non-AI languages, i.e. as a sequence of bits which

characterise the value of each datum without any type indication. However, extraction or

insertion of these �eld values necessitates conversion to and from POP representation, this

being performed automatically by the corresponding access and update procedures. These

packed representations are therefore particularly valuable in communicating with external

procedures | those written in another language like C or Fortran.

Below is a complete list of the data types currently available in POPLOG, together with

their identifying names as given by the procedure dataword. Note that only integers and

single-length
oating point are simple objects: all others are compound.

Dataword Type Described In

biginteger Arbitrary-precision integer 6

boolean The unique objects true and false 3.8

complex Complex number 6

ddecimal Double-length Floating Point 6

decimal Single-length Floating Point (simple) 6

device I/O Device ??

ident Identi�er 5.3

integer Small integer (simple) 6

intvec Signed Integer vector ??

key Class Key 3.13

nil The unique object [] in nil ??

pair Pair (and lists) ??

procedure Procedure { in general, and closures 2

{ property procedures 11.3

{ array procedures 10

process Process ??

prologterm Prolog term ??

prologvar Prolog variable ??

ratio Ratio of two integers 6

ref Reference 3.8

section Section 13

stackmark The object < popstackmark > 7.4

string String 9

termin The unique object < termin > in termin 20

undef Undef record | used to initialise variables 5.3

vector Full vector ??

word Word 9

140 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

The types descriptor and external procedure may also be present when using external

procedures (see ??).

There is no special data type for characters, as these are simply 8-bit integers

5

. Character

strings are merely packed vectors with a �eld-size of 8.

conskey (described in section 3.13) can be used to create a new record class or vector class

e.g. bit-vectors. 3.4.2 and 3.4.1 describe two library macros providing convenient methods

of calling conskey to create a new vector class (e.g. bit-vectors) or a new record class.

For each built-in data-type there is a global permanent variable whose name starts with

the dataword and ends with key, and whose value is the key for that type, e.g. integer key,

ratio key, biginteger key, device key etc.

3.7.1 The Heap

In the conventional implementation of POP, space for data-objects is allocated in an area of

store known as \the heap". However the POP system, which is created by the linking loader

from object code generated mostly by the compiler for the POP system dialect, but partly

by the assembler for the object machine, and partly by the C compiler, will contain many of

the built in objects, for example the procedure sin. These objects are not in the heap, and

so their space cannot be reclaimed by the garbage collector. Some of them may be sharable

between di�erent users of POP.

3.8 Standard record-classes not detailed in other chap-

ters

Most of the built-in data-classes of POP are described in chapters dedicated to them, or to

data-types built out of them. However there are a few data-classes which do not warrant a

5

This is in distinction to Common Lisp, where characters are a distinct data-type. The use of multiple

fonts for typography in POP is treated in Chapter ??

3.8. STANDARD RECORD-CLASSES NOT DETAILED IN OTHER CHAPTERS 141

separate chapter, and they are described in this section.

3.8.1 References

A reference, a member of a class whose dataword is \ref", is a record containing a single

�eld, its cont, short for contents. This may be any POP object.

isref(O)! b

This procedure returns true if O is a reference, false if not.

consref(O)! Ref

This procedure constructs and returns a reference Ref for which cont(Ref) = O.

cont(Ref)! O

O! cont(Ref)

This procedure returns or updates the contents of the reference Ref .

ref key

This constant holds the key object for references (see 3.13).

3.8.2 Booleans

The two objects < true > and < false > are the sole members of the data-class of booleans,

whose dataword is \boolean".

Note that any condition testing in POP regards any object other than < false > as

142 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

being true. So that for example

if 1 then 2 else 3

endif

evaluates to 2. Most comparison tests will yield true or false. However certain ordering

procedures, such as alphabefore, described in Chapter 9 produce 1 as result when two

objects being compared are equal. This is for the bene�t of sorting procedures, which need

to determine, given two objects O

1

and O

2

, whether O

1

should precede O

2

, or follow it, or

whether they should be combined because they are equal.

true [constant] The value of this constant is the boolean < true >.

false [constant] The value of this constant is the boolean < false >.

isboolean(O)! b

This procedure returns true if O is one of the two boolean objects, it returns false otherwise.

not(O)! b

This procedure complements the truth-value of any object O. That is not(false) = true,

and for any O 6= false, not(O) = false.

boolean key

This constant holds the key object for booleans (see section 3.13).

3.9 Byte-Accessible Objects

Certain procedures (move bytes and set bytes in this chapter, sysread, syswrite, sys io control,

etc, in ?? and external apply in ??) require byte-accessible objects as arguments. A object is

3.10. PROCEDURES WHICH OPERATE ON MANY OR ALL DATA-OBJECTS 143

byte-accessible if it does not contain any full �elds following its key �eld, which is located in

the second `machine -word' of the object. Full �elds are those declared with < field spec >

00

full

00

. They thus may contain pointers to other POP objects, which cannot be straightfor-

wardly written out to backing store, and are not readily interpretable by procedures written

in languages not consistent with the POP system.

Byte accessible objects are strings, intvecs, user-de�ned non-full vectors, and user-de�ned

records that, if they contain any full �elds at all, contain only one such �eld as the �rst in

the record.

Such objects can participate in `byte oriented operations' as performed by the procedures

mentioned above. In all these cases these procedures operate on bytes of the object with

the convention that the �rst byte of the object begins at the �rst byte of the third word of

the object, that is to say, the word following the key �eld. In the case of a string, intvec, or

user-de�ned non-full vector, this is the location of the �rst element of the string/vector; in

the case of a user-de�ned record it will be whatever �eld starts there (see 3.13).

3.10 Procedures which operate on many or all data-

objects

There are a number of procedures which operate on all data objects, or which operate on

several kinds of data-object class. The procedures given below provide various functions

applicable to many objects (including user de�ned ones) although, with the exception of =

etc, not to numbers. See also 21 for generic printing procedures.

3.10.1 Predicates on Objects

issimple(O)! b

This procedure returns true if O is a simple object (i.e. a simple integer or a single-
oat

decimal), false otherwise.

144 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

iscompound(O)! b

This procedure returns true if O is compound data object, false if O is simple. Simple and

compound are explained earlier in this chapter.

isinheap(O)! b

For a compound object O

1

, this procedure returns true if O

1

is in the working heap, i.e. is

not an object in in the system area, false otherwise. For a brief description of the heap, see

section 3.7.1.

isrecordclass(O)! K

This procedure returns datakey(O) if O is a record-type data object (e.g. O is a reference,

pair, or a record type constructed with conskey). Otherwise it returns false.

isvectorclass(O)! K

This procedure returns datakey(O) provided that O is a vector-type data object (e.g. string,

intvec, full vector, or a vector type constructed with conskey). Otherwise it returns false.

There are compound objects for which neither isrecordclass nor isvectorclass returns

true. These are `special' objects, e.g procedures, keys, etc., and form the third category

described in 3.3.

3.10.2 Information About Objects

Much information about an object is available through its key, as described in section 3.13.

The following procedures make use of the object-key to provide useful information about

objects.

datasize(O)! n

This procedure returns the number of machine-words occupied by the object O in memory.

If the object is simple, i.e. an integer or decimal, 0 is returned.

3.10. PROCEDURES WHICH OPERATE ON MANY OR ALL DATA-OBJECTS 145

3.10.3 Comparison Procedures

O

1

== O

2

! b

This operator returns true if O

1

and O

2

are absolutely identical (i.e. pointers to the same

object or identical simple numbers), otherwise it returns false.

O

1

= == O

2

! b

This is an operator returns b = not(O

1

== O

2

).

O

1

= O

2

! b

This operator compares O

1

and O

2

by doing

class = (datakey(O

2

))(O

1

; O

2

)

The default value in any key K for its class = is sys = (see below).

O

1

= = O

2

! b

This operator returns b = not(O

1

= O

2

).

sys = (O

1

; O

2

)! b

If O

1

and O

2

are objects, then this procedure compares O

1

and O

2

, recursively element by

element and returns true if they are the same, false otherwise. The sub-elements of two

objects of the same class and length are compared by calling = on them, which will thus use

the class = procedure for their class. If O

1

and O

2

are numbers of any kind then the result

will depend on their mathematical equality/inequality { see the description of = and = = in

6. If K is any key object, then by default:

class = (K) = sys =

146 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

3.10.4 Structure Concatenation

There are two generic procedures which concatenate like data-objects. Chapter 21 con-

tains a description of the operations >< and sys >< in 21 for concatenating the printed

representation of objects which may be unlike.

O

1

<> O

2

! O

3

Concatenates O

1

and O

2

, which must be of the same type, the result also being of that type;

permissible types are strings, any kind of vector, lists and words. E.g.

[1 2 3] <> [4 5 6] =>

** [1 2 3 4 5 6]

{a b c} <> {d e f} =>

** {a b c d e f}

'a ' <> 'string' =>

** 'a string'

"word1" <> "word2" =>

** "word1word2"

This operator also composes two procedures, so that P

1

<> P

2

is a new procedure which

�rst runs P

1

and then runs P

2

, as described in chapter 2.22.

O

1

nc <> O

2

! O

3

This operator is identical to <>, except that when O

1

and O

2

are lists, the second list O

2

is

joined onto the end of the O

1

, without copying O

1

(which is then the result). E.g.

[1 2 3] -> L;

L nc_<> [4 5 6] =>

** [1 2 3 4 5 6]

L =>

** [1 2 3 4 5 6]

3.11. GENERIC DATAOBJECT PROCEDURES 147

3.11 Generic Dataobject Procedures

These procedures can be applied to most kinds of `dataobjects', that is, compound objects

which can be considered to have independent `components' or `elements' (this essentially in-

cludes everything except numbers, ordinary procedures, and special objects like true, false,

termin, [], etc). The action of these procedures on individual data types is described in the

sections dealing with the individual types.

datalength(O)! n

length(O)! n

These two procedures give the length of the object O

1

, i.e. the number of elements in it. The

only di�erence between length and datalength is that the former applied to a list returns

the length of the list, whereas the latter would return 2 for the length of the �rst pair.

appdata(O

1

; P)

Applies the procedure P in turn to each element of the object O

1

.

mapdata(O

1

; P)! O

2

This procedure applies the procedure P in turn to each element of the object O

1

, and uses

fill to �ll a copy O

2

of O

1

with the resultant values. It is de�ned as

appdata(O_1, P); ;;; get result values

if isword(object) then

;;; can't use fill with words

consword(datalength(O_1)) -> O_2

else

fill(copy(O_1)) -> O_2

endif

ncmapdata(O;P)! O

This is the same as mapdata, but does not copy its argument (and therefore cannot work

148 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

on words). It is de�ned as

fill(appdata(O;P); O)

copy(O

1

)! O

2

This procedure returns a copy O

2

of the object O

1

, in which sub-objects are not copied

except where they form an `essential' part of the outer object { see the chapters on individual

data types. Note in particular that copy applied to a list will only copy the initial pair. As

described in Chapter ??, you should use copylist to copy a list at the `top-level', i.e. following

the tl's.

copydata(O

1

)! O

2

This procedure copies its argument, and recursively copies its components, whereas copy

merely copies the top level of a data object. There is an error check for one-level circularity.

explode(O)! O

n

:::! O

2

! O

1

O

1

; O

2

; :::; O

n

! explode(O)

This procedure puts the n elements of the object O on the stack. Apart from the case in

which O is a list, this is the same as

appdata(O; identfn)

If O is a list, explode puts the elements of the list O on the stack, i.e. it is equivalent to:

dl(O)

In both cases, the updater does the opposite, i.e. given a object O, �lls its n elements

with objects from the stack.

3.12. GENERIC PROCEDURESWHICH OPERATE ON VECTORS ORON BYTE-ACCESSIBLE OBJECTS149

datalist(O)! L

L is a list of the elements of the object O. This is equivalent to

[%explode(O)%]

fill(O

1

; O

2

; :::; O

n

; O)! O

Given an n-element object O, this procedure �lls it with n objects from the stack, and also

returns O as result. The only di�erence between this procedure and the updater of explode

is that the latter treats a pair as a list, whereas fill would treat it as a pair, i.e. a 2-element

object.

allbutfirst(n;O

1

)! O

2

allbutlast(n;O

1

)! O

2

These procedures both take a (simple) integer n and a object O

1

, which may be a list, a

word, or any vector-class object and which must have at least n elements. They both return

a object of the same kind with either the �rst n elements (allbutfirst) or last n elements

(allbutlast) removed.

last(O

1

)! O

2

O

1

! last(O

2

) Where O

1

is as for allbutfirst and allbutlast, returns or updates the last

element of O

1

(which must have at least one element).

3.12 Generic procedures which operate on vectors or

on byte-accessible objects

This section describes a number of generic procedures, some of which operate on all vectors,

and some of which operate on all byte-accessible objects.

150 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

initvectorclass(n;O

init

; key

v

)! v

The purpose of this procedure is to enable new vectors to be initialised with a given object,

thus providing an extension of the capabilities of the normal vector init� procedures initialise

each element to a �xed value. It creates and returns a new vector of the class speci�ed by

the key object key

v

, using its class init procedure, described in section 3.13. The object

O

init

must be a suitable component for the vector being constructed, and for all i, 1 � i � n

length(v) = n; v(i) = O

init

sysanyvecons(O

1

; O

2

; :::; O

n

; m; cons

v

) ! v

Given a vector-class constructor procedure cons

v

(like consvector, consstring, etc), this

procedure constructs and returns a vector v of that class containing all the objects on the

stack except the last m, i.e. it performs cons

v

(n) where n is stacklength() � m. This

procedure is used by the POP-11 cons with vector constructor, which saves the stacklength

m before compiling a constructor expression, and then calls

sysanyvecons(m; cons

v

)

after compiling it, thus producing a vector of all the objects in the expression. The

objects O

1

, ..., O

n

must of course be suitable for the kind of vector being constructed.

move subvector(i

src

;v

src

; i

dst

;v

dst

; n)

v

src

and v

dst

must be two vector-type objects. This procedure copies the n components

of v

src

starting at subscript i

src

to the components of v

dst

starting at subscript i

dst

The

destination vector v

dst

must be of an appropriate size.

move bytes(i

src

; O

byte;src

; i

dst

; O

byte;dst

; n)

O

byte;src

and O

byte;dst

must be two byte accessible objects, as de�ned above. This procedure

copies the n bytes of O

byte;src

starting at byte i

src

to the bytes of O

byte;dst

starting at byte

i

dst

.

set bytes(c; i; O

byte

; n)

3.13. THE KEYS OF DATA-OBJECTS 151

This procedure sets the n bytes of the byte accessible object O

byte

starting at byte number

i to have the value c, which must be an integer from 0 to 255 inclusive.

3.13 The keys of data-objects

Every object in the POP system has in it a �eld containing a pointer to a key-object. This

key-object identi�es the class of the object. E.g. vectors contain a pointer to the vector key,

procedures a pointer to the procedure key, and so on. Keys, being themselves objects, are

identi�ed by a key (the key key). So for every object class in the POP system, there is an

identifying key object. For completeness, there are also key objects for the simple integer

and decimal data types.

As well as identifying the class of any object, keys also serve as a means of holding

various kinds of information about the class, e.g. which procedure is used to print objects in

the class, which procedure is to be used by the operation = in comparing them, and which

procedures are used to manipulate �elds in the object.

The latter is, in particular, the means of providing procedures to manipulate new classes

of object de�ned by the user. The process of de�ning a new class of object consists of

simply de�ning a new key for the class, with the procedure conskey, described below. The

appropriate procedures to construct and manipulate the new objects are then available from

the key via the class procedures described below.

Two distinct types of new object class can be constructed: record-type and vector-type.

Recall that a record is a object containing a �xed number of distinct and possibly di�erent

�elds, whereas a vector consists of a variable number of similar �elds. For example a pair

is a record, whereas vectors and strings are vectors. The built-in classes in the system also

include other types which do not fall into these categories and which cannot be user-de�ned,

e.g. keys, procedures, processes, etc.

The facilities given by conskey are more readily packaged in the two macros recordclass

and vectorclass, as described in sections 3.4.1 and 3.4.2.

The following constant is provided: key key

152 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

This constant holds the key object for key objects themselves.

3.13.1 Accessing Keys of Items

Note that for each built-in data-type there is a global permanent variable whose name

starts with the dataword and ends with key, and whose value is the key for that type, e.g.

integer key, ratio key, biginteger key, device key etc.

datakey(O)! K

This procedure returns the key of the class of which the object O is a representative | this

includes simple data types. See 3.13.

dataword(O)!W

This procedure returns the dataword of the object O.

datakey(O)! K

This procedure returns the key K corresponding to the class of the object O.

key of dataword(W)! K

Given a word W which is a dataword this procedure returns the corresponding K. This

procedure is a property (see Chapter 11) de�ned in the library. It is initialised for the built-

in data-classes, and updated by recordclass and vectorclass, but not by conskey itself.

3.13.2 Predicates on Keys

iskey(O)! b

This procedure returns true if O is a key, false otherwise.

3.13. THE KEYS OF DATA-OBJECTS 153

3.13.3 General Key Fields

class = (K)! P

=

P

=

! class = (K)

For any class key K, this procedure returns or updates the procedure used by = in comparing

objects of the class represented by K, the default value for any key being sys = . See section

3.7.

class apply(K)! P

apply

P

apply

! class apply(K)

This procedure returns the `apply procedure' for the class key K. If an object O of the class

is applied as if it were a procedure, what happens is that P

apply

is called instead, with O as

argument. E.g. if the variable O contains a object of class K then the call O() will turn

into P

apply

(O). Similarily, if the updater of the object is called, then the updater of P

apply

is called, i.e. ! O() will result in ! P

apply

(O). The updater of class apply assigns the

procedure P

apply

to be the apply procedure for the class key K. This mechanism will not

change what happens when an actual procedure is applied, i.e. assigning to the class apply

of the procedure key has no e�ect.

WARNING: class apply is the means by which array-type indexed access on lists, words,

vectors and strings is implemented, i.e. the facility to use O(n) for subscrX(n;O). In

general, the class apply for these data types is a procedure like

procedure(object);

if stacklength() /== 0 and isinteger(dup()) then

subscrX(object)

else

mishap(object, 1, 'EXECUTING NON-PROCEDURE')

endif

endprocedure;

and similarily for the updaters. Since this facility is used widely in both system and

library procedures, you can expect trouble if you rede�ne class apply for any of these data

types.

154 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

class dataword(key)!W

This procedure returns the dataword of the class key key.

class hash(K)! P

hash

P

hash

! class hash(K)

For any class key key returns or updates the hashing procedure for objects of class key, called

by syshash. Hashing is mostly used in implementing properties, as described in Chapter 11.

The hashing procedure takes an object of the class key and returns an integer determined

by the object, subject to the constraints that if for two objects O

1

and O

2

, O

1

= O

2

then

P

hash

should have the property that P

hash

(O

1

) = P

hash

(O

2

) value by the hashing procedure.

The default hashing procedures are described in ??.

class print(K)! P

print

P

print

! class print(K)

For any class key K, P

print

is the procedure used by syspr to print an object in that class,

as described in Chapter 21 The default value for any key is sys syspr.

class recognise(K)! P

recognise

This procedure returns the recogniser procedure of the class key K, i.e. a procedure which

returns true when applied to a member of the class, false when applied to anything else.

class spec(K)! Spec

This procedure returns the speci�cation of the class key K | for a vector-type class this

is a single �eld speci�er, for a record-type class it is a list of them. The �eld speci�ers are

described along with the speci�cation of conskey, to be found below. For any other type

Spec = false.

3.13. THE KEYS OF DATA-OBJECTS 155

3.13.4 Record & Vector-type Key Fields

class cons(K)! P

cons

For a record or vector-type class key K, this procedure returns the constructor procedure

for that class. For a record-type class, this procedure takes n arguments, where n is the the

number of �elds in the record; for a vector-type class, it takes an argument n and constructs

a vector of length n with n objects taken o� the stack. Examples of such procedures are

conspair for pairs, consvector for S.F. vectors, and consstring for strings.

class dest(K)! P

dest

For a record or vector-type class key K, this procedure returns the destructor procedure for

that class. Examples of such procedures are destpair for pairs, destvector for S.F. vectors

and deststring for strings.

3.13.5 Record-only Key Fields

class access(n;K

R

)! P

access

For a record-type class key K

R

, this procedure returns the access procedure for the n-th

�eld of that record class, i.e. the procedure that returns or updates the n-th �eld. Since

class access is the class apply of keys, this may also be called as

K

R

(n)! P

access

class datasize(K

R

)! n

For a record-type class key K

R

, this procedure returns the length in words of the record.

156 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

3.13.6 Vector-only Key Fields

class init(K

v

)! P

init

For a vector-type class key K

v

, this procedure returns the initialiser procedure for that class,

i.e. a procedure that takes an integer n and constructs a new vector of length n. For S.F.

vectors, this is the procedure initv, for strings the procedure inits. Full vectors have their

components initialised to undef . Non-full vectors have their components initialises to 0. See

also initvectorclass in section 3.12, which initialises a vector for a given class key, but with

a speci�ed initialising value.

class subscr(K

v

)! P

subscr

For a vector-type class key K

v

, this procedure returns the subcripting procedure P

subscr

for

that class. Thus

P

subscr

(n;v)! O

n

O

n

! P

subscr

(N;v)

return or update the n-th element of a vector in the class. Examples of such subscripting

procedures are subscrv for S.F.vectors, subscrs for strings. Note that since the class subscr

procedure of a vectorclass is by default its class apply, a vector of the class can also be

subscripted by

v(n)! O

n

O

n

! v(n)

class fast subscr(K

v

)! P

subscr

This procedure returns a subscripting procedure P

subscr

in the same way as class subscr,

but the P

subscr

is a fast subscriptor procedure, which does not check the type of object it is

being applied to, and can therefore return an illegal object which will cause the POP system

to fail at the next garbage collection, or before if the updater is used.

3.13. THE KEYS OF DATA-OBJECTS 157

3.13.7 Constructing New Keys

This section describes how to construct new key-objects, and hence new data-classes. Note

however that this is more conveniently done by the following two macros: recordclass

vectorclass

These are described in section 3.4.1 and 3.4.2.

conskey(W;Spec)! K

v

conskey(W;L

spec

)! K

This procedure constructs and returns a key K for a new record or vector- type class of ob-

jects, with dataword W and speci�cation as given by Spec or L

spec

. For a vector-type class,

Spec is a single �eld speci�er, all components of a vector having the same speci�cation. For

a record-type class, L

spec

is a list of �eld speci�ers, where the n-th speci�er in the list refers

to the n-th �eld in the record, i.e. the record has length(L

spec

) �elds.

A �eld speci�er can be one of the following:

� The word \full"

This means that the �eld can hold any POP object whatsoever.

� a positive or negative integer n. This speci�es a �eld that can contain integers only:

the absolute value of n speci�es how many binary bits the �eld occupies and must be

between 1 and 32 inclusive in current implementations, i.e. 1 � abs(n) � 32. If n is

positive then the �eld can contain only positive integers, in which case the range of the

integers iis0 � i < 2

n

. If n is negative then the �eld can contain positive or negative

integers, in which case the range for i is

�2

n�1

� i < 2

n�1

� the word \decimal" or \ddecimal"

158 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

This means that the �eld can contain POP decimal | a
oating point number. For

\decimal", the �eld is 32 bits and can therefore hold a single-
oating type datum;

for \ddecimal" it is 64 bits and can hold a double-
oating datum. Any non-complex

number, including integers and ratios, can be assigned into such a �eld, conversion

and/or rounding being done where necessary so that the value is always stored in

oating point format. Output from the �eld is done according to the same rules as

for arithmetic results, the production of a decimal or ddecimal being dependent on

popdprecision, as described in Chapter ??.

Notes:

1. A full �eld occupies 1 word, that is to say 32 bits in all current implementations.

2. An integer �eld of more bits than a POP simple integer (29 bits unsigned or 30 bits

signed in current implementations) can produce a biginteger when accessed, if the

value over
ows a simple integer. Similarily, a biginteger within the range allowed can

be assigned into such a �eld.

3. In a record, �elds are allocated space in the order speci�ed, treating the record as a

sequence of bits, and starting at bit 0. However, the following points should be noted:

� The key pointer occupies the second word of any object. Therefore, if a �eld

would start in the the �rst word and �nish in the second it is instead started at

the third. Thus e.g. the spec [8 16 32 8] occupies 1 more word than [8 16 8 32].

� A \full" �eld will always be started at the next machine-word boundary.

� A decimal or ddecimal �eld will always be started at least at the next byte

boundary and, depending on the implementation, probably at a higher one (e.g

machine-word boundary).

� The length of a record is always rounded up to an exact number of machine-words.

3.13.8 Examples

The following de�nes a new user vector-type class whose components are 16-bit positive

integers:

3.13. THE KEYS OF DATA-OBJECTS 159

conskey("short", 16) -> short_key;

class_cons(short_key) -> cons_short;

cons_short(32,64,128,3) -> a_short;

a_short =>

** <short 32 64 128>

whereas the next example de�nes a new user record-type class with 4 di�erent �elds,

representing a person's name, address, age and a �eld to indicate sex (0=male, 1=female):

conskey("person", [full full 8 1]) -> person_key;

class_cons(person_key) -> cons_person;

;;; get the access procedures for each field

person_key(1) -> person_name;

person_key(2) -> person_address;

person_key(3) -> person_age;

person_key(4) -> person_sex;

cons_person('Fred Bloggs', 'No fixed abode', 99, 0) -> fred;

person_name(fred) =>

** Fred Bloggs

person_age(fred) =>

** 99

Using recordclass, an equivalent set of procedures could have been generated.

recordclass person

person_name:full

person_address:full

person_age:8

person_sex:1;

160 CHAPTER 3. IN WHICH WE LEARN HOW TO USE DATA OBJECTS

Note however that the constructor procedure would be consperson in this case.

3.14 Exercises

Extend the program given in Chapter ?? for describing a lists, words and numbers as English

noun-phrases to describe any POP object as an English noun-phrase.

3.15 The development of data-representation in POP

In POP-2 the key record was not visible to the user, and the dataword was the only mech-

anism provided to allow the user to associate together information common to all members

of the class. One of the big improvements made in POP-11 is to give the user access to the

key record itself. Thus in POP-11 the main role of the dataword is to provide a name for

the class | by default it is printed out when a vector or record is printed.

Most of the �elds of the key record have come with POP-11. The most useful from the

users point of view are the class print �eld which allows a user to specify how to print

objects, and the class apply �eld which allows us to write ss(i) to access the ith element of

a string ss, rather than subscrs(i; ss).

Chapter 4

How we deal with things going wrong.

NOTE How about time and pro�le???

4.1 Introduction

This chapter deals in detail with the facilities provided in POP to help you discover mistakes

you have made in your programming. It is of course better not to make mistakes in the �rst

place, and it is imporatant to develop a disciplined approach that will minimise the number

of mistakes you make, and also make it easy to discover those which you do make easily.

Such discipline will in general make it easier for other people to follow your work, or, for

that matter, for you to understand it when you come back to it a year later.

There are two basic topics covered in the chapter, the tracing of procedures, and the

mishap mechanism.

When you are developing a program it is often useful to follow the course of execution

by tracing procedures, that is to say, for certain selected procedures, displaying on your

terminal, or in a window, information about when a selected procedure is called, what its

arguments are, when it returns and what its results are.

161

162 CHAPTER 4. HOW WE DEAL WITH THINGS GOING WRONG.

POP-11 provides a procedure tracing mechanism that can either be used unchanged for

simple tracing, or tailored by users to provide more elaborate options.

Facilities are provided for specifying that certain procedures are to be traced, or that they

should be no longer traced, that all tracing should be disabled or enabled, for re-directing

trace printing to a speci�ed �le, and for re-de�ning some of the utilities used for tracing. In

the case of POPLOG, tracing is integrated with the VED editor.

Section ?? explains the simple default facilities, involving trace untrace and the global

variable tracing. Section 4.3 explains the mechanism of tracing in su�cient detail to allow

you to modify it for your own purposes.

4.2 Summary of basic tracing facilities

Tracing of procedures is controlled overall by the following global variable:

tracing

The default value of this variable is true. Setting it to false switches o� all trace printing

of traced procedures. The use of trace or untrace sets it true again.

Tracing and untracing of procedures is accomplished using the following syntax:

trace <names_of_procedures> ;

untrace <names_of_procedures>;

<names_of_procedures> = {<word>{,}}*

Commas are optional in trace and untrace commands. In both cases, if no procedure

names are given, a distinctly di�erent action occurs:

4.2. SUMMARY OF BASIC TRACING FACILITIES 163

The command trace; is equivalent to true ! tracing;, and restarts the printing of all

traced procedures.

The command untrace; is equivalent to false ! tracing;, and stops the printing of all

traced procedures, although their trace printing will begin again when tracing ceases to be

false.

trace < names of procedures >

This construction is used to alter procedures so that they print out information indicating

when they begin execution and when they end execution. traceing a procedure changes it

so that when called, it does \before" printing, then it runs, then it does \after" printing.

The \before" printing includes the name of the procedure and the arguments to the

procedure (if any), and \after" printing includes the results of the procedure (if any). Both

\before" and \after" printing indicate the total depth of currently active traced procedure

calls by printing a row of \!" symbols, followed by \>" before, and \<" after the procedure

has run.

Trace printing of a procedure Pooh with three arguments and two results has a format

like:

!!!!!> Pooh arg1 arg2 arg3

--- trace printing of procedures called by Pooh ---

!!!!!< Pooh result1 result2

The 5 exclamation marks indicate that when Pooh was called there were 5 traced proce-

dures higher up the calling chain.

4.2.1 Tracing a recursive procedure

Tracing is useful to indicate intermediate arguments and results. An example follows.

164 CHAPTER 4. HOW WE DEAL WITH THINGS GOING WRONG.

define factorial(n);

if n=0 then 1 else n*factorial(n-1)

endif

enddefine;

factorial(3) =>

** 6

trace factorial;

This causes nothing to be printed out - it merely changes the procedure so that it does

the printing when run.

factorial(3) =>

>factorial 3

!>factorial 2

!!>factorial 1

!!!>factorial 0

!!!<factorial 1

!!<factorial 1

!<factorial 2

<factorial 6

** 6

The

0

>

0

symbol indicates the start, and

0

<

0

indicates the end of a procedure activation.

The exclamation marks indicate depth of procedure calls.

untrace < procedurenames >;

To stop trace printing of one or more procedures, use untrace, e.g.:

untrace P1 P3;

4.2. SUMMARY OF BASIC TRACING FACILITIES 165

which will set the two named procedures back to normal.

You can switch o� all trace printing by doing

untrace;

This is equivalent to false! tracing;

Previously traced procedures remain marked as traceable.

These uses of trace and untrace without arguments have their e�ects immediately, and

so they are not suitable for use inside a procedure de�nition. Instead use an assignment to

tracing.

untraceall;

untraces all previously traced procedures.

All other uses of trace and untrace (i.e. with named procedures), will do true! tracing,

so restarting tracing.

If instead of true, 1 is assigned to tracing this will allow syntax procedures to be traced.

If the value of tracing is true, attempting to trace a syntax procedure will cause an error.

4.2.2 Local tracing

trace and untrace can be used locally within a procedure de�nition to trace or untrace a

procedure de�ned locally. This enables tracing to be dependent on calling environment.

define Pooh;

vars addup; ;;; make addup local

166 CHAPTER 4. HOW WE DEAL WITH THINGS GOING WRONG.

trace addup; ;;; tracing will occur only when Pooh is active

....

enddefine;

4.2.3 Re-de�ning traced procedures

De�nitions of procedures that have been traced, or their updaters, can be edited and recom-

piled. The new procedure, or the new updater, will be traced if the original one was. So

re-tracing is uncessary.

4.2.4 Tracing system procedures

System procedures, e.g. hd can be traced in the usual way, e.g.

trace hd;

However, this will only be e�ective for calls of hd from your own or from library procedures

which are compiled after this use of trace. So re-compile if necessary. System identi�ers

given to trace are no longer protected against rede�nition by the user

1

.

4.2.5 Tracing of updaters

If a traced procedure has an updater, the updater will automatically be traced. The trace

printing will then include updater before the name.

For example:

1

See Chapter 5.3.7 for a description of how to change protections of variables

4.3. WHAT YOU NEED TO KNOW TO MODIFY THE TRACING CAPABILITY 167

trace hd tl;

vars list=[a b c d e];

"C" -> hd(tl(tl(list)));

>tl [a b c d e] ;;; entering innermost call of tl

<tl [b c d e] ;;; leaving tl

>tl [b c d e] ;;; entering outer call of tl

<tl [c d e] ;;; leaving tl

>updater hd C [c d e] ;;; entering updater of hd

<updater hd ;;; finished

list =>

** [a b C d e]

4.3 What you need to know to modify the tracing ca-

pability

We begin with two variables that are used by the standard tracing procedures.

poptraceindent

This global dynamic variable, initially 0, is incremented, in systrace, which is described

below, whenever a traced procedure is running. Declared local in systrace, it is used by

systrace pr to count the number of

0

!

0

s to be printed.

cuchartrace

The default value of this global variable is false. If a character consumer is assigned to it,

then trace printing done by systrace pr will go through the consumer. Other printing is

unchanged. This enables trace output to go to a special �le, or to a window such as a VED

window in POPLOG.

The procedures and variables de�ned below enable more sophisticted and varied tracing

facilities to be de�ned by the user. All calls of traced procedures or their updaters go through

the system procedure systrace or its updater. It increments poptraceindent and then in turn

168 CHAPTER 4. HOW WE DEAL WITH THINGS GOING WRONG.

calls a user de�nable procedure systrace proc. This has a default that does \before" trace

printing then runs the procedure then does \after" trace printing. It does the printing by

invoking another user de�nable procedure systrace pr.

systrace(P;W; P

trace

; b

updater

)

Closures of this procedure and its updater are used to replace procedures when they are

traced. It is partially applied to four arguments by trace:

1. P is the original procedure to be traced

2. W is the name of P

3. The word

00

systrace proc

00

, the default value of which is de�ned below.

4. b

updater

is true i� P is the updater of the traced procedure.

If tracing is false, systrace just applies P . If true, systrace can be thought of thus:

define systrace(P, W, P_trace, Updater);

lvars Args W P P_trace Updater;

vars poptraceindent;

poptraceindent + 1 -> poptraceindent;

recursive_valof(P_trace) ->P_trace;

P_trace(P,W, Updater)

enddefine;

systrace has an updater which takes the same arguments, and simply does

systrace(updater(P); name; P

trace

; true);

If a procedure to be traced has an updater, then trace will make a closure of systrace to

replace the procedure, and a closure of its updater will be the new updater.

4.3. WHAT YOU NEED TO KNOW TO MODIFY THE TRACING CAPABILITY 169

So alterations to the original updater will a�ect tracing. The system procedures sysPASSIGN

and sysUPASSIGN that handle rede�ned procedures or their updaters and which are de-

scribed in Chapter 16, know how to deal with closures of systrace so that rede�ning a traced

procedure or its updater has the expected e�ect.

systrace proc(P;W; b

updater

)

The word

00

systrace proc

00

is the third argument of systrace. Its valof , i.e. systrace proc

is user assignable, and does the actual trace printing and running of the procedure. The

arguments are:

� P is the original procedure being traced

� W is the name of the procedure

� b

updater

is a boolean, true i� updater(P) is being traced

This procedure checks that there are enough arguments on the stack to correspond to

the pdnargs

2

of P . It stores the arguments in a vector, so that they can be printed by

systrace pr then puts them back on the stack for P , which it then runs. If the stacklength

is increased then again a vector containing the new stack items is used to print out results

during \after" trace printing.

A simpli�ed version of this procedure is:

define vars procedure systrace_proc(P, W, Updater);

lvars Args P W Updater n;

;;; pdnargs can give funny values for closures of variadic pdrs

max(0, pdnargs(P)) -> n;

if stacklength() < n then

mishap(stacklength(), 'TOO FEW ARGUMENTS FOR ' sys_>< W);

endif;

consvector(n) -> Args; ;;; save arguments in a vector

stacklength() -> n;

systrace_pr(W, `>`, Args, Updater);

2

see Chapter ??

170 CHAPTER 4. HOW WE DEAL WITH THINGS GOING WRONG.

explode(Args); ;;; put arguments back for P

P();

stacklength() - n -> n; ;;; find out how many results

consvector(max(0,n)) -> Args;

systrace_pr(W, `<`, Args, Updater);

explode(Args);

enddefine;

systrace pr(W; b;v

args

; b

updater

)

This user assignable procedure is called by systrace proc to do the trace printing. The

arguments are:

1. W is the name of the procedure being traced

2. b is true on entry false on exit

3. v

args

is a vector of arguments or results from the stack

4. b

updater

is true i� the updater is being traced

Note that the vector argument may be re-used, so it should not be stored anywhere or

updated, unless copied.

For example, to rede�ne this so that instead of using "!" to indicate depth it uses a level

number, do something like:

define strace_pr(W, Before, Args, Updater);

lvars W, Before, Args, Updater;

vars procedure cucharout, tracing = false;

if isprocedure(cuchartrace) then

cuchartrace -> cucharout ;;; for redirecting trace output

endif;

4.3. WHAT YOU NEED TO KNOW TO MODIFY THE TRACING CAPABILITY 171

pr('[Level:'); prnum(poptraceindent,2,0); spr("]");

spr(if Before then '=>>' else '<<=' endif);

if Updater then spr("updater") endif;

spr(W);

appdata(Args, spr);

cucharout(`\n`);

enddefine;

\end{verbatiim}

The trace printing for $factorial$ defined above will now look very

different.

\begin{verbatim}

factorial(3) =>

[Level: 1] =>> factorial 3

[Level: 2] =>> factorial 2

[Level: 3] =>> factorial 1

[Level: 4] =>> factorial 0

[Level: 4] <<= factorial 1

[Level: 3] <<= factorial 1

[Level: 2] <<= factorial 2

[Level: 1] <<= factorial 6

** 6

This sort of format can be more readable when recursion gets very deep.

Another option would be to store infoormation associated with each procedure name, or

each procedure, in a property, and then to redefine systrace pr to extract the information

from the property and modify its actions accordingly. For example it would be possible to

call popready either before or after the procedure runs, and to make the items on the stack

available for inspection during the break. In addition, instead of simply printing out stack

contents they could be associated with argument names stored in the property.

Yet another option is to rede�ne this procedure so that instead of printing information

it builds a record of procedure entries and exits with arguments and results for use by a

program that needs to know something about its own history.

172 CHAPTER 4. HOW WE DEAL WITH THINGS GOING WRONG.

Additional options and facilities may be added later, on the basis of feedback from users.

4.4 Warning: use of abnormal exits

If you use chain, exitfrom, exitto, catch, or the process mechanisms

3

this can mean that

exits from traced procedures are not shown. The introduction of active variables will make

it possible for this and other limitations to be overcome.

4.5 What happens when POP �nds something wrong

In this section we consider the mishap mechanism. Firstly, in section 4.5.1, we consider the

mishap procedure, which is the standard way of signalling that something is wrong, and

which can, and should, be used by users themselves. Secondly, in section ??, we consider

how the mishap messages are actually delivered to the user, and how you might modify this

to change the messages, or even decide that a no mishap has occurred at all.

4.5.1 Signalling a Mishap

mishap(O

1

; O

2

; : : : ; O

n

; n; s)

mishap(s; L)

This procedure is called by the system whenever some error condition is detected. It passes

the given arguments to the variable procedure prmishap to print a mishap message, the

standard value of which is sysprmishap. These procedures are speci�ed in section ??.

After calling prmishap, mishap calls the procedure in the variable interrupt, and, if

that call returns, it then calls setpop. Before calling interrupt it also sets pop

e

xit

o

k to false

3

See Chapters?? and 2.24

4.5. WHAT HAPPENS WHEN POP FINDS SOMETHING WRONG 173

if the standard input is not a terminal | since the default value of interrupt under these

circumstances is sysexit, this guarantees that a mishap will result in an error status being

returned to the operating system. See Chapter ?? for further details.

Note that mishap locally sets the value of prmishap to be sysprmishap while the call

of whatever procedure was in prmishap is in progress; this ensures that a another mishap

occurring in that procedure will cause sysprmishap to be called.

4.5.2 Printing Mishaps

sysprmishap(O

1

; O

2

; : : : ; O

n

; n; s)

sysprmishap(s; L)

This procedure prints a mishap message, using cucharerr to output characters. The argu-

ments to this procedure are either a number of `culprits' n and a message string s, in which

case there should be n items on the stack, or a message string s and a list of culprits L. The

full format of the message is

MISHAP - <STRING>

INVOLVING: <ITEM_1> <ITEM_2> ... <ITEM_N>

FILE: <popfilename> LINE NUMBER <poplinenum>

COMPILING: <names of procedures being compiled>>

DOING: <pdprops of procedures currently executing>

Note that the INVOLVING line is present only if there are 1 or more culprits, the FILE

line is present only when popfilename is true, and the COMPILING line is present only

when the POP VM is not at execute level.

This procedure is the standard value of the variable prmishap.

174 CHAPTER 4. HOW WE DEAL WITH THINGS GOING WRONG.

popfilename

If this variable is not false, sysprmishap assumes it contains the name of the �le currently

being compiled, and includes the line

FILE: <popfilename> LINE NUMBER: <poplinenum>

in the mishap message. This variable is set locally by compile (and other POPLOG

compilers where appropriate) to the name of the �le being compiled.

poplinenum

This is assumed by sysprmishap to contain the line number within the current �le being

compiled. It is set locally to 1 by compile (and other POPLOG compilers where appropriate)

when opening an input �le with discin; the variable is then incremented by the discin

character repeater each time a newline is read, as described in Chapter 20.

popsyscall

This controls which procedures currently executing are included in the DOING list of mishap

messages produced by sysprmishap.

If it is false (the default), only procedures whose pdprops are not false and which are

not `uninteresting' are printed (where an `uninteresting' procedure is one whose pdprops are

not

00

mishap

00

,

00

setpop

00

, or a word being with

0

sys

0

,

0

pop11

0

or

0

ved

0

).

If it is not false then all procedures are printed. If the value is addiionally an integer,

then system procedures whose pdprops are false are printed as their hexadecimal addresses.

pop mishap doing lim

This controls the number of procedures printed in the DOING list of mishap messages

produced by sysprmishap. If false (the default), all currently executing procedures are

included; otherwise it should be a positive integer N, specifying that only the most recent N

callers are too be shon.

4.5. WHAT HAPPENS WHEN POP FINDS SOMETHING WRONG 175

popmishaps

Each time it produces a mishap message sysprmishap puts in this variable a summary of the

message printed (as list of items); this can be disabled by assigning false to popmishaps.

(Default value []).

prmishap(O

1

; O

2

; : : : ; O

n

; n; s)

prmishap(s; L)

he procedure in this variable is called by mishap to print a mishap message: it takes the

same arguments as sysprmishap, which is its default value.

4.5.3 Printing Warnings

sysprwarning(W)

Prints the warning message

;;; DECLARING VARIABLE <W>

and, if popwarnings is a list, adds W to that list. This procedure is the standard value

of the variable prwarning.

popwarnings

If not faalse, sysprwarning uses this variable to build up a list of names of identi�ers that

have been declared automatically by the POP VM compiler through sysdeclare (which calls

prwarning). Building of this list can thus be disable by assigning false to popwarnings; its

default value is [].

prwarning(W)

The procedure in this variable is called by the POP VM compiler procedure sysdeclare to

176 CHAPTER 4. HOW WE DEAL WITH THINGS GOING WRONG.

print a warning message about an undeclared variable (see REF *VMCODE). Its standard

value is sysprwarning.

warning(s; L)

This procedure prints a similiar message to to sysprmishap, but headed `WARNING' instead

of `MISHAP'.

Chapter 5

In which we learn Important Facts

about Variables

NOTE

GET THE SYNTAX OF DECLARATIONS RIGHT

I dont understand isglobal - `wrapping in a pair'.

Variables and procedures are highly interdependent concepts, especially in POP. In this

chapter we explain the forms of variable declarations, and about the data-structures that

are associated with variables. How variables behave in procedures is covered in Chapter 2.

How variables are treated by the Virtual Machine is is explained in Chapter 16. For an

introduction to POP variables, see Chapter 2.

5.1 Words identi�ers and variables

On the close inspection that we shall give the POP variable in this chapter, it turns out to

be quite a complicated concept. This should not be too surprising, since a number of kinds

177

178 CHAPTER 5. IN WHICH WE LEARN IMPORTANT FACTS ABOUT VARIABLES

of data-object are involved that in a conventional language would be distributed between

the compiler and run-time system.

In fact there are are three kinds of entity involved, words, identifiers and variables

proper. The �rst two of these are POP objects, variables proper are not.

1. A word is a data-object of a class described in detail in Chapter 8.1. A word constant

is enclosed in double quotes e.g.

00

+

00

,

00

enddo

00

,

00

x

00

. The standard POP syntax for

words is explained in Chapter 19. If we make the declaration vars x; we say that

the word

00

x

00

is the name of the variable. Words have the property that if W

1

= W

2

then W

1

==W

2

, that is to say, words which have the same sequence of characters are

identical. In this they di�er from strings, which are described in Chapter 9.

2. An identifier is a data-object which is normally a component of a word, and which

contains information about how the word is currently acting as a variable, provided

that it is. Thus information about whether a given word is a macro or an operator

like + (see Chapter 2.26.1 and 2.7.1) is contained in the identi�er associated with a

word. This association is subject to change | a word can has a di�erent associated

identi�er within a section (see Chapter 13) to that which it has outside.

3. A variable is a location in memory where a value associated with the name is stored.

In the case of a so-called permanent variable, the variable is permanently associated

with the identifier | indeed in current implementations of POP it is a �eld in the

in the identi�er. In the case of lexical variables the value is a �eld in a frame on the

call-stack.

The variable associated with an identi�er is the only entity that needs to exist when the

procedures in which the identi�er is referred to run.

1

Computing terminology generally confuses words, identi�ers and variables, and it is at

1

In conventional languages the word and identi�er records have been associated with compilers, whereas

variables exist when the compiled program is run. However, in order to provide more supportive environ-

ments, in which variables can be accessed at run time, it is becoming customary to preserve the compiler

information in a form that is available at run time. It is, of course, by no means universal practice to make

the distinction between words and identi�ers, although some apparatus has to be provided within a compiler

to distinguish between di�erent uses of the same name. E.g. two procedures may both have distinct variables

called

00

x

00

.

5.2. THE SYNTAX OF VARIABLE DECLARATIONS 179

times convenient to do so in this book. Fortunately it is normally clear from the context

which is meant. See 5.3

5.2 The syntax of variable declarations

A variable declaration can occur either inside or outside of a procedure body. The < args >

and < results > of a procedure are special cases of a variable declaration, treated in Chapter

2.2. All of the e�ects of a variable declaration can be accomplished by procedure calls, as

detailed later in this chapter. However, unless you are implementing some other kind of

language within POP, you will usually use the syntax described in this section to accomplish

variable declarations. Apart from the arguments and results of a procedure, the general form

of a variable declaration is:

<declaration> = <variable_class> <varspec>* ;

| <dlocal_decl>

<variable_class> = constant | dlvars | lvars

| vars | global constant | global vars

| active {<multiplicity>} {<identprops>}

<varspec> = <word> {,}

| <word> = <expression>,

| <identprops> <varspec>

| <identprops> (<varspec>*){,}

<identprops> = macro | syntax | syntax <precedence>

| procedure | <precedence>

<precedence> = <decimal>

<multiplicity> = :<n>

Note that dlocal can also be used to specify that an expression should be saved and

restored on procedure entry and exit, as described in Chapter 2.6.1. Note also that only 0

and procedure are allowed for the < identprops > of lvars and dlvars inside a procedure.

180 CHAPTER 5. IN WHICH WE LEARN IMPORTANT FACTS ABOUT VARIABLES

A variable declaration accomplishes the following for a set of words that are referred to

in the declaration:

� It establishes an association between a word and an identi�er.

� It speci�es how the value of the variable shall be stored. This includes constant

declarations, in which case there is nothing to \vary" | the actual value associated

with the word is bound into any procedure that refers to it.

� It may specify that the variable is restricted to have certain values.

� It may specify certain syntactic properties of the word.

� It may specify that a variable is to be \dynamically local", that is that it is to be saved

on entry to a procedure de�nition and restored on exit.

5.2.1 What kind of identi�er is created by a declaration?

Most of the declarations listed above will create a new identi�er record associated with each

word W declared in a < varspec >, with exceptions explained below:

� The vars and constant declarations, together with their global counterparts create a

new permanent identi�er record associated with the word W provided that no perma-

nent identi�er exists for the word in the current section. Sections are described in

Chapter 13 Permanent identi�ers may cease to exist only when they have been can-

celled (see section 5.3.7), although they can be used for local variables by virtue of the

save-and-restore mechanism described in Chapter ??. If a global identi�er does exist,

these declarations may change its identprops, as speci�ed below.

� The lvars, dlvars and lconstant declarations create a new lexical identi�er record

associated withW . This association exists only during the compilation of the innermost

procedure in which the declaration occurs, or during the compilation of the �le in which

the declaration occurs if it occurs outside of any procedure de�nition. Note that in

the latter case, an identi�er record is in fact created to hold the variable value, but it

becomes anonymous as soon as the �le is compiled.

5.2. THE SYNTAX OF VARIABLE DECLARATIONS 181

� The dlocal declaration may occur only in a procedure, and speci�es that an existing

variable, named W say, be subject to the save-and-restore mechanism. If W has

not been declared as a variable elsewhere, it will be declared by the usual default

mechanism, and a warning message printed. Otherwise no identi�er is created by a

dlocal declaration.

� Active variables, declared by the active declaration, generalise the notion of a variable

with an associated value by allowing the actual value slot in an identi�er record to

contain not the associated value itself, but rather a procedure that will return that

value when called. Thus, when an identi�er is declared active, attempting to access

its value will cause the procedure found in the value slot to be executed and its result

returned; similarily, attempting to assign to the variable will run the updater of that

procedure with the new value passed as its argument.

Moreover, the mechanism is generalised still further by allowing the procedure associ-

ated with the variable and its updater to have not just one result/argument, but any

�xed number of them: this number is called the multiplicity of the active variable. An

access to an active variable of multiplicity n therefore produces n results, and a similar

number must be given when assigning to it.

Active variables are treated in detail in Chapter 2.28

5.2.2 Constants

Constant declarations can only occur outside of any procedure body. It is recommended

that a constant should be initialised when it is created | e.g.

constant penelope = 'the wife of Odysseus';

Once initialised, a constant cannot be assigned to, and may be compiled literally into pro-

cedures. Uninitialised constants can be assigned to once, to specify their value. Constants

created by lconstant have a scope which is the �le in which they are declared | they cannot

be referred to outside of that �le.

182 CHAPTER 5. IN WHICH WE LEARN IMPORTANT FACTS ABOUT VARIABLES

5.2.3 Global variables and constants

The meaning of global is explained in Chapter 13.6.

5.2.4 What properties are speci�ed by identprops?

The < identprops > occurring in a variable declaration can a�ect both what values a word

W being declared may have, and its syntactic properties. You should see section 5.3.5 for

a brief explanation of what these mean | a detailed exposition of the various options is

to be found in Chapter 2. Note that the < identprops > only apply to the variable name

that follows immediately, unless a number of variable names occur in parentheses. Thus, to

declare a lot of procedures variables you need to say, e.g.:

vars procedure(Pooh Piglet Penelope Paris);

5.3 Identi�er records

Identi�er records are data-objects that represent program variables and constants. In general,

they contain the following information:

� A �eld for holding the value of the identi�er | its idval.

� Type information that restricts what objects can be assigned to the identi�er | its

identtype.

� A
ag saying whether the identi�er is an active variable or not, and if so, a �eld

containing its multiplicity, as described in Chapter 2.28

� The syntactic properties of the identi�er for the POP-11 compiler, which tell the latter

how to interpret an occurrence of the identi�er name in a program | identprops.

� An indication of whether the identi�er is lexical or permanent, as treated below.

5.3. IDENTIFIER RECORDS 183

Although identi�er records can be manipulated in their own right, program variables and

constants are always speci�ed to compilers, and to the POP Virtual Machine, by name, i.e.

by word records which have identi�ers associated with them (see 8.1).

5.3.1 Mapping from words to Identi�ers

We have said above that identi�ers are of two kinds : permanent and lexical. A lexical

identi�er only exists while the �le or procedure that de�nes it is being compiled; permanent

identi�ers, on the other hand, have inde�nite scope and exist until they are cancelled.

For this reason, the association from words to identi�ers is maintained di�erently for

the two kinds. For lexical identi�ers, the POP VM holds an association list (see 11) which

speci�es the correspondence of words to identi�er records, entries being deleted from this

list when the scopes of identi�ers terminate. For permanent identi�ers, the association is

achieved by making an actual �eld in the word record point directly to the identi�er. It

is not the case, however, that any given word record is constrained always to point to the

same permanent identi�er; as described in Chapter 13 the same word can be associated with

di�erent permanent identi�ers in di�erent program sections.

5.3.2 Procedures which can apply to words and identi�ers

Because of the duality between words and identi�ers, some of the procedures described below

can take either an identi�er or a word as argument However, since lexical declarations exist

only at compile-time, these procedures, when given a word argument, will extract only a

permanent identi�er attached to the word. The only way of accessing a lexical identi�er

associated with a word is via sys current ident, described in 16.

184 CHAPTER 5. IN WHICH WE LEARN IMPORTANT FACTS ABOUT VARIABLES

5.3.3 Predicates On Identi�ers

isident(O)!W

kind

isident(O)! false

This procedure returns false if O is not an identi�er record. Otherwise, W

kind

indicates the

restrictions on the identi�er:

00

perm

00

permanent identi�er

00

lex

00

`real' lexical identi�er

00

lextoken

00

`token' lexical identi�er

The di�erence between

00

lex

00

and

00

lextoken

00

is that a

00

lex

00

is a real identi�er record

whose idval is its actual run-time value, whereas a

00

lextoken

00

is record being used by the

POP VM to represent a procedure-local lexical variable, and which will not neccesarily play

any part in the �nal compiled code for the procedure.

isactive(W)! n

mult

isactive(I)! n

mult

Given an identi�er I or permanent identi�er extracted from the word W , this procedure

returns a true value if the identi�er is declared active, or false if not. The true result

returned is the active multiplicity of the identi�er, i.e. an integer in the range 0� 255.

The following predicates test extra status information for an identi�er or for a permanent

identi�er extracted from a word. In each case, if a procedure is applied to a word W , then

the identi�er I associated with W is extracted.

isassignable(W)! b

isassignable(I)! b

isassignable returns true if I (or identof(W)) can have its value updated (with idval etc,

or a program assignment statement), false if not.

5.3. IDENTIFIER RECORDS 185

isconstant(W)! b

isconstant(I)! b

isconstant returns true if I (or identof(W)) has been declared as a constant, false if not.

Note that isassignable will still be true for a constant that has been declared but not yet

assigned to.

isprotected(W)! b

isprotected(I)! b

isprotected returns true if I (or identof(W)) has been declared as a protected identi�er,

false if not.

isglobal(W)! b

isglobal(I)! b

isglobal returns true if I (or identof(W)) is declared as a global permanent identi�er. That

is, if I is an identi�er which will be automatically imported into daughter sections below its

level. Otherwise it returns false.

Note that by default, the above four procedures all treat active identi�ers as variables,

i.e. isassignable will always return true and the other two will always return false. The

status of the nonactive value can be got by wrapping I in a `nonactive pair', i.e.

conspair(I;

00

nonactive

00

);

isdlocal(W;P)! b

isdlocal(I; P)! b

Given a word W or identi�er I and a procedure P , this returns true if W or I is a dynamic

local variable of P , false if not.

186 CHAPTER 5. IN WHICH WE LEARN IMPORTANT FACTS ABOUT VARIABLES

5.3.4 Constructing Identi�ers

consident(O

idprops

; b

const

;W

kind

)! I

This procedure gives a way to construct identi�er records directly, without the associated

declaration of a word. The O

idprops

argument speci�es the identprops and/or activeness of

the identi�er: permissible values are as for sysSY NTAX (see Chapter 16). The boolean

b

const

argument should be true if a constant identi�er is desired, false otherwise. Note that,

unlike sysSY NTAX, this is em not a�ected by the value of popconstants. W

kind

speci�es

the kind of identi�er that I will be; permissible values are the words

00

perm

00

,

00

lex

00

and

00

lextoken

00

.

5.3.5 Accessing Information About Identi�ers

See also the is predicates above for other properties of identi�ers.

identprops(W)! O

idprops

identprops(I)! O

idprops

This procedure returns the identprops (macro/POP-11 syntax properties) of the identi�er I

(or of I = identof(W)). This can take the following values:

5.3. IDENTIFIER RECORDS 187

Value Chapter Notes

00

undef

00

I is a word not declared as a

permanent identi�er.

0 Identi�er with no type restriction

or special syntactic properties.

00

procedure

00

Procedure-type identi�er

n 2.7.1 POP-11 operation of precedence n, where n

is an integer or decimal in the

range -12.7 to 12.7 .

00

macro

00

2.26.1 POP-11 macro.

00

syntax

00

2.27 POP-11 syntax word.

00

syntax n

00

2.27 POP-11 syntax operator of precedence n,

range as above.

Note that

00

syntax n

00

is not a normal itemisable word in POP-11, but is produced using

consword, e.g. consword(

0

activens

0

><n) | see Chapter 8.1 about consword.

identtype(W)! Type

identtype(I)! Type

This procedure returns the data type of the identi�er I, or permanent identi�er I extracted

from the word W . Possible values are

00

undef" Not declared as a permanent identi�er

0 Untyped, i.e. may hold anything.

00

procedure" May hold procedures only.

full identprops(I)! L

idprops

full identprops(W)! L

idprops

This procedure returns a list of all the declaration keywords for the identi�er (or permanent

identi�er extracted from the word) I, or

00

undef

00

if I is a word not declared as a permanent

identi�er. The list has the form

[<prot> <glob> <const/var> <type> <idprops>]

188 CHAPTER 5. IN WHICH WE LEARN IMPORTANT FACTS ABOUT VARIABLES

where

< prot >

00

protected

00

for a protected identi�er,

empty otherwise;

< glob >

00

global

00

for a global permanent

identi�er, empty otherwise;

< const=var >

00

constant

00

for a constant (preceded by

00

assignable

00

if the identi�er can still

be assigned to), or

00

vars

00

for a variable;

< type >

00

procedure

00

for a procedure-type

identi�er, empty otherwise;

< idprops > the identi�er's identprops (except that

0 for an ordinary untyped identi�er is

omitted, and

00

syntax n

00

for a syntax

operator is returned as

00

syntax

00

followed

by the number n).

5.3.6 Manipulating Values of Identi�ers

For more information on dynamic local variables of procedures see Chapter ??

identof(W)! I

This procedure returns the permanent identi�er currently attached to W . If W is unde�ned

as a permanent identi�er, then an attempt is made to autoload the word from the system

library | if this fails the message

'DECLARING VARIABLE <W>'

is printed, and an identi�er with identprops 0 and value an undef record is attached to

W and returned.

ident

5.3. IDENTIFIER RECORDS 189

This syntax word compiles code to push an identi�er object onto the stack. Its usage is

ident <name>

where < name > is a word declared as any kind of identi�er; the e�ect is to push onto

the stack the identi�er associated with the word at the time of compilation. This syntax

word operates by calling sysIDENT for the given word | see 16 for more details.

idval(I)! O

O! idval(I)

This procedure returns or updates the value cell of the identi�er I. In update mode, O

must be valid for the identtype of I. When I is an active variable, idval runs the nonactive

procedure value of I, or its updater in update mode. The number of items produced as

results by the procedure, or taken as arguments by its updater, will then be the multiplicity

n of the variable.

nonactive idval(I)! O

O! nonactive idval(I)

This procedure returns or updates the value cell of the identi�er I, regardless of whether the

identi�er is active or not.

valof(W)! O

O! valof(W)

This procedure is functionally equivalent to

idval(identof(W))! O

and

190 CHAPTER 5. IN WHICH WE LEARN IMPORTANT FACTS ABOUT VARIABLES

O! idval(identof(W))

in update mode.

nonactive valof(W)! O

O! nonactive valof(W)

This procedure is the same as valof , but using nonactive idval.

caller valof(W;P

caller

)! O

O! caller valof(W;P

caller

)

This procedure returns or updates the valof of the wordW as it would be in the environment

of the currently-active procedure speci�ed by P

caller

. The argument P

caller

may be either

� An actual procedure or a caller number as input to the caller described in Chapter 2.

� false, meaning that the value outside of all dynamic localisations (i.e. outside all

procedure calls) is accessed/updated.

N.B. In present implementations, this procedure does not deal with active variables.

set global valof(O;W)

This procedure uses caller valof to assigns O to be the valof W in the context of every

currently active procedure for which the identi�er associated with W is a dynamic local.

recursive valof(W)! O

Recursively applies valof to W while O is a word, and returns the result | that is,

recursive valof calls valof withW as argument: if the result O is a word, then recursive valof

is called with O as argument; if it is not a word, O itself is returned.

5.3. IDENTIFIER RECORDS 191

5.3.7 Manipulating Attachment of Permanent Identi�ers to Words

The following procedures allow you in e�ect to make a variable have more than one name,

to modify the procection
ag of an identi�er and to make a variable anonymous.

syssynonym(W

1

;W

2

)

Attaches to the word W

1

whatever permanent identi�er is currently attached to the word

W

2

, so that they both refer to the same identi�er. W

2

is automatically declared if there is

no permanent identi�er currently associated with it.

sysprotect(W)

This procedure protects the permanent identi�er associated with W | that is, it stops W

being redeclared, i.e. given a new identi�er, and disallows the compilation of any assignment

to the identi�er.

sysunprotect(W)

This procedure removes the protection against assignment of the permanent identi�er as-

sociated with W . If sysprotect has been used to protect W , sysunprotect(W) allows the

word W to be redeclared, that is to say given a new identi�er, and permits compilation of

assignment to the identi�er.

syscancel(W)

This procedure cancels any permanent identi�er currently attached to the word W , that is

to say it makes the identi�er be no longer attached to W , although it may continue to exist

if it is referred to otherwise, e.g. in a procedure de�nition. Since \currently attached" refers

to the state of a�airs in the current section, the cancellation does not a�ect the attachment

of the word to the identi�er in other sections (except for imported identi�ers).

Once a word is cancelled it can be used afresh with no thought to its use in the past.

There is a library macro cancel which provides a more convenient syntax.

The actual behavior of syscancel is complex, and you should probably not use it. Cancel-

192 CHAPTER 5. IN WHICH WE LEARN IMPORTANT FACTS ABOUT VARIABLES

lation was initially provided in POP-2 before sections were devised, and most of its usages

can be better accomplished by sections.

5.4 Undef Records

When a non-lexical variable is �rst declared it is given an initial value which is an undef

record and which contains only one �eld, its undefword. Undef records are also used for other

purposes. The undefword may be a word or false; a new permanent identi�er is initialised

to a newly-constructed undef record whose undefword is the name of the identi�er, whereas

new global lexical identi�ers are initialised to a �xed undef record containing false (this

prints as < undef > as opposed to < undef Pooh > for one containing the word

00

Pooh

00

).

The only exception to this is a procedure-type identi�er: because one of these must always

have a procedure value, it is initialised to a closure of a system error procedure, partially

applied to the actual undef record for the identi�er, where the error procedure will produce

an appropriate mishap if an attempt is made to apply it. For consistency these `undef'

closures are also recognised by isundef and undefword.

isundef(O)! b

This procedure returns true if O is an undef record or an `undef' closure, false if not.

consundef(W)! Undef

consundef(false)! Undef

This procedure creates a new undef record Undef for which undefword(Undef) = W .

undefword(Undef)! W

undefword(Undef)! false

If Undef is an undef record, this procedure returns its single component. If it is closure of

mishap, the undef record is �rst extracted from the frozen values of the closure.

5.5. CONSTANTS 193

5.5 Constants

ident key

undef key

These constants hold the key structures for identi�ers and undef records (see 3.13).

194 CHAPTER 5. IN WHICH WE LEARN IMPORTANT FACTS ABOUT VARIABLES

Chapter 6

Numbers in POP

NOTE

some arithmetic quote from Pooh.

NOTE - I must �nd out how to set a tilde as and not above the following character.

The sections on random numbers and on extracting mantissa of
oats need attention.

6.1 Introduction

This chapter provides a complete description of the operations on numbers available in

POPLOG POP-11. AlphaPop provides a subset of these, as described in section ??. This

chapter does not describe in detail the forms in which numbers are input | for that you

should turn to Chapter 19.

Representing numbers in a computer presents considerable problems. Even the simplest

kind of numbers, the natural numbers 0,1,2,3: : : , form an in�nite set, and a computer is

195

196 CHAPTER 6. NUMBERS IN POP

a �nite machine! Worse still are the real numbers, which include numbers like the square

root of 2 or �, since you cannot represent these by a �nite sequence of digits. You can only

approximate them by a �nite sequence of digits, and the errors introduced in approximations

have a nasty habit of building up until you have nonsense.

No existing computer language can deal with these problems automatically. The subject

of Numerical Analysis is concerned with how you can do computations with approximate

representations of numbers and arrive at an answer which is approximate, but for which you

know how approximate. To take an elementary example, you cannot write down the value

of � in a �nite number of digits, but you can say for sure that 3:1415 < � < 3:1416.

POPLOG POP provides you with a useful tool-kit to deal with these problems | it

consists essentially of ways of representing numbers that have been found useful by various

researchers.

1

The data-classes which are the basis of this tool-kit are the following:

� Small integers. These are integers which can be represented in a �xed number of binary

digits. The number of digits depends on the implementation, but is usually 30, so a

small integer is less in magnitude than 2

30

. Thus, apart from 2 missing binary digits,

which are used by POP to help it identify data-class | see Chapter 3.13NOTE ???,

small integers are very similar to integers provided in languages such as Pascal and

C. However, if you try to make an integer bigger than can be represented as a small

integer, you do not get an error, instead you will form:

� Big integers. These are integers which are too big to be small integers. For example

2

100

will be a big integer. To check out the big-integer capabilities of your system, try

de�ning the factorial function, and asking it to compute 1000! (factorial 1000). The

only limit on the size of a big integer in POP is the amount of memory your computer

has!

� Rationals. A rational number is a fraction, that is a ratio of two integers (big or

small). You may be surprised to �nd them provided | after all you probably gave up

working with fractions at high-school when you learnt about decimals. However they

are important in computational algebra (that is using a computer to do algebra, as

described in Chapter ??) because they can represent exactly numbers like 2/3 which

cannot be exactly represented in a �nite number of decimal digits (or binary digits,

which is more to the point). Programs for computer algebra have to have statements

1

The POPLOG numeric capabilities are derived from those of Common Lisp. Many of the capabilities

embodied are derived from the needs of mathematical reasoning systems like Macsyma.

6.1. INTRODUCTION 197

like \replace x � 0 by 0". If you are using approximate representations of numbers,

then such a statement has to be rendered as \replace x � � by 0, when � is su�ciently

small", and such statements can cause many problems | either you choose � to be too

small, in which case simpli�cations are left undone which ought to have been done, or

you choose it too large, in which case expressions appear to be equal which ought not

to appear equal.

This problem can be avoided by using rational numbers, and representing irrational

numbers symbolically. E.g. you would have the word \pi" rather than any approxi-

mation to � in your algebraic expressions. Physical constants like Planck's constant,

h, would be treated similarly. Only when you have massaged your algebraic expres-

sions into something near the desired form will you substitute approximate values for

these symbolic constants | assuming you want a numeric answer to compare with

experimental results or as the thickness of a beam.

Rational numbers are created whenever you try to divide one integer i

1

by another i

2

using the = operator, where the result of the division cannot be exactly expressed as

an integer.

There is a danger for users unfamiliar with POP created by the fact that there are two

options available for printing out rational numbers. If you do

4/6=>

POP may respond:

** 2_/3

or you may get

** 0.666667

depending on the setting of the variable pop pr ratios. As explained later, rational

numbers are normally reduced to their lowest terms. Now rationals are more expen-

sive in space and computing with them takes more time than using pop decimals

(the
oating point numbers described below), and if you try to implement some of

the standard iterative methods (e.g. Newton-Raphson) you may �nd that you are in-

advertently using rational numbers, and generating ratios with huge numerators and

denominators. For this reason, you should always set pop pr ratios to be true, except

when you speci�cally want to see the decimal equivalent of a rational number, so that

you know when you are dealing with rationals.

198 CHAPTER 6. NUMBERS IN POP

� Short
oating point numbers. These are known in POP as decimals. The term is some-

what misleading, since only the printed representation is, by default, decimal. They

provide an approximate representation of real numbers, including rationals. Floating

point numbers are usually input in the syntactic form

<digits>.<digits>

e.g. 2.0. Apart from the coercion procedures described in section 6.12, any operation

that creates a
oating point number will create a short
oating point number if the

variable popdprecision is false. Otherwise a long
oating point number (ddecimal)

is created. Short
oating point numbers are simple items (see Chapter 3.7), and o�er

considerable savings in space and time over long
oating point numbers, which are

compound items. If you want to be sure that a procedure is using
oating point

numbers and not rationals, you can use the number coerce procedure described in

section 6.12. An alternative that will often be available to you is to use
oating point

constants, and rely on \
oating point contagion" | see 6.7.

Floating point numbers, being approximations, do not exactly obey all of the laws of

algebra. Floating point addition and multiplication are commutative, that is d

1

+ d

2

=

d

2

+ d

1

and d

1

� d

2

= d

2

� d

1

, but they are not associative, that is x + (y + z), is not

necessarily equal to (x+ y)+ z. This becomes painfully obvious if x and y are of large

and equal magnitude and opposite sign, whereas z is small. Try, for example:

vars x = 10**20,

y = -x,

z=0.1,

popdprecision = false;

x+(y-z) =>

** -2004090000000.0

You will be somewhat disturbed by how inaccurate the result is! This result was

obtained using decimals, and the e�ect can be palliated by using ddecimals. However

you will be able to construct an example in which even ddecimals gives a manifestly

inaccurate result.

� Long
oating point numbers These are known in POP as ddecimals. and provide a

more precise representation of real numbers than do short
oating point numbers.

� Complex Numbers To follow this chapter completely you will need to know something

about complex numbers. If you are not familiar with complex numbers, you can still

use the chapter for reference, since all of the numbers you know about are special cases

6.2. HOW THE NUMERIC DATA-CLASSES REPRESENT NUMBERS IN POP 199

of complex numbers, and almost all the procedures de�ned in this chapter will work

on them.

The most important property of the complex numbers is that they are algebraically

closed, that is to say, that any polynomial equation in one variable of degree n has

exactly n roots (provided you count multiple roots correctly).

In the text, we will refer to a number which may be a complex number by z, z

1

,

z

2

,: : : . The main di�erence you will �nd if you are not used to complex numbers is

that because they are algebraically closed, some operations which you would expect to

give an error will give an answer! Try

vars iii = sqrt(-1);

iii =>

** 0.0_+:1.0

A complex number in POP is essentially a record, as described in Chapter3.7, contain-

ing two real numbers. If the second one (known as the imaginary part) is zero, then

the complex number is identi�ed with the real number which is the �rst component.

Try typing iii � iii).

Details of how you write numbers in program text, or for data input, are not found in

this chapter, but in Chapter 19.

6.2 How the numeric data-classes represent numbers

in POP

Classically, mathematical understanding of numbers has reached its most complete develop-

ment in complex numbers, which are an algebraically closed �eld[?]. Thus a general purpose

computational system should aim to provide a representation of the complex numbers. Other

number systems, the Natural Numbers, the Integers, the Rationals and the Reals can be em-

bedded in the complex numbers in a standard way. For example we can identify the integer

1 with the complex number 1 + 0i

As we stated in section 6.1, most real numbers cannot be exactly represented as �nite

200 CHAPTER 6. NUMBERS IN POP

objects. However integers and rational numbers can. This makes it advantageous for us to

have two major kinds of representation:

1. An exact representation of rational numbers, incuding integers. Within this represen-

tation, the procedures representing the operations on the �eld of rationals are partial

functions which produce exact results. Apart from dividing by zero (which is never

allowed in any �eld) these procedures are partial functions only in that they may fail

to produce a result because insu�cient memory is available.

2. An approximate representation of real numbers in
oating point format. In POP-11

these are decimals and ddecimals. In this representation, while certain integers and

rationals can be represented exactly, most procedures are approximate, and algebraic

laws only hold approximately. The decimals are \single-precision"
oating point, while

the ddecimals are \double-precision".

A given rational number r will have a unique representation in any of the types above.

The �rst type (integers and rationals) will give an exact representation, and the
oating

point representation should be the nearest member of the data-class to r, with a suitable

convention for tie breaking.

A given real number x which is not a rational will have no unique representation as a

rational, since rationals can have numerator and denominator of arbitrary size, and so any

rational approximation can be bettered. It will have a unique, but inexact, representation

as a decimal or ddecimal.

2

The POP procedures which implement irrational and trancendental functions will usually

produce the best decimal approximation to the real result of applying the mathematical

function, but they will not usually produce the best ddecimal approximation, because they

use standard double-precision
oating point computation, which has the same precision as

ddecimal numbers, and cannot be expected to be accurate to the least signi�cant digit.

2

It might be argued that both in the case of
oats and rationals, there is an implementation dependent

nearest member of the class, since the biggest integer that can be constructed is determined by the machine

word size. Trying to �nd the nearest rational to a real is not a practical computational aim. Most of the

time, POP will �nd the nearest short-
oat to a given real (expressed,say, as a trancendental function applied

to a
oat), although it will fail to �nd the nearest long-
oat, since the computation is done to the same

precision as the result.

6.3. OTHER POSSIBLE NUMBER REPRESENTATIONS 201

6.3 Other possible number representations

In this section we discuss other ways in which numbers might be represented, and in which

they could indeed be represented in POP, if you care to de�ne the appropriate data-types,

and write the appropriate procedures.

6.3.1 Tracking
oating point errors

Suppose d

1

and d

2

are two
oating point numbers. Then if, for the purposes of this discus-

sion, we use +

fp

to mean
oating point addition, whereas + is used to mean mathematical

addition:

j(d

1

+ d

2

)� (d

1

+

fp

d

2

)j < k �max(jd

1

j; jd

2

j)

That is to say, the error in
oating point addition is less than a constant k times the maximum

of their absolute values. Here the value k will depend upon the
oating point precision being

used | i.e. there will be a di�erent value of k for decimal operations and for ddecimal

operations. Some computers have been built[?] which record the precision of the result of

oating point operations along with the result, and it should be clear to you how you could

construct a record-class of such numbers and provide procedures to operate upon them.

6.3.2 Representing Algebraic Numbers

Algebraic numbers are complex numbers which are solutions to a polynomial equation with

rational (or equivalently integer) coe�cients. Thus, for example, the square-roots of rationals

are algebraic numbers. It is possible to show that � is not an algebraic number, and therefore

the classic problem of squaring the circle is insoluble | this arises because, given a ruler

and compass and rational numbers, you can only create a subset of the algebraic numbers

by the classic Greek geometric constructs.

One way to represent an algebraic number is by its de�ning equation. However, since

such an equation has, in general, more than one root, you need to specify which root you

mean. In the case of real algebraic numbers, this can be done by specifying an interval in

which the root must lie. Fortunately, given any algebraic equation, it is possible to �nd

202 CHAPTER 6. NUMBERS IN POP

intervals bounded by rationals in which there is only one root of the equation, so that an

algebraic number can be uniquely represented by an equation and a rational interval. How

to add, subtract, multiply and divide such numbers is described in Loos[?].

Such algebraic numbers have applications in representing geometric shapes computation-

ally. The shape of many mechanically engineered objects can be characterised as semi-

algebraic sets, that is to say subsets of Euclidean space bounded by surfaces which have

algebraic equations. If you use
oating point computations to treat such shapes you can

get into trouble | questions that ought to give the same answer may give a qualitatively

di�erent one. For example the question \how many times does this curve intesect this sur-

face" might give inconsistent answers if we had di�erent characterisations of the same curve.

These problems can be avoided by using a proper treatment of algebraic numbers.

6.3.3 Representations of the reals

The real numbers are classi�ed as algebraic or trancendental. Real numbers have to be

de�ned as in�nite entities. Naively, we might try to de�ne reals as in�nite sequences of

digits, but this poses some problems | for example we can only generate such sequences

left-to-right, but carries take place right-to-left, and can begin arbitarily far to the right.

The best known mathematical treatment of the reals is the Dedekind embedding of them

in Set Theory. In this embedding each real number is an in�nite set of rationals. More

intuitively appealing constructions have reals be equivalence classes of in�nite sequences of

rationals which satisfy some convergence criterion.

6.4 A Comparison with Common LISP

POPLOG POP-11 provides the same data types and associated functions as those speci�ed

by the Common LISP standard. This includes integers, bigintegers, decimals, ddecimals,

ratios and complex numbers, although LISP uses a di�erent nomenclature. There are some

minor di�erences in the procedures provided, but the POPLOG capabilities essentially in-

clude all of the LISP ones described in [?].

6.5. NOTE ON TERMINOLOGY 203

6.5 Note on Terminology

In this chapter the term integer means either a simple integer or a biginteger, except where

explicitly quali�ed as one or the other; integral means the same in the nominal sense, or

integer-valued as an adjective. Similarily, real means non-complex, or non-complex number|

it does not carry the meaning of
oating-point number used by some programming languages.

6.6 Fast integer operations

All POP arithmetic operations described in this chapter check the types of their arguments

at run time in order to determine what to do. This gives great
exibility in writing generic

procedures, but can mean that e�ciency is sacri�ced. As a partial solution fast, non-checking

integer operations are provided. These are described in ??. Further information concerning

e�ciency is available in ??.

6.6.1 Computation on Rationals

We have stated that rational numbers have a unique representation: integers, bigintegers

and ratios are mutually disjoint in terms of the numbers they represent, and that no two

ratios represent the same number unless they have the same numerator and denominator.

In other words, a ratio is always reduced to its lowest common terms, by dividing numerator

and denominator by their greatest common divisor; if this makes the denominator equal to

1, the result is the integer numerator. This is called the rule of rational canonicalisation.

Any integral result from a computation will always produce a simple integer, rather than a

biginteger, if it can be so represented.

204 CHAPTER 6. NUMBERS IN POP

6.7 Procedures that operate on numbers

With a few exceptions, numerical procedures are generic, that is, will accept any kind of

numbers as arguments. The procedures that operate on numbers can be classed as:

1. Algebraic procedures. These are procedures which implement the basic operations of

the �eld of complex numbers, and those directly derived from them. The central ones

are +;�; �; =. When applied to arguments that are all rational, they will produce

rational results.

2. Irrational procedures. These are procedures which correspond to functions which map

rationals onto irrationals at in�nitely many places, e.g. sqrt. They include procedures

like sin which correspond to mathematical functions which produce trancendental

results when applied to some rational numbers.

3. Access procedures. These are used to access �elds of the records that make up many

number classes, e.g. denominator is used to access the `top line' of a ratio. They will

call mishap if applied to arguments of an inappropriate number-class.

In executing procedures of type (1) above, when or one or more of the arguments is

oating-point, all arguments are converted to double-length
oating-point and the com-

putation performed with double-
oat arithmetic. This is called the rule of
oating-point

contagion. The result of the computation is returned by the procedures as a
oating-point

number which may be short or long depending on the value of the variable popdprecision as

described below. Procedures of type (2) above always perform the computation in double-

oat arithmetic, and return a result short or long depending on popdprecision.

6.8 Complex Numbers

Complex numbers always have both real and imaginary parts of the same representation

class, and so may similarily be sub-divided into rational complex, single-
oat-complex and

double-
oat-complex. Aside from those irrational functions that can produce a complex

result from a real argument (sqrt applied to a negative real, for example), the only way

6.9. CONVENTIONS FOR FORMAL PARAMETERS OF PROCEDURES 205

of constructing complex numbers is with the operators + : and � :, which are read as

`plus i times' and `minus i times'). These obey the same rules as for real arithmetic: with

both arguments rational or rational-complex the result is a rational-complex; if either ar-

gument is
oating or
oat-complex, the result is a
oat-complex whose format depends on

popdprecision.

The only rider to this is the rule of rational-complex canonicalisation, which prevents the

production of a rational-complex number with a 0 imaginary part. Instead, the result is just

the real part of the number. Note that this does not apply to
oat-complex numbers, which

can have a 0.0 imaginary part.

Most numerical procedures allow complex or mixed real and complex arguments. In a

similar way to the rational/
oat distinction for the real case, computations are done in real

arithmetic producing a real result if all arguments are real, or otherwise all arguments are

converted to complex and the operation performed in complex to give a complex result. This

called the rule of complex contagion.

6.9 Conventions for Formal Parameters of Procedures

As is the practice in this book, we have attempted to use one letter to indicate object type.

Subscripts distinguish between distinct variables of the same type, and can be either numeric

or descriptive.

O any POP object

b a boolean, true or false

d, d

1

, d

2

a
oating point number, decimal or ddecimal

r A rational number

z, z

1

, z

2

: : : any number, including complex

x, x

1

, x

2

,: : : , y any number except complex

n a short integer

i

1

, i

2

: : : any integer, short or big

Use of i is avoided to prevent confusion with

p

�1

� a real number, where an angle would be

expected.

206 CHAPTER 6. NUMBERS IN POP

6.10 Predicates Relating to Numbers

The following procedures are provided to recognise number classes and types.

isinteger(O)! b

This procedure returns true if O is a simple integer, false otherwise.

isbiginteger(O)! b

This procedure returns true if O is a biginteger, false otherwise.

isintegral(O)! b

This procedure returns true if O is a simple integer or a biginteger, false otherwise.

isratio(O)! b

This procedure returns true if O is a ratio, false otherwise.

isrational(O)! b

This procedure returns true if O is a simple integer, a biginteger or a ratio, and false

otherwise.

isdecimal(O)! b

This procedure returns true if O is a decimal or a ddecimal | i.e. a
oating point number,

false otherwise.

issdecimal(O)! b

This procedure returns true if O is a single length decimal | i.e. a single-precision
oating

point number, false otherwise.

6.11. COMPARISONS ON NUMBERS 207

isddecimal(O)! b

This procedure returns true if O is a ddecimal | i.e. a double precision
oating point

number, false otherwise.

isreal(O)! b

This procedure returns true if O is any number except a complex, false otherwise.

iscomplex(O)! b

This procedure returns true if O is a complex number, false otherwise.

isnumber(O)! b

This procedure returns true if O is any kind of number, false otherwise.

6.11 Comparisons on Numbers

z

1

= z

2

! b

z

1

= = z

2

! b

On numbers, these operators compare their arguments for mathematical equality and in-

equality respectively. Di�erent types of rationals (integers, bigintegers and ratios) can never

represent the same number and so can never be equal; comparisions between
oating-point

(decimals and ddecimals) and between
oating-point and rationals �rst convert both argu-

ments to double
oat. The same rules apply to the comparison of the real and imaginary

parts of a complex numbers. Note that a real number compared with a complex number will

be equal only if the complex number is a
oat-complex with 0.0 imaginary part (since the

imaginary part of a rational complex must always be non-zero).

x

1

< x

2

! b

x

1

<= x

2

! b

208 CHAPTER 6. NUMBERS IN POP

x

1

> x

2

! b

x

1

>= x

2

! b

These operators compare x

1

and x

2

and return b indicating whether x

1

is respectively less

than, less than or equal, greater than, and greater than or equal to x

2

. Comparisons be-

tween di�erent number types are performed as for = and /=. Both arguments must be real

numbers, in the POP sense, that is non-complex numbers.

max(x

1

; x

2

)! x

max

min(x

1

; x

2

)! x

min

max returns the greatest of its two arguments and min the least. I.e. x

max

� x

1

and

x

max

� x

2

, x

max

= x

1

or x

max

= x

2

. Similarly � is used for min. Both arguments must be

real numbers.

z

1

== #z

2

! b

This procedure returns true if z

1

and z

2

are identical (i.e. ==), or numbers of the same

representational type and numeric value. Decimals and ddecimals are not considered to be

of the same type. Two complex numbers are ==# if their real parts are ==# and their

imaginary parts are ==#

6.12 Variables Controlling Number Representation

popdprecision [variable] This value of this variable controls the production of results from

oating-point computations, in combination with the types of the arguments supplied to

the relevant procedure. In the following, decimal includes decimal-complex and ddecimal

includes ddecimal-complex (when a complex
oating-point operation is involved):

6.12. VARIABLES CONTROLLING NUMBER REPRESENTATION 209

value e�ect

false Single-
oat decimal results are always

produced.

the word A ddecimal result is produced only if one or

\ddecimal" other (or the only) argument was ddecimal.

(This is the behaviour speci�ed by Common

LISP.)

any other Same as the previous case, except that a

ddecimal result is also produced when

neither argument is a single-
oat decimal,

i.e. all argument(s) are ddecimal or

rational.

Note that the default value of popdprecision is false.

pop reduce ratios [variable] It was stated above that a ratio result is always reduced to

its lowest common terms, and therefore to an integral result if the denominator becomes

1. However, in situations where a rational computation is being performed that involves a

number of intermediate results, the continual reduction of intermediate values can be rather

time-consuming; this boolean variable is therefore provided to enable reduction to be turned

o� by setting it to false. Although unreduced ratios will give correct results in computation,

comparisons on them may not do so. E.g. 2=2 = 1 will evaluate to false. Thus this facility

must be used carefully: pop reduce ratios should only be set false inside a procedure that

has it as a dynamic local, and you should always ensure that the variable is returned to true

before producing the �nal result of a computation.

number coerce(z

1

; z

patt

)! z

2

This procedure produces a number z

2

which is the number z

1

converted to the representation

class (i.e. rational, single-
oat decimal or double-
oat ddecimal) of the number z

patt

, as

follows:

� No new number is constructed unless necessary; thus if the class of z

1

already matches

that of z

patt

, z

1

is returned unchanged.

� Otherwise, conversion from one class to another proceeds, as described below.

210 CHAPTER 6. NUMBERS IN POP

Conversion from rational form to
oating-point form, or from one
oat format to the other,

takes place in the obvious way. For conversion from
oating-point to rational, the
oat is

assumed to be completely accurate, and a mathematically equal rational number is returned.

If z

1

is complex, then z

2

is the complex number got by applying number coerce recursively

to the real and imaginary parts of z

1

, i.e.

number coerce(realpart(z

1

); z

patt

)+ : number coerce(imagpart(z

1

); z

patt

)! z

2

If the second argument z

patt

is itself complex, then z

1

is coerced to a complex number of

the same representation class, i.e. the result is computed as

realpart(z

patt

)! z

patt

;

number coerce(realpart(z

1

); z

patt

)+ : number coerce(imagpart(z

1

); z

patt

)! z

2

where imagpart will �ll in an appropriate zero value for the imaginary part if z

1

is real.

6.13 Arithmetic Operations

z

1

+ z

2

! z

3

z

1

� z

2

! z

3

z

1

� z

2

! z

3

z

1

=z

2

! z

3

These operators respectively add, subtract, multiply and divide their arguments, which may

be any numbers. The type of the result depends on the rules of
oating-point and complex

6.13. ARITHMETIC OPERATIONS 211

contagion as described above. In particular, note that dividing one integer by another

produces a ratio when the result is not exact.

- z

1

! z

2

As a pre�x operator, � is equivalent to negate(z

1

).

z

1

==z

2

! z

quot

! z

rem

z

1

div z

2

! z

quot

z

1

rem z

2

! z

rem

The two results returned by the operator // are de�ned by

intof(z

1

=z

2

)! z

quot

and z

1

� (z

quot

� z

2

)! z

rem

where the arguments may be any numbers, including complex. The operator div returns

just the quotient z

quot

as de�ned above, and the operator rem returns just the remainter

z

rem

.

x

1

mod x

2

! x

mod

This procedure returns x

1

modulo x

2

, where both numbers must be real. This is de�ned as

define 2 x1 mod x2 -> x_mod;

lvars x1, x2, x_mod,

x_rem = x1 rem x2;

if (x2 > 0 and x_rem < 0)

or (x2 < 0 and x_rem >= 0)

then

x_rem+x2 -> x_mod

else

x_rem -> x_mod

endif

212 CHAPTER 6. NUMBERS IN POP

enddefine;

Thus the result of mod always has the same sign as the divisor.

intof(z)! i

For z real, intof truncates its argument to an integer, i.e. it returns the integer of the same

sign as z and with the largest magnitude such that abs(i) � abs(z). For a complex number,

the result is the integral complex number obtained by applying intof to its parts, i.e.

intof(realpart(z))+ : intof(imagpart(z))

fracof(z)! z

frac

The fractional part of z, de�ned as z � intof(z).

round(z)! i

1

For z real, this procedure rounds z to an integer by taking intof(z + 1=2) if z is positive, or

intof(z � 1=2) otherwise. If z is complex, the result is the Gaussian integer:

round(realpart(z))+ : round(imagpart(z))

abs(z)! x

This procedure returns the absolute value of z, which (except for complex) will always be

a number of the same type. For any complex z, the result will be a
oating-point real,

computed as

sqrt(realpart(z)

2

+ imagpart(z)

2

)

6.14. RATIONAL & INTEGER SPECIFIC OPERATIONS 213

negate(z

1

)! z

2

This procedure returns the negation of z.

sign(z)! z

sgn

For z real, sign returns �1, 0 or 1 of the same type as z, depending on whether z is negative,

zero or positive. If z is complex, the result is a
oating-point complex number such that

abs(z

sgn

) = 1:0; phase(z

sgn

) = phase(z)

6.14 Rational & Integer Speci�c Operations

checkinteger(O; i

lo

; i

hi

)! b

This procedure checks whether O is an integer within the range speci�ed by lower bound i

lo

and upper bound i

hi

(inclusive). Either or both bounds may be false to indicate no upper

or lower limit. If all conditions are satis�ed the procedure returns with no action, otherwise

a mishap occurs.

gcd n(i

1

; i

2

; :::; i

n

; n)! i

gcd

Computes the greatest common divisor of the all the n integers i

1

, i

2

, ..., i

n

, where the

number n itself (a simple integer � 0) appears as the rightmost argument. If n = 0, then

i

gcd

= 0; if n = 1, then i

gcd

= i

1

.

lcm n(i

1

; i

2

; :::; i

n

; n)! i

lcm

Computes the least common multiple of the all the n integers i

1

, i

2

, ..., i

n

, where the number

n itself (a simple integer � 0) appears as the rightmost argument. If n = 0, then i

lcm

= 1;

if n = 1, then i

lcm

= i

1

.

destratio(r)! i

denom

! i

num

214 CHAPTER 6. NUMBERS IN POP

numerator(r)! i

num

denominator(r)! i

denom

These procedures return the numerator and denominator parts of a rational number, either

together (destratio), or separately (numerator and denominator). When r is integral, then

i

num

= r, and i

denom

= 1.

6.15 Complex Speci�c Operations

z

1

+ : z

2

! z

3

z

1

� : z

2

! z

3

These two operators are the basic way of creating complex numbers. E�ectively, they both

multiply their second argument by i (the square root of �1), and then either add the result

to (+ :) or subtract the result from (� :) the �rst argument.

+ : z

1

! z

2

� : z

1

! z

2

As pre�x operators, + : and � : are equivalent to unary + : (z

1

) and unary � : (z

1

)

respectively.

unary + : (z

1

)! z

2

unary � : (z

1

)! z

2

Single-argument versions of + : and � :, which multiply their argument by i and �i respec-

tively.

conjugate(z

1

)! z

2

This procedure returns the complex conjugate of its argument. The conjugate of a real

6.16. FUNCTIONS OVER THE COMPLEX NUMBERS 215

number is itself, while for a complex number it is

realpart(z

1

)� : imagpart(z

1

)

i.e. a complex number with the same realpart, but negated imagpart.

destcomplex(z) ! y ! x

realpart(z)! x

imagpart(z)! y

These procedures return the real and imaginary parts of a complex number, either together

(destcomplex), or separately (realpart and imagpart). When z is real, then x = z, and a

zero of the same type as z is returned for y.

6.16 Functions over the Complex Numbers

The procedures in this section, as well as most of those in the following section on trigono-

metric procedures, compute functions whose de�nitions on the complex plane necessitate

choices of branch cuts and principal values. See the section Branch Cuts, Principal Values

and Boundary Conditions in Chapter 12 of Steele[?] for details of these. sqrt(z

1

)! z

2

This procedure returns the principal square root of z

1

. This will be a real positive
oating-

point number if z

1

is real and non-negative, and a
oat-complex otherwise.

log(z

1

)! z

2

This procedure returns the natural (base e) logarithm of z

1

, which must not be a zero of any

kind. If z

1

is real and non-negative, the result is a real
oating-point number. Otherwise, it

is the
oat-complex number

216 CHAPTER 6. NUMBERS IN POP

log(abs(z

1

))+ : phase(z

1

)

log10(z

1

)! z

2

This procedure returns the base 10 logarithm of z

1

, which must not be a zero of any kind.

De�ned as

log(z

1

)=log(10)

exp(z

1

)! z

2

This procedure returns e raised to the power z

1

, where e is the base of natural logarithms.

The result is a
oating-point number if the argument is real, or a
oat-complex otherwise.

z

1

� �z

2

! z

3

This procedure returns z

1

raised to the power z

2

, where either argument may be any numbers

(except that z

1

must not be zero if z

2

is zero of any type other than integer 0). If z

2

is an

integer, the computation is performed by successively multiplying powers of z

1

; thus if z

1

is

rational, the result will be exact. If z

2

is the integer 0, the result is always a 1 of the same

type as z

1

. Otherwise, if z

2

is not an integer, the result is computed as

exp(z

2

� log(z

1

))

6.17 Trigonometric Functions

All the procedures in this section take an angle as argument, or return one as a result. In

both cases, the units of the angle (radians or degrees) are controlled by the boolean variable

popradians. This applies equally when the angle is complex.

6.17. TRIGONOMETRIC FUNCTIONS 217

popradians

This boolean variable speci�es whether the angle arguments or results for trigonometric

procedures are in radians (true) or degrees (false). Note that the default value is false,

implying angles in degrees.

phase(z

1

)! �

This procedure returns the complex phase angle of z

1

as a
oating-point quantity. This will

be in the range

�pi < � � pi(radians)

�180 < � � 180(degrees)

If z

1

is real, then � = 0.0. This procedure is de�ned as arctan2(destcomplex(z

1

))

cis(�)! z

This procedure returns the
oat-complex number z = cos(�)+ : sin(�) The name cis stands

for cos+ isin. Note that this is the same as exp(+ : �)

sin(z

1

)! z

2

cos(z

1

)! z

2

tan(z

1

)! z

2

These procedures compute the sine, cosine and tangent of z

1

. The result is a
oating-point

number, or a
oat-complex if z

1

is complex.

arcsin(z)! z

2

arccos(z)! z

2

arctan(z)! z

2

218 CHAPTER 6. NUMBERS IN POP

These procedures compute the arcsine, arccosine and arctangent of z. For z complex, the

result is a
oat-complex. For z real, it is a real
oat, except in the case of arcsin and arccos

when abs(z) > 1. For arctan, it is an error if z = +1 or �1.

arctan2(x; y)! �

Computes the arctangent of y=x, but using the signs of the two numbers to derive quadrant

information. The result is a
oating-point number in the range

�� < � � � (popradians = true)

�180 < � � 180 (popradians = false)

When x = 0 and y = 0 the result is de�ned (arbitrarily) to be 0.0.

sinh(z

1

)! z

2

cosh(z

1

)! z

2

tanh(z

1

)! z

2

These procedures compute the hyperbolic sine, hyperbolic cosine and hyperbolic tangent of

z

1

. The result is a
oating-point number, or a
oat-complex if z

1

is complex.

arcsinh(z

1

)! z

2

arccosh(z

1

)! z

2

arctanh(z

1

)! z

2

These procedures compute the hyperbolic arcsine, hyperbolic arccosine and hyperbolic arc-

tangent of z

1

. For z

1

complex, the result is a
oat-complex. For z

1

real, the result will be a

real
oat, except in the following cases:

6.18. BITWISE/LOGICAL INTEGER OPERATIONS 219

arccosh(z

1

) z

1

< 1 Complex result

arctanh(z

1

) abs(z

1

) > 1 Complex result

arctanh(z

1

) z

1

= 1 or z

1

= �1 mishap called

pi

This constant is the best ddecimal approximation to �.

6.18 Bitwise/Logical Integer Operations

These procedures enable integers to be manipulated as bit patterns representing two's-

complement values, where bit position n has weight 2

n

, i.e. bits are numbered from 0

upwards. Note that, conceptually, at any rate, the sign bit of an integer is extended indef-

initely to the left. Thus everywhere above its most signi�cant bit, a positive integer has 0

bits and a negative integer has 1 bits. The procedures can be used for integers of any size.

i

1

&&i

2

! i

3

The result of this operation is the bitwise logical \and" of the integers i

1

and i

2

, i.e. there

is a 1 in the result for each bit position for which there is a 1 in both i

1

and i

2

.

i

1

&& �� i

2

! i

3

The result of this operation is the bitwise logical \and" of i

1

and the bitwise logical comple-

ment of i

2

, i.e. there is a 1 in the result for each bit position for which there is a 1 in i

1

and

a 0 in i

2

. The operation is the same as i

1

&&(�� i

2

) and is useful for clearing those bits of

i

1

which are set in i

2

).

i

1

jji

2

! i

3

The result of this operation is the bitwise logical \inclusive or" of i

1

and i

2

, i.e. there is a 1

in the result for each bit position for which there is a 1 in either i

1

or i

2

.

220 CHAPTER 6. NUMBERS IN POP

i

1

jj=&i

2

! i

3

The result of this operation is the bitwise logical \exclusive or" of i

1

and i

2

, i.e. there is a 1

in the result for each bit position for which there is a 1 in either i

1

or i

2

but not in both.

�� i

1

! i

2

This operator produces the bitwise logical complement of the integer i

1

, i.e. there is a 1 in

the result for each bit position for which i

1

has 0. It is always true that �� i = �(i + 1)

i

1

<< n! i

2

This operator produces the bit pattern of i

1

shifted left by n positions; a negative value for

n produces a right shift. n must be a simple integer.

i

1

>> n! i

2

This operator returns the bit pattern of i

1

shifted right by (simple integer) n positions; a

negative value for n implies a left shift.

i

1

&&= = 0 i

2

! b

i

1

&& = 0 i

2

! b

These two operators are equivalent to the boolean expressions

i

1

&&i

2

= == 0

i

1

&&i

2

== 0

but are more e�cient since they avoid producing intermediate results.

testbit(i

1

; n)! b

b! testbit(i

1

; n)! i

new

This procedure and its updater enable the testing and setting or clearing of the bit at position

6.18. BITWISE/LOGICAL INTEGER OPERATIONS 221

n in the integer i

1

. The base procedure returns the state of bit n as a boolean value, true

for 1 and false for 0. The updater, which is somewhat unusual for an updater in that it

returns a result, produces a new integer i

new

which is i

1

with bit n set to 1 or cleared to 0

as speci�ed by the input b argument, which may in fact be any item, false meaning 0 and

anything else meaning 1.

integer leastbit(i

1

)! n

This procedure returns the bit position n of the least-signi�cant bit set in the integer i

1

.

Equivalently, n is the highest power of 2 by which i

1

divides exactly.

integer length(i

1

)! n

This procedure returns the length in bits of i

1

as a two's-complement integer. That is, n is

the smallest integer such that

i

1

< (1 << n); if i

1

� 0

i

1

� (�1 << n); if i

1

< 0

Put another way: if i

1

is non-negative then the representation of i

1

as an unsigned

integer requires a �eld of at least n bits; alternatively, a minimum of n+ 1 bits are required

to represent i

1

as a signed integer, regardless of its sign.

integer bitcount(i

1

)! n

This procedure counts the number of 1 or 0 bits in the two's-complement representation of

i

1

. If i

1

is non-negative, n is the number of 1 bits; if i

1

is negative, it is the number of

0 bits. Note that, owing to the sign extension, there are an in�nite number of 0 bits in a

non-negative integer or 1 bits in a negative integer. It is always the case that

integer bitcount(i

1

) = integer bitcount(�(i

1

+ 1))

222 CHAPTER 6. NUMBERS IN POP

integer field(n; i

1

)! P

access

This procedure is used to create accessing/updating procedures for sub-bit�elds within in-

tegers, and provides a more convenient (and more e�cient) way of manipulating such �elds

than by masking and shifting with the operators && and >>, etc. Given a speci�cation of

a bit�eld in terms of its width in bits n, and lowest bit position i

1

(both simple integers), it

returns a procedure P

access

. When this is applied to any integer it extracts the binary value

represented by bits i

1

to i

1

+ n� 1 within the integer, shifting it right by i

1

bits to align it

at bit 0. That is,

P

access

(i

1

)! i

val

If the argument n > 0, the �eld is taken to contain unsigned values only | i.e. values

� 0. If n < 0, then the �eld is signed, and upon extraction, the highest bit of the �eld is

extended as the sign bit of the resulting value. C.f. the corresponding convention used by

conskey described in Chapter 3.13. The updater of P

access

, on the other hand, takes a �eld

value and an integer, and returns a new integer in which the contents of the �eld bits are

replaced by the given value, but which has the same bits everywhere else. That is:

i

val

! P

access

(i

1

)! i

new

Note that the updater makes no check on the range of i

val

; bits 0 to n � 1 of i

val

are

masked out, shifted up, and inserted into the �eld position and it is therefore irrelevant in

this context whether the �eld is signed or unsigned. A further feature is that P

access

and its

updater can be made to merely mask out or mask in the �eld bits, without shifting the value

down or up. That is, upon extraction the �eld value is left aligned at bit i

1

in the result; the

input value for updating is assumed to be similarily aligned. This is achieved by supplying

a second argument of false to P

access

or its updater, i.e.

P

access

(i

1

; false)! i

unshifted

i

unshifted

! P

access

(i

1

; false)! i

new

Note also that in this case, extraction of a signed �eld will not cause it to be sign-extended.

6.19. RANDOM NUMBERS 223

6.19 Random Numbers

POP provides two built in procedures, random0 and random, to generate pseudo random

numbers. These can be used in any program that needs to choose numbers \at random", as

it were by the throw of a die.

Random numbers are generated by these procedures by making use of the variable

ranseed, which is used as the \seed" for the generation. Each random number generated

uses one or more successive seed values, depending on the type of the argument to random0

and random. The algorithm used to generate each successive seed value is

ranseed fi_* 524269 fi_+ 32749 -> ranseed

which, since all current implementations use 30 bits for a simple integer, produces a result

modulo 2

30

. The This algorithm has a veri�ed cycle length of 2

30

, i.e. it will produce every

possible combination of 30 bits. The fast arithmetic procedures fi + and fi � are speci�ed

in Chapter refFASTPROCS.

random0(n)! n

random

random0(x)! x

random

Given a strictly-positive integer or
oating-point argument, this procedure generates a ran-

dom number of the same type, in the range

0 � n

random

< n

0 � x

random

< x

where the distribution will be approximately uniform. The value of the variable ranseed is

used as the seed for the generation process, and is replaced with a new seed value afterwards.

224 CHAPTER 6. NUMBERS IN POP

random(n)! n

random

random(x)! x

random

This procedure is the same as random0, except that whenever the latter would return 0

or 0.0, the original argument n or x is returned instead. Hence the range of the result is

1 � n

random

� n for integer arguments, or 0 < x

random

� x for
oating point arguments.

ranseed

This variable is used to hold the next seed for generation of random numbers by random0

or random, both of which side-e�ect it. If set to false, it will be re-initialised to a simple

integer the next time either procedure is called. The procedure sys real time is used for this

initialisation, so you can expect a program that sets false ! ranseed to behave di�erently

on each occasion it is executed. Apart from this, the value of ranseed must always be a

simple integer.

6.20 Floating-Point Utilities

The procedures in this section provide the means to manipulate
oating-point numbers, and

make possible the writing of machine-independent
oating-point software. Note that none

of these procedures are a�ected by the value of popdprecision.

float decode(d; i

mantissa

)! d

sgn

! i

expo

! n

mantissa

float decode(d; false)! d

sgn

! i

expo

! d

mantissa

This procedure takes a
oating-point number and splits it into its component parts, i.e. sign,

exponent and mantissa.

� d

sgn

represents the sign, being a 1.0 or �1:0 of the same type as the argument, and

with the same sign. Note that if d = 0:0 in the procedure call, d

sgn

= 1:0

� Denoting the radix of the
oating-point representation by i

b

(see pop float radix be-

low), i

expo

is the integer power of i

b

by which d

mantissa

must be multiplied to regain the

magnitude of the original number.

6.20. FLOATING-POINT UTILITIES 225

� The mantissa is the absolute value of the number d with i

i

expo

b

divided out, and can

be returned in one of two ways: If the i

mantissa

argument is false, then d

mantissa

is

returned as a
oat of the same type, in the range

1=i

b

� d

mantissa

< 1

Otherwise, n

mantissa

is is returned as an integer, scaled by

i

float precision(d)

b

that is, so that the least signi�cant digit in the representation of d is scaled to unity

in the result. If p = float precision(d) we then have

i

p�1

b

� n

mantissa

< i

p

b

Thus whether the mantissa is returned as a
oat or an integer, it will always be the

case that

n

mantissa

i

;i

expo

b

= abs(d)

d

mantissa

i

;i

expo

b

= abs(d)

Note that this holds also when d = 0:0, since in this case i

expo

= 0, or d

mantissa

= 0:0

depending on i

mantissa

.

float scale(d

1

; i

expo

)! d

2

This provides a more e�cient way of scaling a
oat by a power of the
oating-point radix i

b

than by using nonop �� and avoids any intermediate over
ow or under
ow that could occur

with the latter. It returns

d

1

� i

i

expo

b

as a
oating-point of the same type. If the �nal result over
ows or under
ows, i.e. the

absolute value of the exponent is too large for the representation, then false is returned. This

procedure can be used in conjunction with float sign to put back together a
oating-point

number decomposed with float decode. That is, after

226 CHAPTER 6. NUMBERS IN POP

float decode(d; false)! d

sgn

! i

expo

! n

mantissa

;

one can use

float sign(d

sgn

; f loat scale(n

mantissa

; i

expo

))

to retrieve the original number.

float sign(d

sgn

; d

1

)! d

2

This procedure returns a
oating-point number d

2

of the same type and absolute value as

d

1

, but which has the sign of the
oat d

sgn

. The argument d

1

may also be false. In this

case, d

2

is returned as a 1.0 or -1.0 of the same type and sign as d

sgn

.

float digits(d)! n

This procedure returns, as an integer, the number of radix-i

b

digits represented in the

oating-point format of the argument. I.e. n has only two possible values, one for decimals

and one for ddecimals. In all current POP implementations, i

b

= 2 and n is around 22 for

decimals, 53{56 for ddecimals. ??

float precision(d)! n

Same as float digits, except that the number of signi�cant radix-b digits in the argument is

returned. Since POP
oating-point decimals and ddecimals are always normalised, this will

in fact be identical to float digits(d), with the single exception that float precision(0:0) = 0

for either
oat type.

6.21. NUMERIC CONSTANTS 227

6.21 Numeric constants

This section describes constants that de�ne the ranges of numbers available in various rep-

resentation classes.

float parameters

This is a library; to use any of the constants it de�nes, you must load it explicitly with

lib float_parameters;

It de�nes the following parameter constants, all of whose values relate to the particular

implementation of POPLOG in use:

pop most positive decimal The greatest positive value representable in single-length dec-

imal format.

pop least positive decimal The smallest positive (non-zero) value representable in single-

length decimal format.

pop least negative decimal The least negative value (i.e. closest to zero) representable

in single-length decimal format.

pop most negative decimal The most negative value (i.e. closest to negative in�nity)

representable in decimal format.

pop most positive ddecimal

pop least positive ddecimal

pop least negative ddecimal

pop most negative ddecimal

Same as the above for double-length ddecimal format.

pop plus epsiloi decimal

228 CHAPTER 6. NUMBERS IN POP

pop plus epsiloi ddecimal

These are the smallest positive numbers in each format which when added to 1.0 of the same

format produce a value not equal to 1.0. I.e. for each format, the smallest positive � such

that

number coerce(1; �) + �= = 1:0

is true. N.B. For ddecimal format, this depends on popdprecision not being false.

pop minus epsiloi decimal

pop minus epsiloi ddecimal

Same as before, but subtracting from 1.0 instead of adding, i.e. for each format the

smallest positive e such that

number coerce(1; e)� e= = 1:0

is true.

pop float parameters

This is a full vector that holds all the
oating-point constants given under -
oat parameters-

above, and which the latter uses to de�ne each value as a separate constant. You are not

advised to use this directly (since its format may change); always access the values via

-
oat parameters-.

pop float radix

This integer constant is the radix of the
oating-point representation (= 2 in all current

POPLOG implementations).

6.22. NUMBER KEYS 229

int parameters

This is a library; to use any of the constants it de�nes, you must load it explicitly with

lib int_parameters;

It de�nes the following parameter constants, all of whose values relate to the particular

implementation of POPLOG in use:

pop max int

The largest (i.e. most positive) integer that can be represented as a simple (short) integer.

pop min int

The smallest (i.e. most negative) integer value that can be represented as a simple (short)

integer.

6.22 Number Keys

Each numeric data class has an associated constant which holds its key (see 3.13. These are

as follows.

integer key

The key for simple integers. biginteger key

The key for big integers. ratio key

The key for ratios. decimal key

The key for short
oating point numbers (decimals). ddecimal key

The key for long
oating point numbers (ddecimals) complex key

230 CHAPTER 6. NUMBERS IN POP

The key for complex numbers.

6.23 Restrictions in AlphaPop

AlphaPop provides only integers, decimals and ddecimals.

Exercise - try de�ning a number representation in which the error is tracked.

Chapter 7

Lists and Pairs

NOTE

I do not understand the di�erence between islink and ispair.

Page 293 of the draft Pop book asks about this. Here is the answer

de�ne global constant islink(x); lvars x; ispair(x) and not(null(x)) endde�ne;

Whether it is of any use I don't know. Aaron

7.1 Introduction

In earlier chapters we have made use of lists of POP objects. The purpose of this chapter is

to describe POP lists in detail, including how they are built up out of pairs, and how you can

make in�nite non-repeating lists. Subsequent chapters will describe the POP-11 matcher,

which allows you to recognise lists which have a particular pattern very easily, and how to

231

232 CHAPTER 7. LISTS AND PAIRS

exploit the in�nite lists

1

that POP provides.

A pair is a record which contains two arbitrary POP data objects, called the front and

the back of the pair: pair records may be used in their own right for any purposes.

The most frequent use of pairs, however, is to represent lists of objects; a list is represented

in POP as a chain of pairs, where the front of each pair in the chain is used to hold the next

element of the list, and the back to hold the continuation of the chain, which may be either

another pair or the special object [] at the end of the list. The object [] is called the empty

list and is the value of the constant nil. It is the only list which is not built out of pairs.

The two parts of a pair, considered as a list, are known respectively as the head and the

tail. Thus, whereas the head of a list can be any object, the tail must always be another

list. Referring to our discussion in Chapter 3.7, lists form a data-type in POP, but is not a

data-class. On the other hand, pairs form a data-class.

Mathematicians often deal with in�nite sequences of entities. POP provides a useful

representation of such sequences, called a dynamic list. A dynamic list is one where the �nal

pair which holds an actual member of the list contains in its back not [] but yet another pair,

this pair having in its back a procedure. Whenever an attempt is made to access the head

or tail of this special pair the procedure is called with the expectation that it will produce

as result either the next element of the list or the object termin to indicate that there are

no more objects left in the list. The result so produced is then added to the end of the list

by putting it in the front of the special pair and constructing another special pair to go in

its back. Thus the old special pair becomes the last proper pair of the list.

2

A pair with

a back which is a a procedure is therefore a valid list, as yet unexpanded, and which will

be expanded by the application of list procedures like hd, tl etc; the front of such a pair

will contain true until the procedure in its back produces termin, at which time the front

becomes false. This indicates that the list is now null, and any application of hd, tl etc will

result in mishap being called.

You can create dynamic lists out of data-�les. Such lists can be lists of characters, or

1

These are also known as streams.[?]

2

The idea for dynamic lists came originally from Peter Landin, who advocated what he called `streams'

to us (Rod Burstall and Robin Popplestone) when we were de�ning POP-2. (How about Algol60?) The �rst

implementation of this idea was in fact in POP-2 [2]. The implementation described here, and that used in

is essentially the same as that employed in POP-2. Other implementations are described in [?].

7.2. PREDICATES ON PAIRS AND LISTS 233

more commonly of objects (called tokens by compiler writers). In particular this provides a

good way of representing input from a keyboard, which is in�nite as far as the poor computer

knows.

Thus a list is either

� The object [], called the empty list.

� A pair whose back is [], or another pair.

� A pair whose front is a boolean, and whose back is a procedure, i.e. a dynamic list.

7.2 Predicates on Pairs and Lists

The following procedures are provided to allow you to recognise lists and pairs, and distin-

guish between di�erent kinds of list.

atom(O)! b

This procedure returns true if O is not a pair, false otherwise. atom(O) is equivalent to

not(ispair(O)).

isdynamic(O)! P

isdynamic(O)! false

This procedure returns the generator procedure P underlying a dynamic list, or false if O

is not a dynamic list.

ispair(O)! b

This procedure returns true if O is a pair, false otherwise.

234 CHAPTER 7. LISTS AND PAIRS

islist(O)! b

This procedure returns true if O is a list, false otherwise.

islink(O)! b

This procedure returns true if O is a non-null pair.

null(L)! b

This procedure returns true if the list L is empty, false otherwise. L is empty if it is either

� []

� A pair with front false and back a procedure, i.e a dynamic list whose procedure has

returned termin. Note that applying null to an unexpanded dynamic list pair causes

it to be expanded.

member(O;L)! b

The default value of this procedure variable is a procedure which returns true if O is an

element of the list L, otherwise false, equality being determined with the operator \=".

lmember(O;L)! L

sub

If O is an element of the list L, this procedure returns the trailing portion of L starting with

that element, otherwise false. Equality is determined by using the operator \==". E.g.

lmember(2, [1 5 4 6 2 3 7 9]) =>

** [2 3 7 9]

The main use of this procedure is to allow you to �nd an object in a list, and then modify

the list destructively by assigning to the front of the pair so found.

7.3. PAIR CONSTRUCTOR AND ACCESS PROCEDURES 235

7.3 Pair Constructor and Access Procedures

The following procedures allow you to construct new pairs, and to access their components.

back(Pair)! O

O! back(Pair)

This procedure returns or updates the back of the pair Pair.

conspair(O

1

; O

2

)! Pair

This procedure constructs and returns a pair whose front is O

1

and whose back is O

2

.

destpair(Pair)! O

back

! O

front

This procedure returns two results, the back and the front of the pair Pair.

front(Pair)! O

O! front(Pair)

This procedure returns or updates the front of the pair Pair.

recursive front(Pair)! O

This procedure does, in e�ect Pair ! O, and then iterates, doing front(O) ! O, until O

is not a pair. It is used by syspr in printing the names of procedures.

236 CHAPTER 7. LISTS AND PAIRS

7.4 Constructing Lists

If we want to build lists, the following procedures, and a constant are provided to enable us

to do so:

nil

The value of this constant is the unique object [], the empty list.

conslist(O

1

; O

2

; : : : ; O

n

; n)! L

This procedure returns a list L constructed from the n objects on the stack below the top,

which must be a (simple) integer.

cons(O;L

1

)! L

2

O :: L

1

! L

2

These both construct and return a list whose head is the object O and whose tail is the list

L

1

. The operator form is often notationally more convenient.

pdtolist(P)! L

This procedure constructs and returns a dynamic list from the procedure P , i.e. a pair whose

front is true and whose back is the procedure P . P should produce exactly one object each

time it is called, and termin (the value of the constant termin) as the last object, if there

is one. For example, we can construct a list of all the integers by

vars count = 0;

define nextint;

count; count+1->count;

enddefine;

vars L_integer = pdtolist(nextint);

7.4. CONSTRUCTING LISTS 237

/* example

L_integer => ;;; The list is unexpanded, so prints thus

** [...]

L_integer.hd => ;;; The first member is 0, and this causes expansion

** 0

L_integer=> ;;; so the list now prints as:

** [0 ...]

L_integer.tl.tl.tl.hd=>

** 3

L_integer=>

** [0 1 2 3 ...]

expandlist(L

1

)! L

2

If this procedure terminates, then L

2

== L

1

. That is, either L

1

== L

2

== [] or they

start with the identical pair. If L

1

is a dynamic list then expandlist will repeatedly apply

the procedure which terminates the chain of pairs, thus expanding L

1

. This results in L

1

becoming a non-dynamic, or static list. This procedure will loop forever if the list is of

in�nite length.

sysconslist(popstackmark;O

1

; O

2

: : : O

n

)! L

This procedure constructs a list, L, of all the elements on the user stack up to the unique

object < popstackmark >, an object which is the value of the constant popstackmark.

3

POP-11 list constructors use this, i.e.,

[% 1, 2, 3, 4 %]

is equivalent to

sysconslist(popstackmark, 1, 2, 3, 4)

3

This construction was invented by R.M.Burstall, and incorporated in POP-1.

238 CHAPTER 7. LISTS AND PAIRS

allbutfirst(n; L)! L

sub

This procedure takes a (simple) integer n and a list L, and returns the sublist consisting of

all its elements except the �rst n. L

sub

will be an actual sublist of L | i.e. it will consist of

a set of pair identical with some of those of L.

allbutlast(n; L) ! L

sub

This procedure takes a (simple) integer n and a list L, and returns the sublist consisting

of all its elements except the last n. L

sub

is a newly-constructed list, containing no pairs

identical with those of L.

7.5 List Access Procedures

The following procedures are provided to access elements of a list.

dest(L)! L

tl

! O

hd

This procedure returns two results, the tail and the head of the list L, which must not be

null.

hd(L)! O

hd

O

hd

! hd(L)

This procedure returns or updates the head of the list L, which must not be null.

tl(L)! L

tl

L

tl

! tl(L)

This procedure returns or updates the tail of the list L, which must not be null.

The operations CAR and CDR are provided for LISPERS who �nd these names appeal-

ing (!). They are in fact derived from assembly code mnemonics of an IBM antique.

7.5. LIST ACCESS PROCEDURES 239

car(L)! O

hd

O

hd

! car(L)

This procedure returns or updates the head of the static list L. car([]) = []. The updater

of car calls mishap if applied to a null static list.

cdr(L)! L

tl

L

tl

! cdr(L)

This procedure returns or updates the tail of the static list L. cdr([]) = []. The updater of

cdr calls mishap is applied to a null static list.

subscrl(n; L)! O

O! subscrl(n; L)

This procedure returns or updates the n-th element of the list L (where the �rst element is

has subscript 1). Because this procedure is the class apply procedure of pairs, described in

3.13, this can also be used in the form

L(n)! O

O! L(n)

last(L)! O

O! last(L)

This procedure returns or updates the last element of the list L, which must not be null.

lastpair(L)! Pair

Pair ! lastpair(L)

This procedure returns or updates the last Pair of the list L. L must not be null.

240 CHAPTER 7. LISTS AND PAIRS

destlist(L)! n! O

n

: : :! O

2

! O

1

This procedure puts each element of L onto the stack, and returns the number of elements.

dl(L)! O

n

: : :! O

2

! O

1

O

1

; O

2

; : : : ; O

n

! dl(L)

This procedure puts the n elements of the list L on the stack, e.g.

dl([1 2 3 4])

is equivalent to the POP command 1, 2, 3, 4;. The updater �lls L with the top n objects

from the stack.

explode(L)! O

n

: : :! O

2

! O

1

O

1

; O

2

; : : : ; O

n

! explode(L)

Applied to a list, explode is the same as dl.

oneof(L)! O

This procedure returns a randomly chosen element of L. It uses the POP random number

generator random, described in Chapter ??.

7.6 Other List Utilities

There are a number of procedures provided which perform useful operations on lists, such

as applying a procedure to each member of a list, sorting it, deleting members of it.

applist(L; P)

! applist(L; P)

7.6. OTHER LIST UTILITIES 241

his procedure applies the procedure P to each element of the list L. The updater applies

the updater of P to each element of L backwards, i.e. ! applist(L; P) is the same as

applist(rev(L); updater(P))

copylist(L

1

)! L

2

This procedure returns a copy of the list, L

1

, i.e. L

2

is a list in which all the pairs are

copies of those in L

1

. copylist does not copy elements of L

1

which are themselves lists. The

procedure copytree (q.v.) provides recursive copying.

copytree(L

1

)! L

2

This procedure makes a list, L

2

, which is a copy of L

1

. Any elements of L

1

which are

themselves lists are recursively copied.

delete(O;L

1

; n)! L

2

delete(O;L

1

)! L

2

This procedure takes a list L

1

and produces a new list L

2

with the object O omitted from

the original list. The optional argument n, if present, speci�es that only n occurrences of O

should be omitted.

ncdelete(O;L; P

eq

)! L

This procedure returns a list which is the given list with every object which is equivalent

to the given O deleted. Items are de�ned as equivalent according the the equivalence test

de�ned by procedure P

eq

. The procedure re-uses the pairs which make up the original list,

i.e. it is destructive.

flatten(L

1

)! L

2

This procedure converts a tree L

1

into a \
at" list L

2

, which contains all the leaves of the

tree, but has no sublists.

242 CHAPTER 7. LISTS AND PAIRS

length(L)! n

length(O)! n

This procedure behaves identically to listlength on lists, but if its argument is not a list it

then applies datalength to it (see Chapter ??).

listlength(L)! n

This procedure gives the number of elements n in the list L.

maplist(L

1

; P)! L

2

L

2

! maplist(L

1

; P)

This procedure applies the procedure P to each element of the list L

1

, and returns a list of

all results produced in so doing. This is equivalent to

[%applist(L

1

; P)%]

The action of the updater is

dl(L

2

)! applist(L

1

; P)

ncmaplist(L; P)! L

This procedure applies procedure P to every element of its �rst argument, replacing that

element with the result of calling P . ncmaplist is destructive in that it re-uses the pairs

which make up its �rst argument.

rev(L

1

)! L

2

This procedure returns a new list which is the list L

1

with its members in reverse order.

7.6. OTHER LIST UTILITIES 243

ncrev(L)! L

This procedure destructively reverses the order of the elements of L, i.e. it re-uses the pairs

of its argument.

setfrontlist(O;L

1

)! L

2

This procedure returns L

2

formed by moving the O to the front of L

1

, or adding the O if

not already present.

shuffle(L

1

)! L

2

This procedure returns L

2

, a copy of L

1

with the elements randomly re-ordered. It uses

oneof .

sort(L

1

)! L

2

This procedure returns a list of sorted objects. If the argument list contains numbers only,

then the operation < (less than) is used to decide where to put things in the sorted list. If it

contains words or strings, then the procedure alphabefore is used. If the list contains both

words and numbers then a mishap will result.

syssort(L; P)! L

syssort(L; b; P)! L

The �rst argument is a list, the last argument is a procedure which takes two objects and

returns a boolean result (e.g., nonop < for numbers or alphabefore for string and words,

etc). The objects in the list are compared using the procedure and the result is a list with

elements sorted in accordance with the procedure. If the optional boolean argument is false,

then the sorting is destructive, i.e. the pairs which make up L are re-linked in the new order.

syssort uses a merge sort algorithm.

flatlistify(L

1

)! L

2

flatlistify(v)! L

2

Given a list L or a vector v , made of lists and/or vectors embedded arbitrarily, flatlistify

244 CHAPTER 7. LISTS AND PAIRS

will return a list, L

2

, which contains all the words needed to create the list if given to popval

(see ??).

7.7 Constants

The following constants are provided:

pair key

nil key

These constants hold the key structures for pairs and the unique object [] (see Chapter 3.13).

Chapter 8

In which we �nd out what are words

and what are not

NOTE check quotation. \I think it is `nasturtiums' said Piglet. \No", said Pooh, \`Mastur-

shalums"'.

8.1 Overview

A word in POP is an object that represents a particular sequence of characters (the characters

of the word) as a `meaningful' entity. POP maintains a dictionary of word records and,

whenever a word record is to be constructed for a particular sequence of characters with

consword, the dictionary is searched to see if it already contains a word made up of that

sequence. If so, that is returned | otherwise a new record is constructed and entered in the

dictionary.

Strings, discussed in Chapter 9, are simply vectors of characters, and should be used

when it is not desired to associate any particular semantic information with a sequence of

characters. For example, if you want to print out a message to a user of your program you

will use a string. On the other hand, if you wanted to construct a property mapping from,

245

246CHAPTER 8. INWHICHWE FINDOUTWHAT AREWORDS ANDWHAT ARE NOT

say, English words to French words, you would probably construct a POP word for each

word of the language, or at least each one referenced in a given session with the user.

Although they can be employed for other purposes, the principal use of words is as names

of identi�ers (i.e. variables, constants, etc) in a program. These uses are described in detail

in Chapter 5. In particular, you can see how to use the valof procedure to �nd the value of

a variable currently associated with a word.

The POP dictionary of words serves as the starting point for garbage collection. The very

right of a POP item to exist depends upon its being referenced directly or indirectly from a

variable mentioned in the dictionary. Thus the garbage collector preserves all words which

are the names of variables, and all objects that are values of these variables, and components

of these objects, and components of components of these objects, etc.. Note however that the

garbage collector ?? removes words from the dictionary which are not referenced elsewhere,

and which are not the names of permanent variables.

In addition to the word-speci�c procedures, described in this chapter, some string ma-

nipulation procedures, described in 9, can also be used on words. The general procedures

that operate on POP objects described in Chapter 3.7 also provide useful capabilities for

operating on words. Thus, for example, words can be concatenated, using <>.

8.2 Predicates on Words

There are some special predicates which operate on words, as described below. In addition

the predicates on strings described in ??, also apply to words. In particular, alphabefore

de�nes a lexicographical ordering on words.

isword(O)! b

This procedure returns true if O is a word, false if not.

8.3. CONSTRUCTING WORDS AND ACCESSING THEIR CHARACTERS 247

8.3 Constructing words and accessing their characters

This section describes how you can construct words, out of characters, and how you can

access the characters of existing words.

consword(c

1

; c

2

; : : : ; c

n

; n)!W

consword(s)! W

This procedure returns a wordW . In the �rst form of call, the n characters on the user-stack

below the integer n, which must be on the top of the stack, form the characters of W , with

the top-most character being the last in the word.

In the second form of call, the characters of the string s form the characters of W . The

word is taken from the dictionary if it is in there, or a new word constructed and entered in

the dictionary if not.

subword(i; n;W

1

)!W

2

This procedure returns the word W

2

whose characters are the n characters of the word W

1

starting from its i-th character. W

1

may also be a string, but the result is still a word. If

you want a string result, then see the procedure substring in Chapter ??.

identof(W)! I

valof(W)! O

O! valof(W)

These procedures, which return the identi�er attached to a word and, if it is permanent, its

value, are described in Chapter 5. Note that the identi�er is not treated as a component of

a word by the destword procedure:

destword(W)! n! c

n

! : : :! c

2

! c

1

This procedure puts all the characters of the word W on the stack, together with its length

248CHAPTER 8. INWHICHWE FINDOUTWHAT AREWORDS ANDWHAT ARE NOT

n. In other words, it is the inverse of consword(n). E.g.

destword("abcd") =>

** 97 98 99 100 4

subscrw(n;W)! c

This procedure returns the n-th character c of the word W . It does not have an updater.

Since subscrw is the class apply of words (see 3.13), this can also be called as W (n)! c.

POP, following LISP, provides a procedure to allow a program to create new words. This

is mostly useful in symbolic mathematics, where for example, you may wish to create new

symbols during a Skolemisation procedure ??, or in applying a general law to a particular

situation, perhaps in changing the variable of integration.

gensym(W

root

)!W

n! gensym(W

root

)

This procedure takes a `root' word and returns a new word with an integer su�x appended.

Each call of gensym on the same word will increment the integer su�x. The updater of

gensym can be used to reset the counter for a particular word. You can reset the counter

for all root words that gensym has used by using the procedure cleargensymproperty.

appgensymproperty(P)

This procedure applies the procedure P to each active gensym root word and its current

integer counter, i.e. it evaluates P (W

root

; N).

cleargensymproperty()

This procedure resets the integer counter to 1 for all active gensym root words.

sysnvariable()!W

This procedure generates a unique, but unprintable, word. It is used to create new permanent

identi�ers for macros and syntax procedures.

8.4. DICTIONARY PROCEDURES 249

8.4 Dictionary Procedures

To allow you to interrogate the dictionary of words, to �nd what words are in it, or whether

words with certain substrings are in it, etc., the following procedures are provided.

appdic(P)

This procedure applies the procedure P to each word currently in the dictionary.

mapdic(P)! L

This procedure applies procedure P to each word in the dictionary, and returns a list of any

results produced.

dic distrib()

This procedure supplies information on the structure of the dictionary. The dictionary has

1024 slots - if a slot is empty a period character, and otherwise an integer representing the

number of words resident in the slot, is printed.

countwords()! n

This procedure returns the number of words in the dictionary.

wordswith(O)! L

Given a word or a string as argument, this procedure returns an alphabetically sorted list of

words from the system dictionary which contain the argument as a substring or subword.

syscancelword(W)

This procedure cancels the word W , i.e. removes it from the dictionary.

250CHAPTER 8. INWHICHWE FINDOUTWHAT AREWORDS ANDWHAT ARE NOT

8.5 Constants associated with words

undef

This constant contains the word

00

undef

00

. It should contain an undef record (see 5.3), but

for historical reasons does not.

word key

This constant holds the key structure for words (see 3.13).

Chapter 9

In which we string together characters

9.1 Overview

A POP-11 string is a vector of characters, where a character is an integer in the range 0{255,

thus comprising one byte of information. Being a POP vector, as described in Chapter 3.7,

a string is accessed by subscripting with an integer subscript, which ranges from 1 upwards

to the length of the string.

String creation and manipulation procedures available in POP are listed below; note that

some string procedures are also applicable to words. A string is a particular built-in instance

of the general class of vectors which can be constructed using conskey or vectorclass. Those

sections of Chapter 3.7 which treat vectors provide the information you will need.

9.2 Predicates on Characters

The following predicates allow us to distinguish between di�erent types of character:

251

252 CHAPTER 9. IN WHICH WE STRING TOGETHER CHARACTERS

isuppercode(O)! b

This procedure returns true if O is the ASCII character code for an upper case letter, i.e.

an integer in the range 65{90, or false otherwise.

islowercode(O)! b

This procedure returns true if O is the ASCII character code for a lower case letter, i.e. an

integer in the range 97{122, or false otherwise.

isalphacode(O)! b

This procedure returns true if O is the ASCII character code for a alphabetic character, i.e.

an integer in the ranges 65{90, 97{122, or false otherwise.

isnumbercode(O)! b

This procedure returns true if O is the ASCII character code for a digit, i.e. an integer in

the range 48{57, or false otherwise.

9.3 Locating Characters in Strings

The following procedures allow us to search a string for the occurrence of a given character.

locchar(c; n; s)! m

locchar(c; n;W)! m

This procedure searches the string s for the character c, starting the search at the n-th

character of s. It returns the subscript m at which c was found if it was, or false otherwise.

If a word argument W is given the action is the same.

locchar back(c; n; s)! m

locchar back(c; n;W)! m

9.4. PREDICATES ON STRINGS 253

This procedure is the same as locchar, except that the search is performed backwards starting

from the n-th character.

skipchar(c; n; s)! m

skipchar(c; n;W)! m

This procedure searches the string s for any character other than c, starting at the n-th

character. It returns the subscript m at which such a character was found or false if every

character from the n-th onwards was a c. If a word argument W is given, the action is the

same.

skipchar back(c; n; s)! m

skipchar back(c; n;W)! m

This procedure is the same as skipchar, except that the search is performed backwards

starting from the n-th character.

strmember(c; s)! m

strmember(c;W)! m

This is equivalent to locchar(c; 1; s). It returns the subscript m at which c �rst occurs, or

false.

9.4 Predicates on Strings

Note that all the procedures in this section, except isstring, will accept words in place of

any of their string arguments.

isstring(O)! b

Returns true if O is a string, false if not.

254 CHAPTER 9. IN WHICH WE STRING TOGETHER CHARACTERS

issubstring(s

sub

; n; s)! m

issubstring(s

sub

; n;W)! m

This procedure searches the string s, starting from its n-th character, for a substring equal

to the string s

sub

and, if found, returns the subscript m of s at which the matching substring

begins; otherwise it returns false. The action is the same for a word W

issubstring lim(s

sub

; n; i

start

; i

end

; s)! m

issubstring lim(W

sub

; n; i

start

; i

end

; s)! m

issubstring lim(s

sub

; n; i

start

; i

end

;W)! m

issubstring lim(W

sub

; n; i

start

; i

end

;W)! m

This procedure is the same issubstring, but the match is constrained to start on or before

the subscript i

start

, and to end on or before the subscript i

end

. The i

start

or i

end

constraints

may be disabled by supplying false for either argument, e.g.

issubstring lim(s

sub

; n; false; false; s)

is just the same as issubstring. The action is the same if either or both arguments are words.

isstartstring(s

sub

; s)! m

isstartstring(W

sub

; s)! m

isstartstring(s

sub

;W)! m

isstartstring(W

sub

;W)! m

If the string s starts with the substring s

sub

then the procedure returns subscript 1, otherwise

false. The action is the same if either or both arguments are words.

isendstring(s

sub

; s)! m

isendstring(W

sub

; s)! m

isendstring(s

sub

;W)! m

9.4. PREDICATES ON STRINGS 255

isendstring(W

sub

;W)! m

If the string s ends with the substring s

sub

, then this procedure returns the subscript m of

s

sub

in s, otherwise false. The action is the same if either or both arguments are words.

hassubstring(s; s

sub

)! m

hassubstring(W; s

sub

)! m

hassubstring(s;W

sub

)! m

hassubstring(W;W

sub

)! m

The evaluation of hassubstring(O;O

sub

) is equivalent to that of issubstring(O

sub

; 1; O),

hasendstring(s; s

sub

)! m

hassubstring(W; s

sub

)! m

hassubstring(s;W

sub

)! m

hassubstring(W;W

sub

)! m

The evaluation of hasendstring(O;O

sub

) is equivalent to that of isendstring(O

sub

; O).

hasstartstring(s; s

sub

)! m

hasstartstring(W; s

sub

)! m

hasstartstring(s;W

sub

)! m

hasstartstring(W;W

sub

)! m

The evaluation of hasstartstring(O;O

sub

) is equivalent to that of isstartstring(O

sub

; O).

issubitem(s

sub

; n; s)! m

issubitem(W

sub

; n; s)! m

256 CHAPTER 9. IN WHICH WE STRING TOGETHER CHARACTERS

issubitem(s

sub

; n;W)! m

issubitem(W

sub

; n;W)! m

This procedure is exactly like issubstring (see above) except that the match only succeeds

if the matching substring is a distinct item in the string s. `Distinct item' means roughly

that the substring s

sub

is not embedded in other characters in s; for example

issubitem('DEFINE', 1, 'ENDDEFINE')

returns false. It uses the rules of the POPLOG editor VED for deciding item beginnings

and ends, not those of the POP-11 itemiser. The action is the same if either or both

arguments are words.

alphabefore(s

1

; s

2

)! b

alphabefore(W

1

; s

2

)! b

alphabefore(s

1

;W

2

)! b

alphabefore(W

1

;W

2

)! b

This procedure returns true if the �rst argument is alphabetically before the second, or

false if the �rst is alphabetically after the second; 1 is returned if character sequences of

the objects are equal. This is also known as lexicographical ordering.

9.5 Constructing Strings

consstring(c

1

; c

2

; : : : ; c

n

; n)! s

This procedure returns a string s constructed from the n objects on the stack below n, which

must be characters. The topmost character on the stack is the last in the string, etc. So

s

i

= c

i

.

9.6. ACCESSING STRING CHARACTERS 257

inits(n)! s

This procedure returns a newly created string s of length n containing all zero characters.

In ASCII terms, these are known as NULL characters. If you want to initialise with any

other object, see initvectorclass in 3.7.

substring(i

start

; n; s)! s

sub

s

sub

! substring(i

start

; n; s)

This procedure returns a string s

sub

consisting of the n characters of the string s starting

from the character at subscript i

start

. s may also be a word, but the result is still a string.

If you want a word result, see Chapter 8.3.

The updater copies the �rst n characters of the string s

sub

into the string s starting at

subscript i

start

. In this case s

sub

may also be a word, but not s.

lowertoupper(O

1

)! O

2

If O

1

is a string, word or character then the procedure returns a new item of the same

type with any ASCII code for lowercase characters converted to their uppercase equivalent.

Otherwise the procedure just returns O

1

.

uppertolower(O

1

)! O

2

If O

1

is a string, word or character then the procedure returns a new item of the same

type with any ASCII code for uppercase characters converted to their lowercase equivalent.

Otherwise the procedure just returns O

1

.

9.6 Accessing String Characters

deststring(s)! n! c

n

: : :! c

2

! c

1

This procedure puts all the characters of the string s on the stack, together with its

258 CHAPTER 9. IN WHICH WE STRING TOGETHER CHARACTERS

length. In other words, it is the inverse of consstring. E.g.

deststring('abcd') =>

** 97 98 99 100 4

subscrs(n; s)! c

c! subscrs(n; s)

This procedure returns or updates the n-th character c of the string s. Since subscrs is also

the class apply of a string (see 3.13), this may also be called as:

s(n)! c

c! s(n)

9.7 Generic Datastructure/Vector Procedures on Strings

The generic datastructure procedures described in Chapter 3.7 (datalength, appdata, explode,

fill, copy, etc) are all applicable to strings, as are the generic vector procedures (initvectorclass,

move subvector, sysanyvecons, etc) also described in that chapter.

9.8 Other procedures and constants

strnumber(s)! n

If the characters of the string s form a valid number according to the lexical syntax rules

given in 19 then that number is returned, otherwise false. E.g.

9.8. OTHER PROCEDURES AND CONSTANTS 259

strnumber('123') =>

** 123

stringin(s)! P

c rep

This procedure returns a character repeater for the string s, i.e. a procedure which each

time it is called produces the next character from the string, and termin when the string is

exhausted (see also 20).

string key

This constant holds the key structure for strings (see Chapter 3.13)

260 CHAPTER 9. IN WHICH WE STRING TOGETHER CHARACTERS

Chapter 10

Arrays in POP

10.1 Overview

Arrays in POP are procedures which permit access to data associated with them. An array

is applied to integer arguments, also referred to as indices or subscripts. A given array is

always applied to a �xed number of arguments, commonly referred to as the dimension of

the array. Thus an n-dimensional array requires n integers as indices to access or update

its components. Two dimensional arrays are often used to represent matrices, and also to

represent visual images for work in Computer Vision.

Because computer memory cannot directly represent multiple dimensions, the elements of

an array actually have to be stored in an underlying 1-dimensional structure (e.g. a vector),

each position in which corresponds to a particular sequence of n subscript values. The task

of the array procedure is therefore to convert a given set of n-dimensional subscripts into

the appropriate 1-dimensional subscript for accessing this structure.

POP arrays are constructed by the procedure newanyarray, described in section 10.4.

A simpler version of this procedure is newarray, described in section 10.4 Such a procedure

for an n-dimensional array takes n arguments, and includes within it the arrayvector, that

is, the underlying 1-dimensional structure in which the elements of the array are in reality

stored. Despite its name this need not actually be a vector. When called, e.g.

261

262 CHAPTER 10. ARRAYS IN POP

A(i

1

; i

2

; : : : ; i

n

)

the array procedure performs the computation of the 1-dimensional subscript from the

n values given, and supplies this to the appropriate access procedure for the arrayvector

structure. This access procedure then returns or updates the speci�ed element.

An array may have any number of elements in a given dimension, subscripted by any

suitable range of integers. That is, an array with say, 30 in a particular dimension is not

restricted to using subscripts 1 to 30, but can use 0 to 29, 5 to 34, �10 to 19, etc. An array's

dimensions are speci�ed to newanyarray by supplying a list called its boundslist, which is

a list of the minimum and maximum subscripts in each dimension. It is of length 2n for

an n-dimensional array. When called, array procedures call mishap if any of their subscript

arguments is not in the appropriate range.

When using an array in general, it is not necessary to know how its elements are arranged

in the arrayvector; however, this does need to be known when the latter needs to be processed

separately from the array. While in principle many di�erent schemes are possible, POP (like

most systems) provides just two: storing `by row' or `by column'. Since the terms `row'

and `column' only make sense for 2-dimensional arrays, we shall not attempt to de�ne them,

but simply say that `by row' means the elements are stored with subscripts increasing in

signi�cance from left to right, and `by column' with subscripts increasing in signi�cance

from right to left. That is, letting A be a 3-dimensional array with subscripts 1 { 3 in each

dimension, the order of the 3 � 3 � 3 = 27 elements in its arrayvector with the two di�erent

schemes would be as follows:

arrayvector

subscript by row by column

1 A(1, 1, 1) A(1, 1, 1)

2 A(2, 1, 1) A(1, 1, 2)

3 A(3, 1, 1) A(1, 1, 3)

4 A(1, 2, 1) A(1, 2, 1)

5 A(2, 2, 1) A(1, 2, 2)

6 A(3, 2, 1) A(1, 2, 3)

7 A(1, 3, 1) A(1, 3, 1)

8 A(2, 3, 1) A(1, 3, 2)

10.2. PREDICATES ON ARRAYS 263

9 A(3, 3, 1) A(1, 3, 3)

10 A(1, 1, 2) A(2, 1, 1)

...

26 A(2, 3, 3) A(3, 3, 2)

27 A(3, 3, 3) A(3, 3, 3)

Note that, as mentioned above, the arrayvector of an array is not limited to being an

actual vector-class structure. The arguments to newanyarray allow the speci�cation of

any `virtual' vector, in terms of an `vector init' procedure and a `subscriptor' procedure;

newanyarray then calls the `init' procedure with an appropriate length argument to con-

struct the arrayvector initially, and the array procedure then uses the `subscriptor' to store

and retrieve elements.

Note also that two or more arrays can be made to share the same arrayvector structure,

either in whole or in part. For example, one array can be a sub-array of another.

While arrays are limited to storing associations between sets of integers and arbitrary

values, POP also provides mechanisms for storing associations between arbitrary objects |

see Chapter ??. See also Chapter 2 for procedures applicable to arrays as procedures in

general.

10.2 Predicates On Arrays

As mentioned above, arrays are procedures: thus isprocedure(A) = true for any array A.

isarray(A)! A

isarray(O)! false

This procedure returns a non-false result if O is either an array itself, or is a closure of

one through any number of sub-closures, i.e. pdpart(O) is examined recursively until a non-

closure is found, and then this is tested for being an array. See Chapter ?? for a de�nition

of closures. If O is an array procedure, or one is found inside a nest of closures, then that

is returned, otherwise false. This enables closures of arrays to be recognised as arrays, e.g.

264 CHAPTER 10. ARRAYS IN POP

if A is 3-dimensional array then isarray will return A when applied to the 2-dimensional

array A(%2%).

isarray by row(A)! b

This procedure returns true if the array A is stored by row, false if stored by column.

10.3 Obtaining Array Parameters

boundslist(A)! L

bounds

Given an array A, this procedure returns its list of minimum and maximum subscripts in

each dimension.

arrayvector(A)! v

A

This procedure returns the 1-dimensional vector used to hold the elements of the array A.

arrayvector bounds(A)! i

min

! i

max

This procedure returns the minimum and maximum subscripts used by the array A on

arrayvector(A). Generally, i

min

will be 1 and i

max

will be the number of elements in the

array. However, newanyarray can be used to create arrays which are mapped into subvectors

of their arrayvector.

10.4 Constructing New Arrays

newanyarray is the basic procedure for constructing arrays. For historical and other reasons,

the arguments to this procedure are somewhat complicated, in that it can take a number of

optional arguments in various combinations. Essentially though, the pieces of information

it requires to construct a new array are quite straightforward, viz

10.4. CONSTRUCTING NEW ARRAYS 265

1. A list of 2n minimum and maximum subscripts for each of the n dimensions (the

boundslist). This is used to derive both the number of dimensions, and the size in

each dimension, and hence the total number of elements in the array.

2. A speci�cation for the arrayvector to hold the elements of the array, and a subscriptor

procedure with which to access and update it. These two can be speci�ed in a number

of di�erent ways, either as separate arguments or by a single argument which implies

values for both together.

Other optional pieces of information can specify whether the elements are to be stored

by row or by column, an initialisation for each array element, and (when the new array is

to be a sub-array of an existing one), the starting o�set of the new array within the existing

arrayvector. Thus:

newanyarray(L

bounds

; O

init

; O

spec

; P

subscr

; i

offset

; b

by row

)! A

constructs and returns a new n-dimensional array procedure A, where n � 1. Its arguments

are as follows:

1. L

bounds

A list of 2n integers whose elements are alternately the minimum and maximum

subscript in each dimension, i.e.

[%i

1

; j

1

; i

2

; j

2

; : : : ; i

n

; j

n

%]

This argument is always required.

O

init

This argument is optional, and speci�es an initialisation for each array element:

its interpretation depends on whether it is a procedure or not. If a procedure, it is

assumed to take n subscript arguments and to return a (possibly di�erent) initialising

value for each position in the array. newanyarray will then initialise the array by

applying the procedure in turn to every combinations of subscripts, i.e.

O

init

(i

1

; i

2

; : : : ; i

n

)! A(i

1

; i

2

; : : : ; i

n

)

Otherwise, if O

init

is not a procedure, every element of the array is simply initialised to

that value. However, to distinguish it from L

bounds

, this argument must not be list |

if you wish to initialise the elements to some list, you must use a procedure returning

the list, as above.

266 CHAPTER 10. ARRAYS IN POP

O

spec

This argument is always required, and speci�es the arrayvector structure to be

used to store the elements of the array. It must supply either an existing structure, or

a procedure to construct a new one, that is to say:

(a) either an actual vector-class structure, e.g. a full- vector, string, etc;

(b) or an array procedure whose arrayvector is to be used;

(c) or a `vector init' procedure P . This will be called as

P (n)! v

array

where n is the number of elements in the array;

(d) or a vector-class key whose class init procedure is to be used, as described in

Chapter3.13.

All cases except (c) also implicitly supply a subscriptor procedure for the structure,

making the next argument (P

subscr

) optional; for case (c), P

subscr

must be present. If

an existing structure is speci�ed with (a) or (b), it must of course be large enough to

accomodate the new array elements. Note that if O

init

is omitted, the initial values

of the array elements will depend upon the O

spec

argument. I.e. for cases (c) and (d)

in which a new structure is created they will be whatever the constructor procedure

initialises them to. For an existing structure they will have their current values.

2. P

subscr

A subscriptor procedure for accessing and updating elements of the arrayvector,

i.e. a procedure with updater of the form

P

subscr

(i;v

array

)! O

O! P

subscr

(i;v

array

)

This argument may always be supplied, but is essential only when O

spec

speci�es a

`vector init' procedure; in all other cases, i.e. an existing array, an existing vector-class

structure or vector-class key, the subscriptor procedure derived from that is used if

P

subscr

is omitted.

3. i

offset

This is an optional integer argument specifying the starting o�set of the new

array's elements within an existing array vector got from O

spec

. This argument is illegal

in all cases where a new arrayvector has to be constructed. Note that this is an o�set,

not a subscript, i.e. 0 means start at the �rst element (the default), 1 at the second,

etc. The existing structure must be large enough accomodate all the array elements

starting at the given o�set.

10.5. GENERIC DATASTRUCTURE PROCEDURES ON ARRAYS 267

4. b

by row

This is an optional argument specifying whether the array elements are to be

arrayed by row or by column: if supplied, it must be a boolean, true meaning by row

or false meaning by column. If omitted, the value of poparray by row is used instead.

poparray by row

This boolean variable controls the order in which the elements of an array produced by

newanyarray are stored in its underlying vector, and supplies the default value for the

b

by row

argument (q.v.).

newarray(L

bounds

; O

init

)! A

full

This procedure provides a simpler interface to newanyarray for constructing arrays of full

items, and is just newanyarray(%vector key%) I.e. it uses standard full vectors to store the

array elements (see ??).

newsarray(L

bounds

; O

init

)! A

char

This procedure is the same as newarray, but uses strings (see Chapter 9) rather than full

vectors, i.e.

newsarray = newanyarray(%string key%)

10.5 Generic Datastructure Procedures on Arrays

The generic datastructure procedures described in 3.7 (datalength, appdata, explode, fill,

and others de�ned in terms of those) can all be applied to arrays: they treat an array as the

set of its arrayvector elements between the minimum and maximum subscripts given by the

arrayvector bounds. Thus, for example, if

arrayvector bounds(A)! i

min

! i

max

268 CHAPTER 10. ARRAYS IN POP

then datalength(A) will be

i

max

� i

min

+ 1

Similarily, appdata(A; P) will apply the procedure P to the value of each arrayvector

element from i

min

to i

max

inclusive, and so on.

The procedure copy when applied to an array copies both the array procedure and its

arrayvector, so that the copy is completely independent of the original.

arrayscan(L

bounds

; P)

Given a L

bounds

of array minimum and maximum subscripts, as supplied to newanyarray,

etc, this procedure applies the procedure P every list of subsripts in the range de�ned by

L

bounds

. These lists are ordered `by column', i.e. with the last subscript varying fastest.

arrayscan([1 4 1 3],pr);

[1 1][1 2][1 3][2 1][2 2][2 3][3 1][3 2][3 3][4 1][4 2][4 3]

10.6 Examples of Arrays

The following statement:

vars procedure

multab = newarray([1 12 1 12], nonop *);

will create and assign to multab a 12 x 12 2-dimensional array each of whose elements

can be a full POP item, and where each element subscripted by i, j is initialised to i � j. In

other words, multab is a multiplication table:

10.7. SPARSE ARRAYS 269

m(4, 3) =>

** 12

To turn an existing string of \noughts-and-crosses" (tic-tac-toe) into an array whose

entries are the characters O, X and space:

vars procedure

oxo = newanyarray([1 3 1 3], '0 X X00 X');

We can

cucharout(oxo(1, 3));

0

If, in the previous example, we make the array by row instead of by column, the mapping

between subscripts and positions in the string is reversed:

vars procedure

oxo2 = newanyarray([1 3 1 3], '0 X X00 X', false);

cucharout(oxo2(1, 3));

X

10.7 Sparse arrays

Where most of the values of an array are identical. the array is said to be sparse. Typically

the identical elements will be 0. Big sparse arrays represent a considerable wastage of store if

they are implemented with newanyarray | at least if vectors are used to hold the elements.

Sparse arrays can be implemented as properties, and this is described in Chapter ??.

270 CHAPTER 10. ARRAYS IN POP

10.8 History of POP arrays

Arrays in POP-11 are in essence very similar to those de�ned in the POP-2 language. They

owe their form to the procedural (or functional) approach to data-objects advocated by

pioneers such as McCarthy, Landin, Strachey. The main improvements made by POP-11

have been to make the array vector explicitly available, to allow the user to control the

storage by row or by column. Sparse arrays, derived from properties, are new in POP-11.

Chapter 11

Properties and Memo Functions

NOTES If you supply a false hash procedure to newanyproperty, I assume that only short

integers form their own key.

In this chapter we discuss techniques available in POP to allow you to create procedures

which use stored associations between one set of objects and another. For example a ge-

ography program might want to associate capital cities with nations, a natural language

translator might want to associate words in French with words in English, and a compiler

writer might want to map from identi�ers to the type of the identi�er. In none of these cases

is it possible to predict by an algorithm what the association will be in the way that it is

possible to use an algorithm to compute the sin of a number. There may, of course be some

regularities in the association, as there are for example between English and French, where

a native speaker in one language can usually know what technical terms in the other mean.

And indeed, in natural language processing it is common to have a dictionary supplemented

by algorithms which support the morphology of the language | that `know' how plurals

and tenses are formed from noun and verb roots. This chapter treats the implementation

of `rote' knowledge, and tells you what `hooks' are provided to hang procedural `rules' upon

this `rote'.

In treating these associations as procedures, we shall be dealing with the case in which the

direction of the mapping is known (e.g. English to French). For a discussion of associations

271

272 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

in which the direction is not known in advance, see the Chapter ?? on Relational Databases.

Likewise, in Prolog, [?], many predicates can be regarded as imposing no direction. Under-

neath the apparent lack of directionality in these systems, there may well be a directionality

imposed perhaps by how the data is stored. Some measure of indexing is common with

Prolog implementations, as it is with Relational Databases, and the implementation of these

systems may allow you to exploit this, often at the cost of restricting the choice of how you

say things.

However, just as it is worth organising traditional foreign language dictionaries so that

they support mapping in one particular direction, where there is a data-set of any size it will

often be essential to provide a uni-directional mapping from one attribute of the members

of the set to another. It may of course be desirable to provide more than one such mapping,

depending on the patterns of use of the set.

Some such POP procedures, for example assoc, provide easy-to-use capabilities which are

quite space-e�cient, but provide poor time e�ciency | O(n) in the number of entries. Oth-

ers, such as newanyproperty are more complicated to use but provide good time-e�ciency

by making use of the hashing procedures described in Chapter ??.

11.1 Simple associations

assoc(L)! P

assoc

This procedure creates a procedure P

assoc

encoding an association table. The argument

list supplies initial associations in the form of a list of two element lists. P

assoc

when given

an object will return its associated value, or false if there isn't one, i.e.

P

assoc

(O)! O

val

For example.

11.1. SIMPLE ASSOCIATIONS 273

vars capital = assoc([

[France Paris]

[USA Washington]

[UK London]]);

creates a procedure, capital, which we can use thus:

capital("France") =>

** Paris

The procedure capital has an updater, so we can extend the association:

"Vienna" -> capital("Austria");

capital("Austria")=>

** Vienna

For anything but very tiny association tables, you should use properties rather than this

procedure, as described in Section 11.3.

appassoc(P

assoc

; P)

This procedure applies procedure P to each entry in the association, P

assoc

, which must have

been created by assoc. P

assoc

is applied as

P

assoc

(O

arg

; O

val

)

for each O

arg

in the table.

The procedure newassoc is described in section 11.3.2. It provides a simple interface to

the fast hash-coded properties available in POP.

274 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

11.2 Writing association procedures

The assoc procedure is built in to POP, but it is instructive to consider how we could

implement such an association function, since assoc might not exactly serve our purpose.

The �rst step is to construct a procedure to look for an object in a list:-

define lookfor(O,L); ;;; Find an object in a list L.

lvars O p L;

for p in L do ;;; Iterate through pairs p in L

if p.hd = O then ;;; until we find one whose head is O

return(p.tl.hd) ;;; return the associated value.

endif

endfor;

return(false) ;;; If no pair has O as head,

enddefine; ;;; return false.

We can test this

vars Capitals = [[France Paris] [USA Washington]];

lookfor("France", Capitals) =>

** Paris

lookfor("Mexico", Capitals) =>

** <false>

Recall that a closure of one procedure is simply a procedure which is obtained from the

�rst procedure by �xing the values of some of its variables. Clearly an association procedure

simply needs to make a closure of lookfor.

define assoc1(L); ;;; Produce an association procedure embodying L

11.2. WRITING ASSOCIATION PROCEDURES 275

lookfor(%L%) ;;; Result is the lookfor procedure

enddefine; ;;; with association list frozen to be L.

Alternatively, we can use lexical variables to create this closure by moving the body of

the lookfor procedure into assoc:

define assoc2(L);

lvars L;

procedure(O); ;;; This procedure is the same as the lookfor

lvars O p; ;;; procedure above, and is returned as result

for p in L do ;;; of assoc2, with L frozen.

if p.hd = O then

return(p.tl.hd)

endif

endfor;

return(false)

endprocedure

enddefine;

This assoc function is de�cient compared with the one provided by the system in that it

does not allow the user to assign new values | we cannot do

00

V ienna

00

! capital(

00

Austria

00

).

In order to accomplish this we would need to de�ne a procedure which updates the association

list, and this is a little complicated because we may have started o� with a null association

list in the �rst place | the null list cannot be changed! There are two solutions to this

di�culty.

� In order to allow us to (destructively) change the association list in all circumstances

we cons on an extra object to the head of this list. lookfor will then simply skip over

this, while the updating procedure will assign to its tail.

� Since POP allows us to do \surgery on closures" with the procedures pdpart and

frozval, we could make the updating of an association procedure be accomplished by

replacing the frozen value of the procedure itself.

Adopting the �rst strategy, we can de�ne an updating version of assoc2.

276 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

define assoc3(L)->P; ;;; Create an updatable property

lvars L, ;;;

L1 = [assoc ^^L], ;;; Cons on an extra element to

;;; allow updating of the list.

P =

procedure(O);

lvars O p;

for p in L1.tl do ;;; Skip the extra element and

if p.hd = O then ;;; iterate until a pair whose head

return(p.tl.hd) ;;; is O is found, returning the

endif ;;; associated value.

endfor;

return(false) ;;; If O is not found, the

endprocedure, ;;; result is false.

P_update = ;;; This procedure does the updating

procedure(v,O); ;;; of the association.

lvars O p;

for p in L1.tl do ;;; If we have found O,

if p.hd = O then ;;; update the pair to have the

return(v -> p.tl.hd) ;;; new value, and return.

endif

endfor;

[^O^v] :: L1.tl -> L1.tl;;;; Otherwise change the association

endprocedure; ;;; list to include new object-value

;;; association

P_update -> P.updater; ;;; Make the updating procedure be

enddefine; ;;; the updater of P.

We can check this new version out, both adding new values by updating, and changing

old ones:

vars capital = assoc3([]);

capital("France")=>

** $false$

"paris" -> capital("France");

capital("France")=>

11.3. PROPERTIES 277

** paris

"Madrid" -> capital("Spain");

capital("France")=>

** Paris

capital("Spain") =>

** Madrid

"Rome" -> capital("Italy"); ;;;(etc.)

11.3 Properties

A POP property is a procedure that e�ciently maps objects, to other objects . In the

computing literature the objects that are mapped by a property are often called keys and

what they are mapped to are called values. However, to avoid confusion with the key objects

described in Chapter 3.13, we shall avoid this usage.

One way of creating properties is to use the procedure newassoc, described in section

11.3.2: this is called using a similar format to that used for assoc. However, POP provides

other procedures, of which the most general is newanyproperty, which allow you much more

exibility in choosing what is meant by `equality' in comparing entries, in what to do when

an entry does not exist and in trading space against time.

Thus a POP property is a procedure which when called with some objectO

arg

as argument

will return the object O

val

associated with O

arg

, if there is one, or a user-supplied default

value, if there is not. Associations between objects may be set up by calling the same

procedure in update mode, or in some cases, by supplying a list of initial associations.

Each property contains a set of entries, each of which associates a particular O

arg

with

a particular O

val

. POP-11 provides two procedures for creating properties: newproperty,

which is described in section ?? and deals with simple cases using a default mapping rule,

and newanyproperty o�ering more
exibility.

Properties are organised around a table of `buckets', each of which contains a list of

entries; which bucket an entry is put in is determined by a hashing algorithm. Hashing

procedures are treated in Chapter ??. The number of buckets is user-speci�able: a larger

278 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

number of buckets will decrease the access time for entry, since the lists in each bucket will

be shorter, but at the cost of using more space.

Hashing procedures should use some invariant feature of the object O

arg

to calculate a

number that, appropriately scaled, indicates the bucket in which an entry for O

arg

is stored.

If the hashing procedure produces a wide variety of results for di�erent keys, most entries

are stored in unique locations, and thus very little `blind' searching is needed when entries

are retrieved. This is why, provided more than a small data set is stored, properties are

faster than procedures produced with assoc.

There are two types of property, permanent and temporary. The only di�erence between

them involves the interaction of the property with the garbage collector, which is described

in Chapter 17.4. Suppose we have a property P which has an entry associating an object

O

val

(the value) with an object O

arg

(the argument), and suppose that there are no other

references remaining to the argument O

arg

anywhere else in the POP system. Then, if

a property entry is simply scanned during a garbage collection like any other record, the

presence of the argument O

arg

in the property entry will prevent it from being garbage

collected. Indeed if P is a permanent property this is exactly what happens, so that both

O

arg

and O

val

are preserved. In such a case the only way in which the entry for O

arg

could

then be accessed would be using the procedure appproperty, described in section 11.3.3.

However, a temporary property is treated specially by the garbage collector. The argu-

ments of temporary property entries are never considered it in deciding which records are

garbage. Thus by itself the presence of an object O

arg

as the argument of a temporary prop-

erty entry will not stop its garbage collection, or the garbage collection of the value object

for O

arg

if nothing else refers to that also. Should this happen then not only will O

arg

be

garbaged but also the entry for O

arg

will be deleted from the property.

Thus permanent properties may be used for retaining permanent tables of information,

while temporary properties may be used for hanging ad hoc pieces of information onto

arbitrary records which will get garbage collected along with those records.

Using the procedure newanyproperty users may specify their own hashing algorithm:

this is particularly useful if you wish to associate the same data with objects that are not

always identical (as tested with ==) but merely structurally equal (as tested by =). Users

may also create \expandable" properties, the tables of which will automatically enlarge by a

given factor whenever the table passes a given threshold value. Expandable properties will

11.3. PROPERTIES 279

never decrease in size even if the number of entries in the property drops below the given

threshold.

newanyproperty also allows users to create \active" properties. When an object is not

found in an active property then, instead of returning the default value, the object and the

property is passed to a user supplied procedure to return the result.

A facility for constructing `multi-dimensional' properties is also provided by the `sparse

array' mechanism, described in section ??.

11.3.1 Predicates on Properties

As mentioned above, properties are procedures: thus isprocedure is true for any property.

isproperty(O)! b

This procedure returns true if O is a property, false if not.

11.3.2 Simple ways of constructing properties

All of the procedures described below make use of newanyproperty, which is described in

section 11.4.

newassoc(L

assoc

)! P

prop

This is the simplest interface to newanyproperty. It constructs permanent properties with

default value false. It is de�ned as:

newproperty(L

assoc

; 20; false; true)! P

prop

280 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

where L

assoc

is as for newproperty.

newproperty(L

assoc

; n; O

default

; b

perm

)! P

prop

This procedure returns a new property P

prop

. The arguments are:

� L

assoc

An initial list of associations, where each association is a 2-element list of the

form [< argument >< value >].

� n The table size, i.e. the number of buckets to be used.

� O

default

The default value to be produced when there is no entry for a given argument.

� b

perm

= true for a permanent property, b

perm

= false for a temporary property.

Note that assigning the default value O

default

to an argument object actually removes

the entry for that object if there was one.

newmapping(L

assoc

; n; O

default

; b

expand

)! P

prop

This procedure provides a simpler interface to newanyproperty for constructing properties

that match argument objects on the basis of the standard structure equality operator

1

=

and that use the standard procedure syshash, described in section ??, to hash objects into

buckets. The argument n is the initial table size.

If b

expand

= true it speci�es that the property should have an k

expand

of 1 and a t

expand

of

n. newmapping is thus de�ned as

define newmapping(L_assoc,n,O_default,b_expand) -> P_prop;

newanyproperty(L_assoc,

n,

if b_expand then

1, n

else

false, false

1

See Chapter 3.7.

11.3. PROPERTIES 281

endif,

syshash, nonop =, false,

O_default, false

) -> P_prop

enddefine;

11.3.3 Manipulating Properties

The procedures in this section allow you to treat a property as a whole, either to process all

of its entries, or delete them.

appproperty(P

prop

; P)

This applies the procedure P to each entry in the property P

prop

. For each entry, P is given

two arguments, i.e

P (O

arg

; O

val

)

Note that P is e�ectively applied to a temporary copy of P

prop

so that any alterations

made by the procedure P to P

prop

itself during the execution of appproperty will have no

e�ect on the entries to which P is applied. Thus P can safely delete entries or add new ones.

Note also that since the organisation of property entries depends on a hashing algorithm,

and also on the order in which entries are added, etc, the order in which entries are given to

P is indeterminate. Moreover, it may change between garbage collections.

fast appproperty(P

prop

; P)

This applies the procedure P to each entry in the property P

prop

. For each entry, P is given

two arguments, i.e.

282 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

P (O

arg

; O

val

)

It works just like appproperty except that property table is not copied �rst. This means

that fast appproperty should not be used if the procedure is going to change any of the

entries in the property.

clearproperty(P

prop

)

This removes all entries from the property P

prop

.

property default(P

prop

)! O

This procedure returns the default value for the property P

prop

.

The following example uses newproperty to create a property relating people's names to

their ages:

vars procedure

ageof = newproperty([[fred 23][mary 18][bill 99]], 10, 0,

true);

ageof("bill")=>

** 99

ageof("mary")=>

** 18

ageof("susan")=>

** 0 ;;; produces default value

"ageless" -> ageof("susan");

ageof("susan")=>

** ageless

0 -> ageof("bill"); ;;; removes entry for bill

define printage(person,age);

pr(person), pr('\t'), pr(age), pr(newline);

11.4. THE MOST GENERAL PROPERTY GENERATOR 283

enddefine;

appproperty(ageof, printage);

fred 23

mary 18

susan ageless

11.4 The most general property generator

The procedure that provides all of the facilities discussed in the introduction to properties

is newanyproperty, which takes nine arguments, summarized in the table below:

Argument Meaning

L The initial association, as in assoc

n The initial size of the hash table

k

expand

How much to expand the hash table if needed

t

expand

If the property has more entries than this, it will

be expanded.

P

hash

The procedure to be used for computing hash values.

P

eq

The procedure to be used to decide when two keys are equal

b

garbage

Indicates whether to garbage collect objects only occurring in P

O

default

These two arguments are used to indicate

P

default

what to do when a new key-object is encountered

1. The list L is a list of initial argument/value associations, as with newproperty. For

example:

newanyproperty([[one 1][two 2][three 3]], ...) -> prop;

creates a property, prop, that maps the word

00

one

00

to the number 1, and so on. It is

equivalent to:

newanyproperty([], ...) -> prop;

284 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

1 -> prop("one");

2 -> prop("two");

3 -> prop("three");

2. The integer n allows you to specify the approximate size of the property table. The

�gure given, which should be a positive integer greater than one, does not a�ect how

many entries you can store in the table, but can a�ect the speed with which they can

be retrieved. In general, the larger n is, the faster entries can be found. A rough guide

might be that properties are at their most e�cient if they are about 75% full. However,

if lots of properties are made with too much spare capacity the wasted space can lead

to excessive paging by the computer Operating System, slowing programs down. So

users will need to experiment to �nd appropriate sizes.

3. The expansion factor k

expand

, which can be an integer or false, together with the

t

expand

argument, allows you to create properties which are e�cient in space and time

despite the fact that their size is not known in advance. If k

expand

is a positive (short)

integer, an \expandable" property is created, which automatically grows bigger when

a certain number of entries has been added, determined by:

4. the expansion threshold t

expand

When expansion takes place, k

expand

, which should be a positive integer, indicates how

much bigger the property should get, determined by the left shift operation

2

:

n

new

= n

old

<< t

expand

= 2

t

expand

n

old

Here n

old

is the number of buckets in the property before expansion, and n

new

is the

number after. Thus an k

expand

of 1 means that the property will expand to twice its

original size. If this argument is false, the property size is �xed whatever the value

supplied to the t

expand

argument. If the t

expand

is false then the property will �rst

expand when n objects have been added to the property.

After expansion, the t

expand

is increased in proportion to the property's new size.

5. The argument P

hash

: If this argument is false, entry locations are computed from the

O

arg

's address in memory, except for (short) integers, which are used as their own hash

code.

The advantage of this is that hashing is very fast; the disadvantage is that properties

must be rehashed after a garbage collection since the address of a O

arg

may have

2

See Chapter 6.18

11.4. THE MOST GENERAL PROPERTY GENERATOR 285

changed, and that argument objects must be identically equal, as determined by ==,

to be considered as the same by the property procedure. Note that rehashing takes

place automatically. This is the method used by properties created using newproperty.

P

hash

should be a procedure that takes one argument, O

arg

, and returns one result.

The result can be any POP object which is then automatically mapped into a location

in the table. The simplest method is to return an integer or a simple decimal number.

A useful general-purpose hash function is syshash, described in Chapter ??.

If the hashing procedure relies on the absolute address of the key then it is necessary

to rehash the property table after a garbage collection. In this case it is necessary to

set the argument gcflag = true (q.v.). If the procedure uses the address of the key

and gcflag 6= true then the property is very unlikely to return the correct associated

object for a key after the �rst garbage collection | since the address of an object can

change after a garbage collection.

If the hashing procedure does not return a number or simple decimal, then it is a

POP-11 data structure and its address will be used to determine a location in the

table. Hence it is important in this case to set gcflag = true. Note that unless

the property is required to produce a random result, the P

hash

must always return

an identical object for equivalent keys. For example it would be a mistake for the

procedure to return a string unless it is always the same identical string.

6. The argument P

eq

is used to check that a given O

arg

matches the the argument part

of an entry in the table.

The default procedure, used if the argument is false, is the identity procedure ==.

This is the procedure used by newproperty. For implementation reasons it is not

possible to specify an P

eq

if no P

hash

has been speci�ed.

7. The argument b

garbage

serves two purposes. As mentioned above, if a P

hash

is provided

then this argument is a
ag which speci�es if the property table needs to be rehashed

after a garbage collection, i.e. when the O

arg

's are hashed on the basis of their absolute

address.

If no P

hash

is provided then this argument serves the same purpose as the �nal argu-

ment to newproperty, described in ??. That is it speci�es if the property is to be a

permanent property. Items in a temporary property which are not referenced from

any other identi�er are removed from the property on garbage collection.

8. The argument O

default

This operates in conjunction with:

9. The argument P

default

286 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

If an entry cannot be found for O

arg

when looking up the property table, then if the

P

default

is false the O

default

, which can be any POP object, is returned. If however

the P

default

is a procedure then it is applied to O

arg

and the property and the result

returned.

On updating an entry in a property, if you update O

arg

to be associated with O

default

then the e�ect is to remove the entry for O

arg

from the property table, regardless of

the value of P

default

.

The fact that P

default

is given the property as argument makes for considerable
ex-

ibility. For example the new argument-value pair can be entered into the property.

This is particularly useful if the default procedure takes a long time to run, and the

same argument-value pairs keep on coming up, as is the case, for example, in algebraic

simpli�cation. This will be discussed some more in section 11.5 on Memo Functions.

Below is an example that uses newanyproperty to create a property relating peoples'

nick-names to their full-names, where an active default procedure nochange is used to map

nick-names with no explicit full-name to the name itself:

define nochange(object, property) -> object;

lvars object, property;

enddefine;

vars procedure

alias = newanyproperty([

[Pooh 'Winnie the Pooh']

[Tricky 'Richard Nixon']],

8, false, false, false, false,

true, false, nochange);

alias("Pooh") =>

** Winnie the Pooh

alias("Snoopy") =>

** Snoopy

11.5. MEMO FUNCTIONS AND NEWANYPROPERTY 287

11.5 Memo Functions and newanyproperty

So far we have regarded properties as repositories of \rote knowledge" | a mapping that

is arbitary, and cannot be expressed as a procedure except as a large conditional. However

properties can also be used as a means of recording what the result of applying a procedure

to an argument is, and thus avoiding recomputing the procedure. This is an idea analogous

to cashing values in a high-speed store of a computer. In its procedural form it was �rst

proposed by D.Michie [?] and implemented in POP-2 by Michie and Chambers.

Using properties we can quite easily implement a simple form of memo-functions. The

procedure we provide below is called by newmemo(P; n), where P is the procedure being

memoized, and n is a count of the maximum number of agrument-value pairs to be kept.

After this is exceeded, the property is cleared, and memoizing re-starts. This is usually

necessary in some form if extensive use is being made of the memoized procedure, in order to

prevent store being clogged up | one of us remembers watching a SUN work-station getting

slower and slower as its store was clogged up with various results of a memoized algebraic

simpli�er. Putting in a cut-o� immediately improved performance. Various elaborations of

this scheme can be imagined. For example you might keep usage counts of the arguments in

the property, and only purge those that were little referred to, as is done in cashing schemes

for virtual memory management. However, since the accounting has to be done in software,

the cost in time of these elaborations might not be worth while in many applications.

define auxmemo(O1,Prop,P,n,ref_i)->O2;

lvars O1,O2,Prop,P,n,i,ref_i;

ref_i.cont-1 ->>i -> ref_i.cont;

if i= 0 then n -> ref_i.cont;

clearproperty(Prop);

endif;

P(O1) -> O2;

O2 -> Prop(O1);

enddefine;

define newmemo(P,n);

newanyproperty([],n,false,false,syshash,nonop=,false,undef,

auxmemo(%P,n,consref(n)%));

enddefine;

288 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

define fact(n);

if n=0 then 1 else n*fact(n-1)

endif

enddefine;

newmemo(fact,20) -> fact; ;;; Now make fact into a memo-function.

trace fact;

fact(2) => ;;; This executes normally.

>fact 2

!>fact 1

!!>fact 0

!!<fact 1

!<fact 1

<fact 2

** 2

fact(4) =>

>fact 4

!>fact 3

!!>fact 2 ;;; At this point we know the answer -- no need to

!!<fact 2 ;;; recurse further.

!<fact 6

<fact 24

** 24

11.6 Sparse Arrays

It is sometimes necessary to use large arrays in which many of the elements will all have

some default value, and only relatively few will have a `signi�cant' value, i.e. di�erent from

the default. Represented as ordinary arrays, such sparse arrays are very wasteful of space,

since the arrayvector must allow storage cells for each element corresponding to a given

combination of subscripts, and yet many or most of these will just repeat the default value.

Rather than using an vector-type structure to hold the elements, POP sparse arrays are

11.6. SPARSE ARRAYS 289

therefore implemented as multi-dimensional properties, that is, they use a tree of properties

to associate each set of subscripts to a value. This means that only the `signi�cant' elements

take up space, and moreover, the `subscripts' are not restricted to being integers, but can

be any POP objects. Although this approach can save space, it does however mean that

accessing sparse array elements is slower than for ordinary arrays.

A sparse array can also have an `active default' | i.e. a procedure that is run to decide

what the default value of an element should be when it has not been assigned a value

explicitly; for certain applications this can save even more space.

newanysparse(n;O

default

)! A

sparse

newanysparse(n; P

default

; apply)! A

sparse

newanysparse(L;O

default

)! A

sparse

newanysparse(L; P

default

; apply)! A

sparse

This constructs and returns a new n-dimensional sparse array procedure (where n � 1).

This can be called as

A

sparse

(i

1

; i

2

; : : : ; i

n

)! O

O! A

sparse

(i

1

; i

2

; : : : ; i

n

)

to access or update the element associated with a given set of n `subscripts', which can

be any objects at all. Note that subscript equality means identity, that is to say the ==

operation, is used and not =. The �rst argument speci�es the number of dimensions n,

either directly as an integer or as an n-element list L. In the latter case, the elements of L

are integers giving the table sizes to be used for the properties employed for each dimension;

in the former case, when n is simply an integer, the table size in each dimension defaults to

20. Choosing the table size for a property is discussed in section ??.

Note also that subscripts are dealt with from right to left, so that putting `larger' dimen-

sions to the left of `smaller' ones will increase e�ciency.

290 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

The remaining argument(s) specify the default value for elements of the array: in the

�rst form of the call, the object O

default

is the �xed default value for every element. The

second form speci�es an `active default' procedure P

default

, and to distinguish this from the

�rst form, in which O

default

could be a procedure, the last argument must be the procedure

apply. P

default

is expected to be a procedure which takes n `subscript' arguments and returns

a default value, i.e.

P

default

(i

1

; i

2

; : : : ; i

N

)! O

val

This is comparable to a procedure speci�ed as the O

init

argument to newanyarray.

newsparse(L)! A

sparse

newsparse(n)! A

sparse

This is a simpler version of newanysparse which has the word \undef" as a �xed O

default

,

i.e. it is the same as

newanysparse(%"undef"%)

11.6.1 Examples of Sparse Arrays

The �rst example is an sparse array representing points in 3-D space, where each element

in the array is a list of points to which that point is connected to; each point is defaults to

being connected just to itself:

define here(x, y, z);

lvars x, y, z;

11.6. SPARSE ARRAYS 291

[^x ^ y ^z]

enddefine;

Note | doing this for real you would be better to de�ne a procedure, cons3vec say, to create

the vectors.

vars procedure

connected = newanysparse(3, here, apply);

In this array, each cell contains a list of the points it is directly connected to:

connected(1, 2, 3) =>

** [[1 2 3]]

connected(8, 9, 10) =>

** [[8 9 10]]

Some explicit connectivity can then be added:

[8 9 10] :: connected(1, 2, 3) -> connected(1, 2, 3);

connected(1,2,3) =>

** [[8 9 10] [1 2 3]]

The second example creates a sparse array in which the 3 `dimensions' are English words,

foreign languages, and modalities, and where each element is the translation of the English

word into the corresponding language and modality, the default value of false indicating

that no translation is known:

vars procedure

dictionary = newanysparse(3, false);

292 CHAPTER 11. PROPERTIES AND MEMO FUNCTIONS

"bonjour" -> dictionary("hello", "french", "polite");

"ola" -> dictionary("hello", "spanish", "familiar");

dictionary("hello", "french", "polite") =>

** bonjour

dictionary("hello", "french", "vulgar") =>

** $false$

Try, as an exercise, creating these property procedures with assoc1 and assoc2 and assoc3

and extracting their frozval and pdpart components. Write a procedure which produces

association procedures using strategy (2).

Chapter 12

Processes

12.1 Overview

You will need processes if you want to have a number of procedures each of which may have

to stop running because it needs some data, typically from an external source. When this

happens, the process can be suspended until a later occasion in which data is available, and

it is resumed.

For example, let us consider trying to simulate the behavior of an automatic railway.

Suppose you are restricted to using procedures in writing your program. You will want to

write a procedure called track, say, which will simulate the behavior of the track. This will

do things like read the sensors associated with particular blocks of track, and set the signals

controlling access to each block according to whether or not there is a train on that block,

thus enforcing what is known as \absolute block working". For each train, you will want to

call a procedure called train, which will read the signals, and determine at what speed it

should go.

There is a severe problem in writing a simulator thus | the only ways a procedure

can hand over control to another procedure is (a) to return to a calling procedure (b) to

call the other procedure. Now if a procedure returns, it loses information about what it

was doing. It could of course store such information in a data-structure, and interrogate

293

294 CHAPTER 12. PROCESSES

the data-structure when it is restarted. However this would lead to an awkward style of

programming, whereby each procedure would be structured as a big conditional or go on

switch, to allow it to carry on where it had left o� when it did its return. Thus, to write a

simulation procedure naturally, it should call other parts of the system to which it belongs.

However this would mean that track would call train and train would call track, so that a

these procedure would never actually get to execute the program after the call.

To remedy this problem, POP-11 provides the idea of a process. This essentially is a

data-object which encapsulates the state of a procedure-call (including any sub-procedures)

at a time when control is handed back. For example, in our railway simulation, we might

divide simulated time into 1 second slices, and require our procedures to hand back control

define runtrain(train);

lvars

train

block = block_train(train), ;;; The block of track the train is on

v_comm = signal(block), ;;; The speed the train is allowed to go.

v_act = v_train(train), ;;; The speed the train is actually going.

s = s_block(train); ;;; The distance along the current block

if v_act>v_comm then ;;; Are we going too fast?

apply_brakes(train) ;;; if so - slow down

else apply_power(train) ;;; otherwise speed up

endif;

s+v_act*dt -> s; ;;; Add on how far we have gone in 1 sec.

if s>s_max(block) then ;;; If we have exited the current block

next_block(block) -> block; ;;; then find the next block and

block -> block_train(train);;;; make the train be in that block and

0 -> s_block(train); ;;; make the train be at the beginning

endif;

enddefine;

Before control theorists jump on me to point out this \bang-bang" approach with a

12.1. OVERVIEW 295

sample time of 1 second would give an uncomfortable ride and waste energy, I hasten to add

that the point I am trying to make is computational, and not control-theoretic.

If a train were as simple as above, we could indeed use a procedural approach. We would

need to construct a scheduler, which took a list of train records, and applied runtrain to each

of them. Suppose however that a train needs to stop at a station. This could be controlled

from the track (as you would with a model railway). Thus the commanded velocity would

be steadily reduced to zero as the train approached and entered the station, and would be

held at zero while the train was to remain in the station, and be increased again to move

the train away from the station. Such a scheme is not likely to be used in actual practice

| the train needs to make some decisions. For example the doors must all be closed before

the train can start again. So we may wish to enlarge the runtrain procedure:

define runtrain(train);

lvars

train;

define runcontrol();

if v_act>v_comm then ;;; Are we going too fast?

apply_brakes(train) ;;; if so - slow down

else apply_power(train) ;;; otherwise speed up

endif;

enddefine;

repeat forever

lvars

block = block_train(train), ;;; The block of track the train is on

v_comm = signal(block), ;;; The speed the train is allowed to go.

v_act = v_train(train), ;;; The speed the train is actually going.

s = s_block(train); ;;; The distance along the current block

if is_station(block) then

lvars u = v_max(block),

s1 = s_stop(block);

until v_act = 0 do ;;; Maintain the velocity profile to come

u^2s - 2*a_brake*s -> v_comm; ;;; to a stop in a distance determined

296 CHAPTER 12. PROCESSES

runcontrol(); ;;; by the maximum permitted speed for

;;; the block

suspend(0);

enduntil;

open_doors();

t + t_station -> t_start;

until t>t_start do

suspend(0)

enduntil;

close_doors();

suspend(0);

until closed_doors() do

open_doors();

suspend(0);

close_doors();

suspend(0);

enduntil;

endif;

endrepeat;

enddefine;

Firstly, we have got rid of the section of the procedure which dealt with simulating the

physical behavior of the train. The reason for doing this is that we should construct our

simulation in such a way that modules representing physical behavior can be unplugged and

replaced by the actual mechanism itself. One module is software that will run in an actual

train, the other is software that simulates the train.

A process in POP is a data-object that records the state of execution of a piece of POP

program. The information stored in a process record comprises the sequence of procedure

calls (stack-frames) that the process is currently inside, including the values of local variables

of those procedures, and the state of the user stack.

A process is constructed initially in two ways:

1. from a procedure with consproc, in which case on running it for the �rst time with

12.1. OVERVIEW 297

runproc (or resume), the procedure is called in the normal way;

2. from part of the currently active procedure calls with consprocto, in which case exe-

cution will re-commence from the call to consprocto when the process is run.

Thereafter, the process may suspend itself at any time, e.g. by using suspend. This

causes the current state of execution, i.e. all procedure calls upto runproc and the user

stack, to be stored in the original process record. The process is then swapped out. The

process may then be re-activated with runproc and will continue execution immediately

following the suspend call, after the stored state of execution has been reinstated.

A process can also cause itself to be swapped out by calling resume to resume another

process in its place (see below). There are also versions of suspend and resume (ksuspend

and kresume) which kill the current process. This means that the process' state is swapped

out but not stored, the process record being marked as dead. The process cannot then be

run again. A process is also killed if a normal procedure exit to runproc is made.

Note that a process always has its own user stack, which is separate from the stack of

any other process or from the normal stack when not running inside a process. Thus all

arguments passed into or out of a process have to be explicitly declared in calls of runproc,

suspend, etc. The exception to this is when a process does a normal procedure exit to

runproc, or exits through runproc with chain: in this case all values on the process' stack

are passed up as results. Thus if you leave stu� on the stack in a process which you do not

want passed back on normal or chained exit, use clearstack to clear the stack �rst.

A further facility allows the suspension of any active process. An active process is one

currently in the calling chain, i.e. that is running the current process, or running the one

running that, etc. The procedures suspend, resume, ksuspend and kresume can all take

an optional process argument

�

P

sus

specifying the active process to be (k)suspended. All

processes up to and including

�

P

sus

are either killed (ksuspend and kresume), or suspended

in such a way that on running or resuming

�

P

sus

the whole process chain is reactivated, and

control returns from the original call (suspend and resume). A process chain like this is

also constructed by consprocto if the calling sequence to the target procedure includes one

or more processes; when the constructed process is run it will reactivate the whole chain.

298 CHAPTER 12. PROCESSES

12.2 Predicates on Processes

The following procedures permit you to �nd out if a data-object is a process and what its

state is.

isprocess(O)! b

This procedure returns true if O is a process, false if not.

isliveprocess(

�

P)! b

This procedure returns a true result if the process

�

P is alive, and false if dead. In the

�rst case, the result is

�

P itself if

�

P is also currently active, and true otherwise. Thus the

expression

isliveprocess(

�

P) ==

�

P

is true if

�

P is the current active process.

deadproc(

�

P)! b

This procedure returns true if the process

�

P is dead, false if not. This procedure is now in

the autoloadable library, having been superseceded by isliveprocess.

12.3 Constructing Processes

consproc(n; P; b

kill

)!

�

P

consproc(n; P)!

�

P

The result of this procedure is a process constructed on the procedure P . The process has its

initial user stack set to contain n items passed from the current stack. b

kill

is an (optional)

12.4. RUNNING, SUSPENDING AND RESUMING 299

boolean argument specifying whether the process should be killed if it is abnormally exited

from (i.e. chained out of) while executing; true means kill, false means keep alive (in which

case the state of the process will remain as it was at its last suspend). If not speci�ed, this

argument defaults to true.

consprocto(n; P; b

kill

)!

�

P

consprocto(n; P) !

�

P This procedure constructs a process

�

P from the current calling se-

quence upto and including the the most recent call of the procedure P (it is an error if there

is no current call of P). Any processes running below the call of P are suspended �rst. These

will be reactivated when the process

�

P is run. The user stack of

�

P is then set to contain n

items passed from the current stack, i.e. the stack as it is after suspending any intervening

processes. To allow computation, in that environment, of the number of items to be passed,

the argument n may also be a procedure which returns the number, i.e. n() is evaluated after

suspending intervening processes. The argument b

kill

(and its default) are as for consproc.

copy(

�

P

1

)!

�

P

2

On a process, copy returns an exact copy of its argument. Note that: (1) any running of the

original process has no e�ect on the copy, and (2) if the process being copied is the process

currently running, then the state copied is the state at the time of the last runproc, resume,

etc, em not the current state.

saveproc()!

�

P

This procedure is used to save the state of the current process. It returns a process record

�

P which when rerun will exit from the call of saveproc with false as result instead of the

process record. Explicitly, the current process state is stored in a new process record, with

false added to the saved user stack; this process record is returned as result.

12.4 Running, Suspending and Resuming

pop current process [protected variable] Always contains the current process, or false if no

processes are active. You can thus use

300 CHAPTER 12. PROCESSES

pop current process ==

�

P

to test if

�

P is the current process.

runproc(n;

�

P)

This runs the process

�

P as a subprocess of the current process (or from outside any process),

passing n items from the current stack to the process' stack. If runproc is used inside a

process, the calling process is not `swapped out'. All calls of the outer process remain in the

calling chain, but the outer process' user stack is saved (somewhere) so the called process

still runs with its own stack. Since runproc is the class apply of processes (see 3.13), this

can also be called as

�

P (n)

suspend(n)

suspend(n;

�

P

sus

)

This suspends the current process, or all processes upto and including

�

P

sus

and returns from

the call of runproc which ran the suspended process. n items are passed as results from the

current process stack.

resume(n;

�

P

res

)

resume(n;

�

P

sus

;

�

P

res

)

This runs the process

�

P

res

after swapping out the current process, or all processes upto and

including

�

P

sus

. n items are passed from the current user stack to the new process' stack.

Thus the new process runs within the same call of runproc as did the old one, and suspending

the new one will return from that call of runproc.

ksuspend(n)

ksuspend(n;

�

P

sus

)

12.5. MISCELLANEOUS 301

This kills the current process, or all processes upto and including

�

P

sus

, and returns from

runproc, passing n items back.

kresume(n;

�

P

res

)

kresume(n;

�

P

sus

;

�

P

res

)

This kills the current process, or all processes upto and including

�

P

sus

, and then resumes the

process

�

P

res

, passing n items to the new process' stack.

12.5 Miscellaneous

process key

This constant holds the key object for processes (see 3.13).

302 CHAPTER 12. PROCESSES

Chapter 13

Sections

NOTES

I need to write the historical and comparative note properly.

The example at the end of the chapter, while explanatory, is not really a good example

of how sections should be used.

13.1 Overview

In any programming language which is to be used for creating complex programs there is

a need to permit di�erent entities to have the same name. To some extent this is provided

by local variables in POP - two procedures can both have a local variable x without any

risk of unwanted confusion between them, particularly if the variable is lexical. Of course

sometimes you do want a local variable of one procedure to be a non-local variable of another.

However the capabilities provided by local variables are not enough to satisfy all of the needs

for isolation. It may also be desirable to isolate global variables, particularly those that hold

procedures. Suppose you want to write a collection of procedures that provide a capability

to be used by other people. This might be perhaps a graphics section, or a matrix section.

303

304 CHAPTER 13. SECTIONS

You will specify this capability to the user by saying that you provide certain procedures,

and perhaps some variables. However, when you implement the capability, as well as de�ning

the \published" procedures, you will de�ne some auxiliary ones, which will not be available

to the user. Indeed, perhaps they should not be available to the user, because you may wish

to keep the option of changing the code in the section radically while still preserving the

same external interface, for example for portability from one machine to another. It is to

allow people to provide this kind of capability that sections are provided.

A section is a portion of POP program of the form:

<section> = section <pathname> <imports> => <exports>;

<expression_seq>

endsection

Sections in e�ect construct a \naming tree" very like the directory structures in operating

systems, and the < pathname > speci�es a path in that tree to a node in the tree in which

the variables local to the section \roost". The < imports > and < exports > are sequences

of variables which are referred to in the section, and which are to be the same as variables

outside the section. < imports > are variables that are declared outside the section but

used inside, < exports > are variables that are declared inside the section, but may be used

outside.

13.2 Comparisons with other languages

Sections were added to POP-2 in the �rst revision (CHECK). They correspond to modules

in and packages in LISP.

13.3. HOW SECTIONS WORK 305

13.3 How Sections work

As described in 5.3, a declaration of a permanent program identi�er, i.e. a variable or a

constant, results in the attachment of a identi�er record to the corresponding word, this

record maintaining the idval (or valof) and identprops of the program identi�er. Program

sections provide a means whereby this attachment can be made on a localised basis, i.e. the

same word can be associated with di�erent permanent identi�ers in di�erent sections of a

program. Note that the section mechanism does not apply to lexically-scoped identi�ers, i.e.

those declared with lvars or lconstant. For the rest of this chapter identifier will mean

permanent identi�er.

We have said that the motivation for sections is that in writing a part of a large program

(or in writing a library program or system which other people are going to use), it may

be convenient to use particular words to name private identi�ers on the basis of mnemonic

signi�cance. But at the same time these private identi�ers should not con
ict or interfere

with identi�ers of the same name either in other parts of the program, or that users of the

library program or system will employ. This applies particularly to frequently used variable

names, e.g. x. For example, the mere use of a variable name in a library routine which a

user has loaded will prevent a warning message being issued for that variable when employed

by a user who has forgotten to declare it as local to a procedure.

Another useful aspect of sections is that they can be cancelled. Cancelling a section

simultaneously cancels all the permanent identi�ers local to that section, implying that the

words used to reference them, if not used elsewhere, will be garbage collected.

POP-11 sections are analagous to directories in a tree-structured �le system, where the

identi�ers play the role of �les. Just as �les in di�erent directories may have the same name,

so identi�ers in di�erent sections may also; just as directories may have sub-directories,

so sections may have sub-sections. Just as there is the concept of `current directory', so

there is the concept of `current section', and the user may make any node in the section

tree the current section at any time | changing sections in this way involves the system in

manipulating the identi�er �elds in all word records currently in the dictionary.

The ability to import and export identi�ers provides a facility not (usually) found in �le

systems. Importing an identi�er named x into a sub-section b of a section a means that

references to x in b refer to the identi�er associated with x in a; similarily, exporting an

306 CHAPTER 13. SECTIONS

identi�er y from b up to a means that references to y in a refer to the identi�er as declared

in b. Thus the former allows references to identi�ers already declared in sections above the

current one, while the latter allows new identi�ers to be declared in such sections from within

the current.

The section tree is constructed of section records, each section record containing infor-

mation about the identi�ers local to that section, as well as a list of section records for

sub-sections of that section. The root node of this tree is the section record in the constant

pop section, which represents the `top-level' of the POP system, and all other sections can

be reached by working downwards from this. Procedures are provided to enable the user to

e�ect this and other manipulations on sections and identi�ers at run-time (see below), as

well as syntactic constructs for use at compile-time.

13.4 Pathnames

As with directories, sections are identi�ed by name; a pathname syntax is provided to enable

reference to identi�ers within sections in a manner similar to Unix's �le pathnames. The

word

00

$�

00

is used to separate parts of the pathname, rather than

00

=

00

as in Unix. Thus, for

example:

$-tom$-dick$-harry

refers to the identi�er harry in subsection dick of section tom (tom being a subsection

of pop section), while

$-foo

refers to the top-level identi�er foo. Again analagously to Unix, a pathname not begin-

ning with `$-' is taken to be relative to the current section, e.g.

13.5. THE STANDARD SYNTACTIC FORM OF SECTIONS 307

bill$-ben

means the identi�er ben in the subsection bill of the current section.

13.5 The standard syntactic form of sections

The section construct is the principal way of using sections when compiling programs. It

has the form

section <pathname> <imports> => <exports> ;

<expression_seq>

endsection

where both < imports > and < exports > are optional sequences of words, the

00

=>

00

being omitted if there are no exports. < pathname > is a pathname as described above, but

in this context it refers to a section, not an identi�er. So

section $-tom$-dick$-harry; ... endsection

speci�es subsection harry of subsection dick of subsection tom of pop section, etc. In

addition, the name of pop section is < blank > (it is!), so that omitting the pathname

references the top-level, thus

section; ... endsection

There must be no imports or exports in this case because they don't make sense at

top-level.

308 CHAPTER 13. SECTIONS

The e�ect of section is to save the current section, make the named section the current,

and then continue compiling until endsection is encountered, at which point the previous

current section is restored. After entering the named section, section import is called on

each word speci�ed by < imports >, and section export on each speci�ed by < exports >,

as described in section 13.7 below.

13.6 Global Identi�ers

Certain permanent identi�ers, e.g. those in the system and those in the autoloadable library,

are normally required to be accessible in all sections, and thus to be imported into sections

without any explicit declaration to that e�ect. To this end, an identi�er can be declared as

global, meaning that it should be considered an automatic import into any sub-section of a

section where it is accessible. This can be done either at run-time with sysGLOBAL (see

Chapter 16), or at compile-time with a vars or constant statement pre�xed by global, e.g.

global vars x, y, z;

global constant a, b, c;

The keyword global can also appear in a define statement after the word define, but

before any vars or constant. An example is:

define global x(); ... enddefine;

define global constant y(); ... enddefine;

13.7 Section Procedures

These procedures allow the manipulation of sections by the user. The syntactic constructs

described above are in fact implemented in terms of these. At system startup time the

13.8. PREDICATES ON SECTIONS 309

current (and only) section is pop section, which represents the `normal' top-level of pop.

New sections are then created by use of section subsect as described below.

On entering a section (by assigning to current section), all non-imported words have

their identi�ers set to undef , with the following exceptions:

� All system words.

� All words having system identi�ers associated with them.

� All words having associated with them identi�ers marked as global. This actually

subsumes (2), since all system identi�ers are so marked.

After this, words having section-local identi�ers are set appropriately. The process of

entering a section in general involves `unwinding' all sections up to top-level, and then

recursively entering all sections from there down to the given one, although in certain cases

this process can be \optimised".

Whenever a new identi�er is declared (i.e. with vars, constant etc), this identi�er is

made local to the current section, unless the identi�er name has been declared as an export

(see below). There is currently no facility for creating new identi�ers in any section other

than the current. Redeclarations of existing identi�ers merely alter the information in the

existing identi�er record, and so do not change their section status in any way.

13.8 Predicates on Sections

To recognise section records the following is provided:

issection(O)! b

Returns true if O is a section, false otherwise.

310 CHAPTER 13. SECTIONS

13.9 Creating/Manipulating Sections

The following procedures can be used to make and modify section records.

section subsect(W;Sect; b

create

)! Sect

sub

section subsect(Sect)! L

sub sect

In the �rst form of the call, given a section Sect, this returns the subsection called W of

Sect, where W is a word. If no such subsection currently exists, then

1. If b

create

is true, a new subsection of Sect called W is created and returned;

2. If b

create

is false, the mishap NONEXISTENT SECTION occurs.

In the second form, given a section Sect, returns a list of all subsections of Sect.

section supersect(Sect)! Sect

super

Given a section Sect, returns the section Sect

super

of which Sect is a subsection, or false if

Sect is the top-level section pop section.

section cancel(Sect)

section cancel(Sect; b

zap

)

This cancels the section Sect, i.e. breaks the link to Sect from its supersection. Sect must

not be top-level, although it is quite alright for Sect to be the current section.

If the optional boolean argument b

zap

is true, the pdprops of all procedures held in local

identi�ers of Sect are set to false, providing that they are user procedures whose current

pdprops is the word with which the identi�er is associated | if not the pdprops are left

untouched.

section cancel also recursively applies itself, with the same value for b

zap

, to any subsec-

tions of Sect, cancelling them too.

13.10. STANDARD SECTIONS 311

section name(Sect)!W

This procedure returns the name of Sect, or false if Sect is pop section. Note that the name

does not include the full pathname of Sect.

13.10 Standard Sections

pop section

The value of this constant is the top-level section record, the root node of the section tree.

pop default section

This variable holds the default section to return to on doing a setpop (or when vederror is

called inside VED). In other words, they both do the assignment

pop_default_section -> current_section;

The initial value of this variable is pop section.

current section

This (active) variable holds the current section; its initial value is pop section.

13.11 Importing/Exporting Identi�ers

section export(word)

This procedure declares the word word to be an export of the current section (which must not

be top-level), meaning that whenever word is subsequently declared, the identi�er attached

312 CHAPTER 13. SECTIONS

to it is made local to the section above, or the section above that if it is exported from there

, etc. At the same time, word is made an import to the current section; thus the identi�er

actually `rises' to the highest level section it is not exported from, while at the same time

`sinking' down from there to the current section through all intermediate sections. If word

currently has a local identi�er associated with it, this `rises' as described above and ceases

to be local; if it has an associated imported identi�er, then exporting has no e�ect unless

word is cancelled and redeclared, in which case the redeclaration is exported.

section import(word)

Declares the word word to be an import of the current section (which must not be top-level),

thus making available the identi�er associated with word in the super-section of Sect. If

word already has a local identi�er associated with it, this is cancelled. word is automatically

declared in the super-section if it is unde�ned there.

13.12 Other operations on sections, and constants

sys read path(W

first

; b

use itemread

; true)! Sect

sys read path(W

first

; b

use itemread

; false)! W

This procedure reads a section/identi�er pathname from the current input stream (i.e. from

proglist). If the second argument is true, the pathname is interpreted as a section name, and

the appropriate section record is returned; if b

needsect

is false, the pathname is interpreted

as referring to an identi�er, and the appropriate word identifier (see below) is the result.

It is assumed that the pathname begins with the word W

first

, which has already been read

from proglist; successive items of the pathname are then read with itemread if b

use itemread

is true, or readitem otherwise. If the �rst item has not been read then the W

first

argument

should be obtained by readitem() or itemread(), etc.

word identifier(W;Sect; b

see imports

)! W

id

This procedure e�ectively enables the user to gain access to identi�er records, although

indirectly through word records. Given a word W and a section Sect, it returns a unique

wordW

id

which has associated with it the identi�er associated withW in the section Sect, or

13.13. EXAMPLES 313

returns false if there is no associated identi�er. The wordW

id

is not entered in the dictionary,

and so does not participate in the section mechanism; thus the identi�er associated with it is

always guaranteed to be that associated with W in Sect In other words W

id

is a `symbolic'

representation of that particular identi�er record.

What is meant by `the identi�er associated with W in Sect' further depends on the value

of the boolean argument b

see

i

mports

. If this is true, then imported identi�ers are taken into

account, i.e. the state of W as it would be if Sect were the current section is considered; if

false, only identi�ers strictly local to Sect are relevant. In either case, the characters of the

word W

id

are the full section pathname of its identi�er, except that top-level identi�ers are

not pre�xed by '$-'.

section key

This constant holds the key structure for sections (see Chapter 3.13).

13.13 Examples

We will now illustrate the mechanics of sections by some examples. Suppose we declare list

as a constant:

constant list = [this is a list of words];

Normally, the following procedure de�nition will produce a mishap, because list has

already been declared as a constant (and so cannot be a procedure local):

define count(list);

if list == [] then

314 CHAPTER 13. SECTIONS

0

else

hd(list) + count(tl(list))

endif;

enddefine;

However, if we put this de�nition inside a section called various (if we want to make sure

it's a subsection of top-level we should call it $-various)

section various;

define count(list);

if list == [] then

0

else

hd(list) + count(tl(list))

endif;

enddefine;

endsection;

this is �ne, because the local variable list used in count now has nothing whatever

to do with the previous de�nition of list as a constant | the word \list" is associated

with di�erent identi�ers inside and outside of section various. Outside of this section, the

identi�er which is the local of count is inaccessible by the name \list", but could be accessed

as

00

various$� list

00

.

On the other hand, this applies also the identi�er count, i.e. it cannot be accessed outside

of various, and this is probably not what we want. So if count is required to be used outside

of various, we can make it an export of the section:

section various => count;

13.13. EXAMPLES 315

define count(list); ... enddefine;

endsection;

Thus the de�nition of count is treated as if it were made outside of various, while at the

same time list remains internal to the section.

Now on entering a section, it is not the case that any identi�ers de�ned outside are

automatically accessible inside. This is generally what we want, i.e that these external

identi�ers should not con
ict with ones which are internal to the section. So in the example

above, the constant list is not available inside various, and so does not con
ict with the

local of count. If we have another constant, vector say, and we try to access it inside section

various, it will be unde�ned:

constant vector = {1 2 3 4 5 6 7 8 9};

section various;

vector=>

;;; DECLARING VARIABLE vector

** <undef vector>

endsection;

However, we can either make vector an explicit import of section various

section various vector;

vector=>

** {1 2 3 4 5 6 7 8 9}

endsection;

or, if we know that we are going to want to import it into any section, we could have

declared it as global in the �rst place:

316 CHAPTER 13. SECTIONS

global constant vector = {1 2 3 4 5 6 7 8 9};

section various;

vector=>

** {1 2 3 4 5 6 7 8 9}

endsection;

Note that, in the de�nition of count above, the system procedures +, ==, hd and tl were

accessible inside various by virtue of being declared global, as all system identi�ers are.

Chapter 14

In which we learn how to use and

extend the POP library

14.1 Note on Directory Names

In this �le, directories names are speci�ed in Unix format, e.g.

'$popautolib' '$poplocal/local/lib'

etc, where the leading $ speci�es an environment variable name at the beginning. For

VMS, the environment variables just translate to logical names, i.e.

'popautolib:' 'poplocal:[local.lib]'

etc.

317

318CHAPTER 14. INWHICHWE LEARN HOWTOUSE AND EXTEND THE POP LIBRARY

14.2 Library Search & Compilation

syslibcompile(Name; L

dir

)! s

dir

syslibcompile(Name) ! s

dir

This is the main procedure for compiling POP-11 source �les from libraries: it searches

sequentially through the directories given by L

dir

for the �le speci�ed by Name, the �rst

such �le found being compiled (with compile), and the relevant directory returned as the

result. If the �le is not found in any of the directories, the result is false. Name is a

string or a word, which gives the name of a library �le (and must not include any directory

pathname). L

dir

is a list of pathnames (strings) specifying the directories in which to search,

and if omitted, defaults to popliblist (see below). Each directory in turn is tested for a �le

called Name:p (or Name if this already contains the extension '.p'). To enable hooks to be

added to this mechanism (e.g. for automatic de�nition of autoloaded identi�ers), L

dir

may

also contain procedures mixed in with the pathname strings. If a procedure P is encountered

in the search of L

dir

, it is called with Name as argument, and is expected to return a result

re
ecting whether it `found' Name or not. That is,

P(Name) -> O;

where O = false means the search of L

dir

should continue, and a true value means return

from syslibcompile with result result.

prautoloadwarn(Name)

This variable procedure is called by syslibcompile when it �nds a library �le speci�ed by

Name, immediately before compiling it. (Note that this only happens when Name is found

in an actual directory, not when `found' by a procedure in L

dir

.) The default value is erase,

which means that autoloading etc is normally done silently; sysprautoloadwarn is available

to assign to this variable when noti�cation is required.

sysprautoloadwarn(Name)

This procedure prints the line

14.3. AUTOLOADING 319

;;; AUTOLOADING <Name>

on the standard output, i.e. through cucharout.

popliblist

The list of autoloadable library directories, used as the default search list by syslibcompile.

Its initial value will be something like:

['$poplocalauto' '$popautolib' '$popvedlib' ldots]

etc.

14.3 Autoloading

sys autoload(W)! s

dir

This procedure is called by parts of the system that require to check that an autoloadable

de�nition of a permanent identi�er called W is loaded (e.g. see the description of macro

expansion in 15.2, and sysdeclare in 16). It �rst checks to see if W is already declared as a

permanent identi�er, and returns true if so. Otherwise, it calls

syslibcompile(W) -> {\bf s}_{dir}

to try to autoload a �le

0

< W > :p

0

from one of the directories in popliblist, the result of

that procedure being returned. It should normally be the case that an autoloaded �le will

declare W as a permanent identi�er; note that during the call of syslibcompile, W is marked

specially, so that a call of sys autoload on the same word during compilation of the �le will

return false rather than cause a recursive call of syslibcompile. In addition, an abnormal

exit from sys autoload during compilation will remove any declaration that W may have

acquired, thus ensuring that W remains undeclared after a compilation mishap.

320CHAPTER 14. INWHICHWE LEARN HOWTOUSE AND EXTEND THE POP LIBRARY

poplibdir [variable] Contains a string naming the main POP-11 autoloadable library

directory. No longer used by the system, since it is always assumed to be '$popautolib'

| its default value.

14.4 Loading Library Files Explicitly

loadlib(Name)

This procedure calls syslibcompile with popuseslist as the list of directories to search (see

below), i.e.

syslibcompile(Name, popuseslist)

(and calls mishap if the library �le was not found).

lib

This is a macro for calling loadlib, used as lib < Name > where Name is an identi�er name

(or �lename, extending upto a ";" or newline). It substitutes itself on proglist with code to

print the message

;;; LOADING LIB <Name>

and call loadlib(Name).

uses

A macro for loading a library �le for a given identi�er name that may or may not already

be loaded. It reads a single word Name from proglist, i.e.

uses <Name>

14.5. MISCELLANEOUS 321

will test if Name is already declared as a permanent identi�er, and if not, will call

loadlib(Name).

popuseslist

This holds the search list of directories for use with loadlib, lib and uses. Its default value

is created when any one of those is �rst invoked, and will be something like

[^^popliblist '$poplocal/local/lib'

^popliblibdir ^popdatalib]

popliblibdir

This holds a string naming the main library directory for non-autoloadable �les. Its value is

inserted into the list popuseslist when one of lib, loadlib, or uses is �rst invoked. (It can be

assigned to, but this will have no e�ect if done after popuseslist is constructed). (Default

value '$popliblib').

popdatalibvariable This holds a string naming the directory used for storing information

used as data by other programs. Also inserted into popuseslist when that is �rst used.

(Default value

0

$popdatalib

0

).

14.5 Miscellaneous

sysstring

sysstringlen

sysstring is a string of length sysstringlen, which libraries and other programs can use

as a character bu�er to give to routines such as sysread and syswrite this is set up in

lib=; sysstring.

322CHAPTER 14. INWHICHWE LEARN HOWTOUSE AND EXTEND THE POP LIBRARY

popdisk

In VMS, this is the disk containing the POPLOG system. Not used by system procedures.

Its default value is

0

$usepop

0

. In Unix, the directory.

Chapter 15

In which we achieve such intimacy

with the POP compiler that it will do

odd jobs for us.

NOTES What about the obsolete forms? especially sysnvariable.

To date we have treated the POP compiler as a monolithic procedure which will convert

a sequence of characters into VM code for execution. In this chapter we discover that it is

indeed a coordinated bundle of procedures, many of which are available to you to use for

reading and compiling whatsoever little chunks of POP as you deem meet to the occasion.

Having achieved mastery over the material in this chapter and its successor, which deals

with the Virtual Machine, you will be readily able to embellish POP with new syntactic

constructs of your own designing. An example of such, namely the de�nition of the foreach

construct, is to be found in Chapter 16.8.

323

324CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

15.1 The anatomy of the POP-11 Compiler

The POP-11 compiler consists of a set of procedures corresponding to the various syntactic

constructs in the language, as speci�ed by the syntax diagrams given in Appendix ??. These

divide into two classes:

1. those which begin with a syntax or syntax-operator word, W (say). An example of

such a word is

00

define

00

. These each have an associated procedure, which is called

by the compiler whenever it encounters them in an appropriate context. Their modus

operandi is determined by the speci�c associated procedure, although it in its turn

may call procedures which are treated below; their e�ect is described in the text of

this book that treats them, mostly in Chapter 2. This chapter is only concerned with

how the compiler recognises them and decides to call the associated procedure. Such

a word is recognised by the compiler from the value of identprops(W) as described in

Chapter5.3.5. Macros can be regarded as a user or library de�ned extension of this

class.

2. those which are not associated with a particular syntax word, for example the <

expression > construct.

The next section 15.2 treats proglist, which is the list of objects (or tokens to use the

language of the compiler literature) which the POP compiler operates from.

Subsequent sections deal with the second class of syntactic construct, which are: <

compilation stream >, < statement sequence >, < statement >, < expression sequence >

and < expression >. They deal only with those speci�c constructs that have generally-useful

utility procedures associated with them.

15.2 In which we meet the list of objects that the com-

piler works with

A standard requirement for compilers and other utilities in POP is the ability to read source

text in itemised (or `tokenised') form, i.e. to have an input character stream lexically

15.2. INWHICHWEMEET THE LIST OF OBJECTS THAT THE COMPILERWORKSWITH325

analysed into objects such as words, numbers, strings, etc. This process can be performed,

for example, by the item repeater procedures constructed by incharitem from character

repeaters, which are treated in Chapters 20 and 19.

For programs which wish to process such an input object stream, it is particularly con-

venient to do so via a dynamic list constructed from the item repeater

1

. An item can then

be obtained simply by taking the head of the list, and saved there until the next item is

required, at which point the list can be tailed. Another advantage of this method is that

extra items can be inserted into the stream when necessary, by concatenation onto the front

of the list, as is the case for macro expansion, described below.

Because many parts of programs may require access to the item stream currently in use, it

is also useful to de�ne a standard location where the input list can be found; for this reason,

POP provides the global permanent variable proglist. The list (dynamic or otherwise) in this

variable is used as the input item stream by many system modules, including the POP-11

compiler, as described later in this chapter.

Although proglist can be processed directly, it is conventional, and usually more conve-

nient, to take input items from it using the item-reading procedures described below. Of

these procedures, itemread and nextitem also provide a macro expansion facility.

15.2.1 Reading Items from proglist

Let us now consider the forms in which access to the input object stream is available.

proglist

This is the input list of items (possibly dynamic) used by readitem, nextread, itemread and

nextitem, etc.

poplastitem

This contains the last item read from proglist with readitem or itemread.

1

Dynamic lists are treated in Chapter ??

326CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

readitem()! O

This procedure removes the next item from proglist and returns it. If proglist is null, then

termin is returned. The item returned is saved in poplastitem.

nextreaditem() ! O

This procedure returns the next item from proglist, but without removing it. Thus another

call of nextreaditem will return the same item again. termin is returned if proglist is null.

readtill(O

end

)! O

end

: : :! O

2

! O

1

readtill(L

end

)! O

end

: : :! O

2

! O

1

This procedure reads items with readitem until an item either equal to O

end

(�rst form)

or a member of L

end

(second form) is encountered. All items read, including the last, are

returned.

readline()! L

This procedure reads items from proglist (using readitem) until a newline is encountered.

This is done by setting popnewline true, so that newline is returned as a word. The result

is a list containing all the items read, excluding the newline.

pop readline prompt

The item in this variable, whose default value is

0

?ns

0

, is locally assigned to popprompt during

readline. See Chapter ?? for possible values of popprompt.

requestline(bfs

prompt

)! L

This procedure is the same as readline, but with pop readline prompt locally set to bfs

prompt

.

rdstringto(O

end

)! bfs

rdstringto(L

end

)! bfs

This procedure reads items with readitem until an item either equal to O

end

(�rst form)

15.2. INWHICHWEMEET THE LIST OF OBJECTS THAT THE COMPILERWORKSWITH327

or a member of L

end

(second form) is encountered. The result is the string formed by

concatenating together the printed representations of all the items read, excluding the last.

The procedure sys ><, described in Chapter 21 is used to perform the concatenation.

readstringline()! bfs

This procedure reads a string of characters bfs up to, but not including, a newline or termin,

in the following way:

� If proglist is an unexpanded dynamic list, then nextchar(readitem) is used to get the

characters until newline or termin is encountered (see Chapter 19). Leading spaces are

ignored; a backslash character may be used to escape a following newline, backslash,

or leading space when this is to be included in the string.

� Otherwise, if proglist actually contains some items already, the result is

rdstringto([^newline ^termin])

(with popnewline set true).

15.2.2 Reading Items with Macro Expansion

Chapter 2.26.1 dealt with the POP macro concept from a user's point of view. The compiler

recognises a macro as a word W which is currently declared as a lexical or permanent

identi�er with identprops(W) =

00

macro

00

. (For information on identprops see Chapters 8.1

5.3). When such a word is read from proglist using the procedures itemread and nextitem,

it undergoes macro expansion, that is, the word is replaced in proglist by a sequence of items

derived from the value of the identi�er. The item actually returned by the call of itemread

or nextitem is then the �rst of these, unless this is again a macro, in which case expansion

proceeds recursively until the �rst item is not a macro. Thus a macro can substitute itself

in the input stream with any desired items.

The e�ect of a macro however can only be \down stream", that is to say it cannot a�ect

any text which preceded it. Thus the syntax extension achieved by macros is always to

introduce constructs which begin with a �xed word, the macro name.

328CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

The sequence of items into which a macro is expanded depends on its identi�er value,

which may be either a procedure, a list, or any other item (except an undef record):

� For a procedure, the expansion is all the items left on the user stack by calling it (i.e.

the topmost item on the stack is the last in the sequence). The procedure is called

with the next N items from proglist (read with itemread) as its arguments, where N

is its pdnargs.

� For a list, the expansion is all the elements of the list (possibly none).

� For any other item, the expansion is that item. A mishap will result if the item is an

undef record (on the assumption that this means the macro's value is unde�ned).

Expansion is actually performed by collecting the items in a list L, and then adding them

to proglist with

L <> proglist! proglist;

after removal of the macro word itself and any arguments. Thus the original list pairs

constituting proglist are not updated, which can be important in some contexts, as described

in proglist macro pair below.

Note that before checking for a macro, nextitem and itemread will attempt to autoload

any word which is not currently declared as an identi�er by calling sys autoload, which

is described in Chapter 14. This permits autoloading of (permanent) macros, and is also

the mechanism by which autoloading takes place in POP-11. When unwanted, this can be

turned o� by locally assigning [] to popliblist.

If a macro word is required to be read from proglist without macro expansion, it must

be preceded by the word

00

nonmac

00

, as described in section 15.2.3 below.

itemread()! O

After expanding macros (and possibly autoloading unde�ned words), this procedure returns

and removes the next non-macro item from proglist. termin is returned if proglist is null.

The item returned is saved in poplastitem.

15.2. INWHICHWEMEET THE LIST OF OBJECTS THAT THE COMPILERWORKSWITH329

nextitem() ! O

As for itemread, but does not remove the returned object from proglist. Thus another call

of nextitem will return the same object again.

proglist macro pair

As described above, macro expansion always creates new list pairs to add to proglist, and

does not update the original ones; this variable provides a means for macro procedures

to actually update the original proglist if they wish to do so. When a macro procedure

is applied, proglist macro pair holds the list pair on proglist that actually contained the

macro word. In the case in which the macro has no arguments, the next pair on proglist

will be the tl of this. Thus for example, a macro producing a single object can, as well as

returning it as a result, also assign it directly to hd(proglist macro pair) (alternatively, it

can do the latter and then assign proglist macro pair to proglist, returning no result). Of

particularly relevance in this context are macros that read characters from the input stream

using nextchar (see Chapter 19), which can fail to work properly with certain compilers (e.g.

POP-11) that expect to be able to read sections of proglist more than once. The reason for

this is that on a second or subsequent reading the original proglist still contains the macro

word, but no longer has available the characters required by the macro, since it has been

itemised ahead of that point. Macros of this type should therefore use proglist macro pair

to replace themselves directly, so that re-reading of the object stream will function correctly.

15.2.3 Proglist-Related Built-in Macros

nonmac

This speci�es that the next word on proglist is not to be treated as a macro, so that when

read with nextitem or itemread the word will not be expanded. E.g. if proglist is

[nonmac Pooh ...]

where

00

Pooh

00

is a macro, then itemread() will evaluate to

00

Pooh

00

. On the other hand,

readitem() would evaluate to

00

nonmac

00

.

330CHAPTER 15. INWHICHWE ACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FORUS.

<

> #

< implements `on the
y' macros by allowing the evaluation of a sequence of POP-11

statements in the input stream; its usage is

#_< statement-sequence >_#

The statement sequence up to > # is compiled and evaluated, and any objects left on

the stack in so doing are spliced back onto proglist in place of the whole construct. For

example, if proglist is

[#_< 3 + 4 * 5 >_# ...]

then itemread() will evaluate to 23. Note that > # is simply a macro that produces

termin. Thus # < can compile the statement sequence with pop11 comp stmnt seq to(termin)

(see section 15.5).

IF

ELSEIF

ELSE

ENDIF

These macros enable the conditional reading or skipping of objects in proglist. Their usage

is

#_IF expression

item-sequence

#_ELSEIF expression

15.3. THE COMPILER PROCEDURES 331

item-sequence

#_ELSEIF expression

item-sequence

#_ELSE expression

item-sequence

#_ENDIF

where the # ELSEIF and # ELSE clauses are optional, and where each POP-11 ex-

pression is terminated by a newline as for readline (qv).

Starting from the # IF , each expression occurring after a # IF or # ELSEIF is eval-

uated until one is found that returns a non-false result, object sequences following a false

result being skipped without macro expansion. The sequence following the true result, or

that following a # ELSE if no expression evaluated to true, is then 'allowed through' in the

sense that the current call of itemread etc and subsequent calls will return these objects (if

there is no true clause or # ELSE then whatever object follows the # ENDIF will result).

These macros may be nested to any depth, i.e. any of the object sequences can contain

further # IF constructs.

15.3 The compiler procedures

All compiler procedures take source code input objects from the list proglist, using the

procedure itemread described in section 15.2, and emit POP Virtual Machine code directly.

No parse tree is built.

The interface procedures compile and popval set up proglist initially to compile code

either from a character stream or from an existing list, and then commence compilation by

calling pop11 comp stream to compile the input stream.

compile(Stream)

This procedure compiles POP-11 program text from the character source Stream. Permis-

332CHAPTER 15. INWHICHWE ACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FORUS.

sible values of Stream are:

� A character repeater procedure.

� An argument valid for discin, i.e. a �lename string or word, or a device record.

Unless given a character repeater procedure directly, compile �rst translates its argument

into a character repeater using discin as described in chapter 20. Note that, if given a word

as a �lename, discin will append

0

:p

0

to it. It then assigns the repeater locally to cucharin,

and sets up proglist locally with

pdtolist(incharitem(cucharin)) ! proglist;

It then calls pop11 comp stream.

cucharin()! c

This contains the character repeater procedure initially set up in proglist by compile. Chang-

ing this variable will a�ect nothing, since after proglist is set up compiler procedures do not

reference cucharin again.

trycompile(Filename)! b

If the �le speci�ed by Filename exists, compile is called with it as argument, and, provided

no mishaps occur during the compilation, true is returned. false is returned if the �le

doesn't exist.

popval(L)

This procedure compiles the sequence of objects held in the list L: this is de�ned simply as

define popval(proglist);

dlocal proglist;

15.3. THE COMPILER PROCEDURES 333

pop11_comp_stream()

enddefine;

For example:

vars L = [23 + 4 =>];

popval(L);

**27

popval has two main uses:

� For compiling POP code that has been synthesised by a procedure. See for example

the Chapter ?? on the let macro. A more e�cient alternative in such cases is to call

the VM code planting procedures directly, as described in Chapter 16.

� For delaying the evaluation of a macro. For example you may say in the middle of a

procedure body:

define Pooh(adventure);

popval([lib Heffalump;]);

enddefine;

This has the e�ect that the library procedure Heffalump will only be loaded when

the procedure Pooh is called, and not when it is compiled. This is particularly useful

when using syssave { sysrestore to develop large programming systems, as described

in Chapter ??. You can use sysrestore to restore a basic core of your system, which

may include many externally loaded procedures, and then load the current version of

�les under development by making use of a sequence such as

syssave('Winnie_the_Pooh.psv')->; ;;; Save the image, ignore result.

popval([lib Heffalump]); ;;; Load library files either after

;;; save or after restore.

334CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

15.4 Stream Compilation

pop11 comp stream()

This procedure sets up a new execute level compilation of POP-11 code, and then compiles

proglist until it becomes null. Aside from initialising certain global variables locally, this

procedure is in essence:

define pop11_comp_stream();

sysCOMPILE(termin, pop11_exec_stmnt_seq_to) ->

enddefine;

that is, call pop11 exec stmnt seq to(termin) to compile and execute statements inside

a new invocation of the VM compiler.

popclosebracket

This contains the closing `bracket', i.e. syntax word, for the current syntax construct being

compiled. It can also be a list of such words when the construct has a choice of closers. Syntax

procedures normally set this variable locally to an appropriate value before commencing

compilation of a construct, and then call pop11 need nextitem with that value to check for

the closer at the end.

15.5 Statement Sequence Compilation

A < statement > is an expression sequence, i.e. zero or more expressions separated by com-

mas. A < statement sequence > consists of zero or more such < statement >s, separated

by semicolons. Note that the standard syntax operators

00

=>

00

and

00

==>

00

also act as

statement separators by replacing themselves on proglist with semicolons.

Expression and statement sequences are largely interchangeable in POP-11, except in a

few places (such as procedure call arguments) where the latter are not allowed. At execute

15.6. EXPRESSION SEQUENCE COMPILATION 335

level, the end of each statement indicates where execution is to take place.

pop11 comp stmnt seq()

This procedure compiles and plants VM code for a sequence of statements separated by

semicolons.

pop11 comp stmnt seq to(W

closer

)! O

found

This procedure is the same as pop11 comp stmnt seq except that during compilation of the

sequence, popclosebracket is set locally to be the argument W

closer

, and after compilation

pop11 need nextitem(W

c

loser)! O

found

is executed to check the next object on proglist and produce the result. pop11 need nextitem

is described in section 15.8.

pop11 exec stmnt seq to(W

closer

)! O

found

This procedure behaves in the same way as pop11 comp stmnt seq to, save that it executes

the VM code planted at the end of each statement by calling sysEXECUTE, described in

Chapter 16.3.1.

15.6 Expression Sequence Compilation

pop11 comp expr seq()

This procedure compiles and plants VM code for a sequence of expressions separated by

commas. A `MISSING SEPARATOR' mishap will occur if the next object on proglist

after the sequence does not match the current value of popclosebracket and is an expression

opener. An expression opener is anything except termin or a non-procedure syntax word,

i.e. a word whose identprops are \syntax\ and whose value is not a procedure.

336CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

pop11 comp expr seq to(W

closer

)! O

found

This procedure is the same as pop11 comp stmnt seq except that during compilation of the

sequence, popclosebracket is set locally to be the argument W

closer

, and after compilation

pop11 need nextitem(W

closer

)! O

f

ound

is evaluated to check the next object on proglist and produce the result. See section 15.8

for a description of pop11 need nextitem.

15.7 Expression Compilation

The procedure pop11 comp prec expr is the heart of the POP-11 compiler: it compiles a

single expression containing operators up to a speci�ed maximum precedence. Since an un-

derstanding of this procedure is helpful in writing new syntax or syntax operator constructs,

its operation is described in greater detail in the section ?? below.

pop11 comp prec expr(i

prec

; b

update

)! O

next

This procedure compiles and plants VM code for a single expression, the extent of which is

determined as follows:

� If the �rst object is not an expression opener, or is a syntax word equal to popclosebracket,

then the expression is empty.

� Otherwise, the expression has the generic form

<object> <operator expr> <operator expr> ...

where each operator expression is either a syntax operator followed by an appropriate

code body, or an ordinary operator followed by a sub-expression. The expression is ter-

minated by meeting either a non-operator, or an operator whose internally-represented

precedence (see below) is greater than or equal to the argument i

prec

.

The i

prec

argument is a value specifying the limit for operator precedences in this expres-

sion; for e�ciency reasons, it is supplied not in the normal identprops format, but in the

15.7. EXPRESSION COMPILATION 337

form in which precedences are actually represented internally. If x

prec

is a normal identprops

precedence, then the corresponding i

prec

value is the positive integer given by

i

prec

= intof(abs(x

prec

) � 20) + (if x

prec

> 0 then 1 else 0 endif)

E.g. an x

prec

of 4 will give a i

prec

of 81, whereas �4 would give 80. Since an identprops

precedence can range between �12:7 and 12.7, the normal range for i

prec

is 2{255; any value

greater than 255 is guaranteed to include all operators in an expression.

The b

update

argument is a boolean which if true causes the expression to be compiled in

update mode rather than normal evaluate mode.

The result of the procedure is the object following the expression. Note that this remains

as the next object on proglist.

pop expr prec

pop expr update

These two variables are dynamic locals of pop comp prec expr, and hold the values of the

i

prec

and b

update

arguments for the current call of that procedure.

pop expr inst

pop expr item

These two variables are also dynamic locals of pop comp prec expr, and together constitute

a bu�er for planting VM code. Their use is described in section 15.10 below.

pop11 comp expr()

This procedure compiles and plants VM code for a single expression with unlimited operator

precedence. Its behavior is the same as: pop11 comp prec expr(256; false)

338CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

pop11 comp expr to(W

closer

)! O

found

This procedure is the same as pop11 comp expr except that during compilation of the ex-

pression, popclosebracket is set locally to be the argument W

closer

, and after compilation

pop11 need nextitem(W

closer

)! O

found

is executed to check the next object on proglist and produce the result.

15.8 Utility Procedures to Test/Check for Input Items

pop11 need nextitem(O)! O

found

This procedure checks the next object from proglist to be (a) a member of O if O is a list,

or (b) equal to O otherwise. If neither condition holds, the mishap

MSW: MISPLACED SYNTAX WORD

or

MEI: MISPLACED EXPRESSION ITEM

results, depending on whether the next object is an expression opener or not. Here the

INVOLVING list of the mishap is

FOUND <nextitem> READING TO <O/hd(O)>

Otherwise, the next object is removed from proglist and returned. This procedure uses

nextitem to examine the next object, so macros are expanded, autoloading can occur, etc.

15.9. PROCEDURES ASSOCIATEDWITH INDIVIDUAL SYNTACTIC CONSTRUCTS339

pop11 try nextitem(O)! O

found

This procedure works in the same way as pop11 need nextitem, except that false is returned

if O (or a member of O) is not the next object. If it is, then the next object is removed from

proglist and returned as result.

pop11 try nextreaditem(O)! O

found

This procedure is the same as pop11 try nextitem, except that nextreaditem is used to get

the next object, so that autoloading or macro expansion can't occur.

15.9 Procedures Associated With Individual Syntactic

Constructs

pop11 comp constructor(W

closer

)! b

popconstruct

This procedure compiles and plants code for a list or vector constructor, i.e. [: : :] or f: : : g,

after the opening bracket has been read, and compiles to the closing bracket W

closer

, which

should therefore be either

00

]

00

or

00

g

00

.

In general, code is planted to construct the list or vector at run-time, so that a new one

will be produced every time the code is run; however, if the variable popconstruct is true,

then constructor expressions not containing any of the `evaluate' keywords

00

%

00

,

00

"

00

or

00

""

00

will be compiled as constants, i.e. actually constructed at compile-time. Note that inside a

procedure this means that any updating of the components of the structure will permanently

change it.

The result b is true if a constant structure was produced, false if not.

pop11 comp declaration(P

declare

)

This procedure is used by the constant, vars, lvars, dlvars and lconstant constructs to read

declaration/initialisation statements for identi�ers, as speci�ed in Chapter 5 and Appendix

340CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

??.

The argument P

declare

is a declaration procedure of the form P

declare

(W;O

idprops

) (e.g.

sysV ARS), which for each word appearing in the declaration is called on the word and its

speci�ed O

idprops

, the latter defaulting to 0 when not speci�ed.

If an identi�er declaration is followed by an initialisation expression then this is compiled,

and, except in the case where P

declare

is sysLCONSTANT , the code sysPOP (WORD) is

planted (and executed immediately if at execute level). For sysLCONSTANT , the expres-

sion is evaluated immediately and the result O assigned with sysPASSIGN(O;W).

pop args warning

This boolean variable determines whether the procedure and define statements warn about

formal argument and result identi�ers that are not locally declared, i.e. that do not appear

in an identi�er declaration or dlocal statement immediately following the procedure header.

Such identi�ers are automatically made dlocal permanent identi�ers; if pop args warning is

false, this is done silently, otherwise the warning message

<WORD> DEFAULTED TO VARS IN <PROCEDURE_NAME>

is printed.

pop11 define declare(W

id

; P

global

; P

decl

; O

idprops

)

The procedure in this variable (which is dynamically local to compile) is called by the define

statement to declare as an identi�er the name of the procedure being de�ned, when such a

declaration is needed. This is in all cases except the following:

� dlocal is speci�ed, i.e. `de�ne dlocal : : : '. In this case the identi�er is assumed to be

declared already.

� updaterof is speci�ed without any declaration keywords, the name is already declared

as a lexical or permanent identi�er, and, for a nested de�ne, the identi�er is `local' to

the enclosing procedure, i.e. an lvars of it, or a dlocal of it.

15.9. PROCEDURES ASSOCIATEDWITH INDIVIDUAL SYNTACTIC CONSTRUCTS341

The arguments are:

W

id

: The name of the identi�er to be declared.

P

global

: The procedure sysGLOBAL if global was present in the header and false

otherwise.

P

decl

: The sys declaration procedure for a declaration keyword if present (e.g. sysV ARS

for vars, sysCONSTANT , sysLV ARS, etc), or false if none.

O

idprops

: A value for the identprops of the name, i.e. the identprops keyword speci�ed,

or false if none.

The default procedure in this variable, which makes use of the variables popdefineconstant

and popdefineprocedure, is shown below:

define vars pop11_define_declare(W_id, P_global, P_decl,

idprops);

lvars P_global, P_decl, idprops, W_id;

unless P_decl then

;;; no explicit declaration given

if isprocedure(popdefineconstant) then

;;; use that procedure to declare the identifier

popdefineconstant

elseif popdefineconstant and popexecute then

;;; declare as constant at execute level

sysCONSTANT

else

;;; declare as variable

sysVARS

endif -> P_decl

endunless;

unless idprops then

;;; no explicit identprops given -- declare as

342CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

;;; procedure-type if $popdefineprocedure$ true

if popdefineprocedure then "procedure" else 0 endif

-> idprops

endunless;

if P_global

and P_decl /== sysVARS and P_decl /== sysCONSTANT

then

mishap(0, 'IDS: INCORRECT DEFINE SYNTAX (not

vars or constant after global')

endif;

P_decl(W_id, idprops);

if P_global then P_global(W_id) endif

enddefine;

popdefineconstant

popdefineprocedure

These two variables (both dynamically local to compile) are used only by the standard

procedure for pop11 define declare shown above. As can be seen from that procedure,

popdefineconstant controls the default constant/variable declaration for the identi�er being

de�ned when no explicit declaration is speci�ed, while popdefineprocedure controls whether

the identi�er is declared procedure-type or not.

pop11 define props(W

id

;W

P

; b

upd

)! PROPS

The procedure in this variable is called by the define statement to return the default pdprops

value for the procedure being de�ned. Note that this is the default value, and will be

overridden by an explicit with props declaration.

The arguments are:

W

id

: The name of the identi�er the procedure resides in.

15.10. MORE ON EXPRESSION COMPILATION 343

W

P

: The name of the procedure, i.e. the W

id

with any section pathname removed.

b

upd

: true if

00

updaterof

00

was present, false if not.

The default value for this procedure is

define vars pop11_define_props(W_id, p_name, upd) -> props;

lvars W_id, p_name, upd, props;

;;; default is to return procedure name as props

p_name -> props

enddefine;

pop11 loop start(Lab)

This procedure adds the label Lab to the list of loop iteration labels referenced by nextloop,

nextif and nextunless. Lab will normally be a label produced by sysNEW LABEL.

pop11 loop end(Lab)

This procedure adds the label Lab to the list of loop end labels referenced by quitloop, quitif

and quitunless.

pop11 forloop test(n; i; i

inc

)! b

This procedure returns the result of testing i to be greater than or less than n, depending on

whether i

inc

is positive or negative repectively. It is used by the for statement for testing

the end condition in an iteration over i, where i

inc

is the positive or negative increment and

n is the limit value.

15.10 More On Expression Compilation

This section describes the procedure pop11 comp prec expr in more detail, and should be

read in conjunction with section 15.7 above.

344CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

Essentially, the procedure has two phases: phase 1 reads and examines the �rst object of

the expression, while phase 2 loops around absorbing operator expressions until an operator

is found whose precedence is too high to form part of the current expression (or the next

object is not an operator). Phase 1 is responsible for recognising syntax words and calling

their associated procedures, while phase 2 does the same for syntax operators.

Although the procedure emits POP VM code directly (i.e. without constructing an

intervening parse tree), this is e�ected via a 1-instruction `bu�er' to allow possible re-

interpretation of a preceding instruction. The bu�er is represented by the two variables

pop expr inst and pop expr item, which contain respectively an instruction-planting proce-

dure, such as sysPUSH, and an argument value to be given to it. Two `dummy' code-

planting procedures, pop11 EMPTY and pop11 FLUSHED, are used in this context to

indicate that the bu�er is empty, and also to distinguish whether this is because no code

has yet been compiled (pop11 EMPTY), or because code has been planted but
ushed

(pop11 FLUSHED); in these cases the value of pop expr item is irrelevant. Note that both

pop expr inst and pop expr item are dynamically local to pop11 comp prec expr, so that

nested expressions have no interaction with each other in respect of bu�ered instructions.

Phase 1 thus commences by setting pop expr inst to pop11 EMPTY . If O is the next

object on proglist and is one of the following, then O is removed from proglist and the

corresponding actions performed:

� O is a non-operator syntax word with procedure value P , not equal to popclosebracket:

P(); ;;; Call syntax procedure

if pop_expr_inst == pop11_EMPTY then

pop11_FLUSHED -> pop_expr_inst ;;; see below

endif;

� O is any other non-syntax, non-operator word:

O -> pop_expr_item;

sysPUSH -> pop_expr_inst;

� O is any non-word except termin:

O -> pop_expr_item;

sysPUSHQ -> pop_expr_inst;

15.10. MORE ON EXPRESSION COMPILATION 345

Phase 2, to which all other cases go directly without changing the next object, then

loops while the next object O is an operator word whose internally-represented precedence

OP

P

REC is less than the current expression precedence given by pop expr prec (see the

discussion of internal precedence values in section 15.7). For each such operator, the word

is removed from proglist and the following actions taken:

� O is a syntax operator word with procedure value P :

P(); ;;; Call syntax op procedure

if pop_expr_inst == pop11_EMPTY then

pop11_FLUSHED -> pop_expr_inst ;;; see below

endif;

� O is an ordinary operator word:

pop_expr_inst(pop_expr_item); ;;; flush buffer

O -> pop_expr_item;

sysCALL -> pop_expr_inst;

pop11_comp_prec_expr(OP_PREC || 1, false);

Note that for an ordinary operator word, the precedence passed to the recursive call of

pop11 comp prec expr for the following sub-expression is the operator's precedence with bit

0 set. This value corresponds to the absolute value of its signed identprops precedence,

and causes the sub-expression to include operators of negative (but not positive) identprops

precedence of the same absolute value, thus making operators with negative precedence

associate to the right rather than to the left.

Note also that after calling either syntax procedures in phase 1 or syntax operator proce-

dures in phase 2, pop expr inst is changed to pop11 FLUSHED if it remains pop11 EMPTY .

This ensures that a subsequent syntax operator can use a test for pop11 EMPTY to deter-

mine whether it occurred at the beginning of an expression, without forcing every syntax

procedure to make this change.

pop11 comp prec expr �nishes by
ushing the instruction bu�er in a mode speci�ed by

the value of the b

update

argument stored in pop expr update; for normal evaluate mode (false)

this is just

346CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

pop_expr_inst(pop_expr_item);

Update mode (true) is interpreted as meaning that the �nal instruction-planting proce-

dure of the expression should have an updater, which will plant appropriate update-mode

code; the absence of one is taken mean that the compiled code was illegal in an update con-

text, and results in the mishap `IMPERMISSIBLE UPDATE EXPRESSION'. Otherwise,

the bu�er is
ushed by applying the updater:

updater(pop_expr_inst)(pop_expr_item);

So that they work correctly with this scheme, all update-mode POP VM instructions are

the updaters of the corresponding normal-mode procedures, e.g. sysPOP is the updater of

sysPUSH, sysUCALL of sysCALL, etc.

pop11 EMPTY (O

dummy

)

! pop11 EMPTY (O

dummy

)

pop11 FLUSHED(O

dummy

)

! pop11 FLUSHED(O

dummy

)

Both these procedures do nothing but erase their dummy argument. This means that when-

ever one of them is the value of pop expr inst, it is always safe to do pop expr inst(pop expr item)

to
ush the instruction bu�er. Their updaters are di�erent, however: on the basis that an ar-

bitrary piece of already-
ushed code has no update-mode interpretation,! pop11 FLUSHED

produces the mishap `IMPERMISSIBLE UPDATE EXPRESSION'. On the other hand,

! pop11 EMPTY does allow that an empty expression can be meaningful in this context:

if the (necessarily not false) value of pop expr update is in fact a procedure, then this is

run without arguments, otherwise no action is taken. This facility is used, for example, by

the ! and � >> syntax operators to interpret an empty assignment destination as a stack

erase, by calling pop11 comp prec expr to compile the following expression with an b

update

argument of sysERASE(%0%).

15.11. EXAMPLE DEFINITIONS OF SYNTAX/SYNTAX OPERATOR WORDS 347

15.11 Example De�nitions of Syntax/Syntax Operator

Words

This section gives two simple examples of de�ning new syntactic constructs. The �rst is the

syntax word

00

, for pushing a quoted word:

define syntax ";

unless isword(readitem() ->> pop_expr_item) then

mishap(pop_expr_item, 1, 'IQW: INCORRECT QUOTED WORD')

endunless;

pop11_need_nextitem(""") -> ;

sysPUSHQ -> pop_expr_inst

enddefine;

The second is a simpli�ed version of the

00

(

00

syntax operator, illustrating how push in-

structions, etc generated in phase 1 of pop11 comp prec expr are re-interpreted in phase 2 as

procedure calls. It also demonstrates how a syntax operator, by testing for pop11 EMPTY ,

can behave di�erently depending on whether it opens an expression or not:

define syntax -1 (;

dlocal popclosebracket = ")";

if pop_expr_inst == pop11_EMPTY then

;;; starts expression -- just compile parenthesised stmnt seq

pop11_comp_stmnt_seq();

pop11_FLUSHED -> pop_expr_inst

elseif pop_expr_inst == sysPUSH then

;;; re-interpret push as call of identifier

pop11_comp_expr_seq();

sysCALL -> pop_expr_inst

elseif pop_expr_inst == sysPUSHQ then

;;; re-interpret as call of quoted structure

pop11_comp_expr_seq();

sysCALLQ -> pop_expr_inst

else

348CHAPTER 15. INWHICHWEACHIEVE SUCH INTIMACYWITH THE POP COMPILER THAT ITWILL DOODD JOBS FOR US.

;;; call of whatever's on the stack

pop_expr_inst(pop_expr_item); ;;; flush it

sysPOP(sysNEW_LVAR() ->> pop_expr_item); ;;; save in temp lvar

pop11_comp_expr_seq();

sysCALL -> pop_expr_inst

endif;

;;; check for closing bracket

pop11_need_nextitem(")") ->

enddefine;

15.12 Obsolete Forms

The following table lists names for the compiler procedures which are now obsolete, but may

be found in library programs.

sysloop pop11_loop_start

systxcomp pop11_comp_expr_to

systxsqcomp pop11_comp_stmnt_seq_to

sysnlabel sysNEW_LABEL

sysnvariable ----

Chapter 16

The Virtual Machine

NOTES

How about calling it the PVM = POP VM.

pop optimise - seems a bit makeshift

pop as mode - what do we say about this?

lib foreach uses a lot of obsolete procedure names. I have listed them in a table against

their new counterparts, but am concerned about the status of sysnvariable. In general this

library �le looks a bit out of date.

16.1 Introduction to the VM

This Chapter describes the POP virtual machine (VM) in detail. As well as being used

for the implementation of POP-11, the VM has also been used, within POPLOG, as the

basis of implementations of Common Lisp[?], Prolog[?] and ML[?]. As a consequence, the

perspective of the chapter encompasses the implementation of various languages.

349

350 CHAPTER 16. THE VIRTUAL MACHINE

You will recall from previous references to the VM, especially in Chapter 2 that POP

programs are translated into operations on a stack: these are the operations of the VM.

Subsequently the VM operations may be translated into actual machine code | this is done

in the POPLOG system. Translating into machine code could be simple were the target

machine to provide suitable operations on a stack. However few machines can be optimally

programmed using just stacking operations, and so the process of producing machine code

to correspond to a particular sequence of VM instructions will involve a certain amount of

optimisation. How VM code is translated into machine code is not treated in this chapter.

The standard way of creating VM code is to make use of a set of POP procedures. Some

of these procedures plant an instruction to perform an operation on the stack. For example

sysPUSH(W) plants code to push the value of the identi�er associated with the word W

on the stack, and sysCALL(W) plants code to execute the value of the identi�er associated

with the word W , sysPUSHQ(O) plants code to push any object O on the stack. Thus the

POP sequence f(x; 2)! z; is translated into VM code by executing:

sysPUSH("x");

sysPUSHQ(2);

sysCALL("f");

sysPOP("z");

Note that this sequence of procedure calls is made by the POP compiler, and results

in the creation of code, which will then be obeyed when the procedure of which the POP

sequence f(x; 2)! z is part is called.

You can make the POPLOG system print out the code it is generating in this case by

loading lib showcode; and setting the variable pop show code to true. You will get a print

out for the above sequence as follows:

PUSH x

PUSHQ 2

CALL f

POP z

As well as procedures like those above which tell the VM to plant code to execute a POP

16.1. INTRODUCTION TO THE VM 351

expression sequence, there are procedures which are used to tell the VM to start compiling

a new procedure, or to �nish up the procedure it has been compiling, or to allocate space

for variables. If you simply want to use the VM for writing macros or syntax procedures you

may not need to know all of these.

These procedures are described in section 16.3, under the following headings:

� 16.3.1 Compiler Control Instructions and Variables: these are procedures which tell

the VM to start compiling a new procedure, �nish compiling the current one, etc. The

variables a�ect certain aspects of the operation of the compiler.

� 16.3.2 Identi�er Declarations: these procedures are used to declare variables, both

permanent and lexical, and to give them the attributes discussed in Chapter 5 and

Chapter 2.6.1.

� 16.3.3 Compile-Time Assignment: this treats the creation of procedure identi�ers and

their initialisation, as required by a procedure de�nition. (See Chapter??).

� 16.3.4 Dynamic Local Expressions: this is used in providing the kind of local variables

and expressions discussed in Chapter 2.6.1.

� 16.3.5 User Stack Manipulation: these are procedures which plant the code which

pushes variables and constants on the stack, pops them o�, etc..

� 16.3.6 Procedure Calling: these are procedures which plant the code to call procedures

and their updaters, including constant procedures, and procedure expressions.

� 16.3.7 Labels and Jump Instructions: these are procedures which plant code used in

implementing iterations, conditionals and goto instructions, which are described in

Chapter 2.12.

� 16.3.8 Accessing/Updating Data Objects: these are procedures which plant in-line,

non type-checking code to access �elds of data-objects.

The chapter ends with a sections which describe important aspects of the operation of

the VM in more detail, and with an example of its use.

� 16.5: this section describes in general how lexically scoped variables will actually be

implemented in the �nal output code.

352 CHAPTER 16. THE VIRTUAL MACHINE

� 16.6: this section discusses the implemention of jumps out of the procedure in which

the jump command occurred.

� More On Dynamic Local Expressions: this section discusses the how expressions which

are saved on entry to and restored on exit from a procedure are treated, especially with

reference to abnormal exits from a procedure.

� An example of the use of the VM code planting instructions: this section contains the

POP implementation of the foreach syntax command.

� A history of the POP VM: this section describes how the POP VM has evolved since

the 1960's

In order to implement the Prolog language, the POP VM has been extended. These

extensions are described in Chapter 26.6.

16.2 What the VM assembler actually does.

Compilation of user procedures in POP is e�ected by constructing a list of POP Virtual

Machine (VM) instructions from the source code, using the code-planting procedures de-

scribed in section 16.3. When this list is complete for a single user procedure, it is assembled

machine code in a POP procedure record. This happens whenever sysENDPROCEDURE

is called. Languages other than POP, which are implemented using the POP VM are treated

in the same way. For example, the POPLOG Prolog implementation creates a procedure

record for each arity of a given predicate name.

The procedures which plant each type of VM instruction are given in section 16.3. Com-

pilers which use these procedures should always commence code-planting for a new �le or

input stream by calling sysCOMPILE, described in section 16.3.1. Note that planting of

VM code can be `turned o�' by setting the variable pop syntax only to true.

16.3. THE VM PROCEDURES AVAILABLE TO THE USER 353

16.3 The VM procedures available to the user

This section describes all of the procedures the user has available to plant VM code, and tell

it to create procedures and declare variables.

16.3.1 Compiler Control Instructions and Variables

sysCOMPILE(P

compile

)

This procedure should be called when compilation of a new �le or input stream is to begin.

Its action is to re-initialise the VM context to execute level, setting popexecute (see section

16.3.1) to true, and to apply the procedure P

compile

, which should be the user's compilation

routine, i.e. the thing which will actually compile code and plant VM instructions. In general

P

compile

will be a closure which has the �le frozen into it (see 2.25.1). The virtual machine

compiler maintains a number of global variables which record the current code-planting

context. These include the variable popexecute, the stack of procedures being constructed,

the lexical variable context, etc. The procedure sysCOMPILE has all these variables

as locals. By applying P

compile

through sysCOMPILE, nested compilation streams are

thus properly distinguished, and exiting through the call of sysCOMPILE will recover the

previous context.

sysEXECUTE()

This procedure executes any instructions currently planted at execute level, i.e. when

not inside any procedure and popexecute is true. Recall that a call of sysCOMPILE

establishes a new execute level. N.B. If there are any lexical constants which are still waiting

for an assignment with sysPASSIGN , the code will not actually be executed until these

assignments are completed.

sysPROCEDURE(O

props

; n

args

)

This procedure starts code generation for a new procedure. It stacks up the code list for any

procedure currently being compiled, to be restored after a sysENDPROCEDURE. The

variable popexecute is set false. When the procedure record is produced, it will have the

354 CHAPTER 16. THE VIRTUAL MACHINE

object O

props

as its pdprops and the integer n

args

as its pdnargs.

sysENDPROCEDURE()! P

0

This procedure causes the procedure for which code is currently being generated to be

produced as a procedure object P

0

, with pdprops and pdnargs as speci�ed by the arguments

to sysPROCEDURE. P

0

is returned as result, and the code list stacked up by the last

sysPROCEDURE is restored to be the current codelist. popexecute is restored to its value

before the previous sysPROCEDURE.

Note that P

0

will be an actual executable procedure record only in the case where the

procedure does not use any non-top-level lexical variables non-locally, and does not employ

any non-local jumps. Otherwise it will be a `procedure compilation object' which must be

passed to sysPASSIGN , sysPUSHQ or sysCALLQ, detailed later in this section.

sysEXEC OPTION COMPILE(P

compile

)

This procedure runs the compiler procedure P

compile

, of no arguments, with option of execut-

ing the code planted: I.e. it does P

compile

()! O, and if O 6= false, any code which P

compile

planted is detached from the procedure being currently compiled and immediately executed.

popexecute

This boolean variable is true when the current invocation of the VM through sysCOMPILE

is at execute level, and false when code is being planted inside a procedure.

pop syntax only

If this variable is true planting of VM code is suppressed. That is to say, code planting

procedures do nothing, and sysENDPROCEDURE merely returns identfn. Declarations,

e.g. as performed by sysSY NTAX, are still e�ective, although these too can be turned o�

by making pop syntax only have an integer as its value. Not surprisingly, the default value

of this variable is false.

16.3. THE VM PROCEDURES AVAILABLE TO THE USER 355

pop vm flags

Flag bits in this integer variable control certain aspects of the virtual machine's operation.

These are de�ned in

UNIX : pop=lib=include=vm flags:ph

VMS : [pop:lib:include]vm flags:ph:

pop optimise

When true, this boolean variable causes the VM compiler to make extra optimisations in the

code for compiled procedures. This will slow down compilation a little. This variable will

eventually be replaced by a set of compiler optimisation options: for now, set it true when

you want your code to be as fast as possible Note that this variable is local to sysCOMPILE,

and so has to be set true inside each call of that procedure.

pop pas mode

This variable is used by the system compiler POPAS. For system use only.

16.3.2 Identi�er Declarations

sysSY NTAX(W;O

idprops

; b

const

)

This procedure declares the word W to be a permanent identi�er with identprops(W) =

O

idprops

in the current section. If the boolean b

const

is true, the word is made a constant,

otherwise not. However the treatment of constants is a�ected by the variable popconstants

described in section 16.3.2. Permissible values for O

idprops

are those given in Chapter 5.3.5,

for the result of the procedure identprops, except that

00

undef

00

is not allowed.

To declare an active variable, O

idprops

may also be a pair whose front is any of the above

identprops values, and whose back is the active multiplicity. For an ordinary untyped variable

(identprops(W) = 0), the multiplicity may be an integer in the range 0{255; for any other

identprops(W), it must be 1. The b

const

argument in this case refers to the constancy or

356 CHAPTER 16. THE VIRTUAL MACHINE

otherwise of the nonactive procedure value of the identi�er | its active value(s) are always

variable.

If W was previously unde�ned, its valof is initialised to a newly-created undef record

whose undefword is W .

sysGLOBAL(W)

This procedure marks the permanent identi�er currently associated with W as global, that

is, to be automatically imported into any subsection of a section in which it is accessible.

Note that the term global in this sense is slightly misleading since so marking an identi�er

does not imply that it is exported to top or any other level, merely that it will `sink' down

the section tree from the highest level at which it is accessible. See Chapter 13.

popconstants

If this boolean variable is true, as it is by default, then sysSY NTAX actually produces

permanent constants, but if false then all constant declarations are treated as variables.

Note that this variable does not a�ect lexical constants.

sysV ARS(W;O

idprops

)

This procedure is used by the POP-11 vars statement, this procedure at execute level is the

same as sysSY NTAX(W;O

idprops

; false).

When not at execute level, it should produce a mishap. However, for compatibility with

the old-style use of vars statements inside POP-11 procedures to simultaneously declare and

dynamically localise a permanent variable, its e�ect is roughly similar to

sysSY NTAX(W;O

idprops

; false);

sysLOCAL(W)

although it is not guaranteed to work properly in all situations particularly with active

variables. You are not advised to use it in this way: if you wish to declare and/or dynamically

localise a permanent variable, use sysSY NTAX and/or sysLOCAL.

16.3. THE VM PROCEDURES AVAILABLE TO THE USER 357

sysCONSTANT (W;O

idprops

)

Used by the POP-11 constant statement, the call of this procedure has the same e�ect as

sysSY NTAX(W;O

idprops

; true)

but produces the mishap `CONSTANT DECLARATION INSIDE PROCEDURE' if not at

execute level.

sysLV ARS(W;O

idprops

)

sysDLV ARS(W;O

idprops

)

These procedures declare the wordW as a lexically-scoped variable, either local to the current

compilation stream if at execute level, or local to the procedure for which code is currently

being planted if not. For the duration of the compilation stream/procedure, including all

enclosed procedures, any permanent declaration for W is overidden. The sysCOMPILE or

sysENDPROCEDURE which terminates the scope cancels the declaration and no further

reference to the variable is possible. W must not have been declared as a dynamic local of

the current procedure. The O

idprops

argument is the same as for sysSY NTAX, but with

the restriction that procedure-local syntax, syntax operator and macro declarations are not

allowed, i.e. these are permissible only at execute level. This is because procedure local

variables cannot take compile-time values, and therefore don't make sense as syntax words

or macros. The restriction does not apply to sysLCONSTANT. Top-level lexical variables,

that is those declared at execute level, are initialised to a �xed undef record whose undefword

is false, and which prints as < undef >. Procedure-local variables, on the other hand, are

not initialised: on entry to a procedure, their values are unde�ned.

Full lexical scoping is supported; you can reference W anywhere inside the current pro-

cedure or non-locally inside a nested one. See the discussion below in section 16.5, which

also explains the di�erence between lvars and dlvars

The
ag bit VM MIX NONLOCAL AND LOCAL LEX in pop vm flags controls

whether a procedure is allowed to �rst access a lexical identi�er W while it is non-local, and

then redeclare it as local. If set then this allowed, and subsequent references to W will get

the local value; otherwise, attempting to do this will cause a mishap.

sysDLV ARS is identical to sysLV ARS, except that the most general mechanism for

implementing non-local access to the lexical variable W is disabled. See section 16.5.

358 CHAPTER 16. THE VIRTUAL MACHINE

sysLCONSTANT (W;O

idprops

)

This procedure declares the word W to be a lexically-scoped constant, either local to the

current compilation stream if at execute level, or local to the procedure for which code is

currently being planted if not. The scope of a lexical constant is the same as for a lexical

variable; the O

idprops

argument is as for sysSY NTAX, with no restrictions.

A lexical constant is assigned a value with sysPASSIGN . This must happen somewhere

within its scope, but need not be done before referencing it, perhaps in a call of sysPUSH,

sysCALL, etc.

Note that, in contrast to permanent constants, it is perfectly permissible to have nested

de�nitions for lexical constants, although at each level only one de�nition of each lexical

constant is allowed.

sysNEW LV AR()! W

This procedure is used to generate temporary working local variables. W is a word, declared

as a lexical local of the current procedure, which is guaranteed to be di�erent from any other

used so far in that procedure or in any enclosing procedures.

pop new lvar list

This is a dynamic list that generates the words produced by sysNEW LV AR. Making it

dynamically local to a procedure that calls sysNEW LV AR and plants code will mean that

on exit from the procedure, any temporary variables generated will be freed for re-use.

sys current ident(W)! Id

Given a word W ,this procedure returns the (lexical/permanent) identi�er record currently

associated with W , or false if W is not declared. The identi�er returned is the compile-

time record, i.e. for procedure-local lexical variables it will be a lextoken identi�er and not

necessarily the same as the run-time identi�er that would be produced by sysIDENT . For

further information on identi�ers, see Chapter 5.3.

sysdeclare(W)

Those code-planting procedures which take as argument a word declared as an identi�er (e.g.

16.3. THE VM PROCEDURES AVAILABLE TO THE USER 359

sysPUSH) will call this procedure if given an undeclared W . sysdeclare is then expected

to declare W appropriately, otherwise a mishap results. The default value of this procedure

is approximately as follows:

define vars sysdeclare(word);

lvars word;

sys_autoload(word) -> ;

if identprops(word) == "undef" then

sysSYNTAX(word, 0, false);

prwarning(word)

endif

enddefine;

I.e. �rst try to autoload W as described in Chapter 14.3, then if this doesn't declare

W as a permanent identi�er, declare W as a permanent variable and call the prwarning

procedure, described in Chapter 4.5.

To make sysdeclare is user assignable, it sysunprotect should be used as described in

Chapter 5.3.7.

16.3.3 Compile-Time Assignment

sysPASSIGN(P;W)

! sysPASSIGN(P;W)

This procedure `assigns' P to be the value of the identi�er represented by the word W ,

where P is a procedure or a `compilation object' produced by sysENDPROCEDURE.

The assignment is done in the following way:

1. IfW is declared as a lexical constant, then P is simply assigned to it. In this case only,

P may be any object at all, not just a procedure. W must not have been assigned a

value previously.

360 CHAPTER 16. THE VIRTUAL MACHINE

2. If popexecute is false, i.e. if a procedure is currently being compiled, then code is

planted to pop the procedure into the variable at run-time, i.e.

sysPUSHQ(P); sysPOP (W);

3. Otherwise, P is simply assigned directly to the value of W , unless the current value of

W is a procedure P

2

, in which case:

(a) If P

2

has an updater, and P has not, then the updater of P

2

is assigned to be the

updater of P ;

(b) If P

2

is a closure of systrace, i.e. P

2

is a traced procedure, then the appropriate

�eld of the closure is updated with P , thus ensuring that the procedure continues

to be traced.

The updater of this procedure is sysUPASSIGN ; note that in both sysPASSIGN

and sysUPASSIGN the current value of the identi�er is accessed/updated using idval,

meaning that if W is an active variable the value will be got or sent through calls of

its nonactive procedure value. To reference the nonactive value directly, the second

argument to these procedures may be a `nonactive pair', as described under sysPUSH

below.

sysUPASSIGN(P;W)

This procedure `assigns' P to be the updater of the value of the identi�er associated with

W , as follows:

1. If W is declared as a lexical constant, then it must have had a procedure, or a `com-

pilation object' resulting from sysENDPROCEDURE, already assigned to it with

sysPASSIGN . P is simply made the updater of this.

2. If W is not a lexical constant, then, unless popexecute is true, the following code is

generated:

sysPUSHQ(P), sysPUSH(W);

sysUCALL("updater");

Note that this will only produce a proper local updater if W is local to the current

procedure, and has had a local procedure assigned to it | otherwise the updater will

be changed non-locally!

16.3. THE VM PROCEDURES AVAILABLE TO THE USER 361

Otherwise, if the current value of W is a procedure P

2

then P is assigned to the

updater of P

2

, unless P

2

is traced (i.e. a closure of systrace), in which case P replaces

the previously traced updater of P

2

. If the current value of W is not a procedure,

then a procedure which will produce the mishap `ONLY UPDATER DEFINED' when

applied is made its value, and P is made the updater of this.

In both sysPASSIGN and its updater the current value of the identi�er is accessed/updated

using idval, meaning that if W is an active variable the value will be got or sent through

calls of its nonactive procedure value. To reference the nonactive value directly, the sec-

ond argument to these procedures may be a `nonactive pair', as described under sysPUSH

below.

16.3.4 Dynamic Local Expressions

sysLOCAL(P

code

)

sysLOCAL(W)

This procedure enables the value, or values, produced by an arbitrary expression to be made

dynamically local to the procedure for which code is currently being planted, as described in

Chapter 2.6.1. `Dynamically local' in this context means that the value(s) of the expression

will be saved on each entry to the procedure and the saved value(s) restored on each exit.

This applies in all contexts, including abnormal exits from procedures and the suspension

and resumption of processes created with consproc. The expression must have an access part

and an update part, the two parts being represented respectively by the base and updater

of the code-planting procedure argument P

code

. That is, P

code

() is assumed to plant VM

code to access the value(s) and push them on the stack, while ! P

code

() is assumed to plant

code to update them by popping an equal number of objects o� the stack. The number m

of values produced/updated is called the multiplicity of the expression, and is speci�ed by

the pdprops of P

code

(an integer in the range 0{255). Making the values dynamically local

is thus achieved by incorporating the access code and update code at appropriate points in

the procedure, and by allocating m local lvars in which to save the values. E�ectively this

can be thought of as

362 CHAPTER 16. THE VIRTUAL MACHINE

< accesscode >! save

m

! save

m�1

! : : :! save

1

on entry to the procedure, and

save

1

; save

2

; : : : ; save

m

! < updatecode >

on exit. This is treated in more detail in section 2.6.1 below.

Calling sysLOCAL with a word argument W (or `nonactive pair') is functionally iden-

tical to

sysLOCAL(sysPUSH(%W%))

with the pdprops of the sysPUSH closure set to 1 (or, for an active variable, to its

multiplicity). That is, the expression is just the value of the identi�er currently associated

with W . However, since the dynamic localising of simple non-active identi�ers is handled

specially, sysLOCAL(W) produces much more e�cient code than the above.

dlocal context

dlocal process

These are two active variables which may only be used directly inside the code of a dynamic

local expression. They are described in section 16.3.4.

16.3.5 User Stack Manipulation

sysPUSH(W)

! sysPUSH(W)

16.3. THE VM PROCEDURES AVAILABLE TO THE USER 363

This procedure plants code to push the value of the (lexical/permanent) identi�er associated

with the word W onto the stack. Note that this is optimised to a sysPUSHQ for the value

of an initialised constant.

If W is an active variable then this instruction is equivalent to sysCALL(W) for the

nonactive value of W . To access the nonactive value of an active variable, the argument to

this procedure may alternatively be a `nonactive pair', i.e. a pair of the form

conspair(W, "nonactive")

The updater of this procedure is sysPOP .

sysPOP (W)

This procedure plants code to pop the top object from the stack and store it in the value of

the identi�er associated with the word W . If W is an active variable then this instruction is

equivalent to sysUCALL(W) for the nonactive value of W . To update the nonactive value

of an active variable, the argument to this procedure may alternatively be a nonactive pair,

as above.

sysIDENT (W)

This procedure plants code to push the run-time identi�er record for W onto the stack. You

should see the note under sys current ident in section 16.3.2 and also section 16.5.

sysPUSHQ(O)

This procedure plants code to push the object O onto the stack.

sysPUSHS(O

dummy

)

This procedure plants code to push the top object onto the stack onto the stack again, i.e

duplicate it. This procedure is given a dummy argument O

dummy

.

364 CHAPTER 16. THE VIRTUAL MACHINE

sysERASE(O

dummy

)

This procedure plants code to erase the top object on the stack. This procedure is given a

dummy argument O

dummy

.

sysSWAP (n;m)

This procedure plants code to swap the objects at the n-th and m-th positions on the user

stack. The indexing of the stack for this purpose starts with the top object on the stack

having index 1.

16.3.6 Procedure Calling

sysCALL(W)

! sysCALL(W)

This procedure plants code to execute the value of the (lexical/permanent) identi�er as-

sociated with the word W . Note that this is optimised to a sysCALLQ for the value of

an initialised constant. If W is an active variable then this instruction is equivalent to

sysCALL(W) on the nonactive value of W , followed by sysCALLS. To call the nonactive

value of an active variable, the argument to this procedure may be a nonactive pair, as for

sysPUSH. The updater of this procedure is sysUCALL.

sysUCALL(W)

This procedure plants code to execute the updater of the value of identi�er. It is optimised to

! sysCALLQ for an initialised constant. If W is an active variable then this instruction is

equivalent to sysCALL(W) on the nonactive value, followed by sysUCALLS. To updater-

call the nonactive value of an active variable W , the argument to this procedure may be a

nonactive pair as for sysPUSH.

sysCALLQ(O)

! sysCALLQ(O)

16.3. THE VM PROCEDURES AVAILABLE TO THE USER 365

This procedure plants code to execute the object O. The updater of this procedure is

sysUCALLQ.

sysUCALLQ(O)

This procedure plants code to execute the updater of O, or execute O in update mode if it

is a non-procedure | i.e. call the updater of its class apply, etc.

sysCALLS(O

dummy

)

! sysCALLS(O

dummy

)

This procedure plants code to pop and execute the object on top of the stack; the procedure

takes a dummy argument O

dummy

. The updater of this procedure is sysUCALLS.

sysUCALLS(O

dummy

)

This procedure plants code to execute the updater of the object, or execute the object in

update mode, etc; the procedure takes a dummy argument O

dummy

.

16.3.7 Labels and Jump Instructions

A label is an object used for referencing a position within the stream of VM code, and which

can be speci�ed as the target of jump instructions like goto, ifso, and, etc; a label is attached

at a given position in the code by calling sysLABEL (or sysDLABEL) at that point.

A jump instruction may reference a label anywhere in the procedure for which code is

currently being planted (a local jump), or anywhere in an outer, enclosing procedure (a

non-local jump). In the latter case, the e�ect is similar to a call of exitto for the target

procedure occurring at the point of the jump, followed by a local jump to the label. The

implementation of non-local jumps is described in section 16.6.

Labels come in two kinds, symbolic and absolute. Symbolic labels are chosen by the user,

and are usually words, although they can in fact be any POP objects except pairs; this type

366 CHAPTER 16. THE VIRTUAL MACHINE

of label is lexically-scoped, meaning that a jump to a label Lab will reference the innermost

occurence of Lab in the whole nest of procedures currently being compiled. Equality of labels

is tested with ==. Absolute labels, on the other hand, are unique objects (pairs) generated

by sysNEW LABEL, and are not scoped at all. Jump instructions that refer to an absolute

label go to wherever that label is planted, be it in the current procedure or an enclosing one.

sysNEW LABEL()! Lab

This procedure generates a new absolute label Lab. This can be planted with sysLABEL

or sysDLABEL at any point in the code of a procedure, and referenced as the target of a

jump instruction.

sysLABEL(Lab)

sysDLABEL(Lab)

This procedure sets the label Lab to reference the next instruction planted, i.e. that

instruction will be the target of a goto, ifso, ifnot, and, or or go on instruction using lab,

as described above. sysDLABEL is a special variant of sysLABEL that allows optimisation

of non-local jumps { see section 16.6 below.

sysGOTO(Lab)

This procedure plants a instruction to jump unconditionally to the label lab, as e.g. required

by the POP goto command.

sysIFSO(Lab)

This procedure plants an ifso instruction: this will jump to the label Lab if the top object

on the stack is not false, removing it from the stack whether the jump is taken or not. See

sysLABEL above for a description of labels.

sysIFNOT (Lab)

This procedure plants an ifnot instruction which will jump to the label Lab if the top object

16.3. THE VM PROCEDURES AVAILABLE TO THE USER 367

on the stack is false, removing it from the stack whether the jump is taken or not.

sysAND(Lab)

This procedure plants an and instruction which will

� jump to the label Lab if the top object on the stack is false, leaving the object on the

stack;

� remove the object from the stack otherwise.

sysOR(Lab)

This procedure plants an or instruction which will

� go to the label Lab if the top object on the stack is not false, leaving the object on

the stack;

� remove the object from the stack otherwise.

sysGO ON(L

lab

; Lab

else

)

This procedure plants a go on instruction which will

� Take an integer i o� the stack;

� If 1 � i � length(L

lab

), then jump to the i-th label in the label list L

lab

;

� If i is not within range and the else label Lab

else

is false then a mishap results,

otherwise a jump to Lab

else

is taken.

A mishap will also result if i is not an integer.

368 CHAPTER 16. THE VIRTUAL MACHINE

16.3.8 Accessing/Updating Data objects

The VM provides two instructions for referencing a speci�c �eld of an object of speci�c type.

These are:

sysFIELD V AL(i

field

; O

spec

)

This instruction assumes that, at run-time, there is an object of type O

spec

on top of

the user stack. O

spec

may be any record or vector type key object or key speci�cation.

sysFIELD V AL plants inline, non type-checking code to push the component of the object

speci�ed by i

field

onto the user stack. E.g. the sequence of instructions

sysPUSH("list");

sysFIELD_VAL(2, [full full])

is equivalent to applying fast back to list.

sysUFIELD V AL(i

field

; O

spec

)

This instruction assumes that, at run-time, there is an object of type O

spec

on top of

the user stack. O

spec

may be a record or vector type key object or key speci�cation.

sysUFIELD V AL plants inline, non type-checking code to assign the object second from

the top of the stack into the �eld of the object speci�ed by i

field

. E.g. the sequence of

instructions

sysPUSH("object");

sysPUSH("list");

sysUFIELD_VAL(2, [full full]);

is equivalent to applying the updater of fast back to object and list.

16.4. IMPLEMENTATION OF PROCEDURES 369

16.4 Implementation of Procedures

Although there are di�erent types of procedures, all can be structured in such a way that

they can be executed by the same protocol, namely `extract the address of the executable

code and transfer control to it'. In addition, all procedures have an updater �eld, which may

possibly hold another procedure, to be run when the base procedure is executed in update

mode, and a pdprops �eld, which usually contains the procedure name.

This said, there are two basic types of procedure: `proper' procedures and closures. A

proper procedure is one that maintains an environment of local variables, which may be

lexical or dynamic or both, and that creates a stack frame on the call stack. As well as

containing local variable values, the stack frame holds the address of the procedure of which

this is an invocation | the `owner' of the frame, and the return address into the caller

procedure. Most proper procedures are created by the POP Virtual Machine from code

planted by compilers.

A closure is an object which combines a procedure (its pdpart) with zero or more argument

values (its frozvals). The executable code inside a closure loads the frozen values onto the

user stack and then executes the pdpart procedure, which may in its turn be another closure

or a proper procedure. Unlike a proper procedure, a closure does not maintain local variables

or a call stack frame. Closures are created by partapply.

In addition, special forms of both types of procedure are created by various system

facilities. newanyarray for example, creates proper procedures that are distinguishable

as arrays (see 10), and newproperty and newanyproperty create closures that represent

properties (see Chapter 11.3).

16.5 Implementation of Lexical Scoping

This section describes the way in which lexically-scoped variables declared with sysLV ARS

will actually be implemented in the �nal output code. Top-level lexical variables, i.e. those

declared at execute level, simply translate to unique permanent identi�ers, which become

anonymous when the �le in which they occur has been compiled. Thus, while being lexical

370 CHAPTER 16. THE VIRTUAL MACHINE

in scope, they are stored in the same way as permanent variables, as discussed in Chapter 5.

On the other hand, a lexical variable W declared inside a procedure P falls into one of

three categories, depending on its usage:

� type 1

Used strictly locally, i.e. W is not referenced non-locally inside any procedure nested

within P, and is not pushed as an identi�er with sysIDENT .

� type 2

Used non-locally inside a nested procedure P

2

, but does not cross a `push' boundary.

By this we mean that neither P

2

nor any other procedure that encloses it inside P is

pushed as a data object (see below). Also not pushed as an identi�er with sysIDENT .

� type 3

Used non-locally inside a nested procedure, and does cross a `push' boundary, or di-

rectly pushed as an identi�er with sysIDENT .

A procedure is `pushed as a data object' if the object returned by sysENDPROCEDURE

is given to sysPUSHQ, or sysPASSIGN 'ed to any identi�er other than a lexical constant.

If assigned to a lexical constant, it is also `pushed' by any sysPUSH for that constant. In

POP-11 terms, this means that the only kind of nested define that does not count directly

as a `push' is define lconstant : : :.

Thus for example, in the following POP-11 procedure, the lexical variable w is of type 1,

x is of type 2, and y and z are of type 3:

define P();

lvars w x y z;

w => ;;; w only used locally

define lconstant P_2();

x => ;;; x used non-locally

enddefine;

P_2(); ;;; P_2 is called but not pushed

16.5. IMPLEMENTATION OF LEXICAL SCOPING 371

define lconstant R();

define lconstant S();

y => ;;; y used non-locally

enddefine;

S(); ;;; S is called but not pushed

enddefine;

R -> w; ;;; but R is pushed

define vars T(); ;;; T is pushed by being "vars"

z => ;;; and it uses z non-locally

enddefine;

enddefine;

The di�erent variable types are implemented by the following mechanisms, given in order

of decreasing e�ciency:

� The �rst n type-1 variables, in order of declaration, are allocated to machine registers.

The number n is implementation dependent, but in all current systems is 2.

� The rest of the type-1's are allocated to stack frame cells.

� Type-2 variables are allocated to unique dynamically local identi�ers.

� Type-3's require the run-time construction of identi�er records in the heap to hold

their values, since a `pushed' procedure that uses them non-locally (or the identi�ers

themselves if pushed with sysIDENT) can be passed either

1. up and right out of the current lexical environment, or

2. down into another invocation of that same environment.

They use stack frame cells initialised to hold identi�ers, these being created on entry to

the home procedure and passed down as hidden extra arguments to nested procedures

that use them non-locally. Whenever such a procedure is `pushed', a closure of the

base procedure with the run-time identi�er arguments is created and in addition, an

auxilary variable is generated to hold the closure, ensuring that it is only produced

once for each invocation of the environment. This variable itself may come out as

any of the three types, depending on whether it is used non-locally or across a push

boundary.

372 CHAPTER 16. THE VIRTUAL MACHINE

In fact, providing neither (a) nor (b) actually happens for a type-3, a unique dynamic variable

(as for type-2 variables) would su�ce; the VM compiler is unable to recognise this, but the

user may be able to in many situations. For this reason the sysDLV ARS declaration is

provided: this is identical to sysLV ARS, except that type-3 sysDLV ARS are forced to be

type-2's.

A typical use of this in POP-11 would be something like the following procedure to count

the number of characters printed for an object:

define countchars(x) -> n;

lvars x; dlvars n;

define vars cucharout();

-> ; ;;; erase the character

n+1 -> n ;;; increment non-local count

enddefine;

0 -> n;

pr(x)

enddefine;

On the other hand, it may be known that an individual `push' for a particular procedure

(or a push of an identi�er with sysIDENT) does not necessitate the use of type-3 variables.

E.g. in

applist([1 2 3 4], P)

where P is a procedure that uses non-locals, (1) or (2) cannot happen because applist is

a system procedure that can never do either with P .

Where this sort of information is known to the compiler writer, the
ag

VM DISCOUNT LEX PUSHES

in pop vm flags can be employed. While set, sysPUSH, sysPUSHQ and sysIDENT

instructions that would otherwise cause variables to be marked as type-3 will not do so.

16.6. IMPLEMENTATION OF NON-LOCAL JUMPS 373

However, any other sysPUSH or sysPUSHQ on the relevant procedure while this
ag is

not set will cause the `damage' to be done, irrevocably.

In fact, the VM compiler does recognise this situation when the pushed procedure is the

last argument to one of a small number of system procedures: currently, these are just the

`app' procedures applist, maplist, appdata and appproperty. So, the particular example

above will not in itself cause the production of type-3 variables.

16.6 Implementation of Non-Local Jumps

A non-local jump from a procedure P

2

to a label in a lexically-enclosing procedure P closely

parallels a non-local access to a lexical variable; if we think of the label as being a variable,

and the jump instruction as an access to it, then what matters from the point of view of

how the jump is implemented is whether the label is 'type-3' or not | that is, whether it

crosses a push boundary.

In the case where it does not, the nested procedure P

2

can only be called directly from

within P or some other directly-called sub-procedure of P . This means that there cannot be

any other intervening call of P between the call of P

2

and the target stack frame; to unwind

the call stack to the correct call of P it is therefore su�cient to do exitto(P). Moreover, it

can safely be assumed that the target call of P is still extant, obviating the need to run up

the call stack to check this �rst.

When the jump does cross a push boundary this is not su�cient, because P

2

can now

have been passed down into other invocations of P (or indeed right out of P altogether),

and there there could be any number of intervening calls of P to be erased before reaching

the target. A means of identifying di�erent invocations of P is therefore required, and the

system does this as follows:

For each procedure P that can be the target of a non-local jump across a push boundary,

a unique dynamic variable is generated, and made a local of P ; on entry to P , the value

of this variable is set to a sequentially-generated integer, which will be unique for each call

of P . The identifying integer is then passed down, like a type-3 lvar, as an extra, hidden

argument to pushed sub-procedures that jump to P , enabling them to identify which call

374 CHAPTER 16. THE VIRTUAL MACHINE

of P to exit to, by inspecting the current value of the dynamic variable. In addition, this

type of jump has �rst to inspect the saved values of the variable on the call stack to check

that the target call is still extant. It is therefore slightly slower than the �rst type, and, as

with a type-3 lvar, pushing a sub-procedure that does such a jump requires the creation of

a closure.

Again as with lvars, the user may know that a pushed procedure doing a non-local jump

will in practice require only the simple case, i.e. the target will always be extant, and there

will be no intervening calls of the same procedure. Analogously to sysDLV ARS, the VM

provides sysDLABEL to specify this: non-local jumps to a label planted with sysDLABEL,

rather than sysLABEL, will always use the simple mechanism, and pushing sub-procedures

doing the jumps will not create closures. In POP-11, you can use the label syntax

<label>:*

when sysDLABEL is appropriate.

16.7 More On Dynamic Local Expressions

As described under sysLOCAL, expression values are made dynamically local to a procedure

by incorporating the access code and update code for the expression at appropriate points,

and by the allocation of local lvars in which to save the values. This section describes the

process in detail.

The access code for an expression is actually incorporated at three places in a procedure,

and the update code at four places. As previously mentioned, the normal entry code for the

procedure contains

< accesscode >! save

m

! save

m�1

! : : :! save

1

;

Here save

1

; : : : ; save

m

are the local lvars allocated to the expression.

16.7. MORE ON DYNAMIC LOCAL EXPRESSIONS 375

The normal exit code contains

save

1

; save

2

; : : : ; save

m

! < updatecode >;

However, separate code sections are used for abnormal exit, (i.e. when the procedure is

exited with chain, chainfrom, exitfrom, etc.), and for swapping in and out of the procedure

when it forms part of a consproc process being resumed or suspended. For abnormal exit,

the expression code used is the same as for normal exit, i.e.

save

1

; save

2

; : : : ; save

m

!< updatecode >;

The procedures uspend and resume, on the other hand, are a little di�erent: in these

cases dynamic local values must be exchanged with their saved values. For process suspen-

sion, the current value is swapped with the saved value in the procedure stack frame before

that stack frame is saved in the process record; for resumption the opposite happens, i.e. the

values are swapped around after restoring the stack frame from the process, thus putting

everything back as it was before the process was suspended.

The code generated for each of these contexts is therefore an interleaving of the code for

entry and exit, i.e.

< accesscode >; save

1

; save

2

; : : : ; save

m

!< updatecode >;! save

m

! save

m�1

! : : :! save

1

;

for suspend, and

save_1, save_2, \ldots, save_m,

<access code> \rightarrow save_m \rightarrow

save_{m-1} \rightarrow \ldots \rightarrow save_1,

\rightarrow <update code>;

376 CHAPTER 16. THE VIRTUAL MACHINE

for resume.

To enable the access or update code to determine in which context it is being called, an

integer context value (1{4) is available via the special active variable dlocal context. This

variable may be referenced only in local expression code, and nowhere else. The contexts

and their applicablity are as follows:

value context applies to

1 normal entry access

normal exit update

2 abnormal exit update

3 $suspend$ access

update

4 $resume$ access

update

In the case of suspend and resume, the current process record is also available to the code

from the active variable dlocal process, with similar restrictions on its use. The value this

returns is de�ned only for contexts 3 and 4, and is unde�ned for the other two. Using

dlocal process enables the access or update code to manipulate the process undergoing

suspension or resumption in any desired way. Note that owing to consprocto, which uses

the suspend and resume mechanisms to create a process from an existing section of the call

stack, the process given by dlocal process is not necessarily the same as pop current process.

Having dealt with the code generated for individual local expressions, we now discuss

the overall handling of a complete set of n expressions in a given procedure, declared with

sysLOCAL in the order 1 to n:

Basically, expressions are executed in declaration order (1 upto n) for `ingoing' contexts

(normal entry and resume), and in the reverse order (n down to 1) for `outgoing' contexts

(normal/abnormal exit and suspend). However, a prime constraint is that the restore/update

code for any expression must not be run unless the corresponding access/save code has been

16.7. MORE ON DYNAMIC LOCAL EXPRESSIONS 377

executed �rst, since the latter must produce the values to be given to the former; because

a procedure can be interrupted during the execution of the access code for a particular

expression (or indeed, before any of the access code sections have been started), and because

such an interrupt can lead to an abnormal exit or a process suspend, it is incumbent on the

procedure to provide a mechanism that prevents this constraint being violated.

To this end, the procedure maintains a counter, or index, of expressions run. The index

is initialised to 0 immediately on entry and before interrupts can be serviced; thereafter,

for each ingoing context, the index is set to i after completing code for the i-th expression,

and for each outgoing context to j � 1 before starting code for the j-th expression. E.g., for

normal entry and exit:

0 -> index; ;;; before interrupts

normal entry normal exit

<save expr 1> LabN: N-1 -> index;

1 -> index; <restore expr N>

<save expr 2> .

2 -> index; .

. .

. Lab2: 1 -> index;

. <restore expr 2>

<save expr N> Lab1: 0 -> index;

N -> index; <restore expr 1>

Lab0:

The abnormal exit code is then similar to that for normal exit, except that it switches

to Lab

i

, where i is the value of the index; this prevents expressions being restored that have

not been saved. Notice also that it prevents a second or subsequent attempt to chain out of

the procedure from restoring expressions that have already been restored.

The procedures suspend and resume are rather more complicated: a suspend at a time

when the index has value i runs the swap code for expressions i down to 1, reducing the

index actually saved in the stack frame to 0, but the corresponding resume that will follow

it must undo only what the suspend did and no more, that is, run the swap code from 1

378 CHAPTER 16. THE VIRTUAL MACHINE

upto, and �nishing at, i. A suspend therefore starts by saving the current index in another

location: this is then the limit value for a subsequent resume. An additional complication

here is that both the suspend code and the resume code can themselves be interrupted by a

recursive suspend-and-resume under certain conditions, and so the code has to be re-entrant

to cope with this.

Finally, note that all local expression code is run inside the normal local-identi�er envi-

ronment of a procedure, i.e. expression entry code follows the creation of local lvars and

the saving of (non-active) dynamic local identi�ers, and expression exit code precedes the

unwinding of this environment. POP-11 users should also note that access code for dlocal ex-

pressions is run before popping procedure formal arguments from the stack, and that update

code is run after pushing formal result variables, etc.

I've done a lot of work to remove any assumption that the tag bits live in any particular

place, i.e. tests are always done in terms of an object being compound or simple (where simple

is further sub-divided into simple1 (integer) and simple2 (decimal). There is therefore no

direct reference to tag bits anywhere in the sysPOP code. (Though doubtless porting it to

a word-addressing machine would show up things I've missed in that respect.)

The �rst word of a procedure record contains a pointer to the start of its code. Apart

from anything else, this allows the code of a procedure to be separate from the procedure

record per se, although this isn't currently used. A procedure-type variable call thus goes

indirect through the �rst word. Calls of constant procedures have an o�set compiled into

the code.

16.8 An example of the use of the VM

In this section we will go through a complete example of a POPLOG library �le, namely

lib foreach. This allows you to take a speci�ed action for each member of the POP database

which matches a certain pattern. The database is described in Chapter ??. The syntactic

form is:

foreach <pattern> do <expression_sequence>

endforeach

16.8. AN EXAMPLE OF THE USE OF THE VM 379

For example, we might say:

foreach [brother ?x Elizabeth] do x=>

endforeach

which would print out every brother of Elizabeth, assuming her family were entered in

the data-base in that form.

The UNIX version of the library �le is given. The �le is given as it occurs in the POPLOG

system, except that we have broken it up to intersperse more description than exists in the

program text, and have commented in some line numbers.

It begins with a standard comment, which gives:

� The �le-name with a path starting at the environment variable $usepop, which is the

root of the POP system.

� The purpose of the �le, which is to de�ne a foreach construction

� The author(s).

� What documentation is available in the POPLOG on-line documentation system.

� Related �les, which de�ne similar constructs, or de�ne some of the data-objects used.

/* --- Copyright University of Sussex 1986. All rights reserved. ---

| File: $usepop/master/C.all/lib/database/foreach.p

| Purpose: performs action on all objects in

| daabase matching pattern.

| Author: A.Sloman S.Hardy 1982 (see revisions)

| Documentation: HELP * FOREACH

| Related Files: LIB * FOREVERY, * DATABASE

*/

380 CHAPTER 16. THE VIRTUAL MACHINE

Next, in the top-level, or root, section, the program is de�ned.

We begin by de�ning the procedure trynext. The lconstant construction is used to make

the procedure trynext unavailable to the user, except throught the foreach construction.

Note that this is not how this program would be developed. The lconstant construction is

inconvenient during debugging because you can't call the procedure independently, or even

trace it. And the procedures fast front and fast back are dangerous, so they should replace

front and back only when you are sure that the program is working correctly, and that no

user-errors can cause them to be applied to non-pairs.

The procedure takes as input a list, PL whose �rst member is a pattern, and whose

second member is a list of objects that are to be matched to the pattern. The procedure

iterates through the list of objects until it �nds one that matches the pattern. If it �nds

none, it returns false. If it does �nd an object that matches the pattern, it returns the

object, and modi�es the list PL, so that next time it is called it will start looking only at

the part of the list of objects it has not yet examined.

section ;

;;; TRYNEXT takes a possibilities list as argument

;;; It finds the next matching element and returns it, updating

;;; the list. If none is found it returns FALSE.

define lconstant procedure trynext(PL);

lvars P, L, PL;

fast_front(PL) -> P;

fast_back(PL) -> L;

until null(L) do

if fast_front(L) matches P then

fast_front(L) -> it;

fast_back(L) -> fast_back(PL);

return(true)

endif;

fast_back(L) -> L;

enduntil;

return(false);

enddefine;

16.8. AN EXAMPLE OF THE USE OF THE VM 381

Having de�ned the auxiliary procedure, we can now write the main syntax procedure

that will be called when the word foreach is encountered by the compiler.

;;; FOREACH pattern DO actions ENDFOREACH

;;;

;;; VARS %X;

;;; FETCH(pattern) -> %X;

;;; WHILE TRYNEXT(%X) DO actions ENDWHILE

;;;

global vars syntax endforeach;

lconstant _temp=popconstruct;

true -> popconstruct; ;;; make lists compile as constants

define global syntax foreach; ;;; fe1

lvars Var Lab Endlab _x; ;;; fe2

sysnvariable() -> Var; ;;; fe3

sysnlabel() -> Lab; sysloop(Lab); ;;; fe4

sysnlabel() -> Endlab; sysloopend(Endlab); ;;; fe5

sysVARS(Var,0); ;;; fe6

systxcomp([do then in]) -> _x; ;;; fe7

if _x == "in" then ;;; fe8

erase(systxcomp([do then])); ;;; fe9

sysCALLQ(nonop ::) ;;; fe10

else ;;; fe11

sysPUSH("database"); ;;; fe12

sysCALLQ(nonop ::) ;;; fe13

endif; ;;; fe14

sysPOP(Var); ;;; fe15

sysLABEL(Lab); ;;; fe16

sysPUSH(Var); ;;; fe17

sysCALLQ(trynext); ;;; fe18

sysIFNOT(Endlab); ;;; fe19

erase(systxsqcomp([endforeach close])); ;;; fe20

sysGOTO(Lab); ;;; fe21

sysLABEL(Endlab); ;;; fe22

382 CHAPTER 16. THE VIRTUAL MACHINE

enddefine; ;;; fe23

_temp -> popconstruct;

endsection;

/* --- Revision History --

--- Aaron Sloman, Nov 7 1986 lvarsed, desectionised.

*/

This syntax procedure works as follows: fe1 declares foreach to be a syntax procedure

of global scope, i.e. it will be available in every section without having to be imported.

fe2 declares lexical variables, which are initialised below.

fe3 creates a new anonymous variable for the object code, and assigns it to V ar.

sysnvariable in fact creates a word, whereas it would be more e�cient to use sysNEW LV AR.

This variable will be used to hold the `list of possibilities'.

fe4 creates a label Lab, which will label the beginning of the loop we are going to compile,

and, using sysloop, makes it the label that any next command in the iteration construct

body will jump to.

fe5 creates a label Endlab, which will label the instruction after the end of the loop we

are going to compile, and, using sysloopend, makes it the label that any quit command in

the iteration construct body will jump to.

fe6 makes V ar a dynamic local of the procedure in which the foreach construct occurs.

fe7 compiles an expression, terminated by one of the words

00

do

00

,

00

then

00

or

00

in

00

. This

expression will be the pattern. then is permitted for compatibility with POP2. It will be

the top of the stack when the code generated by fe7 has just executed.

16.8. AN EXAMPLE OF THE USE OF THE VM 383

fe8 � fe10 treats the case foreach < expr > in < expr > do. It compiles code to

generate the second < expr >, and then compiles a call to ::, which will form a list whose

�rst member is the pattern and whose second member is a list of objects to match it against.

fe11 � fe13 treats the alternative, in which the pattern is consed onto the database to

create the same sort of list.

fe15 stores the list in the anonymous variable held in V ar.

fe16: Now we are ready to start the loop | we have planted code to generate the pattern

and where we are going to look for it. So we plant the label that starts the loop.

fe17� 18 plants code to do trynext(< V ar >).

fe19 plants code to check whether anything was found, and if not to jump to the label

which we will place after the end of the loop.

fe20 compiles the body of the iteration, which may end with endforeach or close (for

POP-2 compatibility).

fe21 plants a jump back to the beginning of the loop.

fe22 plants the label which marks the end of the loop.

The example use of foreach given above produces the code below, which is given ver-

batim, except for being commented (by hand!). Note that while the loop variable prints as

""", it does not in fact contain these characters.

VARS ^^^ 0 ;;; Declare the loop variable, ^^^.

PUSH popstackmark ;;; Prepare to make a list from stacked

;;; values

PUSHQ brother ;;; 1st stacked object is "brother"

PUSHQ ? ;;; 2nd stacked object is "?"

PUSHQ x ;;; 3rd stacked object is "x"

384 CHAPTER 16. THE VIRTUAL MACHINE

PUSHQ Elizabeth ;;; 4th stacked object is "Elizabeth"

CALL sysconslist ;;; Make a list of the stacked objects.

;;; this is the pattern.

PUSH database ;;; Push the POP database on the stack

CALLQ <procedure ::> ;;; cons the pattern to the database

POP ^^^ ;;; and store in the loop variable.

label_87 ;;; The loop starts here

PUSH ^^^ ;;; Push the loop variable

CALLQ <procedure trynext> ;;; call the trynext procedure

IFNOT label_88 ;;; jump out of loop if no match found

PUSH x ;;; now do x =>

PUSH false

CALL sysprarrow

GOTO label_87 ;;; and go back for next iteration.

label_88

16.9 History of the POP Virtual Machine

(by R.J.Popplestone)

The POP VM is descended from a real machine, the Eliott 4100 series, designed in the

1960's by a team led by C.A.R Hoare. This machine provided the essentials | it had stacking

and unstacking instructions, and indirect sub-routine calls.

MVE Address Push the argument on the stack

MVB Address Pop the stack to the argument

JIL Address Jump to the contents of the address, saving program

counter.

In addition it had conditional and unconditional forward relative jumps, and an uncon-

ditional backward relative jump. These were very much appreciated, since they simpli�ed

the task of the garbage collector when it was moving code blocks around.

16.9. HISTORY OF THE POP VIRTUAL MACHINE 385

The 4100 architecture also provided a range of user-de�nable extracodes | which pro-

vided a way of extending the instruction set by doing a vectored jump depending on a �eld

in the instruction. POP used three extracodes. The �rst had the e�ect of a JIL instruction,

but checked that the object being jumped to was a procedure record (all pointers pointed to

the word after the key). The second was used to call the updater of a procedure. The third

provided a backward relative jump, but performed certain checks before it did so. The checks

were for stack under
ow/over
ow, keyboard interrupt and time-slot expiry. This latter was

required because the POP machine was used as a time sharing system.

The garbage collector was able to search procedure objects to �nd the addresses in them,

both for a mark and sweep operation and for storage compaction. A minimal set of high

order tag bits were used, to distinguish between integers, short (22 bit)
oats and pointers.

Pointers pointed to the word after the key, so that procedures could be entered by a JIL

instruction, which did not provide a �xed o�set.

The main limitation of the machine were the short address �eld of 15 bits, which limited

variables to the �rst 32k words of store (96k bytes). There was only one index register, which

doubled up as a stack pointer. This was one reason we did not incorporate lexical variables

in the language, given our decision to keep the open stack.

386 CHAPTER 16. THE VIRTUAL MACHINE

Chapter 17

POPLOG system facilities

NOTES

colon in Unix as a separator??

See section 17.4 for account of garbage collector - is it correct?

This chapter is speci�c to the POPLOG system, and tells you important facts about how

it relates to the operating system, and how it operates internally.

17.1 System Startup and Reset

When POPLOG starts up, its initial action depends on whether or not arguments have been

supplied to the operating system command that invoked it.

If no arguments were supplied, then after setting up, the banner in popheader is printed

(if standard input is from a terminal), the procedure sysinitcomp is called to compile any

0

init:p

0

�les, and �nally setpop is called to reset the system for the �rst time.

387

388 CHAPTER 17. POPLOG SYSTEM FACILITIES

If on the other hand arguments are present, the �rst argument must specify either

1. A string of POP-11 source to compile. This is the case when the �rst argument begins

with

0

"

0

on VMS and with

0

:

0

on Unix.

2. A saved image to restore. This is the case when the �rst argument begins with

0

=

0

on

VMS or

0

�

0

on Unix. This may be followed by other layered saved images beginning

with the same character. For �lenames not including an explicit directory, the direc-

tories given by the environment variable/logical name

0

popsavepath

0

are searched (see

below).

3. Anything else, interpreted as the name of a POP-11 source �le to compile. For �le-

names not including an explicit directory, the directories given by the environment

variable/logical name

0

popcomppath

0

are searched (see below).

In all three cases, a list of the remaining arguments is placed in poparglist, so that user

programs can access them, and the speci�ed action is performed; if this returns normally,

then the system exits. Thus compiling a POP-11 string or �le will just do that and no more;

a successful restore of a saved image, on the other hand, will not return, but simply restore

the system state as it was when the �le was saved.

A directory search path mechanism is supported for �lenames speci�ed in (2)and (3).

A search path is an environment variable/logical name whose translation is a sequence of

directory names, separated from one another by

0

:

0

(colon) characters in Unix or

0

j

0

(vertical

bar) characters in VMS, and in which an empty directory name is interpreted as the current

directory. A �lename that does not include an explicit directory is then searched for in the

given sequence of directories.

For saved images, the search path is given by

0

popsavepath

0

, whose standard value is

:$poplib:$poplocalbin:$popsavelib (Unix)

|poplib:|poplocalbin:|popsavelib: (VMS)

(i.e. search the current directory �rst, then

0

poplib

0

, then

0

poplocalbin

0

, etc). For POP-11

�les, the search path is given by

0

popcomppath

0

, with standard value

17.1. SYSTEM STARTUP AND RESET 389

:$poplib:$popautolib:$popliblib (Unix)

|poplib:|popautolib:|popliblib: (VMS)

In Unix systems only, there is an additional startup mechanism which allows the name

under which the POPLOG image was invoked to be used as an argument. When the system

is invoked under the name X, it looks to see if there is an environment variable called

0

pop X

0

, and if so, makes the translation string of that variable the �rst argument, shifting

up the other arguments if necessary. Thus for example, if one creates a link called

0

mysave

0

to the POPLOG image

0

$popsys=pop11

0

, and de�nes an environment variable

0

pop

m

ysave =

�myimage:psv

0

, then running the command

0

mysave

0

will have the same as e�ect as

pop11 -myimage.psv

For this reason, the directory

0

$popsys

0

in fact contains the POPLOG image linked under

various names, with corresponding

0

pop X

0

environment variables de�ned, thus enabling the

system to be invoked as

0

pop11

0

,

0

ved

0

,

0

prolog

0

, etc.

poparglist

This contains a list of strings which aare the rguments with which the POPLOG system was

invoked. This will always exclude the �rst argument, and, if a number of layer saved images

are being restored, will exclude those too. poparglist may be the empty list [].

sysinitcomp()

This is called on normal (no argument) POPLOG startup to compile

0

init:p

0

�les. If it exists,

0

$popsys=init:p

0

(

0

popsys : init:p

0

on VMS, etc) is �rst compiled; then if

0

$poplib=init:p

0

exists,

that is commpiled, otherwise

0

init:p

0

in the current directory if that exists.

setpop()

This procedure resets the POPLOG system: unwinds all procedure calls, restoring dynamic

local values, and clears the user stack, etc. If this is the �rst setpop, indicated by

pop first setpop = true

390 CHAPTER 17. POPLOG SYSTEM FACILITIES

or if the standard input is a terminal, then compilation is (re)started; otherwise sysexit is

called to exit from the POPLOG system.

If compilation is restarted, pop first setpop is set false, and the variables cucharout

and cucharerr are set to charout and charerr respectively, after which the variable pro-

cedure popsetpop is called (see below). If this returns normally, POP-11 compilation is

restarted. When standard input is from a terminal,

0

Setpop

0

is �rst printed, and in any case

compile(charin) is called.

pop first setpop

This is true before setpop is �rst called, and thereafter false.

popsetpop()

This is called by setpop before doing compile(charin) to restart compilation. By assigning

to it, a user program can thus regain control when setpop is invoked. Its default value is

identfn.

17.2 System Exit

sysexit()

This calls the variable procedure popexit, and if this exits normally, sysexit then exits from

the POPLOG system, i.e. it closes all �les and returns to the operating system. sysexit is

called by setpop when it reads termin from the standard input.

popexit()

This holds a procedure to be run on exit from the system, i.e. when sysexit is called. Thus

the procedure in popexit may prevent the system from actually exiting, e.g. by doing a

setpop. Its default value is identfn.

17.3. INTERRUPTS 391

pop exit ok

This controls the status value returned by sysexit to the operating system: if false, the

standard error code (1 in Unix, SS$ ABORT in VMS) is returned, otherwise the standard

success code (0 in Unix, SS$ NORMAL in VMS). The default value is true, but note that

a call of mishap will set it false if the standard input is not a terminal. Since the default

value of interrupt under these circumstances is sysexit, this guarantees that a mishap will

result in an error status being returned.

17.3 Interrupts

See also timer interrupt, described in Chapter ??.

interrupt()

This procedure variable is called:

1. by the procedure mishap after it has printed a mishap message and before it calling

setpop. Thus rede�ning interrupt can be used to alter the action taken after mishaps

{ see Chapter 4.5;

2. by a keyboard interrupt (usually, typing Ctrl-C).

The default value of this variable is setpop if the standard input is a terminal, sysexit

otherwise. Thus e.g. when the system is running with a command �le as its standard

input, a mishap will result in system exit by default.

pop enable interrupts

This (active) boolean variable controls whether interrupt checking is enabled (true) or dis-

abled (false). When disabled, neither keyboard (interrupt) or timer (timer interrupt) in-

terrupts are serviced until this variable becomes true again. (Note that this doesn't a�ect

the calling of interrupt by mishap.)

From Robin Popplestone Mon Dec 19 12:12:59 EST 1988

392 CHAPTER 17. POPLOG SYSTEM FACILITIES

17.4 Store Management

Managing the computer's store for a POP system presents a challenge, which is posed pri-

marily by the fact that the allocation of storage in which objects are to be held is indepentent

of the calling of procedures. In languages descended from ALGOL 60, such as Pascal, the

default way of allocating store for a data-object is to place it in the stack-frame associated

with the call of the procedure in which the data-structure is created. However this means

that the data-object goes out of existence when the procedure in which it was created exits.

Consequently, if we want to create data-objects which can be returned by the procedure

in which they are created, a good way to do this is to provide a heap, which is an area of

store independent of the stack

1

. An object is in fact represented as a number of contiguous

machine words on the heap.

There are various ways in which objects can be allocated o� the heap. The simplest is to

keep a pointer to the next free memory locations, so that allocation would look something

like this:

define alloc(n) -> O;

free_memory fi_+ compound_tag -> O;

free_memory + n -> free_memory;

enddefine;

This procedure however would not create a valid POP object, which must have a key pointer,

usually as its second machine word.

Clearly the heap will at some time become exhausted: at this point the garbage collector

is called to reclaim unused objects in the heap. The garbage collector knows that objects

cannot be used if there are no pointers to them anywhere in the POP system. What in fact

it does is determin which objects do have pointers to them, mark them as such, and then

recover the storage used by those objects which are not marked.

If we are using the simple allocation mechanism described above, there is still a problem

| the objects which are discovered to be free by the garbage collector will not in general

1

In fact in POP, every process has a stack which is held in the heap, so stacks are in e�ect just POP

objects

17.4. STORE MANAGEMENT 393

be contiguous. Thus the garbage collector has to relocate all the used objects. This can

be done in various ways | one simple way is to recreate the whole heap in a new area of

memory. This can be done, at some cost in disk tra�c, in a system like Unix which provides

virtual memory.

The garbage collection of temporary properties di�ers from that of ordinary objects, and

is discussed in Chapter 11.3.

The C language also provides a heap: objects can be allocated in C using the malloc

procedure. When C and POP are used together, the heaps are kept distinct, since the POP

heap must be structured in such a way that the garbage collector can recognise objects.

sys lock heap()

This tells the system to lock the heap at its current endpoint. The e�ect is that all structures

in the heap before this point will automatically be treated as non-garbage, thus consider-

ably reducing the amount of work needed to be done on them during a garbage collection.

Structures created after the sys lock heap will be treated normally. It is sensible to call

sysgarbage before sys lock heap. E.g. at the end of a �le which compiles a lot of procedures

which are not going to be edited, do

sysgarbage(); sys_lock_heap();

See also sys lock system below.

sys unlock heap()

This reverses the e�ect of sys lock heap, so that all structures previously locked in now

participate fully in the next garbage collection.

sysgarbage()

This forces the system to do a garbage collection. Note that the time for such a user-invoked

394 CHAPTER 17. POPLOG SYSTEM FACILITIES

garbage collection is not included in the automatic GC time total see popgcratio below.

pop after gc()

The procedure in this variable is run after every garbage collection (default value identfn).

popgcratio

This controls the weighting of garbage collection time in determining memory allocation for

the system. The decision as to whether expand or contract memory is made by considering

the ratio of total CPU time to total garbage collection CPU time multiplied by popgcratio,

and then expanding or contracting by an amount proportional to this ratio. The maximum

permitted value for popgcratio is 64, default value is 25.

popgctime

This contains the total cpu time spent doing garbage collections, in 1/100ths second.

popgctrace

If this variable is true then a message is output after each garbage collection, giving the GC

time and the heap memory allocation, in the form

GC-<code> TIME: <t> MEM: <u> used + <f> free + <s> stack = <m>

where < code > is a 4-letter code indicating why the GC happened, < t > is the time for

the GC in 1/100ths sec, < u > is the number of words used in the heap, < f > the number

free, < s > the number taken by the userstack, and < m > the total. Note that these values

include structures locked in with sys lock heap. The procedure held in cucharerr is used

for the output.

Also, if popgctrace is an integer, additional information about the Prolog store area is

printed out, for example:

17.5. SAVING AND RESTORING THE SYSTEM STATE 395

;;; GC-user TIME: 0.83, MEM: used 9729 + free 94719 + stack 0 = 104448

;;; CALLSTACK: 293

;;; PROLOG: trail 7 + free 2008 + contn 33 = 2048

This indicates that the collection took 0.83 seconds, and afterwards there were 9729 words

used, and 94719 free, with a total of 104448. The number for STACK shows how much space

is taken on the POP-11 argument stack. The third line shows how space is used on Prolog's

variable trail and continuation stacks.

popmemlim

This integer speci�es the maximum number of words to which the system should expand

heap memory, including the user stack. If this is exceeded, the system will not expand further

and a

0

RUNOUTOFMEMORY

0

mishap will result. Its default value when just POP-11 is

in use is 100000, but higher default values are used by the Prolog and Lisp systems.

Note that setting this to too high a value may mean that the system will expand heap

memory to the point where there is insu�cient extra available for the garbage collector

to operate, resulting in the mishap

0

CANNOTALLOCATEGCWORKSPACE

0

, which

is non-recoverable, and necessitates restarting the POPLOG system from scratch. If the

default value is not large enough for your program, you should therefore experiment with

increasing it gradually. There are other limits on the size of certain data-areas in POPLOG,

see pop callstack lim in Chapter 2.23 and pop prolog lim in Chapter ??.)

popmemused

This contains the number of words of memory in use at the last garbage collection.

17.5 Saving and Restoring the System State

syssave(FILENAME)� > RESTORED

This saves the total state of the POPLOG system in a �le called FILENAME. The result

396 CHAPTER 17. POPLOG SYSTEM FACILITIES

of this procedure is false on immediate return; on restoring the �le with sysrestore (qv)

the result will be true.

FILENAME may be either a word or a string: if a word,

0

:psv

0

is appended. Note that

the state of external procedure loading is also saved | see Chapter ?? for details.

sysrestore(FILENAME)

sysrestore(fILENAME;MODE) This restores the POPLOG system to be in the state it

was at the time the saved image speci�ed by the �lename FILENAME was created with

syssave or sys lock system, with the exception of

� The standard �les (popdevin, popdevout, popdeverr);

� poparglist;

� poppid and popusername.

etc, all of which remain as they were before the call of sysrestore. When this procedure

exits, it will be just as if the call of syssave or sys lock system that created the �le had

returned, but with true as result instead of false.

By default, a mishap will result if either (1)FILENAME does not exist, or (2)the identi-

�cation string from FILENAME does not match the current value of pop system version,

i.e. FILENAME may only be restored into the same system environment in which it was

created.

The optional boolean argument MODE can be used to prevent a mishap occurring in

either of these cases. false means no mishap for case (1), true means no mishap for either

(1)or (2). Instead of producing a mishap, sysrestore will simply return to its caller (with

no result). FILENAME may be either a word or a string: if a word,

0

:psv

0

is appended.

Note (VMS): If FILENAME is a shareable image created by sys lock system the con-

stant part of FILENAME will be shared between all users in the same group, unless

FILENAME has been installed with sys install image to be shareable system-wide (i.e.

there is a permanent system global section for it).

17.5. SAVING AND RESTORING THE SYSTEM STATE 397

pop after restore()

The procedure in this variable is run by sysrestore immediately after a successful restore

and before returning (default value identfn).

sys lock system(FILENAME; SHARE; SY STEM

I

D)� > RESTORED

This procedure makes possible the creation of `layered' systems in POPLOG. It de�nes

the current heap endpoint to be the boundary of a self-contained

0

system

0

on top of which

other layers will be built. The principal purpose of specifying such a boundary is to enable

POPLOG to partition the current contents of the heap into areas of constant and non-

constant data structures, and thereby:

1. create a saved image for the new system in which the area of constant structures can,

at least in principle, be shared by all users of the saved image;

2. make it unecessary to for the constant area to be saved when creating further saved

images on top of the new system, either with syssave or with another sys lock system.

The major consequence of (2)is that subsequent saved images can be restored only into the

environment saved by (1), and em not into the basic POPLOG system, i.e. one saved image

must be layered on top of another.

In detail, sys lock system operates as follows:

The heap is �rst locked at its current endpoint, as for sys lock heap. All the structures

so locked in are then partitioned into 2 areas { constant and non-constant { which from then

on are considered to be completely outside of the heap, constituting `part of the system'.

Thereafter this change cannot be undone (i.e. there is no corresponding unlocking proce-

dure). The structures in the constant area become non-writeable, so that any subsequent

attempt to update a �eld in one of them will cause an error. Currently, only procedure

records and the strings pointed at by word records are made constant, everything else being

assumed to be non-constant, This means, since word strings cannot be updated anyway, that

the only �elds that become non-writeable are the pdprops, updater, pdpart and frozvals

of procedures and closures. To re
ect the fact that the constant and non-constant areas

have been removed from the heap, popmemlim is reduced by their total size, or to 50000,

whichever is the greater.

398 CHAPTER 17. POPLOG SYSTEM FACILITIES

Following the constant/non-constant partitioning, a `special' call of syssave with �le-

name argument FILENAME creates a saved image to preserve the initial state of the new

augmented system, the result of syssave being returned as the result of this sys lock system

(i.e. false after saving, true on restoring). The call is 'special' in the sense that it does

save the constant area, whereas any subsequent syssave or sys lock system will not. As

mentioned above, this means that subsequent saved images can be restored only into the

new system environment, either without ever leaving it or after restoring the system saved

image. To ensure that any attempt to do otherwise is trapped as an error, the variable

pop system version holds an identi�cation string for the current system, this being recorded

on any saved image created therein. sysrestore will produce an error if requested to re-

store an image whose identi�cation does not equal the current value of pop system version

(which is set by sys lock system to be the SY STEM

I

D argument string 'timestamped'

by concatenating sysdaytime() onto the end). On restoring as saved image created with

sys lock system, the boolean argument SHARE controls whether the memory into which

the constant area is mapped will be shared by all users, true meaning shared, false meaning

unshared. Currently, sharing is only possible in the VMS system (and then only between

users in the same group unless sys install image is used, qv). It is not possible in Unix

versions, although may become so in later versions of Berkeley 4.2. Note that the SHARE

argument may still be true. In VMS, you are strongly advised em not to make an image

shared unless it really needs to be, i.e. will be used concurrently by several users on a regular

basis, since shared images consume VMS system resources.

sys install image(FILENAME; INSTALL)

This procedure is currently available only in VMS systems. In VMS, the constant part of a

shareable saved iamge created by sys lock system is by default shared only between users

in the same group; this procedure enables or disables its sharing by all users in the system.

To operate, however, the process running this procedure must have the privileges

SYSGBL (create/delete system global section)

PRMGBL (create/delete permanent global section)

If the boolean argument INSTALL is true, then the image speci�ed by FILENAME

is `installed', i.e. made shareable system-wide. The blocks comprising the constant area

are made a permanent system global section. If INSTALL is false, FILENAME is de-

installed and will revert to group sharing. (An existing permanent system global section for

FILENAME is deleted.)

17.6. INCREMENTAL SAVE AND RESTORE 399

17.6 Incremental Save and Restore

syssaveincr(FILENAME;

) procedure Saves, in a �le called FILENAME, all structures that can traced from the

item O, i.e. O, all structures that O references, that those structures reference, and so on.

However, although references to any structure which is part of the system are saved, anything

referenced BY that system structure will not be saved. Thus, for example, if cucharout has

been given a particular value, this value will not be saved. To obviate this problem, if O is

a list then the following happens: O and all structures traceable from it will be saved, but

in addition, permanent identi�ers associated with any system words occurring in O will also

be saved. Thus every system word required to be saved must be mentioned explicitly in the

list O. See sysrestoreincr for what happens when the �le is restored. Example:

vars list = [1 2 3 4];

syssaveincr("save", "list");

saves the word "list", its identi�er and the list it contains, in a �le called

0

save:psi

0

.

FILENAME may be either a word or a string: if a word,

0

:psi

0

is appended. (Note: this

procedure is defective in that it doesn't cope with sections and various other things.)

sysrestoreincr(FILENAME)

sysrestoreincr(FILENAME;MODE) Restores all the structures saved with syssaveincr

in the �le FILENAME. Any words that were in the dictionary at the time of saving are

restored to the dictionary if not already there, associated permanent identi�ers being set

to their saved values. Any system words explicitly saved also have associated permanent

identi�ers restored. E.g. restoring the example given in -syssaveincr-:

sysrestoreincr("save");

list =>

** [1 2 3 4]

restores the �le called

0

save:psi

0

, i.e. the word

00

list

00

, its identi�er and the list it contains.

FILENAME may be either a word or a string: if a word,

0

:psi

0

is appended. The optional

400 CHAPTER 17. POPLOG SYSTEM FACILITIES

MODE argument is the same as for sysrestore, qv.

17.7 System Identi�cation

pop internal version

This is an integer de�ning the version of the POPLOG system in use, in the form:

(n

major

� 1000) + n

minor

where n

major

is the major version number and n

minor

the minor version number within the

former.

popversion

This contains an identi�cation string giving the major version number and creation date of

this POPLOG system, e.g.

'(Version 12.3 Thu Nov 20 20:54:11 GMT 1987)'

Note that the version number appearing in this string is derived as

(pop_internal_version div 1000)/10.0

pop system version

This contains the identi�cation string for the current system and version, used by syssave

and sys lock system to record the identity of the system in which a saved image is being

created, and by sysrestore to check that identity when restoring. Only sys lock system

alters this variable; in the base POPLOG system, it has the same value as popversion.

17.7. SYSTEM IDENTIFICATION 401

popheader

This is a banner string, normally printed out when POPLOG starts up in normal mode, i.e.

when not invoked with arguments, and thereafter made false to indicate that the banner

has been printed. The string is constructed as

'Sussex POPLOG ' <> popversion

e.g.

'Sussex POPLOG (Version 12.3 Thu Nov 20 20:54:11 GMT 1986)'

sys os type

This is a list of words and numbers giving attributes of the operating system under which

POPLOG is running. Current possible values are:

[vms 4.0] ;;; VAXes

[unix bsd 4.2] ;;; Sun Workstations and VAXes

[unix bsd 4.1] ;;; VAXes

[unix att 5.2] ;;; GEC Series 63

[unix att 5.0] ;;; Hewlett-Packard Bobcat

[unix unisoft 5.0] ;;; Bleasdale

Be careful about comparing
oating-point version numbers in this list: rounding and

other factors may mean that = will not return true for numbers that appear to be equal.

You should always compare by testing the absolute value of the di�erence between two

numbe rs to be less than some small amount.

sys processor type

This is a list of words/numbers giving attributes of the machine on which POPLOG is

running. Current possible values are:

402 CHAPTER 17. POPLOG SYSTEM FACILITIES

[vax]

[68000]

[68010]

[68020]

[gec63]

pophost(W)� > O

attribute

This procedure is a property that supplies more complete information about the under-

lying system on which POPLOG is running than do sys os type and sys processor type.

Currently, there are entries in this property for the following keywords (W):

"os" operating system name

"osversion" operating system version

"machine" host machine

"machine" generic machine type (eg $'vax'$)

"systemname" the local name of the machine

"memory" approximate amount of memory

"machineserialnumber" serial number of machine

"site" where the machine is

"sitemailname" electronic mail address for site

"fullsitename" offical site address

All O

attribute

values are strings or numbers, generally in lowercase only, the default for

entries being false. You should examine the library �le that de�nes this property, by doing

showlib pophost to �nd the format of the information you require before writing programs

to use it.

Chapter 18

How POP tells the time

NOTE

Sort out t

1

00 - is it
oat or integer?

18.1 Date and Time Procedures

sys real time()! n

secs

This procedure returns the time as an integral number of seconds since the standard Unix

base date, i.e. 00:00 GMT on 1 Jan 1970 (you should not assume this value is a simple

integer: it may very well be a biginteger).

sys convert date(n

secs

; LOCAL)! bfs

Given a time in seconds since 00:00 GMT 1 Jan 1970 (as returned by sys real time, or a �le

date returned by sys file stat etc), returns a date string in the standard operating system

format, i.e.

'nnn mmm dd hh:mm:ss <timezone> yyyy'

403

404 CHAPTER 18. HOW POP TELLS THE TIME

in Unix systems (where nnn is the day name), and

'ddmmmyyyy hh:mm:ss'

in VMS systems. In VMS systems, the LOCAL argument is ignored; in Unix systems

it speci�es whether n

secs

is interpreted as local time (true) or GMT (false), and therefore

a�ects the value of the < timezone > substring (which depends upon the timezone C library

function | see ctime(3) in the Unix Programmers Manual.)

sysdaytime()! bfs

This procedure returns the current date and time as a string in the standard form. This

procedure is just

sys convert date(sys real time(); true)

18.2 CPU Time

systime()! t

100

This procedure returns the elapsed CPU time for this run of the POPLOG system, an integer

number of hundreths of a second.

timediff()! t

secs

This procedure returns the elapsed CPU time since the last call of timediff , as a
oating-

point number of seconds t

secs

(the �rst call produces a meaningless result). This procedure

uses systime, so the resolution of the result will be hundreths of a second.

18.3. TIMER PROCEDURES 405

18.3 Timer Procedures

The variables pop timeout and pop timeout secs are also available for timing-out terminal

read operations | see Chapter ?? for details.

syssettimer(t

100

)

syssettimer(t

100

; P)

This sets a timer interrupt for t

100

hundreths of a second. When this time has expired, the

procedure in the variable timer interrupt is called inside whatever procedure the system

is currently executing. This is a one-o� setting, i.e. if another timer setting is required,

syssettimer must be called again.

The second form of the call simultaneously assigns a procedure to timer interrupt, and

is the same as

P -> timer_interrupt;

syssettimer(t_100);

For example, the following will cause "hello" to be printed every 5 seconds:

define vars timer_interrupt();

"hello"=>

syssettimer(500)

enddefine;

;;; start it off

syssettimer(500);

In Unix systems note that, although t

100

is speci�ed in hundreths of a second the actual

timer value set can only be an integral number of seconds, because that's all the Unix alarm

system call allows. The given value of t

100

is therefore rounded up to the nearest integer

number of seconds.

406 CHAPTER 18. HOW POP TELLS THE TIME

syscantimer()

Cancels any outstanding timer interrupts set by syssettimer.

timer interrupt()

The procedure in this variable (default value identfn) is called when the timer set by

syssettimer goes o�. However, note that all interrupts, including the timer, can be dis-

abled by assigning false to pop enable interrupts, as described in Chapter ??.

syssleep(t

100

)

Suspends the current POPLOG process awaiting some form of interrupt, or until t

100

hun-

dreths of a second has expired, which ever is the sooner. This procedure is equivalent to

define syssleep(t_100);

lvars t_100;

dlocal timer_interrupt = identfn;

syssettimer(t_100);

syshibernate()

enddefine;

(and so in Unix, the value of t

100

is rounded up to an integral number of seconds, as for

syssettimer).

syshibernate()

Suspends the current POPLOG process awaiting some form of interrupt, e.g. Ctrl-C typed

on the terminal, a timer interrupt set by syssettimer, etc. What happens then depends on

the appropriate interrupt-handling procedure, i.e. interrupt for Ctrl-C, timer interrupt for

the timer, etc.

Chapter 19

How POP reads objects from the

input

There is a type of POP procedure called an itemiser, which converts a stream of input

characters into a stream of data-objects.

1

You can write itemisers for yourself, but there

a capability built into the POP system to provide you with itemisers that embody the

standard POP syntax. Moreover, it is possible to modify the behavior of these itemisers to

some extent to match particular needs you may have. If you want to write your own itemiser

this is discussed in Chapter ??.

19.1 Character Classes

The itemiser procedure returned by incharitem (see below) takes a stream of input char-

acters produced by a character repeater procedure and turns it into a stream of items for

compilation, or any other use. To e�ect this process, each ASCII character value from 0�255

has associated with it an integer de�ning the class of that character, the class of a character

governing how it is treated.

1

In the compiler literature this capability is called a \tokeniser".

407

408 CHAPTER 19. HOW POP READS OBJECTS FROM THE INPUT

The 12 pre-de�ned classes are described below. Note that the class names (and examples

of them) are determined by the normal assignment of classes to characters, although by using

item chartype the user can assign any character to any desired class, either globally or for

a particular item repeater (thus for example, the letter `A' can made to behave as if it were

a separator in class 5).

Class Description

1 Alphabetic | the letters a� z, A� Z

2 Numeric | the numerals 0� 9

3 Signs | characters like +, �, #, $, & etc.

characters in classes 10 and 11 (bracketed comment 1 & 2)

will default to this class if not occurring in the context

of such a comment.

4 Underscore, i.e.

5 Separators| the characters : ; ; " % and the

brackets [,], f, g. Control characters are also

included in this class (except for those in class 6), as are

all characters 128-255

6 Spaces | the space, tab and newline characters

7 String quote | the character '. This appears on most

terminals as

0

.

8 Character quote | the character `. This normally has a less

\comet-like" appearance when displayed by a computer.

9 End of line comment character | the character `;' (but see

below)

10 Bracketed comment or sign, 1st character | the character /

11 Bracketed comment or sign, 2nd character | the character *

12 Alphabeticiser | this is special class that forces the next

character in the input stream to be of class alphabetic,

i.e. class 1 | see below. n (backslash) may be given this

type by default in later versions of POPLOG.

New classes other than these can be de�ned with the procedure item newtype, as de-

scribed in section 19.5

19.2. SYNTAX OF ITEMS PRODUCED BY THE ITEMISER 409

19.2 Syntax of Items Produced by the Itemiser

The itemiser splits up a stream of characters into a stream of objects, each object being one

of the following types:

word (see 8.1) string (see 9) integer (or biginteger) ratio floating � point (decimal or

ddecimal) complexnumber (see 6).

This is done according to the following rules:

19.2.1 Word

A word is represented by either

1. a sequence of alphabetic or numeric characters beginning with an alphabetic one, e.g.

`abc123', `X45' ;

2. a sequence of sign characters, e.g.

0

+

0

,

0

&$+

0

;

3. a sequence of words produced by (1) or (2) joined by underscores, e.g. `fast +

0

,

` 123 + + 678

0

4. a single separator character, e.g. `[

0

.

5. a sequence of characters in a new class created by item newtype.

19.2.2 String

A string is represented by any sequence of characters starting and ending with string quotes,

e.g.

0

abcdefgh12&&&&

0

. If the characters of the string extend over more than one line, the

newline character at the end of the line must be preceded by the character `n' (backslash),

unless pop longstrings is true, i.e. if pop longstrings is false then an unescaped newline

causes a mishap. A newline can also be inserted as

0

nn

0

. See Note (1) below.

410 CHAPTER 19. HOW POP READS OBJECTS FROM THE INPUT

19.2.3 Integer

An integer is represented by either:

1. A sequence of digits, optionally preceded by a minus sign `�', e.g. 12345, �789;

2. A number preceded by an integer and a colon, meaning that the number is to be taken

to the base of the integer, e.g. 2:1101 represents 13 as a binary number. The integer

base must be in the range 2� 36; if greater than 10, the letters A-Z (uppercase only)

can be used in the number to represent digit values from 10 to 35, e.g. 16 : 1FFA

represents 8186 as a hexadecimal number. If a minus sign is present, this may either

follow the radix or precede it, e.g. �8 : 77 or 8 : �77 are both valid.

3. A character constant, giving the integer ASCII code for that character. This is any

character preceded by (and optionally followed by) a character quote. E.g. `a` gives

the ASCII value for lowercase `a', namely the integer 97. See Note(1) below.

Except in the character constant case, an integer may optionally be followed by the letter

`e' and a (signed or unsigned) integer to indicate an exponent speci�cation, i.e.

<int-1>e<int-2>

will produce n

1

b

n

2

where n

1

is the integer corresponding to < int � 1 > and n

2

is that

corresponding to < int� 2 > and b is the radix speci�ed in < int� 1 >. This may actually

result in the production of a ratio rather than an integer, e.g.

2:110e5 = 2:110 * (2 ** 5) = 192

23e-2 = 23 * (10 ** -2) = 23_/100

If the integer read in is too large to be represented as a simple object (see 3.7) then a

biginteger is created. E.g.

19.2. SYNTAX OF ITEMS PRODUCED BY THE ITEMISER 411

isinteger(123456789) =>

** $true$

isinteger(123456789123456789) =>

** $false$

isbiginteger(123456789123456789) =>

** $true$

19.2.4 Floating-Point

A
oating-point literal is a sequence of numeric characters containing a period, e.g. 12.347;

as with integers, this can also be pre�xed with a base, i.e. an integer followed by a colon.

The whole number, including fractional places, is taken to this base. As with integers, an

exponent speci�cation may follow, but in this case any of the letters `e', `s' or `d' may be

used. That is

<float>e<n> <float>e<n> <float>e<n>

all produce x � (b

n

), where x is the number speci�ed by < float >, and b is the base of

< float > . The di�erence between them is that e and d specify a double-
oat (ddecimal),

whereas s results in a single-
oat (decimal). Thus

23.0e-2 = 23.0 * (10 ** -2) = 0.23 (ddecimal)

2:11.1d5 = 2:11.1 * (2 ** 5) = 112.0 (ddecimal)

56.2s+3 = 56.2 * (10 ** 3) = 56200.0 (decimal)

19.2.5 Ratio

A ratio is two integers (numerator and denominator) joined by the character sequence ` /'.

Thus 2 =3, �467 =123678 are ratios. If the numerator is preceded by a radix, then this radix

applies also to the denominator; the denominator itself must not have a radix or preceding

412 CHAPTER 19. HOW POP READS OBJECTS FROM THE INPUT

minus sign. Note that owing to the rule of rational canonicalisation the resulting object will

actually be a ratio with the greatest common denominator divided out of numerator and

denominator, or an integer if this would make the denominator equal to 1.

19.2.6 Complex Number

A complex number is any two of the above kinds of number (the real part and the imaginary

part) joined by the character sequence ` +:' or ` -:', Thus 2 + : 3, 1:2 + : 8:9, 5 =4 � : 3 =2

are complex numbers.

The imaginary part must not have either a radix speci�cation or a preceding minus sign;

as with ratios, the radix of the �rst number (if any) carries over to the second, and the sign

of the imaginary part is determined by the joining sequence, ` +:' or ` -:'. If an explicit radix

is speci�ed, then this must precede any minus sign on the real part. That is, 16 : �10 + : 4

is correct, while �16 : 10 + : 4 is not.

The two numbers may be of di�erent types, although when either is a
oating-point the

actual result will have both parts coerced to the same type of
oat; in addition, when both

parts are rational, the result will be a rational rather than a complex if the imaginary part

is integer 0.

19.3 Operation of Character Classes

The itemiser reads characters and produces items from them according to the rules given

above; all characters in the space class are ignored, and only serve to delineate item bound-

aries (but see Note 2). The e�ect of other classes not mentioned in the preceding rules, i.e.

the comment classes and the alphabeticiser, are as follows:

19.3. OPERATION OF CHARACTER CLASSES 413

19.3.1 Alphabeticiser - Class 12

An occurrence of a character of this class causes the next character read to be interpreted

as though it belonged to the alphabetic class, regardless of its actual class. Assuming that

n belongs to this class, this means that for example

A\+B\-C \&_\[\{\(\12345

are all valid 5-character words. In addition, the following character is also interpreted as

for the character following n in strings and character constants (see Note (1) below), thus

enabling non-printable characters to have class alphabetic, e.g.

\nA\^A\^Z\r

is a word consisting of the characters newline, A, Ctrl-A, Ctrl-Z and carriage return

(ASCII 10, 65, 1, 26, 13).

19.3.2 End of line Comments - Class 9

A character in this class causes the rest of the current line upto a newline to be treated as

a comment and ignored. Normally, this character is semicolon `;' and, in this case only, 3

adjacent semicolons are actually required for a comment. If a semicolon occurs by itself, or

only adjacent to one other, then it is treated as a separator (class 5). This is due to the

POP-11 compiler needing `;' for punctuation, and the fact that `; ; ;' has always been the

POP-11 comment escape.

19.3.3 Comments - Classes 10 and 11

These two classes provide for comments which begin with a 2-character sequence like `/*' and

end with the reversed sequence `*/', and which otherwise occupy any number of characters or

414 CHAPTER 19. HOW POP READS OBJECTS FROM THE INPUT

lines in between. The start of such a comment is therefore recognised as a class 10 character

immediately followed by a class 11 character, after which characters are read and discarded

until the sequence class 11 followed by class 10 is encountered. During the reading of the

comment another occurrence of class 10, class 11 is taken as a nested comment and so will

correctly account for such nesting. For example (assuming / and * have classes 10 and 11

respectively):

1 -> x; /* this is a comment */ 2 -> y;

/* 1 -> x; /* this is a comment */ 2 -> y; */

where in the second example the whole line has been commented out. Any occurrence

of class 10 or 11 characters other than one immediately followed by the other will default to

class 3, i.e. to the sign class.

19.4 Notes

(1) Non-printable characters (e.g. control characters) can be represented inside strings and

character constants using the character `n

0

(backslash) combined with other characters, as

follows:

\n = newline (ASCII 10)

\r = carriage return (ASCII 13)

\t = tab (ASCII 9)

\b = backspace (ASCII 8)

\s = space (ASCII 32)

`n

0

in conjunction with

0

"

0

(up-arrow) followed by one of the characters

@ A-Z [\] ^ _ ?

19.4. NOTES 415

can be used to represent the control characters ASCII 0 - 31 and ASCII 127, i.e.

Seq ASCII Name

\^@ 0 null

\^A 1 Ctrl-A

\^B 2 Ctrl-B

...

\^Z 26 Ctrl-Z

\^[27 ESC

...

\^_ 31

\^? 127 DEL

`n

0

can also be followed by `(

0

to signal an explicit integer value for a character, the integer

being terminated by `)'. E.g.

'\(255)abc'

is a string containing the characters 255, `a`, `b` and `c`. The integer obeys the normal

itemiser syntax, so can be radixed, etc. It must, of course, be � 0 and � 255.

As described above, these conventions also operate with the character following any

alphabeticiser (class 12) character.

(2) The e�ect of the variable popnewline being true is to change the class of the newline

character (ASCII 10) to be 5, i.e. a separator. Thus instead of being ignored as a space-type

character, a newline will produce the word whose single character is a newline.

416 CHAPTER 19. HOW POP READS OBJECTS FROM THE INPUT

19.5 Associated Procedures

incharitem(P

char rep

)! P

itemrep

This returns an item repeater P

itemrep

constructed on the character repeater P

char rep

, i.e.

P

itemrep

is a procedure which each time it is called returns the next item produced from

the characters supplied by P

char rep

, or termin when there are no more to come. P

itemrep

is

initially set up to use the global character table; by use of item chartype (see below) P

itemrep

can be made to use its own local table.

popnewline

If true, this boolean variable causes item repeaters produced by incharitem to change the

class of the newline character (ASCII 10) to be 5, (i.e. a separator), so that instead of being

ignored as a space-type character, a newline will produce the word whose single character is

a newline. (Default value false)

pop longstrings

A boolean variable controlling reading of quoted strings by incharitem item repeaters. If

this is false then quoted strings cannot contain a newline unless preceded by `n`. Otherwise

strings can extend over several lines without the backslash at the end of each line. (Default

value false)

isincharitem(P

itemrep

)! P

char rep

Given an item repeater produced by incharitem, or given itemread or readitem, returns

the underlying character repeater being used to construct items, or false if there isn't one.

If the argument is itemread or readitem then proglist is examined to see if it is a dynamic

list: if so, then isincharitem is applied to the generator procedure (see 15.2).

item chartype(c)! n

item chartype(c; P

itemrep

)! n

n! item chartype(c)

n! item chartype(c; P

itemrep

)

19.5. ASSOCIATED PROCEDURES 417

The base procedure returns the integer class number n associated with the character whose

ASCII code is c, either for the global character table (the �rst form) or for the item repeater

P

itemrep

(the second form). The updater assigns the class number n to the character whose

ASCII code is c, either for the global character table (the �rst form) or for the item repeater

P

itemrep

only (the second form). Note that once an assignment has been done for a particular

item repeater P

itemrep

, it will no longer use the global table, so that subsequent changes to

this will not be re
ected in P

itemrep

. On the other hand, changes to the global table will

be re
ected in all item repeaters which have not been locally changed. For both base and

updater, the item repeater P

itemrep

(when supplied) may be either a procedure produced by

incharitem, or one of the procedures itemread or readitem. In the latter case, the item

repeater at the end of proglist is used.

item newtype()! n

This returns an integer n > 12 representing a new class of characters that form words only

with members of that class. The value returned can be given to item chartype to assign any

desired characters into the new class.

nextchar(P

itemrep

)! c

O

c

o

r

s

! nextchar(P

itemrep

)

This returns (and removes) the next character in the input stream for the item repeater

P

itemrep

| this may or may not call the character repeater on which P

itemrep

is based,

depending on whether there are any characters bu�ered inside P

itemrep

. The updater adds

character(s) back onto the front of the current input stream for the item repeater P

itemrep

.

If O

c

o

r

s

is an integer character, then this is added; otherwise it must be string, in which

case all the characters of the string are added. P

itemrep

may take the same values as for

item chartype.

418 CHAPTER 19. HOW POP READS OBJECTS FROM THE INPUT

Chapter 20

Character Input and Output

NOTES What is `normal mode character output?' is it a Unix term or what?

Say what streams are (if I know).

This chapter describes the POP capabilities for inputting and outputting a sequence of

characters one at a time using procedures called character repeaters and character consumers.

So long as you are inputting from and outputting your terminal (or terminal emulator on

a workstation) you may not need to know about character repeaters and consumers, but use

the procedures described in Chapter 19 for the input of POP objects expressed in external

form as items, or those described in Chapter 21 for the output of objects.

However you will need to make use of the character repeaters and consumers described

in this chapter if you want your program to read input from some source other than the

terminal, perhaps a disc-�le, or to direct output to somewhere other than the terminal.

As well as the capabilities described in this chapter, there are also capabilities which use

device records which are more closely related to the operating system, and which consequently

are also more dependent upon the particular operating system POP is running under. In

order to obtain the most detailed control of input and output you may need to make use of

these more basic capabilities, which are described in Chapter ??.

419

420 CHAPTER 20. CHARACTER INPUT AND OUTPUT

It is common to refer to a sequence of characters being input or being output as a stream,

although somewhat di�erent concepts go by this name. For example Abelson and Sussman

[?] use the term for a construct very like POP dynamic lists. The term seems to have been

used �rst by Landin [?].

A character repeater is a procedure which each time it is called returns the next character

from an input stream; a character consumer takes a character as argument and writes it to

an output stream. Character streams are terminated by the special item termin (the value

of the constant termin); a character repeater will return termin when an input stream is

exhausted, and giving termin to a character consumer will close its output stream.

These repeater and consumer procedures are used by many parts of the system, including

the POP-11 compiler and printing utilities.

The input and output capabilities of POP are switchable at various levels, which arise

from the development of POP and the operating system environments that it runs in. If you

are using the character consumers to do output, it makes sense to switch output by making

cucharout to be a dlocal variable of procedures that do output.

20.1 Standard Character Repeaters

charin()! c

This is a character repeater which normally takes input from the keyboard of the terminal,

or terminal emulator, that you use by default to communicate with POP.

In POPLOG running under Unix, it is a character repeater for the standard input channel

of the Unix process in which POP is running. Except when in the `interactive mode' of the

VED editor, it reads characters from the device popdevin.

In POPLOG, when the VED editor is in interactive mode charin receives characters from

the current VED input bu�er. For details see the VED manual[?].

20.1. STANDARD CHARACTER REPEATERS 421

Also in POPLOG, it is possible to arrange for a charin call to `time out'. For details see

Chapter ??.

poplastchar

This always contains the last character read by charin.

popprompt

The `prompt string' is a sequence of characters that is output by the computer to indicate

that it is ready to receive input, and this variable holds the string that will be output to

prompt input if charin is used. Information about the use of other terminals is to be found

in Chapter 23.3.

poplinenum

This integer variable is incremented whenever a newline character is read by charin or a

character repeater created by discin. poplinenum is local to compile where it is initialised

to 1: hence it records the number of newline characters read in since the beginning of the

call of compile. It is used by sysprmishap in printing mishap messages, see Chapter 4.5.

poplogfile

This variable may contain a character consumer procedure or false, which is the default

value. In the former case every character read by charin, or output by charout is also

given to poplogfile. Prompts are included in this �le. This can be used to record terminal

interactions.

termin

termin key

The value of termin is the unique item termin, used as an end-of-�le marker for charac-

ter/item stream I/O. It is also used in the implementation of dynamic lists as described in

Chapter ??). termin key is a constant holding the key structure of the unique item termin

(see Chapter 3.13).

422 CHAPTER 20. CHARACTER INPUT AND OUTPUT

20.2 Standard Character Consumers

charout(c)

This is the character consumer that is usually used to cause characters to appear on your

terminal, although, if you want more control of what your terminal does, you may wish to

use the `raw mode' capability provided by the procedure rawcharout. charerr(c)

This is the character consumer used to print mishap messages.

In Unix POPLOG, the above are character consumers for the standard output and error

output channels respectively of the Unix process in which POPLOG runs. They normally

output characters via the devices popdevout and popdeverr, both of which are described

in Chapter 23.7, and will thus cause characters to appear on your terminal, or terminal

emulator.

There are two exceptions to this: Firstly if you are using the POPLOG VED editor

interactively, characters will be put in a VED bu�er, and so indirectly will usually both

appear on your screen and be available for editing. Secondly, it is possible to redirect Unix

output streams, as described in Chapter 23.7 and the Unix manual.

pop charout col

pop charerr col

These variables provide you with a way of knowing the horizontal location of the next

character to be output by charout and charerr respectively, and thus provide assistance

in controlling the layout of text produced by a program. In fact they contain integers

representing the number of columns �lled by charout and charerr respectively in their

current lines of text. Normally tab characters count as 8 columns. Control characters, i.e.

those < 32 count as �lling no column. All other characters count as �lling 1 column.

The values of these variables are reset to 0 when a newline character is output through

the respective consumer.

In POPLOG, the VED editor provides a variable vedindentstep which is used to control

20.2. STANDARD CHARACTER CONSUMERS 423

the e�ect of tab characters.

Chapter ?? gives a much more sophisticated treatment of the layout of output using

variable size fonts etc.

poplinemax

poplinewidth

When poplinewidth is an integer, these two variables together control the breaking of long

lines by charout and charerr. If on outputting a character with charout, pop charout col

is greater than or equal to poplinewidth and either the current character for output is a

space or a tab or the column count is already � poplinemax, then a newline and a tab

will be inserted before printing that character. In other words, lines are broken at the next

whitespace character after poplinewidth columns, or failing that after poplinemax columns.

The treatment of the charerr procedure is the same.

If poplinewidth is not an integer, line breaks are not inserted. Its default value is 70.

cucharout(c)

cucharerr(c)

These procedure variables contain the current character consumers for standard output and

error output. All printing utilities in POP use cucharout to produce output, and all error

printing is done via cucharerr. The standard values of these variables are charout and

charerr respectively.

cuchartrace

This contains the character consumer procedure used for tracing output, or false if cucharout

is to be used instead. Assigning a character consumer to this variable enables trace printing

to be separated from normal printout. For a discussion of the standard tracing capabilities

of POP, see Chapter 4.

pop buffer charout

424 CHAPTER 20. CHARACTER INPUT AND OUTPUT

Setting this boolean variable to false causes output to a terminal to appear immediately,

rather than being stored in a bu�er until a newline or termin is output. A full description

is given in Chapter 23.5.

20.3 Raw Mode Repeaters/Consumers

The term `raw mode' is used in Unix to mean the setting of a terminal device handler

1

so

that a program has direct access to the stream of characters coming from and going to the

terminal. On workstations, like the SUN, terminal emulators are provided, which can make

a window behave the same way as a conventional VDU terminal. Normally input from a

terminal is `cooked' by the operating system. For example text is stored up in a `line bu�er'

until a return character is received, and only then handed on to a user program like POP.

This permits the operating system to provide `line editing' capabilities, so that, for example,

you can use the delete key to rub out mistakes.

However many user programs o�er more sophisticated editing facilities. Both the POPLOG

VED editor and the EMACS editor are examples of this. These programs want their char-

acter input `raw' so that they can decide what to do with each character as it is typed.

Having received a character, they then immediately update the display that the user sees by

outputting a `raw' character or characters.

The procedures described below allow you to raw access to the terminal.

rawcharin()! c

This repeater provides raw mode input. It reads characters from the device popdevraw

which is described in Chapter ??.

rawcharout(c)

1

That is the part of the operating system program that handles communication to and from a terminal

20.4. CREATING NEW REPEATERS/CONSUMERS 425

This consumer provides raw mode output by writing characters to the device popdevraw as

described in Chapter ??.

rawoutflush()

This
ushes popdevraw, i.e. writes out any outstanding characters in the bu�er. It is the

same as sysflush(popdevraw), as described in Chapter ??.

charin timeout(t

100

)! c

This procedure returns the �rst character read from the terminal with rawcharin during

the time-span t

100

, or false if none were available. t

100

is measured in hundredths of a

second, but in Unix is rounded to the nearest whole second. It is implemented in terms of

pop timeout secs and pop timeout, which are described in Chapter ??.

20.4 Creating New Repeaters/Consumers

discin(Filename)! P

crep

This procedure returns a character repeater for the �lename Filename, which may be a

string or word. If it is a word then pop default type is appended to the name (see below).

Note that, despite the name of this procedure, Filename is not restricted to being a disk

�le; it may be any suitable operating system device. A mishap will result if the speci�ed �le

cannot be opened. Filename may also be a device record open for reading, in which case a

character repeater for that device is returned.

discout(Filename)! P

cc

This procedure returns a character consumer for the �lename Filename. The conventions

for the �le name are the same as those described for for discin above. If Filename is a disk

�le, then a new �le is created, otherwise the �le is simply opened; a mishap will result if the

speci�ed �le cannot be created or opened.

426 CHAPTER 20. CHARACTER INPUT AND OUTPUT

Filename may also be a device record

2

open for writing, in which case a character

consumer for that device is returned.

discappend(Filename)! P

cc

This opens an existing �le, and returns a character consumer P

cc

that will append characters

to the �le, that is to say it will actually update an existing disk �le. The conventions for

Filename are the same as for discin.

pop default type

The string in this variable, whose default value

0

:p

0

, is used as the default �le type/extension

by discin, discout and discappend, and is concatenated onto a word argument given to these

procedures, but not onto a string argument.

sysisprogfile(Filename)! b

Where Filename is a string, b = true if Filename has the �le type/extension given by

pop default type, false otherwise.

stringin(s)! P

crep

This procedure returns a character repeater for the string s, i.e. a procedure which each

time it is called produces the next character from the string, and termin when the string is

exhausted.

isclosed(O; b

mishap

)! b

isclosed(O)! b

If O is a device, then b = true if the device is closed, false if it is still open.

If O is a character repeater produced by discin or stringin, b = true if the repeater is

exhausted, i.e. would return termin if called. If characters are still available from O, then

b = false.

2

See Chapter ??

20.4. CREATING NEW REPEATERS/CONSUMERS 427

If O is a character consumer produced by discout, b = true if termin has been given to

the consumer.

The b

mishap

argument is a boolean controlling what happens if O is not one of the above:

if false, the procedure returns undef , otherwise a mishap occurs. The b

mishap

argument

defaults to true if omitted.

428 CHAPTER 20. CHARACTER INPUT AND OUTPUT

From Robin Popplestone Mon Dec 19 10:29:49 EST 1988

Chapter 21

Printing out Objects

NOTES

I do not understand the explanation of nprintf given in the online manual, and have, I

think, corrected it.

Can format print be explained by reference to the Common Lisp manual? I am somewhat

reluctant to include another 400+ lines of text.

This chapter describes the capabilities in POP for printing out objects in a variety of

formats. These capabilities are user-extendable, via the class print mechanism. Additional

capabilities, for example printing out numbers according to Roman conventions, are provided

in POPLOG through the Common Lisp FORMAT function, which can be called from POP

using print format.

The basic printing procedure in POPLOG is sys syspr, which prints any object in its

standard format. While this can be called directly if so desired, the system additionally

provides the procedures pr and syspr as a two-stage mechanism for printing objects in a

way that allows dynamic rede�nition of the actual printing procedures used.

429

430 CHAPTER 21. PRINTING OUT OBJECTS

The mechanism is based on the convention that programs normally print objects using the

variable procedure pr, which in the �rst place, can be rede�ned in any desired way. However,

the default value of the variable pr is the procedure syspr, which prints an object by calling

its class print procedure with the object as argument

1

; thus in the second place, the printing

of individual data classes can be altered by rede�ning their class print procedures. Because

the default class print of any class is sys syspr, i.e. printing in standard format, the normal

sequence of events is therefore:

pr(O)

---> syspr(O)

---> class_print(datakey(O))(O)

---> sys_syspr(O)

It is important to note, however, that to enable the rede�nition of printing procedures

for given data classes to take e�ect at any level, sys syspr always calls pr to print the

sub-components of any data object, e.g. list, vector and record elements. Thus saying that

sys syspr `prints any object in its standard format' is not strictly correct, since the printing

of sub-components will depend on pr. A completely standard printing procedure would be

define pr_standard(O)

lvars O;

dlocal pr = sys_syspr;

sys_syspr(O)

enddefine;

i.e. one that locally rede�nes pr to be sys syspr.

Objects are actually printed by sys syspr by passing each character in its printed repre-

sentation to the standard character consumer cucharout. See Chapter 20 for a description

of character stream I/O (including formatting of line output, etc).

Chapter 4.5 describes procedures to print mishap and warning messages.

1

See Chapter 3.13

21.1. STANDARD PRINTING PROCEDURES 431

21.1 Standard Printing Procedures

sys syspr(O)

This is the basic printing procedure in the system: it prints any object O in its standard

format, calling pr to print the sub-components of data objects, e.g. list, vector, and record

elements. Printing characters produced are passed to cucharout.

Certain aspects of the way sys syspr prints things are controlled by the

0

pop pr

0

variables

below.

pop pr quotes

This boolean variable, whose default value is false, determines how strings are printed by

sys syspr. If it is true, sys syspr will print them enclosed in string quotes \

0

"; otherwise,

strings are printed without any decoration.

pop pr radix

This variable, whose default value is 10, contains an integer controlling the base to which all

kinds of numbers are printed by sys syspr. Thus a value of 2 will cause them to be printed

in binary, 16 in hexadecimal, etc. Allowable values are 2 { 36, the letters A { Z being used

on output as numerals for digit values of 10 { 35.

pop pr ratios

This boolean variable, whose default value is true, controls the printing of ratios by sys syspr.

If it is true, ratios are printed as ratios in the form < n num > = < n denom > which can

be input by the standard POP itemiser

2

. In this form < n num > is the integer numerator

and < n denom > the integer denominator. Otherwise, ratios are printed as though they

were
oating-point numbers.

pop pr places

2

See Chapter 19

432 CHAPTER 21. PRINTING OUT OBJECTS

The bottom 16 bits of the integer in this variable, whose default value is 6, specify the max-

imum number of fractional places to which
oating-point numbers are printed by sys syspr;

numbers printed are rounded to this many places. A value of 0 causes them to be printed

as integers.

Note that this is normally the maximum number of fractional places output, in the sense

that trailing zeros in the fractional part are truncated. However, if pop pr places contains a

non-zero value above the bottom 16 bits, this value is taken to be a padding character to be

output in each place containing a trailing zero. E.g.

(`\s` << 16) || 6 -> pop_pr_places

will ensure that 6 places are always produced, with trailing zeros replaced by spaces.

pop pr exponent

This variable, whose default value is false, controls in which format sys syspr prints
oating-

point numbers. If it is false, numbers are printed in normal format; if it is true, printing is

in exponent format, i.e in the form

<n>.<digits f>e<sgn><digits e>

where 1 � n < pop pr radix. There are a maximum of pop pr places fractional digits

< digits f > after the dot. < sgn > is the sign of the exponent, whose magnitude is printed

as < digits e >. The exponent is always printed in base 10.

The value of pop pr exponent can also be an integer, the bottom 16 bits of which specify

the �eld width for the exponent < digits e >, which is then padded on the left to this width,

the padding character being taken from the bits above the bottom 16 if this is non-zero, or

defaulting to the character

0

0

0

otherwise.

21.1. STANDARD PRINTING PROCEDURES 433

syspr(O)

This procedure does

class print(datakey(O))(O)

i.e. apply the class print of the data class of O to O. The default class print of every

data class is sys syspr, but this can be rede�ned as desired. See Chapter 3.13 for information

about data-classes.

pr(O)

This variable procedure is used by all procedures in the system to print an object, so that

any user-assigned value will take e�ect across all printing. Its default value is syspr.

npr(O)

This prints O followed by a newline, i.e.

pr(O); cucharout(`nn`);

spr(O)

This prints O followed by a space, i.e.

pr(O); cucharout(`ns`);

ppr(O)

If O is a list, this prints O `
attened', i.e. with L and all its sublists without list brackets.

If O is not a list, it does spr(O). It is de�ned as

434 CHAPTER 21. PRINTING OUT OBJECTS

if ispair(O) then

applist(O, ppr)

else

spr(O)

endif;

sp(n)

tabs(n)

nl(n)

These procedures respectively output n spaces (ASCII 32), tabs (ASCII 9) and newlines

(ASCII 10) to cucharout.

quote pr(O)

This prints O using pr, surrounded by the appropriate POP-11 quote characters if O is a

word or string, i.e. single quotes

0

for strings, double quotes

00

for words.

printlength(O)! n

This procedure returns the number of characters that pr(O) would output to cucharout.

outcharitem(P

cc

)! P

Oc

Given a character consumer procedure P

cc

, such as charout, or one returned by discout, this

procedure returns an object print consumer procedure P

Oc

, i.e. a procedure which when

given an object O will do pr(O) with cucharout locally set to P

cc

.

21.2. PRINTING ITEMS OFF THE STACK 435

21.2 Printing Items o� the Stack

sysprarrow(b

all

)

This is the procedure called by the POP-11 print arrow). It prints the string in pop =>

flag (q.v.) and then either

� Prints and removes from the stack one object only, if b

all

is false;

� Prints and clears from the stack all objects upto the stack length as it was on entry to

compile, if b

all

is true.

Each object is printed with spr, printing �nishing with a newline, i.e. cucharout(`nn`).

pretty(O)

This procedure attempts to print objects in a more readable format than sysprarrow. It is

the procedure used by the POP-11 pretty print arrow ==>. Basically, it prints an object

starting with pop => flag and ending with a newline. However, when an object cannot be

printed on a single line, this procedure uses indentation to indicate sub-objects appropriately.

pop => flag

This variable contains the string to be printed by sysprarrow and pretty before printing

things o� the stack. Its default value is

0

� �ns

0

.

21.3 Formatted Printing

printf(O

n

; : : : ; O

2

; O

1

; s)

printf(s; L)

436 CHAPTER 21. PRINTING OUT OBJECTS

This procedure provides formatted printing, where printable characters in the string s may

be intermixed with �eld speci�ers that cause the next O argument to be printed at that

position.

A �eld speci�er is the character `%` immediately followed by a selector character, which

may (currently) be one of the following:

� p - any POPLOG object, printed with pr

� P - any POPLOG object, printed with sys syspr

� s - a string printed recursively with printf

� c - an integer interpreted as an ASCII character code

� % - output a % character

The characters b, d, i and x are also meaningful, but reserved for system use.

The characters of s are scanned from left to right, printable characters being output with

cucharout, and each �eld speci�er encountered causing the next O argument to be printed as

per the speci�er; thus the i'th �eld speci�er in the string selects the i'th argument object. In

the �rst form of the call the arguments are taken o� the stack one by one, and must therefore

be stacked in reverse order, whereas in the second form the arguments are supplied in a list

L. E.g.

printf('The sum of %p and %p is %p.\n', [65 66 131]);

printf(131, 66, 65, 'The sum of %p and %p is %p.\n');

both produce the line

The sum of 65 and 66 is 131.

21.3. FORMATTED PRINTING 437

Note that the �rst form is incompatible with contexts in which cucharout is rede�ned

to leave characters on the stack, because in that case the characters get mixed up with the

printf arguments. Thus the second form is the preferred one if you are de�ning a printing

procedure of any generality. In particular the capability of `printing into a string' described

in section 21.4 will not work if you use the �rst form.

nprintf(O

n

; : : : ; O

2

; O

1

; s)

nprintf(s; L)

This behaves in the same way as printf , but followed by a newline, i.e.

printf(s; L); cucharout(`nn`);

pr field(O; n; c

lpad

; c

rpad

; P

pr

)

pr field(O; n; c

lpad

; c

rpad

)

This prints O in a �eld of width n, using the procedure P

pr

to print the object if this is

supplied, or pr otherwise. The object can be left-justi�ed, right-justi�ed, or centred in the

�eld, depending on the the values of c

lpad

and c

rpad

, both of which may be an integer ASCII

character or false.

� If c

lpad

is a character and c

rpad

is false, the object is right-justi�ed, by being left-padded

to the �eld width with c

lpad

(or left-truncated if too long).

� Alternatively, if c

lpad

is false and c

rpad

is a character, the object is left-justi�ed, by

being right-padded to the �eld width with c

rpad

, or right-truncated if it is too long.

� If both are characters, then the object is centred in the �eld, by being left-padded with

c

lpad

and right-padded with c

rpad

as appropriate, or right-truncated if it is too long.

Finally, if both are false, then c

rpad

defaults to `ns`, i.e. the object is left-justi�ed,

padded on the right with spaces.

prnum(x; n

int

; n

frac

)

This procedure takes any non-complex number x and prints it in
oating-point format.

438 CHAPTER 21. PRINTING OUT OBJECTS

� n

int

is an integer specifying the number of character positions that the integer part

should occupy, including a minus sign if x is negative; this will be left-padded with

spaces to the given width.

� n

frac

speci�es the number of positions the fractional part should occupy, including the

fractional point; trailing zeros are printed to this width if necessary. If n

frac

is 1, only

the fractional point is printed, if 0 then x is printed as an integer.

This is a library procedure which uses pr field and pop pr places.

format print(s; O

struct

)

This procedure gives the formatted printing capabilities of the Common LISP function FOR-

MAT. Users should refer to Steele [?].

21.4 Printing Into Strings/Character Codes

sprintf(O

n

; : : : ; O

2

; O

1

; s)! s

pr

sprintf(s; L)! s

pr

This is the same as printf , described in section 21.3, save that the characters that the latter

would print are instead returned as a string.

O

1

>< O

2

! s

pr

This produces, for any two objects O

1

and O

2

, a string which is the concatenation of the

printed representations of O

1

and O

2

. E.g.

'abcd' >< 'efgh' is 'abcdefgh'

"word" >< 'string' is 'wordstring'

[1 2 3] >< {a b c} is '[1 2 3]{a b c}'

false >< true is '<false><true>'

21.5. USEFUL PRINTING CONSTANTS 439

The two objects are `printed' by using pr and rede�ning cucharout to get the printing

characters.

O

1

sys >< O

2

! s

pr

This is the same as ><, but uses sys syspr to `print' the objects, locally setting all the

0

pop pr

0

variables, described in section 21.1, to their standard values.

dest characters(O)! c

n

: : :! c

2

! c

1

This prints O with sys syspr (with all the

0

pop pr

0

variables locally set to their standard

values), leaving all the character codes on the user stack by rede�ning cucharout to be

identfn.

21.5 Useful Printing Constants

space

tab

newline

These three constants contain words whose single characters are respectively a space (ASCII

32), a tab (ASCII 9), and a newline (ASCII 10).

440 CHAPTER 21. PRINTING OUT OBJECTS

Chapter 22

General Communication with the

Unix Operating System

NOTES

Is the popenvlist re-created when a saved image is restored? see NOTE below.

Can POP be used as a login shell??

What is the Host machine in a �le name?

This chapter described POP capabilities which allow you to communicate with the Unix

[?] operating system. You will need to consult the Unix manual to achieve a full under-

standing of what is provided, but you may �nd below is a short glossary of the Unix terms

used.

Note that references to the Unix manual are of the form < function

n

ame > (< section >

), where < function

n

ame > is the name of a C function, which corresponds to a POP

procedure. However < section > is not an argument, but tells you which part of the Unix

manual to look in.

� A login name is the name you, or any other user, type when you log in to the Unix

441

442CHAPTER 22. GENERAL COMMUNICATIONWITH THE UNIX OPERATING SYSTEM

system.

� Users are arranged into groups in the Unix system. Members of a group can share

access to �les which are not accessible to people outside the group.

� An environment variable is a variable of the Unix system, or more precisely a variable

provided by the shell program which interprets the commands you give to Unix. For

example, to run the POP system you have to give the environment variable usepop a

value. This is usually done in a �le of commands called

0

:login

0

which is run when you

log in to Unix

1

. Environment variables must not be confused with POP variables.

� A Unix pathname is a string which is the `full name' of a �le, that is it speci�es how

to start at the Unix root node, and `climb' the Unix directory tree ending up at the

�le in question.

� A Unix process is a combination of program and data which is executed by the com-

puter. There are many processes in a Unix system, and their execution is interleaved.

This interleaving provides the time-sharing capability of Unix. There is at least one

process associated with every user on the system. When you start up a POP system,

it is a Unix process, or, in the case of the PWM window manager, two. A Unix process

can create an almost identical copy of itself by executing a fork operation. The original

process is called the parent, and the new one is called the child. Both have associated

Process Identi�ers (PIDs), which are integers. Typically a child will `decide' to become

quite a di�erent process. This it does by an exec operation: exec speci�es that the

program the child is obeying (which is initially the same as the parent's program) is

to be replaced by a program whose name is an argument to the exec operation. When

you type a command name to Unix, you cause the shell program that is interpreting

what you type in to exec the program named in the command.

� The `operations' like exec referred to above are accomplished by `system calls' to Unix.

These resemble a procedure call instruction, in that they cause a transfer of control

with a return link being left, but they switch the computer into a special `privileged

mode' in which it can do all kinds of things that an ordinary user cannot do, such as

write anywhere on the disk it likes. However, a system call can only transfer control

into program that ordinary users cannot change, and only to appropriate addresses in

that program, so that access to resources which are shared by many users is restricted

in such a way that no user can interfere in a disastrous way with resources allocated to

another. This, at least, is the intention, but the Unix system is not without loopholes

in this cordon sanitaire.

1

The directory listing program ls will not print the names of �les beginning with

0

:

0

unless you do ls -a.

22.1. USERNAME AND ENVIRONMENT VARIABLE PROCESSING 443

� Parent and child processes can communicate in a variety of ways, which are described

in Chapter ??

These procedures described below perform miscellaneous functions within the POP sys-

tem, including interfacing to Unix facilities not directly concerned with input/output, which

are described in chapter ??. Some of these are direct interfaces to Unix system calls, etc,

while others are in form that can be made compatible across all POP implementations.

2

22.1 Username and Environment Variable Processing

sysgetpasswdentry(s

user

)! v

user

sysgetpasswdentry(n

user

)! v

user

sysgetpasswdentry(n

user

; O

spec

)! v

user

This procedure accesses information about a given user from the password �le

0

=etc=passwd

0

,

which is speci�ed in passwd(5) and getpwent(3) in the Unix Programmers Manual. The �rst

argument is either a user login name (the string s

user

), or a user identi�cation (the integer

n

user

); in all cases, false is returned if the speci�ed user cannot be found.

Without a second O

spec

argument, the procedure returns a new standard full vector

containing the broken-down �elds from the password entry line, subscripted thus:

2

There is a distinct di�erence in philosophy between POP and Common LISP here. LISP has opted for a

uniform external interface. This has the virtue of making LISP code which runs in a LISP implementation

under one operating system portable to a LISP implementation which runs under another operating system.

This is achieved at the cost of giving the user a view of the operating system which does not match the stan-

dard view of that system. The format of �le-names, for example, do not change as from LISP implementation

to implementation. POP has opted for a rather more hybrid approach. There is a layer of communication

which depends only on the operating system in so far as �le name conventions di�er, described in Chapter ??.

Below this is the layer, described in this Chapter, and in Chapter ?? in which the mapping to a particular

operating system is rather speci�c. There is an advantage to this approach in that POP can be regarded as

a way of communicating with Unix which corresponds quite closely with that employed by C. This means

that it is straightforward to interpret how the Unix manuals are usable by POP programmers. In general,

0

sys

0

is appended to the C name for a Unix procedure to obtain the corresponding POP name

444CHAPTER 22. GENERAL COMMUNICATIONWITH THE UNIX OPERATING SYSTEM

1. A string which is the login name of the user, and contains no upper case characters.

2. A string which is the encrypted password of the user. It is encrypted so that if some-

body else looks at the entry, he cannot tell what the password is. At least you may

hope that that is the case. It is in fact hard to decrypt a well chosen password, but

beware, the world abounds in inquisitive people, who exploit the fact that other peo-

ple often make predictable choices of password. The inquisitive have been known to

construct programs which try logging on to machines using selections of the obvious

choices. Little jokes along the lines of `There is a password but its name is secret.' may

strike you as original, but they have been around a long time, and are current among

the company of the inquisitive.

3. An integer which is user's identi�er used by Unix for all its internal operations | for

example the ownership of a �le is stored in a directory data-structure in the form of

this integer, and not by the login name.

4. An integer which is the identi�er of the group to which the user belongs.

5. This is called

0

pw quota

0

, and is always 0 at present.

6. This is called

0

pw comment

0

, and is always an empty string.

7. This string contains data about the user. It begins with his real name, terminated by

a comma, and can include his o�ce, phone extension etc.

8. This string is the name of user's initial working directory, that is the directory which he

�nds himself in after login (assuming none of his initialisation �les do a cd command

or the equivalent).

9. This string is the name of a �le which is the program to be used as the user's login

shell, i.e. a program which will be started up to obey his instructions to the computer.

If speci�ed, the O

spec

argument selects variations on this, as follows:

� If O

spec

is a standard full vector for which length(O

spec

) � 2, then it is used instead of

creating a new one. Its �elds are updated in accordance with the above scheme, but

restricted to the actual number of them, and it itself is returned as the result.

� If O

spec

is a vector of length 1, containing an integer from 1 { 9, then only the �eld

selected by that integer is returned.

22.1. USERNAME AND ENVIRONMENT VARIABLE PROCESSING 445

� Finally, O

spec

may be true, in which case the whole of the password entry line is

returned as a string. This does not include �elds 5 and 6, which aren't actually in the

password �le.

sysgetusername(s

user

)! s

name

sysgetusername(n

user

)! s

name

This procedure uses sysgetpasswdentry(s

user

; 7) (or the corresponding second form) to select

the user's real name, and then returns the leading substring of this up to the �rst comma

if such exists, or otherwise the whole string. This is assumed to be the part of the string

which is the users real name.

systranslate(s)! s

trans

systranslate(s)! false

This procedure provides a translation of the string s from a user login name or an

environment variable name to a Unix pathname.

1. If the �rst character of s is ~ (tilde) then the remaining substring of s is taken to

be a user login name. The user's login directory is returned as a string (using

sysgetpasswdentry), or false if the user is non-existent. An empty user name (i.e.

s =

0

~

0

) is interpreted as the current user, and returns systranslate(

0

HOME

0

).

2. Otherwise, the whole string s (or s, excluding the �rst character if this is $ (dollar)),

is interpreted as an environment variable name. The strings in the list popenvlist

are searched, and if one is found of the form < s >=< s

trans

> then the substring

< s

trans

> is returned, otherwise false.

Note popenvlist is not recreated when a saved image is restored. (or is it)

popenvlist

This holds a list of the environment variable strings passed to the POP system on startup,

446CHAPTER 22. GENERAL COMMUNICATIONWITH THE UNIX OPERATING SYSTEM

i.e. a list of strings of the form

0

< name >=< value >

0

where < name > is the name of

an environment variable and < value > is its value. systranslate uses this to translate an

environment variable to its value.

popusername

This variable is initialised on POP startup to be the string got from systranslate(

0

USER

0

)

for Berkeley Unix, or systranslate(

0

LOGNAME

0

) in Unix System V. Thus it contains the

login name of the current user.

22.2 Filename Processing

In the procedures described in this section, s

f

denotes a string which is intended to be the

name of a �le.

sysfileok(s

file

)! s

f trans

This procedure is called by most procedures in POP which take a �le-name argument; it

performs the following translations on �lenames: First, if the �lename s

file

begins with the

character or the character $, then the substring from the that character up to the next

character before a / (or to the end of the name if there isn't one), is replaced by systranslate

on that substring. This means that environment variables and user names can be used at

the beginning of �lenames given to POP. E.g.

sysfileok('~johng/ref') =>

** /cog/johng/ref

sysfileok('$popautolib/nl.p') =>

** /poplog/pop/lib/auto/nl.p

In addition, in System V POPLOG, sysfileok truncates �lenames longer than 14 char-

acters. This is done in such a way that any �le `extension' or trailing hyphens on a `back'

�le name are preserved, e.g.

22.2. FILENAME PROCESSING 447

sysfileok('$popautolib/cleargensymproperty.p-') =>

** /poplog/pop/lib/auto/cleargensym.p-

s

dir

dir >< s

f1

! s

f2

This procedure concatenates a directory pathname s

dir

onto a �lename s

f1

. Both arguments

may be either a word or a string; the result s

f2

is their concatenation (using sys ><), with

a

00

=

00

added in between if s

dir

doesn't already end with one and s

f1

doesn't already start

with one. E.g.

'$popautolib' dir_>< 'sort.p' =>

** $popautolib/sort.p

sysfileparse(s

file

)! v

Given a �le name s

file

, this procedure translates it through sysfileok, and then returns

a standard full vector of (possibly empty) strings containing the broken-down �elds of the

name at the following subscripts:

1. Host machine

2. Disk: this is provided for VMS compatibility, but in Unix is always an empty string.

3. Directory pathname: the path to the directory the �le belongs to.

4. File name: this is the substring of the Unix �le-name which comes before the �rst

0

:

0

in the string.

5. File type/extension: this is the substring of the Unix �le-name which comes after the

�rst dot. POPLOG systems, particularly the VED editor, use this to distinguish the

language a �le is written in, e.g. an extension of

0

:pl

0

is used to indicate a Prolog �le.

6. Version: This is the substring which consists of zero or more trailing hyphens. E.g., if

s

file

=

0

Pooh:p��

0

then this �eld will be

0

��

0

.

448CHAPTER 22. GENERAL COMMUNICATIONWITH THE UNIX OPERATING SYSTEM

sysfilehost(s

file

)! s

host

sysfiledisk(s

file

)! s

disk

sysfiledir(s

file

)! s

dir

sysfilename(s

file

)! s

name

sysfiletype(s

file

)! s

ext

sysfileversion(s

file

)! s

version

These procedures all call sysfileparse on s

file

, and then return v(1) to v(6) respectively.

sys file match(s

f spec

; s

def

;v; b

strip

)! P

f rep

This procedure can be used to �nd all �lenames that match a given �le speci�cation

s

f spec

. It returns a �lename repeater, i.e. a procedure which each time it is called produces

the next actual �lename matching s

f spec

, or termin if there are no more. The arguments

are as follows:

s

f spec

This is the �le speci�cation string. It is �rst run through sysfileok, which means

that any initial $ < environment var > is translated, as is an initial < username >; it can

then contain normal shell-type wildcard characters as follows:

* match 0 or more characters

? match any single character

[abcA-Z] match any of a,b,c or A-Z, etc

[^abcA-Z] match any character but a,b,c or A-Z, etc

As usual,

0

:

0

at the beginning of a name part must be matched explicitly.

In addition, there are two other special wildcards: the �rst is concerned with the POP

convention of naming `back' �les by appending 1 or more trailing hyphens, described under

22.2. FILENAME PROCESSING 449

pop file versions in Chapter 23.3.

matches the start position of 0 or more trailing `� ` characters on the end of a �lename.

Thus for example,

0

�#

0

would match only �lenames with no trailing hyphens, whereas

0

�#���

0

would match names with at least two trailing hyphens. The other special wildcard

is

0

: : :

0

for a directory name, which means match all sub-directories recursively, e.g.

'/foo/.../baz/*.p'

would match all �:p �les in any directories called

0

baz

0

anywhere in the tree from =foo

downwards.

s

def

The �le speci�cation s

f spec

is considered to have 3 parts, namely pathname, �lename

and version, the last being a # character plus anything following it; if present, the corre-

sponding parts of the default speci�cation string s

def

are then used to �ll in the missing

parts of s

f spec

. For example, if s

f spec

was

0

� :ph

0

(having only the �lename part), and s

def

was

0

$usepop= : : : = � :p#

0

(having all three parts), then the actual speci�cation used would

be

'$usepop/.../*.ph#'

v This is a standard full vector or false. If it is a vector then sys file stat(v) is evaluated

with each �lename v generated

3

. When a vector is speci�ed, the repeater then returns a

second result for each �lename produced, i.e.

P

f rep

()! s

file

! O

stat

which is the result that would be produced by sys file stat, i.e. the vector v or false.

If v is false then only the �lename is returned, i.e.

3

sys file stat in Chapter ??

450CHAPTER 22. GENERAL COMMUNICATIONWITH THE UNIX OPERATING SYSTEM

P

f rep

()! s

file

b

strip

When b

strip

= false, the names returned by the repeater are the full names, with

pathname included in each. With b

strip

= true however, the pathname is stripped from each

individual name and returned in between the stream of �lenames whenever the pathname

changes. When this happens, the repeater returns false for the �lename and a second result

for the pathname. Thus when b

strip

is true, the repeater must be used in something like:

until (P_filename_rep() ->> FILENAME) == termin do

if FILENAME then

<process filename, -> STAT if \popvector a vector>

else

-> PATHNAME;

<process pathname>

endif

enduntil;

systmpfile(s

dir

; s

pre

; s

post

)! s

file

This procedure generates a new unique �le name in the given directory. If s

dir

is false, it

uses the default temporary directory

0

=tmp

0

; if s

dir

is an empty string, it uses the current

directory. s

pre

should be a string which identi�es the program which needs the temporary

�le, and s

post

should be the extension required. An example is:

systmpfile('/foo', 'load', '.o') =>

** /foo/load6x21564.o

22.3 Directory Manipulation

current directory

This active variable holds the current directory as a string: assigning to it changes the current

22.4. UNIX PROCESSES 451

Unix directory of the process.

popdirectory

This variable is initialised on POPLOG startup to be the string got from

systranslate(

0

HOME

0

)

i.e. the current user's home directory.

syslink(s

f;old

; s

f;new

)! b

This procedure creates a link named s

f;new

to the �le named s

f;old

, where s

f;old

and s

f;new

are

both strings. If the call fails merely because s

f;old

doesn't exist then false is returned, but

any other failure produces a mishap. true is returned if the link was successfully created.

sysunlink(s

file

)! b

This procedure unlinks the directory entry for the �le named s

file

, where s

file

is a string. If

the call fails merely because s

file

doesn't exist then false is returned, but any other failure

produces a mishap. true is returned if s

file

was successfully unlinked.

sysdelete(s

file

)! b

This procedure deletes the �le with �lename string s

file

, returning true if successful, false

if not. This procedure does the opposite of syscreate in that it `moves forward' any back

�le versions of s

file

that exist, as described in pop file versions in Chapter ??.

22.4 Unix Processes

The procedures in this section allow you to create new Unix processes. They are thus

conceptually similar to the POP processes described in Chapter ?? but are created and

452CHAPTER 22. GENERAL COMMUNICATIONWITH THE UNIX OPERATING SYSTEM

administered by the Unix operating system at the request of POP, whereas POP processes

are treated entirely by POP. Unix processes use more machine resources to create, but o�er

you access to Unix capabilities that POP processes do not. In particular, one way in which

you can use a `foreign' program that is not written in POP, or in any of the POPLOG

`native' languages, is to have POP invoke it as a process, using sysfork (or sysvfork) and

sysexec, as described below. This can usually be done given just the user manual for the

foreign program, since the POP system can then `talk' to the foreign program just as if the

POP system were a human user. This `talking' is accomplished by switching the input and

output channels of the child process that is going to become the foreign system, using the

active variables popdevin, popdevout and popdeverr to reassign standard input and output

as described in Chapter ??.

Another way of accomplishing the same end can be to use the external capabilities of

POP described in Chapter ??. However to do this you will require detailed knowledge of the

implementation of parts of the foreign program.

sysfork()! n

PID

sysfork()! false

This forks the current POP process, producing a new child process which is an exact copy of

the current one. In the parent, the call of sysfork returns with the child process identi�er,

n

PID

; in the child it returns false. This is the only di�erence manifest between the parent

and child.

sysvfork()! n

PID

sysvfork()! false

This procedure forks the current POP process, producing a new child process which `borrows'

the address space of the current one until a sysexit or sysexecute is performed; until this

happens, only the open �les of the two processes are di�erent.

sysvfork must therefore be used only in the situation where the purpose of forking is to

immediately sysexecute another image in the child, possibly after redirecting the standard

input and/or output etc. It is quicker than sysfork because Unix doesn't have to copy the

whole POP process. Using it in any other way will crash the system { in particular, the

procedure that calls sysvfork must not exit when running as the child. This is the same

22.4. UNIX PROCESSES 453

limitation placed on the use of the vfork system call in C.

In the parent, the call of sysvfork returns with the child n

PID

; in the child it returns

false.

syswait()! n

PID

This procedure waits for the termination of child process(es) created by sysfork or sysvfork,

returning the Process IDenti�cation number of a dead child.

Each call of syswait either returns the n

PID

of a child that has already died, or waits for

the death of one to do so. A mishap will result if there are no child processes, or none that

have not already been waited for.

syswait can also return false, if an interrupt (e.g. Ctrl-C or timer) occurred while

waiting for a death. The normal way of ensuring that a given child whose process identi�er

is n

PID

has died is therefore a loop like

until syswait() = PID do enduntil

pop status

This variable is set to the integer valued exit status of a child that has just been waited for

with syswait. Since utilities like sysobey, etc also use syswait this variable will also contain

the exit status of commands run with that procedure.

sysexecute(s

file

; L

arg

; L

env

)

This does a Unix execve system call, i.e. runs the executable �le named by the string s

file

in

place of the current POP image, passing it the strings in L

arg

as arguments, and the strings

in L

env

as environment variables. If L

env

= false then it is replaced by the current value

of popenvlist Note that all strings are null-terminated before being passed across and that

the list L

arg

begins with the zeroth argument, i.e., that usually used for the name of the

program.

454CHAPTER 22. GENERAL COMMUNICATIONWITH THE UNIX OPERATING SYSTEM

The combined use of sysvfork and sysexecute to start up a `foreign' process is illustrated

below in the case where pipes are used as the communication channels. These are �rst created

by calling the procedure syspipe, described in Chapter 23.3. Next the sysvfork procedure is

called. After this, there are two Unix processes, both running POP, indeed both running the

code following the sysvfork. Both of these will start executing the conditional, but, unless

you have a true parallel processor like the Sequent Symmetry, at di�erent real times. The

parent, which has the n

PID

of its child, will execute the return. It will `talk' to its child by

making explicit use of the pipes. The child, for which n

PID

= false, will switch the input

and output so that the pipes become the standard input and output channels.

lvars n_PID, pipe_1_in, pipe_1_out, pipe_2_in, pipe_2_out;

syspipe(false) -> pipe_1_in -> pipe_1_out; ;;; The parent to child pipe

syspipe(false) -> pipe_2_in -> pipe_2_out; ;;; The child to parent pipe

sysvfork() -> n_PID;

if n_PID then ;;; Am I the parent?

;;; Yes, close unneeded pipe ends.

sysclose(pipe_1_out); ;;; These ends of the pipe are

sysclose(pipe_2_in); ;;; used by baby.

return

else ;;; I am the child.

pipe_1_in -> popdevin; ;;; Take input from parent

pipe_2_out -> popdevout; ;;; Send output to parent

sysclose(pipe_1_in); ;;; These ends are used only by the

syscload(pipe_2_out); ;;; parent, so close them

sysexec('foreign_program') ;;; and become a changeling.

endif;

poppid

This contains the Process Identi�er of the current POP process.

22.5. RUNNING SHELL COMMANDS 455

22.5 Running Shell Commands

sysobey(s)

sysobey(s; c

shell

)

sysobey(s

file

; L

arg

)

The �rst two forms obey the string s as a shell or cshell command, by forking a child process.

The integer c

shell

is an ASCII character code controlling which shell is used, as follows:

`$` /bin/sh

`%` /bin/csh

`!` the value of systranslate('SHELL')

If c

shell

is absent, =bin=sh is assumed.

The third form forks a child, sysexecutes the �le s

file

with argument strings L

arg

, and

then syswaits for the child. The status return from the child process is placed in pop status

by syswait (qv).

sysobeylist(L

comm

)

Given a list of commands strings L

comm

, this procedure runs

sysobey(s; `!`)

on each s in the list.

456CHAPTER 22. GENERAL COMMUNICATIONWITH THE UNIX OPERATING SYSTEM

22.6 Signal Handling

sys send signal(n

PID

; n

sig

)! b

This sends the signal number n

sig

to the process whose Process Identi�cation number is the

integer n

PID

, returning true if successful. false is returned if the speci�ed process does not

exist, or you don't have the privilege to send that signal to it.

sys reset signal()

This restores POP signal handling for those signals normally trapped by the system. It may

need to be done after an external procedure has altered the signal-handling, which typically

occurs when a complex system is externally loaded, which has its own ideas about how

signals should be handled. Otherwise it is unlikely that you will need to do it.

22.6. SIGNAL HANDLING 457

From Robin Popplestone Thu Dec 8 10:28:18 EST 1988

458CHAPTER 22. GENERAL COMMUNICATIONWITH THE UNIX OPERATING SYSTEM

Chapter 23

Unix-related input and output

NOTES rewrite pop file versions explanation.

This chapter describes those input and output (I/O) facilities of POPLOG running under

Unix which provide the closest accessibility to Unix. It is thus complementary to Chapter

22 which deals with procedures that are less directly related to I/O, and describes the

capabilities which underlie the character-stream procedures of Chapter 20.

All input and output in POPLOG is via device records. These are created for a �le

using the procedures sysopen, syscreate, described in section 23.3. The concept of `�le'

in Unix has been generalised to include peripheral devices, which are to be found in the

directory =dev. These are used in a similar way to �les, subject to the constraints imposed

by the physical nature of the device. However there is a procedure, called ioctl in C and

sys io control in POP, which is used to change the state of these peripherals. How you call

it will depend upon the speci�c device. POP devices correspond to Unix channels.

Every Unix process has three `standard channels', called the input, output and error

channels which have the integer identi�ers 0, 1 and 2. These are the channels by which

that process communicates by default. When a process is created by a fork command, as

discussed in Chapter 22, channels are inherited from the parent.

459

460 CHAPTER 23. UNIX-RELATED INPUT AND OUTPUT

For communication between Unix processes the procedure syspipe can be used to create

device records corresponding to a Unix pipe. POPLOG does not currently provide sockets,

although a user can employ the external load capability of POPLOG.

As far as possible, the POP I/O facilities have been designed to provide procedure calls

which match the Unix interface which is speci�ed for the C language. However, in order to

provide compatibility with the capabilities of the VMS system, the above procedures take

an additional argument to the corresponding C functions which speci�es the `organisation'

of the �le.

Terminal devices, whether they be a real VDU or a terminal emulator in a window

system, are rather complicated to deal with, because they o�er a range of capabilities not all

of which will be available on every terminal. POPLOG allows you to associate more than one

device with a given terminal. Each such device maintains a full set of terminal parameters.

These are attributes of the driver program which is associated with the terminal in Unix,

and include information about whether the user program is to be given every character the

user types as soon as he types it, or whether characters are to be held in a `line bu�er' and

only relayed to the user program when a complete line has been input. Whenever such a

device is used by a POPLOG program, POPLOG makes sure that the terminal parameters

have the right value for that device, resetting them if necessary. In this way multiple devices

with di�erent characteristics can be made to work for the same underlying terminal, with

automatic switching between di�erent settings as appropriate. See sys io control in section

23.6 for more information.

Interfaces to other Unix system calls are provided where appropriate, wherever possible

in a form that can be made compatible across all POPLOG implementations.

23.1 Predicates on Devices

isdevice(O)! b

This procedure returns true if O is a device, false if not.

23.2. DEVICE/FILE INFORMATION 461

systrmdev(Dev)! b

This procedure returns true if the device Dev is a terminal, false if not.

isclosed(Dev)! b

isclosed(P

rep

)! b

If O is a device, this procedure returns true if the device is closed, false if it is still open.

This procedure is also applicable to character repeaters produced by discin, as described in

Chapter 20.

23.2 Device/File Information

device open name(Dev)! s

This procedure returns the open name string of the device Dev, i.e. the name with which

the device was opened/created.

device full name(Dev)! s

This procedure returns the full name string of the device Dev, i.e. the open name with any

environment variable components etc translated.

device os channel(Dev)! n

This procedure returns the Unix integer �le descriptor associated with the device Dev.

sys file stat(File;v)! v

Where File is either a string naming a �le, or a device record for an open �le, this procedure

puts information about the �le in the standard full vector v, returning v as the result. false

is returned if the �le is nonexistent or is not a disk or tape �le, or cannot be opened due to

a protection violation. The information returned in each subscript position of the vector v

is as follows:

462 CHAPTER 23. UNIX-RELATED INPUT AND OUTPUT

1. Size of �le in bytes

2. Last modi�ed time (t

mod

)

3. Group id of owner

4. User id of owner

5. Mode
ags

6. Number of links

7. Major/minor device

8. I-node number

9. Last accessed time (ATIME)

10. Last status change time (CTIME)

Further details are given under stat(2) in the Unix Programmers Manual for further details.

Note that all the values are integers or bigintegers. If the length of v is less than 10, only

the information that will �t in is given, e.g. if the length is 1, only the size is given, if the

length is 2 then the size and the last modi�ed time, etc.

sysfilesize(File)! n

This procedure returns the size in bytes n of the �le represented by the device record or �le

name string File (which must be either a disk or tape �le). This is the same as v(1) from

sys file stat.

sysmodtime(File)! t

mod

This procedure returns the last modi�ed time of the �le represented by the device record or

�le name string File, which must be either a disk or tape �le. This is the same as v(2) from

sys file stat.

23.3. OPENING AND CLOSING DEVICES 463

23.3 Opening and Closing Devices

The procedures sysopen, syscreate and syspipe described below all take an argument O

org

to specify the organisation of a �le. This argument can currently take the following values:

� false

For disk �les and pipes, this value will optimise the device for single character input

or output, otherwise there is no di�erence between false and true. For terminals, this

gives normal interactive line mode with prompts given by popprompt.

� the word

00

line

00

(or

00

record

00

)

For all kinds of device, this value will mean that a sysread of n bytes from the device

will only only read up to the next newline character, e.g. sysread(Dev;BUFF; 512)

will read the next line and return the number of characters read.

� true

For a disk �le or a pipe, the device is optimised for reads and writes of more than 1

byte at a time, otherwise there is no di�erence between true and false. For terminals,

the device is initially set up for `rare' mode (i.e. cbreak, �echo, �nl, �tabs) and no

prompt is output for read operations. See sys io control below.

Essentially then, use false for character stream I/O on text �les,

00

line

00

for line input on

text �les, and true for block I/O on disk �les or pipes and rare or raw mode on terminals.

Note that all the procedures below which take a s

file

argument �rst translate the given

name with sysfileok, which is described in Chapter 22.

sysopen(s

file

; m

access

; O

org

)! Dev

This procedure returns a device record Dev for the �lename, which as we noted above can

include various peripherals in the =dev directory, named by the string s

file

, opened for access

mode m

access

with organisation O

org

. Permissible values of m

access

are

0 Read only

1 Write only

2 Read and Write

464 CHAPTER 23. UNIX-RELATED INPUT AND OUTPUT

Permissible values for O

org

are as described above. If the �le does not exist, and so cannot

be opened, then false is returned. If it cannot be opened for any other reason, including

reference within

file

to a non-existent directory, a mishap occurs.

readable(s

file

)! Dev

This procedure returns a device record Dev for s

file

, opened for reading with false for the

organisation argument O

org

. If for any reason the �le cannot be opened, false is returned.

I.e. this procedure will never cause a mishap.

syscreate(s

file

; m

access

; O

org

)! Dev

This procedure returns a device record Dev for s

file

, created for access mode m

access

with

organisation O

org

. The values of m

access

and O

org

are as for sysopen. A mishap results if for

any reason the �le cannot be created. This procedure uses the Unix creat system call, qv.

pop file mode

This integer variable supplies the access permissions mode given to the Unix creat system

call by syscreate. See chmod(2) in the Unix Programmers Manual for possible values; the

default value is 8:664, i.e. permission to read and write the �le is given to both the owner

and members of the group to which the �le belongs. Any body else in the world can only

read the �le.

Note that this variable is only used by syscreate when creating a new �le: if a �le exists

already, its access permissions are left unchanged.

pop file versions

This integer variable controls the creation of `back' �le versions by syscreate. POPLOG

uses a convention that `back' versions of a disk �le are named by su�xing the original �le

name with one or more `� ` characters. E.g. the most recent back �le of

0

foo

0

is

0

foo�

0

, the

next most recent is

0

foo��

0

, and so on.

The action of syscreate is therefore to try to maintain pop file versions of a �le. E.g.

2 means the original �le plus 1 back version, 3 means the original plus 2 back versions, etc.

This is done by `moving back' all existing versions up to pop file versions, the oldest one

23.4. READING FROM DEVICES 465

being deleted. The operation of `moving back' a �le depends on whether the �le has only 1

link, or more than 1: in the former case the �le is simply renamed as the `back' name, while

in the latter case (to preserve the links), the �le is copied to a new one of that name.

The procedure sysdelete, described in Chapter 22, also uses this variable to `move for-

ward' old versions when deleting a �le. That is, if back versions of the �le within the range

pop file versions exist, then the above process is reversed to bring the back versions forward.

syspipe(O

org

)! Dev

in

! Dev

out

This creates a Unix pipe and returns input and output device records for it. Permissible

values for O

org

are as described above. Note that the `in' and `out' directions are from the

point of view of the program using the pipe, and not the pipe itself | what comes out of a

pipe is what goes in to a program. A worked example of the use of pipes is to be found in

Chapter 22.4.

sysclose(Dev)

This closes the device Dev. If Dev was open for output device, then any bu�ered characters

will be written to the physical peripheral. Note that two or more Unix processes can share a

device, which one of them may close without closing it for others. Note also that POPLOG

automatically closes all garbage collected device records. In addition, it closes all devices on

system exit.

23.4 Reading from Devices

sysread(Dev; i; O

byte

; n)! n

read

sysread(Dev;O

byte

; n)! n

read

This reads up to n bytes from the device Dev into the structure O

byte

starting at byte

subscript i, and returns as result the actual number n

read

of bytes read.

In general, n

read

will be n for disk/tape, except possibly near or at end-of-�le; for terminals

466 CHAPTER 23. UNIX-RELATED INPUT AND OUTPUT

and pipes it will be whatever is available, depending on the value of the O

org

argument when

the device was opened. A result of 0 bytes read indicates end-of-�le. The structure O

byte

must be byte accessible, a full explanation of which is given in Chapter 3.9. The bytes are

read into the structure O

byte

starting at byte subscript i, the �rst applicable byte of the

structure having subscript 1, which, as explained in Chapter 3.9 is the �rst byte after the

structure's key.

This means that if O

byte

is a string or vector, the bytes are read in starting at the 1st

component; if O

byte

is a record the bytes will occupy �elds occurring after the key. In both

cases, the structure must be large enough to contain all bytes read.

The second form of the call with i omitted is the same as

sysread(Dev; 1; O

byte

; n)

i.e. i defaults to 1.

getc(Dev)! c

This uses sysread to read a single byte c from the device Dev, which must be open for

reading. termin is returned at end of the �le.

popprompt

The value of this variable determines the prompt characters output by sysread when reading

from a terminal in normal line mode, i.e. when the device is opened with O

org

argument

false. It may be either an actual prompt string, or a procedure of no arguments returning

one, i.e. popprompt()! s

pop timeout()! ()

pop timeout secs

23.4. READING FROM DEVICES 467

If a program tries to read from a terminal device it is possible that the human user of

the terminal may fail to type anything. Normally the program will have to wait until he

does type something, although of course Unix will suspend the Unix process in which POP

is running and give another process the chance to use the computer's CPU. However it is

possible to arrange for a sysread procedure call, which is how all read operations are done

at the bottom level, to `time out'.

Whether a time out occurs depends on the value of the variable pop timeout secs. If this

has its default value of false, then no time-out occurs. Otherwise it must be an integer, and

the time-out will occur after a number of seconds speci�ed by this integer, if it is � 0.

When the time-out occurs, the procedure which is the value of pop timeout is called. Its

default value is identfn, the `do-nothing' procedure. If pop timeout exits normally, then

the sysread procedure will return the number of characters read (usually zero). However

you can assign a procedure to pop timeout which will cause some other action to occur. For

example you might activate another POP process, thus providing time-sharing within POP,

although this would only be desirable in specialised circumstances, such as when all the users

needed to share a great deal of POP code, and perhaps collaborate closely in some way. The

capabilities required for doing this are described in Chapter 12.

Exiting normally from this procedure inside charin or rawcharin

1

will cause the read

to be re-tried if no characters have actually been read before the timeout. Exiting inside

sysread

2

will cause the number of characters read before the timeout to be returned.

In Unix this capability depends on syssettimer, about which see Chapter 18.3, so that

it may interfere with other procedures using syssettimer

3

.

sys input waiting(Dev)! n

For a readable `interactive'-type device (i.e. a terminal or a pipe), this procedure returns an

integer count n of the number of input characters currently available to be read on the given

device, or false if none are available, in which case a read from the device would hang up

waiting for input.

1

See Chapter 20.1

2

See section23.4

3

This limitation does not apply to VMS.

468 CHAPTER 23. UNIX-RELATED INPUT AND OUTPUT

For all other kinds of input device, which can't hang up on a read, it just returns the

number of characters currently in POPLOG's input bu�er for the device (which could be 0).

sys clear input(Dev)

For a readable `interactive'-type device (terminal or pipe), this clears any input characters

currently available to be read on the device, including those `typed-ahead' on a terminal. If

Dev is also writeable, any bu�ered output is written out �rst.

For all other kinds of input device, this procedure simply writes out any bu�ered output

if the device is also writeable.

23.5 Writing to Devices

syswrite(Dev; i; O

byte

; n)

syswrite(Dev;O

byte

; n)

This writes n bytes from the structure O

byte

to the device Dev, starting at byte i after the

structure's key, or byte 1 if i is absent. Thus syswrite is similar to sysread except that bytes

are written rather than read and that no result is returned. In addition the O

byte

argument

may be a word, in which case, bytes are written out from the sequence of characters held in

the word record.

pop buffer charout

This boolean variable, whose default value is true, controls whether write operations to

normal line mode terminal or pipe devices (i.e. those opened with the argument O

org

=

false) are bu�ered. If true, then characters are only actually written out when a control

character, that is one such as newline whose value is < 32, is encountered. Otherwise, all

characters are written out immediately. Note that all other devices are bu�ered by default.

The procedure sysflush, described below, can be used to force data to be written out.

23.6. FILE CONTROL OPERATIONS 469

sysflush(Dev)

For any writeable deviceDev, this
ushes (i.e. writes out) any bytes outstanding in POPLOG's

bu�er for that device. For a disk �le, this operation doesn't necessarily guarantee that the

current state of the �le is actually re
ected on disk, because of bu�ering by Unix.

pop file write error(Dev)

If a write error occurs while writing to a disk or tape device with syswrite the device is

immediately closed. Usually, with disk �les, this is due to a full disk or exceeded quota. The

device is then given as argument to this variable procedure, which should take appropriate

action with the partly-written �le, e.g. to delete it with sysdelete(device full name(Dev)).

The default value of this variable is erase.

23.6 File Control Operations

sysseek(Dev; i

file

; m; true)! j

file

sysseek(Dev; i

file

; m)

This procedure controls at which byte in the �le the next read or write will operate, dependent

on the integers i

file

and m as follows:

m = 0 i

file

is an absolute byte position within the

�le (1st byte = 0)

m = 1 i

file

is a byte o�set (possibly negative)

relative to the current byte (i.e. the next one

that would be read or written).

m = 2 i

file

is a byte o�set relative to the byte

immediately after the last byte in the �le.

With an optional 4th argument of true, sysseek returns the absolute byte position j

file

within the �le after the seek.

470 CHAPTER 23. UNIX-RELATED INPUT AND OUTPUT

sys io control(Dev; n

req

; O

byte

)! b

sys io control(Dev; n

req

)! b

This procedure provides an interface to the Unix ioctl system call, and has essentially the

same arguments as the latter. Dev is a device record, n

req

is an integer specifying the desired

operation to be performed, and O

byte

is an (optional) byte-accessible structure argument

through which data is passed or returned

4

. Except for those n

req

values which set or get

the characteristics of a terminal (described below), a call of sys io control translates into a

straight ioctl system call for the �le descriptor allocated to Dev, with n

req

value as supplied

and with O

byte

passed as the address of its byte data (or 0 if O

byte

is omitted). The result b is

true if the call succeeds, false if not. For values of n

req

which set or get the characteristics

of a terminal, however, sys io control operates di�erently (i.e. the values TIOCGETP,

TIOCSETP, TIOCSETN, TIOCGETC, TIOCSETC and for Berkeley Unix TIOCLGET,

TIOCLSET, TIOCLBIC, TIOLBIS, TIOCGLTC and TIOCSLTC { see Unix Programmers

Manual, section tty(4)). Every device representing a terminal in POPLOG maintains a full

set of terminal parameters which are set on the terminal whenever that device is used (unless

it is already set for that device). In this way multiple devices with di�erent characteristics

can be made to work for the same underlying terminal, with automatic switching between

di�erent settings as appropriate. sys io control therefore provides the means of controlling

this setup, in two ways:

1. with a O

byte

argument supplied, the selected device characteristics are set or got from

O

byte

. Therefore if new characteristics are set, these will take e�ect on the terminal only

when the device is next used. Although this means that TIOCSETP or TIOCSETN

are equivalent at the time of the call, use of one of these will be `remembered' by the

device so that any subsequent automatic switch to this device's parameters will use

that code for the switch (TIOCSETP being the default).

2. with no O

byte

argument, all the device characteristics are set or got from the terminal.

In this case, all setting codes (TIOCSETP, TIOCSETN, TIOCSETC, TIOCLSET,

TIOCSLTC, etc) are equivalent, as are all getting codes (TIOCGETP, TIOCGETC,

TIOCLGET, TIOCGLTC), since they all transfer all the parameters. The only excep-

tion to this is that the setting code TIOCSETP will
ush bu�ers, etc, whereas any

other setting code will not.

With all these calls, the result b is true.

4

See Chapter 3.9 for a de�nition of byte-accessible structures

23.7. STANDARD DEVICES 471

sys link tty params(L

Dev

)

This procedure is used to make two or more devices which represent the same actual ter-

minal share terminal parameters, so that changing any one of them with sys io control

automatically a�ects the other(s).

The argument L

Dev

is a list of devices; for each set of devices in the list which represent

the same actual terminal, all members of that set are changed permanently to use the

parameter structure of the �rst-occurring member of the set. Non-terminal devices in the

list are ignored.

set process entry term()

If the standard input is a terminal, this resets the terminal characteristics to be what they

were on entry to the POPLOG system. Otherwise it does nothing.

23.7 Standard Devices

popdevin

popdevout

popdeverr

These (active) variables hold device records for the standard input, output and error chan-

nels respectively of the process, i.e. Unix �le descriptors 0, 1, and 2. The devices are opened

initially with O

org

argument false, giving normal mode line I/O for terminals, etc. Where

any 2 or all 3 of these devices represent the same terminal, their terminal parameters are

linked together with sys link tty params (see above), which means that changing the char-

acteristics of one automatically a�ects the other(s). These 3 devices are used by charin,

charout and charerr respectively to perform character stream I/O on the standard channels

5

Note that assigning a new device to one of these variables will redirect the standard

5

See chapter 20 for a speci�cation of these procedures.

472 CHAPTER 23. UNIX-RELATED INPUT AND OUTPUT

channel for the process. This could be done e.g. after a sysfork, and Chapter 22.4 has an

example of this.

poprawdevin

poprawdevout

When either the standard input or the standard output is a terminal, these (active) variables

are set up initially to hold reading and writing devices respectively for that terminal, opened

with O

org

argument true, to give terminal input and output in `raw' mode (as described

above). The two devices have their terminal parameters linked by sys link tty params (see

above). If neither standard channel is a terminal, the value of both these variables is an

undef record, < undefpoprawdevin > and < undefpoprawdevout >. These will produce

the mishap `DEVICE NEEDED' if an attempt is made to use them for I/O. It is therefore

advisable to test with isdevice �rst if your program might attempt to use them in this

situation.

These are the devices used by rawcharin and rawcharout respectively, which procedures

are speci�ed in Chapter 20.

popdevraw

Prior to the introduction of poprawdevin and poprawdevout, this (active) variable contained

a combined read/write device for `raw mode' terminal I/O. It is now an autoloadable syn-

onym for poprawdevin, but, to maintain upward compatibility, output operations (syswrite

or sysflush) applied to poprawdevin will be redirected to to poprawdevout.

23.8 Miscellaneous

sysiomessage()! s

Whenever POPLOG system procedures do Unix system calls which result in an error return

from Unix, they leave the Unix error number in an internal variable

6

. sysiomessage returns

6

This corresponds to errno in C

23.8. MISCELLANEOUS 473

an error message string for the value currently in this variable: this can therefore be used after

after errors occurring in things like sysopen, syscreate, sysread, syswrite etc, to determine

what caused the problem. The string has enclosing parentheses added so that it can be

concatenated on the end of mishap messages.

device key

This constant holds the key object for device records. Keys are explained in Chapter 3.13.

474 CHAPTER 23. UNIX-RELATED INPUT AND OUTPUT

Chapter 24

Using procedures written in languages

other than POP

NOTE

what is aka???

we need info from REF EXTERNAL

The array of int example - Fortran or Pascal - it is not clear whether resp. is intended

A mechanism for easily declaring, loading and unloading procedures compiled externally

to Poplog.

24.1 Introduction

There are occasions when POP-11 is not suitable for a particular computation and the

problem could be most easily solved by handing control over to another language and then

waiting for the answer to come back. For instance, when many numerical calculations are

475

476CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

needed (e.g. multiplying very large matrices, or convolving an image) the most convenient

language might be Fortran, or C.

Facilities are provided in the POP-11 kernel for linking and calling such external proce-

dures, but they are di�cult to use. This autoloading library attempts to provide an interface

for the built in routines, in such a way that the user does not need to know the details of

the mechanism for handling external procedures.

The library �le also provides a system which checks that actual parameters given to an

external procedure conform to the formal parameter speci�cation.

This facility was inspired by the library NAGCALL, by David Young. We are grateful

to him for the help he gave in the design of the Fortran interface, and his general comments

on the design of an interface for external routines.

Note. It is assumed that the reader is familiar with at least one non-Poplog language,

such as C or Fortran. The reader should also have some experience with POP-11, with

knowledge of the following data-structures: vectors, arrays, and strings, and be aware of the

distinction between single and double precision decimals.

24.2 The syntax of external procedure declarations

The general syntax form for external operations is:

external <word:W> <word:T>

The type of operation performed is determined by the argument W , which should be one

of the following:

24.2. THE SYNTAX OF EXTERNAL PROCEDURE DECLARATIONS 477

declare Introduces a block of language

speci�c declarations.

load invokes the system linker to fetch all external

procedures previously declared. Introduces a block of

object �le-names.

unload frees the memory previously occupied by external

procedures

Each operation will be discussed in detail.

The word argument T denotes a tag which identi�es a set of external procedures, and

any valid POP-11 word may be used. Thus two sets of declare operations with the same tag

are taken to refer to a single set of procedures. Also, a load operation can selectively load a

single set of external procedures according to the tag used.

24.2.1 Declaring external procedures

The declare operation has two forms:

(a) language speci�c:

external declare <word:T> in <word:L> ;

;;; body

endexternal

The argument T is the tag, and is used to refer to the set of external procedures declared

in the body. L is a word which names the language that the block speci�es, for example \c"

or \fortran".

A language-speci�c parser is then invoked. Its task is to read the declarations found in

the body of the statement block, and create POP11 procedures which, when called, will run

478CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

an external procedure.

(b) Raw import mode:

external declare <word:T> ;

;;; body

endexternal

The body in this case is a sequence of words which are the linkers names for external

procedures. A POP-11 variable of the same name will be created to hold the raw external

procedure at load time. The syntax

<word:P> = <word:S>

may also be used to import the linker symbol S to POP-11 variable P.

Here is an example, using C syntax, of importing a procedure which takes two
oating

point numbers and returns their product:

external declare mytag in c;

float multiply(x, y)

float x, y;

{}

endexternal

For non-C users, the declaration reads: multiply is a function which returns a
oating

point decimal, and takes two arguments, both of which are
oating point decimals.

24.2. THE SYNTAX OF EXTERNAL PROCEDURE DECLARATIONS 479

Notice the use of fg to indicate the end of a declaration. This is a feature of the C

interface - each language system has its own separator.

When the above example is compiled, a POP-11 variable named multiply will be created.

It's value will be a procedure, and the procedure, when executed will attempt to run an

external procedure named multiply. Of course, the external procedure multiply does not

exist until it has been linked in with externalload.

Once linked, the Pop procedure multiply can be called like any other POP-11 procedure.

However, it will check that both its arguments are double precision
oating point numbers.

When it is satis�ed with its arguments, it will apply the C routine multiply, and return the

double precision decimal that C multiply returns.

The procedure multiply could also be loaded in raw mode using the following example:

external declare rawtag;

multiply = _multiply;

endexternal

After loading, the POP-11 variable multiply will hold an external procedure, which

can be called using external apply (see REF * EXTERNAL). Note the example is from a

machine ruinning the Unix operating system - in raw mode it is the responsibility of the

user to utilise any linker conventions on external label names.

24.2.2 Loading external procedures

The syntax of the load operation is:

external load <word:T> ;

480CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

;;; body

endexternal

The body in this case is a sequence of object �les to link. The �les can be speci�ed in

one of three ways:

1. as a word, in which case an operating system dependent su�x is appended. (in Unix,

this is '.o', in VMS, '.obj').

2. as a string, in which case the �lename is passed unchanged (this permits you to use

non-standard su�xes, such as '.a')

3. as a library speci�cation. This must be a string, but its form is operating system

dependant. On Unix, an example might be '-lm' to indicate the maths library. On

VMS, using 'NAG$LIBRARY:NAG/LIB' might be used to indicate the NAG graphics

library.

Note that an unload operation is performed on the given tag before the load is executed, see

below for details. See further below for a full example, including external load.

24.2.3 Unloading external procedures

Syntax:

external unload <word:T>

This operation frees the memory previously occupied by the external procedures known

by the tag T . Attempting to run a procedure after it has been unloaded will result in a

mishap.

Notice that POP-11 maintains a history list of load operations, and that unloading will

undo the e�ects of all loads back to the given tag. Thus if the following are loaded A, B,

24.3. EXTENSIONS TO POP11 481

C, D (in that order) then unloading B will also unload C and D automatically. (See REF

* EXTERNAL for more details).

To examine the state of the external load system, do the following:

external_show();

24.3 Extensions to pop11

Many simple Pop objects correspond directly to primitive data-types used by external pro-

cedures. Examples are the integer, and decimals (
oating point). Here is a table which

summarises the main similarities:

POP-11 C Fortran Pascal

(integer) char char

integer int integer integer

decimal
oat real

ddecimal double double precision real

Notice that POP-11 has no char data-type, but does have strings (ie packed arrays) of

characters. Individual characters can be passed as integers, hence the entry in the table.

The (so-called) derived data-types, however, do not have direct equivalences in POP-11,

however, in most cases they can be simulated using POP-11 datastructures.

Since scanning all the external procedures arguments to verify that they conform to the

formal parameter speci�cation is very time consuming, a variable is provided to disable this

feature:

false! external type check;

482CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

will disable all checking of arguments until true is assigned back to this variable.

Warning: Arguments that need special treatment on passing, eg. arrays, functions etc.,

require external type check to be set to true to facilitate this pre-processing.

On the subject of e�ciency, it should be noted that, for implementation reasons, using

pointers will slow down the calling process, as will passing an ident for call-by-reference.

Used rarely, these should cause no noticable degredation of performance; em however, using

arrays of pointers can make the calling sequence intolerably slow.

24.4 Arrays

The most common derived data-type is the array, and although POP-11 arrays are imple-

mented in a non-conventional manner, the external load package is able to coerce the correct

(?) behaviour, provided the following guidelines are observed. To build an array suitable

for an external procedure to manipulate, a set of POP-11 procedures is provided, the names

being designed for use with speci�c external languages.

Data aka C procedure Fortran procedure

char consstring

short array_of_short

integer int array_of_int array_of_integer

decimal float array_of_float array_of_real

ddecimal double array_of_double array_of_double

The procedures array of : : : take arguments like the POP-11 procedure newarray, de-

scribed in chapter 10.4. That is, a boundslist, giving the lower and upper subscript of each

dimension of the array. For details of consstring see Chapter 9, and see the section below

on C related issues.

For example, if an external procedure expects the following:

24.5. POINTERS 483

C: int i[10];

Pascal: var i: array [0..9] of integer;

Fortran: dimension i(10)

then the following would construct a suitable array for passing as parameter i:

vars i = array_of_int([0 9]);

or

vars i = array_of_integer([0 9]);

if using Fortran or Pascal.

Note that the POP-11 subscripts needn't be in the same range as the external procedure's

ones | as long as the number of elements is the same, all will be �ne. For example, a Pascal

array[10::20] of integer is compatible with a POP-11 array of integer([105 115]) since

both have exactly 11 elements.

Whenever possible, the facility will check that an array passed as argument is the same

size as the one expected by the external procedure.

Note: The C convention that (e.g.) int foo[99]; and int � foo; both introduce arrays is

not followed by this facility and the run-time checking will object to a relaxed attitude in

this matter. Also the size of the array, for checking purposes, is set at externaldeclare time,

not at run time when the external procedure is called.

24.5 Pointers

Both C and Pascal can expect pointers to data, these are constructed using the procedure

conspointer to. For example, an external procedure which expects data of the form:

484CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

C: int *x;

Pascal: var x: ^integer;

would be satis�ed by passing the value of x, declared:

vars x = conspointer_to 7;

The de-referenced value can be then accessed by x(1).

Arrays of pointers can also be constructed, although every member of the array must

be initialised to a pointer before passing it to the external handler. It is also necessary to

specify the type of the pointers in the array - that is, the type of the data which is pointed

to. For example:

C: int *x[5];

Pascal: var x: array [0..4] ^integer;

might receive data declared:

vars p = conspointer_to(0),

x = array_of_pointer([0 4], p, [int]);

Notice the use of a constant pointer (i.e. the same pointer for each cell in the array).

When working with pointers, it might be useful to declare an operator for calling conspointer to.

In C, the operator might be called &:

define -3 & datum;

lvars datum;

conspointer_to(datum);

enddefine;

24.5. POINTERS 485

The newly-declared & operator can now be used to build pointers as follows:

vars p = &0;

N.B. only pointers to data can be built in this way - not pointers to a variable's storage

area, unlike the C statements:

int a, *b;

b = &a;

where values assigned to a can be retrieved by reference to �b (that which b points to).

This may seem to be a drawback, since it appears impossible for an external procedure

to a�ect the values of POP-11 variables (as per `call-by-reference'). The facility, however,

provides a means for call-by-reference, using the syntax ident.

As an example of call-by-reference, consider the following example. Suppose an external

procedure wishes to halve the value of a variable, whose value is an integer, it might be

de�ned thus:

C:

void halve(x)

int *x;

{

*x = *x / 2;

}

Fortran:

subroutine halve(x)

integer x

486CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

x = x / 2

return

end

Pascal:

procedure halve(var x:integer);

begin

x := x div 2

end;

Here is an example of a call to then routine halve, assuming it has been loaded.

vars a = 18;

halve(ident a);

a =>

** 9

It is possible to think of ident as constructing a pointer, or of passing the variable by

reference.

24.6 Call by reference

As has been discussed, call-by-reference is implemented using the POP-11 syntax word ident.

However, in Fortran (and other `true' call-by- reference languages | not C or Pascal), all the

arguments need to be references. This facility, however, takes care of this, and in the case of

Fortran, the only c-b-r language that we have studied, it creates any references required, at

run time. This means that a Fortran routine which takes a number and returns its square

root via a variable, such as this:

24.7. STRUCTURES 487

subroutine myroot(n, r)

double precision n, r

r = sqrt(n)

return

end

can be called like this:

vars ans = 1.0;

myroot(9.0, ident ans);

ans =>

** 3.0

Notice that before passing an ident, the variable must contain an instance of the kind of

data it is expected to return with.

The number 9.0 has been converted to a reference before being passed to the Fortran

procedure.

24.7 Structures

Structure passing is not supported in the current version of the facility.

24.8 Details of C interface

The C language interface is the parser used by the external declare syntax for reading C

language declarations.

488CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

The parser will accept any combination of standard C declarators, with the exception of

the structure, union and enumerated types. It is possible to build arbitrary combinations

of the derived types pointer to : : :, array of : : : and function returning : : :. The primitive

types accepted are:

char, int, short and long int, float, double

Note that both short and long integers are treated as int, since shorts are converted to

int during a procedure call, and on all machines supported, a longint is equivalent to an int.

No distinction is drawn at run time between a double and float.

The special symbols fg are used to separate function declarations.

The keyword unsigned is accepted and ignored.

Arrays passed as parameters may have their size fully, or partially speci�ed.

The C operation typedef is supported, so it is possible to declare:

typedef char *string;

foo(x)

string x;

{}

which declares the single parameter of foo to be a pointer to an int.

When passing strings (i.e. arrays of char), it is the responsibility of the user to null

terminate the string. For example:

vars s = 'This is a null terminated string\^@';

24.9. DETAILS OF FORTRAN INTERFACE 489

24.9 Details of fortran interface

The Fortran language interface is the parser used by the externaldeclare syntax for reading

Fortran language declarations.

A Fortran language declaration is basically a Fortran function or subroutine with all its

executable statements taken out. This usually means that you can directly transcribe the

header of the Fortran code.

The Fortran type descriptors currently recognised are INTEGER, REAL, DOUBLE PRE-

CISION, EXTERNAL

If a variable is typed as EXTERNAL then is is considered to be special: no type checking

will be done on its value. A declaration is terminated by the keyword END.

E.g.

The Fortran function:

DOUBLE PRECISION FUNCTION SQUARE(N)

DOUBLE PRECISION N

SQUARE = N * N

END

would be declared thus:

external declare anothertag in fortran;

DOUBLE PRECISION FUNCTION SQUARE(X)

DOUBLE PRECISION X

END

endexternal;

490CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

Some procedures for constructing arrays are also provided. They take a boundslist like

the POP-11 procedure newarray. They make the sort of array you would expect them to:

array_of_integer, array_of_real, array_of_double

All Fortran arguments are passed as call-by-reference. The facility takes care of this by

converting any non-pointer arguments to pointers at run time. (q.v. the ident mechanism

for updating te contents of variables)

24.10 Writing other language interfaces

The library �les c dec:p and fortran dec:p should be consulted for examples of the techniques

used in writing an interface module for the external library.

Any interface module should be written in the section �external, where some extra

identi�ers that should prove useful can be found. These are summarised below. The module

should export (to the top level section) a routine named < language > dec, in the same

way as the Fortran module de�nes a procedure named fortran dec, and the C module c dec.

This routine will be called (at compile time) by the syntax word external, and its job is

to read up to the syntax word endexternal, removing it from the proglist.

As the dec routine reads from proglist, it can make calls to the procedure

external_import(<word:S>, <word:P>, <vector:A>, <list:R>,

<procedure:E>, <boolean:C>)

to register each external procedure that it wants imported.

The arguments are as follows:

24.11. TYPE SPECIFIERS 491

S the linkers' name for the external procedure (it is the

interface module's responsibility to prepend underscores,

etc, as it feels appropriate).

P the name of the POP-11 variable which is to take a procedure

which calls the external procedure, after checking the

arguments.

A a vector of type speci�cations. Each entry corresponds to

a formal parameter of the external procedure. see below.

R the type speci�cation (see below) for the return value of

the external procedure

E a procedure to print fatal argument type mismatches. It

should expect three arguments, the o�ensive object, the

desired type of the object, and the name of the procedure

being called. The procedure should cause a mishap, or at

least call interrupt.

C a
ag indicating, when true, that the external procedure

expects arguments call-by-reference.

The following is a useful identi�ers in section �external, which is set when the library

�le external:p is compiled, so itmay be used in compile-time preprocessor statements (i.e.

IF etc).

UNIX a constant, when true, then the current operating system is Unix 4.2 BSD. When

false, VMS is indicated.

24.11 Type speci�ers

When a type-speci�er is called for, a list (non-dynamic!) should be supplied. It is used to

verify that a given datum conforms to a formal parameter speci�cation. The list should

consist of the following words only:

pointer, array (followed by an integer, or false) or function,

and terminate in one of the following simple-types:

492CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

special, char, int, float or double

The simple numerical types can be followed by a range speci�cation, ie two integers (or

false). The special type is provided for passing a value with no checking being performed.

e.g.

[int] expect an integer

[int 0 65535] expect an integer in the range 0 - 65535 (this is

the spec to simulate $unsigned short int$ in C)

[pointer int] expect a pointer to an int, or a call-by-reference

style ident

[pointer char] expect a string

[array false int]

expect an array of int, don't check its size

[array 100 int]

expect an array of 100 integers total

[pointer pointer function int]

expect a pointer to a pointer to a function (see

below) which returns an int

[array pointer char]

expect an array of strings

and so on.

When specifying the return value of a procedure, an extra type-speci�er is allowed, namely

[void], which simply indicates that the procedure returns no value.

24.12 Full example

The following Fortran program is compiled to produce an object �le called thresh:o (Unix)

or THRESH:OBJ (VMS)

24.12. FULL EXAMPLE 493

c

c This subroutine thresholds an array IMAGE with dimensions XSIZE

c and YSIZE with the threshold LIMIT.

c

subroutine threshold(image, xsize, ysize, limit)

integer limit,xsize,ysize

integer image(xsize,ysize)

do 10 j=1,ysize

do 10 i=1,xsize

10 if (image(i,j) .lt. limit) image(i,j) = 0

end

And the following C program is compiled to produce an object �le array:o (Unix) or

ARRAY:OBJ (VMS)

/* print the contents of a two dimensional integer array */

void prarr(array, xsize, ysize)

int array[], xsize, ysize;

{

int i;

for (i = 0; i < xsize * ysize; i++)

{

printf("%d ", array[i]);

if ((i + 1) % xsize == 0)

printf("\n");

}

}

The following two external declaration blocks are used:

external declare myprog in fortran;

494CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

subroutine threshold(image, xsize, ysize, limit)

integer limit,xsize,ysize

integer image(xsize,ysize)

end

endexternal;

external declare myprog in c;

void prarr(array, xsize, ysize)

int array[], xsize, ysize;

{}

endexternal;

And both procedures can be linked in using:

external load myprog;

thresh

array

endexternal;

Notice that the external syntax chooses the su�x for the object �les according to the

operating system in use.

To test the routines, a two dimensional array of integers is needed:

vars a = array_of_int([1 10 1 10], procedure (i, j);

random(9);

endprocedure);

The C procedure can be used to print the contents of the array before, and after, it is

thresholded using the Fortran routine:

24.12. FULL EXAMPLE 495

prarr(a);

9 8 1 8 6 5 1 1 4 3

1 3 4 6 7 7 6 9 6 6

8 1 1 9 3 4 8 7 7 4

5 2 7 2 6 3 1 5 2 6

3 8 2 9 9 2 1 1 3 5

4 9 6 1 7 3 6 4 5 2

4 6 8 9 7 6 9 5 8 7

9 3 5 7 7 7 4 3 6 8

1 7 4 7 9 1 8 8 6 3

9 9 5 3 1 5 3 7 5 2

threshold(a, 10, 10, 5);

prarr(a);

9 8 0 8 6 5 0 0 0 0

0 0 0 6 7 7 6 9 6 6

8 0 0 9 0 0 8 7 7 0

5 0 7 0 6 0 0 5 0 6

0 8 0 9 9 0 0 0 0 5

0 9 6 0 7 0 6 0 5 0

0 6 8 9 7 6 9 5 8 7

9 0 5 7 7 7 0 0 6 8

0 7 0 7 9 0 8 8 6 0

9 9 5 0 0 5 0 7 5 0

The array has been thresholded with level=5, ie all values less than 5 have been set to

zero.

496CHAPTER 24. USING PROCEDURESWRITTEN IN LANGUAGES OTHER THAN POP

Chapter 25

INTEGRATING PROLOG IN THE

POPLOG ENVIRONMENT

NOTE Can we have some up-to-date timings?

This is a slightly expanded version of a paper with the same title that appeared in

IJCAI-83 | the 8th International Joint Conference on AI, University of Karlsruhe 1983.

After this paper was written, lexically scoped identi�ers were introduced into Poplog and

changes were made to the Poplog virtual machine to support a more e�cient implementation

of compiled Prolog. (The timings given in the paper are out of date.)

25.1 Prolog within High Level Language Systems

There have been a number of projects involving implementing Prolog-like languages within

LISP systems, notably the LOGLISP [Robinson and Sibert 82] and QLOG [Komorowski 82]

systems. Since POP-11 is so similar to LISP, it is worthwhile stating some of our main aims

for comparison:

497

498 CHAPTER 25. INTEGRATING PROLOG IN THE POPLOG ENVIRONMENT

� BANDWIDTH OF INTERFACE. LOGLISP and QLOG both incorporate mechanisms

for calling LISP routines as "subroutines" from the logic language, as well as low band-

width interfaces in the other direction. We aim to develop a model of how Prolog datas-

tructures and control can mesh in with those of POP-11, so that, for instance, POP-11

programs can create backtracking points and control the generation of solutions by

Prolog.

� SYMMETRY BETWEEN LANGUAGES. A multi-language programming environ-

ment should treat the languages it supports in a symmetrical way. Both LOGLISP

and QLOG are clearly logic languages implemented in LISP, rather than the other

way around. In the POPLOG system, we have achieved a symmetry by having Pro-

log an equal partner with POP-11, programs in both languages being compiled into

instructions for the same virtual machine.

� COMPATIBILITY. Our aim is to provide a Prolog system that is compatible with an

existing standard [Clocksin and Mellish 81], and which can be used without any knowl-

edge of the other programming languages in POPLOG. In our aim for compatibility,

we di�er from both QLOG and LOGLISP, but especially from LOGLISP, as it is not

our intention to investigate alternative ways of running logic programs.

� EFFICIENCY. Aiming for an e�cient Prolog system, we have followed Warren [Warren

77], and have implemented only a compiler (not an interpreter, as in both QLOG and

LOGLISP).

[Note: these timings were made using an early version of Poplog.]

25.2 Implementing Backtracking by Continuation Pass-

ing

Prolog is implemented using a technique called continuation passing. In this technique, pro-

cedures are given an additional argument, called a continuation. This continuation, which

is a closure, describes whatever computation remains to be performed once the called pro-

cedure has �nished its computation. Suppose, for example that we have a procedure prog

which has just two steps: calling the subprocedure foo and then, when that has �nished,

calling the subprocedure baz. Were such a procedure to be written using explicit continu-

ations, baz would be passed as an extra argument to foo since baz is the continuation for

25.2. IMPLEMENTING BACKTRACKING BY CONTINUATION PASSING 499

foo. Actually, prog itself would also have a continuation and this must be passed to baz as

its continuation, thus:

define prog(continuation);

foo(baz(%continuation%))

enddefine;

Thus, if we invoke prog we must give it explicit instructions, continuation, as to what

is to be done when it has �nished. prog invokes foo, giving foo as its continuation the

procedure baz which has been partially applied to the original continuation since that is

what is to be done when baz (now invoked by foo as its continuation) has �nished its task.

Continuations have proved of some signi�cance in studies on the semantics of program-

ming languages [Strachey and Wadsworth 74] [Steele 76]. This apparently round about way

of programming also has an enormous practical advantage for us | since procedures have

explicit continuations there is no need for them to 'return' to their invoker. Conventionally,

sub-procedures returning to their invokers means:

\I have �nished | continue with the computation"

With explicit continuations we can assign a di�erent meaning to a sub- procedure re-

turning to its invoker, say:

\Sorry | I wasn't able to do what you wanted me to do"

prog accomplishes its task by �rst doing foo and then doing baz. The power of continu-

ation programming is made clear if we de�ne a new procedure newprog, thus:

\Try doing foo but if that doesn't work then try doing baz"

This is represented thus:

define newprog(continuation);

500 CHAPTER 25. INTEGRATING PROLOG IN THE POPLOG ENVIRONMENT

foo(continuation);

baz(continuation);

enddefine;

If we now invoke newprog (with a continuation) then it �rst calls foo (giving it the same

continuation as itself). If foo is succesful then it will invoke the continuation. If not then

it will return to newprog which then tries baz. If baz too fails (by returning) then newprog

itself fails by returning to its invoker.

Now consider the following Prolog procedure:

happy(X) :- healthy(X), wise(X).

This says that X is happy if X is healthy and wise. If this is the only clause for happy

then we may translate this to the following POP-11 procedure:

define happy(x, continuation);

healthy(x, wise(%x, continuation%))

enddefine;

A call of this procedure can be interpreted as meaning:

\Check that X is happy and if so do the CONTINUATION"

This is accomplished by passing X to healthy but giving healthy a continuation which

then passes X across to wise. Let us suppose that someone is healthy if they either jog or

else eat cabbage, i.e.:

healthy(X) :- jogs(X).

healthy(X) :- eats(X, cabbage).

This can be translated as:

25.3. A SIMPLE PROLOG WITHOUT DATASTRUCTURES 501

define healthy(x, continuation);

jogs(x, continuation);

eats(x, "cabbage", continuation);

enddefine;

Finally, let us assume that we know that chris and jon both jog. This can also be

represented by a POP-11 procedure:

jogs(chris).

jogs(jon).

define jogs(x, continuation);

if x = "chris" then continuation() endif;

if x = "jon" then continuation() endif;

enddefine;

25.3 A Simple Prolog without Datastructures

The translation of jogs given in the last section does not cater for the case where X is

unknown and we wish to find someone who jogs. In fact, we need to take account of the

special features of Prolog variables. Prolog variables start o� uninstantiated and can only be

given a value once. In addition, two uninstantiated variables can be made to \share" which

means that as soon as one of them obtains a value, the other one automatically obtains the

same value. In the Prolog sub-system of poplog, this is dealt with by representing unknowns

by single element data structures of the class prologvar, which are speci�ed in section 26.4.

The CONTents of one of these prologvars is initially undef . If a variable is instantiated

to some value, this value is placed into the prologvar contents. If two variables "share",

one prologvar cell is made to contain (a pointer to) the other. To �nd the \real" value of a

sharing variable, it is then necessary to \dereference" it, i.e. to look for the contents of the

\innermost" reference.

502 CHAPTER 25. INTEGRATING PROLOG IN THE POPLOG ENVIRONMENT

In the jogs example, instead of simply comparingX with the word chris, it is necessary to

attempt to unify the data structure with the wordchris. If we are trying to find somebody

who jogs, X will be a reference with contents undef , whereas if we are trying to check

whether some speci�c person jogs, it will be a word (such as chris).

Here is a simpli�ed version of our uni�cation procedure. unify operates by binding

Prolog variables which have no value, i.e. by putting something other than undef into the

reference. Once the uni�cation is complete, unify performs the continuation, and if this

returns (i.e. fails), unify undoes the changes it made to the datastructures and then itself

returns. If the two structures cannot be uni�ed, then unify returns without taking any

action. Thus, calling the continuation means success (in Prolog terms) and returning means

failure.

define unify(x,y,c);

if x == y then

c()

elseif isref(x) and cont(x) /= "undef" then

unify(cont(x),y,c)

elseif isref(y) and cont(y) /= "undef" then

unify(x,cont(y),c)

elseif isref(x) then

y -> cont(x);

c();

"undef" -> cont(x)

elseif isref(y) then

unify(y,x,c)

endif

enddefine;

The procedure �rst sees if the two given datastructures, X and Y , are identical. If so,

it immediately applies the continuation C. If the structures aren't identical, but either of

X and Y is a variable that has become bound (a reference with contents not undef) then

uni�cation can use the value of that variable instead. In the case where X is an unbound

variable (not the same as Y), unify binds it to Y (by setting the CONTents of X to Y) and

calls the continuation. Once this has returned,unify unbinds the variable (by resetting its

contents to undef) and then itself returns. This de�nition of uni�cation does not deal with

the case where X or Y is a Prolog complex term. The handling of Prolog datastructures is

not signi�cantly more complex.

25.4. REPRESENTING PROLOG DATASTRUCTURES 503

Given the existence of the unify procedure, the correct de�nition of jogs is now simply:

define jogs(x,c);

unify(x,"chris",c);

unify(x,"jon",c)

enddefine;

25.4 Representing Prolog Datastructures

Most POPLOG datastructures are treated by Prolog as new classes of constants, the excep-

tions being those used to implement the standard Prolog datastructures (terms). A Prolog

term has a �xed type (principal functor) and length (arity), and it is important that access-

ing a given component can be achieved in constant time. This means that terms are well

represented by objects very like POP vectors.

List pairs in standard Prolog are simply instances of the general term, whereas in

POPLOG, as in LISP, the pair is a special datastructure. For compatibility, we have actually

implemented Prolog pairs as POPLOG pairs, although this is not visible to the Prolog user

who does not wish to use the other POPLOG languages.

As an example of how complex datastructures are handled, here is the de�nition of the

list concatenation predicate append, together with a \corresponding" POP-11 program:

append([],X,X).

append([L|M],Y,[L|N]) :- append(M,Y,N).

define append(x,y,z,c);

vars l, m, n;

unify(x,[],unify(%y,z,c%));

consref("undef") -> l;

consref("undef") -> m;

consref("undef") -> n;

unify(x,conspair(l,m),

504 CHAPTER 25. INTEGRATING PROLOG IN THE POPLOG ENVIRONMENT

unify(%z,conspair(l,n),

append(%m,y,n,c%)%))

enddefine;

This procedure attempts to unify the �rst argument, X, with an empty list and if success-

ful uni�es the second and third arguments, Y and Z, with each other and then applies the

continuation C. If this returns (ie fails), it creates three new unbound Prolog variables, L,

M and N . The �rst argument of append is uni�ed with a pair made (by using the procedure

conspair) from L and M . If X is already a pair, this should set L and M to its front and

back respectively. The third argument toappend is uni�ed with a pair made from L and N .

This ensures that the �rst elements of X and Z are identical. Finally the recursive call of

append is performed and if this is successful the original continuation C is performed!

25.5 More Complex Control Structures

So far, we have seen how passing continuations between procedures allows Prolog-style back-

tracking to be implemented in POPLOG. However, when a continuation-expecting procedure

is called from one that is not provided with one, what continuation should it be given? In

fact, there are a number of non-local control procedures in POPLOG that can be used, giving

rise to a variety of ways of invoking Prolog programs.

First of all, consider the problem of calling the Prolog system as a "subroutine" from

POP-11. We wish to present some query, and simply �nd out whether it can be satis�ed,

possibly �nding out the values of relevant variables in the �rst solution. In this case, the

�nal continuation to be executed needs to be something that will cause a procedure exit

right back to where the �rst Prolog predicate was called. The procedures throw and catch

1

,

which are developments of facilities available in some LISP systems, enable this to be done.

The facility can be packaged up in the form of a procedure Y ESNO

C

ALL.

define succeed();

true

enddefine;

1

These are treated in detail in Chapter 2.24

25.5. MORE COMPLEX CONTROL STRUCTURES 505

define dorun(proc);

proc(throw(%"yesno"%));

false

enddefine;

define yesno_call(p);

catch(%dorun(%p%),succeed,"yesno"%)

enddefine;

The procedure yesno call takes a continuation-expecting procedure (Prolog procedure)

as its argument and produces a new procedure (a closure of catch) which always returns,

leaving true or false on the stack (according to whether the �nal continuation is executed or

not). catch is supplied with three arguments - a main procedure to call, a second procedure

and a pattern. The �rst thing that catch does is to simply call the �rst procedure. If, during

the execution of this procedure,throw is called with an argument that matches the pattern,

control returns immediately to catch, which calls the second procedure and then returns. If

throw is never called with an appropriate argument, catch just returns as soon as the �rst

procedure does.

In this instance, the main procedure given to catch is a closure of dorun, which will call

the Prolog procedure and, if that returns (ie fails), simply put the value false on the stack.

The Prolog procedure is given a continuation such that, if it succeeds, it will perform a throw

back to the original catch. The second catchargument, succeed, will then run, and will put

the value true on the stack. In this example, the pattern used to `link' the throw and the

catch is simply the word \yesno

00

.

throw and catch can be used to provide an implementation of the Prolog cut operator.

Simple uses of the cut can be accomplished through the Y ESNO

C

ALL procedure. For

instance, the Prolog clauses:

tax_code(X,Y) :- employs(Z,X), !, employed_code(X,Y).

tax_code(X,Y) :- unemployed_code(X,Y).

could be translated into a POP-11 procedure as follows:

506 CHAPTER 25. INTEGRATING PROLOG IN THE POPLOG ENVIRONMENT

define tax_code(x,y,c);

if yesno_call(employs)(consref("undef"),x) then

employed_code(x,y,c)

else

unemployed_code(x,y,c)

endif

enddefine;

A problem with this particular implementation of cut is that information about variables

that exist previously and are instantiated within the Y ESNO

C

ALL is lost. Hence certain

variables will not be reset if backtracking subsequently takes place. One remedy for this

would involve packaging up the actions depending on the truth value of the condition into

an expression continuation [Strachey and Wadsworth 74]. In fact, our actual implementation

solves the problem by secretly keeping reset information in a di�erent way (see below).

Sometimes one would like to use the Prolog system as a generator of solutions to some

problem. These solutions may need to be produced in a lazy fashion [Henderson and Morris

76] and we may wish to manipulate the generator in CONNIVER-like ways [Sussman and

McDermott 72]. To do this, we need to exploit the POPLOG mechanisms for handling co-

routining between multiple processes. To create a POPLOG process, we use the procedure

consproc, which when given a procedure returns a process which when invoked with runproc

will call the given procedure. consproc must also be given the arguments that will be needed

by the procedure and a count of the number of arguments. A running process interrupts its

execution by calling the procedure suspend. This causes the process which originally invoked

it to restart. Suppose we had a Prolog predicate legal move, which returned possible legal

moves in some game in its one argument. We might want to produce a generator that

produced these, one by one, as they were needed by some other program. The following

POP-11 code would do this:

vars x;

consref("undef") -> x;

vars generator;

consproc(x,suspend(%x,1%),2,legal_move) -> generator;

consproc is being used here to make a new process involved with the calling of legal move.

legal move is provided with two arguments, the normal Prolog argument X, which is to be

25.6. THE ACTUAL IMPLEMENTATION (1983) 507

instantiated to some move, and a continuation. The continuation will be invoked when the

Prolog goal succeeds. In this case, it will suspend the execution of the process, leaving one

result, X, on the stack. Thus to get the �rst possible legal move into a variable Y , we now

write:

runproc(0,generator) -> y;

(the 0 speci�es that no arguments are to be passed to the process). When we wish to

obtain the second move, we call runproc with generator again. The process is now woken

up, and it acts as if its call tosuspend has simply returned like a normal procedure call.

Within the continuation passing model, procedure return means failure. Hence the legal

move generator will backtrack to �nd another solution. When it has succeeded, it will again

suspend with X put on the stack.

In this example, the generator is returning its answers in the reference created for the

variable X. As Prolog backtracks, the contents of this reference will be reset to undef

and then set to the next solution. In order that Y keeps an unchanging record of the �rst

solution, it must actually be given the dereferenced version of the value returned by the

generator.

25.6 The Actual Implementation (1983)

What we have presented so far is a model for how Prolog could be implemented within

POPLOG. This is the model that we expect our users to have, and the system is expected

to behave as if this is the way it is actually constructed. Given this basic framework, it is

possible to make certain optimisations that are invisible to the user. This section mentions

some of the more interesting optimisations that we have made.

1. The number of closures constructed, and the number of control frames grown, can be

reduced by having compiled Prolog clauses make use of modi�ed uni�cation code, which

always returns and indicates success or failure with a boolean result. The disadvantage

with this is that the responsibility for resetting Prolog variables on backtracking is

508 CHAPTER 25. INTEGRATING PROLOG IN THE POPLOG ENVIRONMENT

no longer taken by unify, but must be handled by extra procedure calls at each

backtrack point. Moreover, there needs to be a globally accessible datastructure (trail)

for holding variables to be reset on backtracking.

2. The number of datastructures created can be reduced by having the compiler generate

special purpose uni�cation code for structures mentioned in the heads of clauses, rather

than code to create such structures and then invoke a general unify procedure. This

is Warren's approach [Warren 77], and is one way of introducing \structure sharing"

[Boyer and Moore 72].

3. The control frames for Prolog procedures can actually be discarded as soon as there

are no more untried choices. The POP procedure chain allows the compiler to produce

code to do this.chain simply provides an alternative way of calling a poplog procedure,

which discards the current stack frame before invoking the new procedure. The explicit

representation of continuations and the use of chain have a potential for allowing more

space to be reclaimed than in normal "tail recursion optimising" schemes [Warren 80].

4. The representation of a Prolog procedure as a single POPLOG procedure is not always

appropriate, especially when the use of the Prolog predicates assert and retract causes

individual clauses to come and go rapidly. Our Prolog compiler can use an alternative

representation, with each clause represented by a procedure, and can choose which

representation to use.

25.7 Future Developments

There are many possible ways in which we can extend the POPLOG system to enhance

mixed language programming further.

First of all, we can make more use of the screen editor interface and realise its great

potential for debugging. There already exists a POPLOG implementation of the STRIPS

problem solver [Fikes and Nilsson 71], which produces a continuous display of the changing

goal tree using the facilities of the editor. It would be extremely valuable to have such a

debugging aid for Prolog programs. [Note added by A.S. 1987. Prolog LIB CT and LIB

Tracer does this.]

Secondly, we have hardly begun to explore the productive ways in which programs can

25.8. CONCLUSIONS 509

use the facilities of the two languages. POPLOG is already being used for mixed language

programming in natural language processing and vision, but many of the possibilities are

unexplored, such as the possibilities for using Prolog in conjunction with the POPLOG

"process" mechanism. We also need to further develop and re�ne the range of syntaxes

available for accessing these facilities.

Finally, more work needs to be done on basic implementation. Some issues that we are

considering are the space/time e�ciency of various types of in-line uni�cation code, and

ways to minimise the trailing of variables.

25.8 Conclusions

The POPLOG system provides an integrated environment for developing genuinely MIXED

LANGUAGE programs in POP-11 and Prolog. We believe that its most important features

in this respect are as follows. Firstly, the POP-11 and Prolog compilers are just two of

potentially many procedures which generate code for the underlying virtual machine. This

means that the two languages are compatible at a low level, without there being the tradi-

tional asymmetry between a language and its implementation. Secondly, the continuation

passing model provides a semantics for communication between these two languages which

allows for far more than a simple \subroutine calling" interface. Finally, the control facilities

available within POPLOG make it possible to implement a system which is faithful to the

theoretical model, but which is nevertheless e�cient.

25.9 Acknowledgements

We would like to thank John Gibson, the main implementer of POPLOG and the POP-11

compiler, as well as Aaron Sloman and Jon Cunningham for many useful discussions.

510 CHAPTER 25. INTEGRATING PROLOG IN THE POPLOG ENVIRONMENT

25.10 References

Boyer, R.S. and Moore, J.S., "The Sharing of Structure in Theorem Proving Programs", in

Machine Intelligence 7, Edinburgh University Press, 1972.

Burstall, R.M., Collins, J.S. and Popplestone, R.J., PROGRAMMING IN POP-2, De-

partment of Arti�cial Intelligence, University of Edinburgh, 1977.

Clocksin, W.F. and Mellish, C.S., "The UNIX Prolog System", Software Report 5, De-

partment of Arti�cial Intelligence, University of Edinburgh, 1979.

Clocksin, W.F. and Mellish, C.S., "Programming in Prolog", Springer Verlag, 1981.

Fikes, R.E. and Nilsson, N.J., "STRIPS: A New Approach to the Application of Theorem

Proving to Problem Solving", Arti�cial Intelligence 2, 1971.

Hardy, S., "Towards More Natural Programming Languages" Cognitive Studies Memo

CSRP 006, University of Sussex, 1982a.

Hardy, S., "The POP Programming Environment", Cognitive Studies Memo CSRP 005,

University of Sussex, 1982b.

Henderson, P. and Morris, J.H., "A Lazy Evaluator", Proceedings of the 3rd ACM Sym-

posium on Principles of Programming Languages, 1976.

Hunter J.R.W., Mellish, C.S. and Owen, D., "A Heterogeneous Interactive Distributed

Computing Environment for the Implementation of AI Programs", SERC grant application,

School of Engineering and Applied Sciences, University of Sussex, 1982.

Komorowski, H.J., "QLOG - The Programming Environment for Prolog in LISP", in

Clark, K.L. and Taernlund, S.-A., LOGIC PROGRAMMING, Academic Press, 1982.

Kowalski, R., "Logic as a Database Language", Department of Computing, Imperial

25.10. REFERENCES 511

College, London, 1981.

Mellish, C.S. and Hardy, S., "Integrating Prolog in the POPLOG Environment", Cogni-

tive Studies Memo CSRP 010, University of Sussex, 1982.

Pereira, L.M., Pereira, F. and Warren, D., "User's Guide to DECsystem-10 Prolog",

Occasional Paper 15, Department of Arti�cial Intelligence, University of Edinburgh, 1979.

Robinson, J.A. and Sibert, E.E., "LOGLISP: An Alternative to Prolog" in MACHINE

INTELLIGENCE 10, Ellis Horwood, 1982.

Steele, G.L., "LAMBDA: The Ultimate Declarative", Memo 379, Arti�cial Intelligence

Lab, MIT, 1976.

Strachey, C. and Wadsworth, C.P., "Continuations: A Mathematical Semantics for Han-

dling Full Jumps", Technical Monograph PRG-11, Programming Research Group, Oxford

University, 1974.

Sussman, G.J. and McDermott, D.V., "The CONNIVER Reference Manual", Memo 203,

AI Lab, MIT, 1972.

Swinson, P.S.G., "Prescriptive to Descriptive Programming: A Way Ahead for CAAD",

in Taernlund, S.-A., Proceedings of the Logic Programming Workshop, Debrecen, Hungary,

1980.

Warren, D.H.D., "Implementing Prolog", Research Reports 39 and 40, Department of

Arti�cial Intelligence, University of Edinburgh, 1977.

Warren, D.H.D., "An Improved Prolog Implementation which Optimises Tail Recursion",

in Taernlund, S.-A., Proceedings of the Logic Programming Workshop, Debrecen, Hungary,

1980.

512 CHAPTER 25. INTEGRATING PROLOG IN THE POPLOG ENVIRONMENT

Chapter 26

The POPLOG Prolog system

A description of those datatypes and procedures built in to POPLOG which are intended

for the support of Prolog.

26.1 The prolog memory area

In addition to the heap, the user stack and the call stack, POPLOG maintains an extra

area of memory exclusively for the use of Prolog. This contains two extra Prolog stacks:

the continuation stack and the trail. This area of memory, like the others, is dynamic, and

so will be expanded as required; a maximum limit for its expansion is set by the variable

pop prolog lim, and a trace of its size and usage can be got by assigning the value 1 to the

variable popgctrace, described in Chapter ??.

pop prolog lim

The integer value of this variable controls the maximum number of POPLOG words to

which the system will expand the area used for the continuation stack and trail (default

value 16000). When this limit is reached, the mishap `PROLOG AREA OVERFLOW'

occurs.

513

514 CHAPTER 26. THE POPLOG PROLOG SYSTEM

26.2 The Continuation Stack

The execution model used by POPLOG Prolog is that of "continuation passing", described

fully in DOC * CONTINUATION. In this technique, procedures are given an additional

argument called a continuation. The continuation is a closure which describes whatever

computation needs to be performed once the called procedure has successfully �nished its

computation: the procedure invokes the continuation rather than returning.

The usefulness of this model is that it enables us to implement success and failure in

terms of whether or not a procedure call returns. If the procedure successfully completes its

computation, it invokes its continuation; if it fails, it returns.

Consider the following Prolog procedure:

p(X) :- q(X), r(X).

p(X) :- s(X).

In the continuation passing model, it could be represented (in theory) by the following

POP-11 procedure, where C represents the continuation passed to p:

define p(X, C);

q(X, r(% X, C%));

s(X, C);

enddefine;

A call of this procedure can be interpreted as meaning:

\Prove p(X) and if it is true, do the continuation C".

This is accomplished by passing to q both X and a continuation which, if q succeeds,

passes X and the original continuation C across to r. If r succeeds, C will be invoked. If

q or r fails, q will eventually return (i.e. backtracking will have occurred). In that case, X

and C will be passed to s. If s succeeds it will call C; if it fails it will return, and p will fail.

26.2. THE CONTINUATION STACK 515

The continuation passing model is the model of Prolog that users are expected to have,

and POP-11/Prolog mixed-language code is normally written in terms of it (see prolog unifyc,

below). However, the real Prolog implementation does not pass continuation closures as ar-

guments, but instead makes use of a dedicated stack | the continuation stack. Before a

procedure is called, a number of items which form its continuation are pushed onto this stack.

Essentially what happens is that for a procedure which is the compiled form of a clause with

n terms in its body, n � 1 sets of items are pushed onto the continuation stack. These

correspond to the second up to the nth terms. Each set consists of a count of the number

of items pushed (which is equal to one more than the number of arguments to be passed to

the procedure) the procedure and any arguments. These are pushed in the following order

(assuming M arguments):

count (m + 1) <-- top of continuation stack

argument 1

...

argument m

procedure

After each set consisting of count, arguments and procedure has been pushed, the pro-

cedure corresponding to the �rst term in the body of the clause is called.

A POP-11 procedure which more closely represents the Prolog procedure above is thus:

define p(X);

PLOG_SAVE;

prolog_push_continuation(X, r, 2);

q(X);

PLOG_RESTORE;

s(X);

PLOG_RESTORE;

enddefine;

PLOG SAV E and PLOG RESTORE are hypothetical syntax words which correspond

to the VM instructions sysPLOG SAV E and sysPLOG RESTORE. These instructions

create a choice (backtrack) point (see below). prolog push continuation is a system proce-

dure and is not for general use.

516 CHAPTER 26. THE POPLOG PROLOG SYSTEM

The continuation stack pointer is saved at each choice point and restored if, through

backtracking, the choice point is returned to.

26.3 The Trail

The trail records all assignments made to Prolog variables. It too is a stack. Variables

are represented by objects of type prologvar (see below in the section on datatypes), and

whenever one of these is assigned to, it is pushed onto the trail. At each choice point, a

pointer to the current top of the trail is saved. Whenever the Prolog system backtracks

through a choice point, the old trail pointer is restored and any variables pushed onto the

trail after that point are reset to be unde�ned.

Another e�ect of backtracking is to free prologvars which are no longer accessible to active

procedures. A free-list of prologvars is maintained for this purpose: once backtracking has

returned past the point at which a prologvar was �rst created, it is put back onto the free-

list for later re-use. The garbage collector can short-circuit some of this variable collection:

when it sweeps the trail, if it encounters a prologvar which has no outstanding choice points

between the point of its creation and the point of its most recent instantiation, then it will

collect that prologvar as garbage. This is safe, because if ever backtracking should return

to the point where the variable was instantiated, it must also pass the point at which it was

created and so free the variable for re-use. This means that the variable will never be rebound

in the remainder of its lifetime, and so is e�ectively a constant. When the garbage collector

collects the variable, it dereferences it �rst, and any reachable references to it are overwritten

with its dereferenced value. This process saves time on backtracking and compacts the space

used by the trail and by Prolog data structures in the heap.

prolog barrier apply(P)

Applies the procedure P in such a way as to isolate it from any outstanding invocations

of Prolog procedures. This is done by placing "barriers" on the Prolog continuation stack

and trail which serve to mark the beginning of the Prolog area accessible to P; any existing

trailed variables or outstanding choice points become invisible to P. This is of importance

when using Prolog in conjunction with the POPLOG process mechanism. If the situation

arises where several live processes are all using Prolog procedures, the barriers serve to divide

up the Prolog area correctly between them, marking those parts of the continuation stack

26.4. PROLOG DATATYPES 517

and trail which need to be saved and restored with each process. The standard entry points

into Prolog (such as prolog compile and prolog invoke, de�ned when the Prolog system is

loaded) call this procedure internally and so are safe for general use. However, whenever a

process is created which calls lower-level Prolog operations explicitly (such as prolog assign,

prolog unify etc.) then prolog barrier apply should be called as the �rst action when that

process is run.

prolog reset()

Reinitialises the Prolog memory area, and the prologvar free-list and variable numbering.

This must be done whenever a Prolog computation terminates abnormally. The procedure

setpop always runs prolog reset.

26.4 Prolog datatypes

POPLOG provides two special datatypes for Prolog support.

The datatype prologvar is used to represent variables in Prolog terms. The structure of

a prologvar is identical to that of a reference

1

, with a single �eld containing the value of

the variable (an uninstantiated prologvar has itself as its value). The class of prologvars is

special however, as extra support is needed for their e�cient allocation and garbage collec-

tion and for management of the trail (see the description of the trail above). There is no

direct access available to the contents of a prologvar except via fast cont; in normal usage,

prolog variables should only be manipulated by the higher-level procedures prolog deref ,

prolog assign and similar which take proper account of their special requirements.

The datatype PROLOGTERM represents general complex terms in Prolog. A prologterm

is characterised by a functor (which is a word) and a set of arguments, where the number of

arguments (the arity) is variable. Currently a prologterm is an ordinary vectorclass object

whose class subscr procedure prolog arg nd (see REF * KEYS), but this does not give

proper access to the functor part of a term and will be changed for Version 14 of POPLOG.

These datatypes, together with the integers, are su�cient for the representation of all

1

See Chapter 3.8.1

518 CHAPTER 26. THE POPLOG PROLOG SYSTEM

pure Prolog data. The existing Prolog system though is more liberal in its interpretation of

data both for e�ciency and to simplify the interface between Prolog and other POPLOG

languages. Thus the following special cases are made:

{ Prolog terms with functor "./2" are represented as POPLOG conspairs so that lists in

Prolog are the same as lists in POP-11 (see REF * LS);

{ Prolog atoms, which could be modelled as prologterms with arity 0, are in fact repre-

sented more simply as words;

{ all other POPLOG datatypes are legal in Prolog, but are treated as atomic; i.e. they

cannot be decomposed into parts. Like ordinary atoms, these atomic objects can be consid-

ered as terms with no arguments.

When handling Prolog data, it is important to keep in mind this special interpretation

imposed by the Prolog system. In the following list of procedures, those which begin with

00

prolog

00

respect that interpretation and so are recommended for general use; the remaining

procedures operate on the concrete datatypes prologterm and prologvar and must be used

with care.

An extra level of complexity is added when variables are included in terms. Data struc-

tures built by Prolog will typically contain chains of variables, and to obtain the true struc-

ture it is necessary to remove these chains by dereferencing. The basic procedure to use for

this is prolog deref which will follow a chain of prologvars and return the common value to

which they are all bound; prolog full deref will remove all the variable chains from a term.

Standard procedures which access parts of Prolog terms are provided with dereferencing

built in, as this is the generally more useful behaviour. Raw, non-dereferencing versions are

also available however, and such procedures are indicated by the su�x nd in their names.

consprologterm(WORD; n)! PROLOGTERM

Constructs and returns a prologterm with functor WORD and arity n, the arguments being

taken from the next n items on the stack.

destprologterm(PROLOGTERM)

26.4. PROLOG DATATYPES 519

Destructs PROLOGTERM, leaving its arguments, its functor and its arity on the stack (i.e.

it does the opposite of consprologterm).

initprologterm(n)! PROLOGTERM

Creates and returns a prologterm with functor undef and arity n, and whose arguments are

all initialised to 0.

isprologterm(O)! b

This procedure returns true if O is a prologterm, false if not.

isprologvar(O)! b

This procedure returns true if O is a prologvar, false if not.

isprologvar(O)! b

Applies the procedure P to each dereferenced prolog argument ofO in turn (cf. prolog appargs nd).

prolog appargs nd(O;P)

Applies the procedure P to each prolog argument ofO, without dereferencing (cf. prolog appargs).

prolog arg(n; TERM)! O

Dereferences and returns the nth argument of the pair or prologterm TERM (cf. prolog arg nd).

n must be less than or equal to the arity of TERM.

prolog arg nd(n; TERM)! O

O! prolog arg nd(n; TERM) This procedure returns or updates the nth argument of the

pair or prologterm TERM without dereferencing (cf. prolog arg). n must be less than or

equal to the arity of TERM.

520 CHAPTER 26. THE POPLOG PROLOG SYSTEM

prolog args(O)

Puts all the dereferenced prolog arguments of O onto the stack (cf. prolog args nd). A call

of this procedure is equivalent to prolog appargs(O; identfn)

prolog args nd(O)

Puts all the prolog arguments ofO onto the stack without dereferencing them (cf. prolog args).

A call of this procedure is equivalent to prolog appargs nd(O; identfn)

prolog arity(O)! n

This procedure returns the prolog arity n of O; if O is not a pair or a prologterm then n will

be 0.

prolog checkspec(O

1

; O

2

; n)! b

This procedure returns true if O

1

, interpreted as a prolog term, has functor O

2

and arity n;

returns false otherwise. If O

1

is a prologterm, then O

2

and n must be the real functor and

arity of that term; if O

1

is a pair, then O

2

must be the word "." and n must be 2; for any

other O

1

, O

2

must be identically equal to O

1

and n must be 0.

prolog complexterm(O)! b

This procedure returns true if O is either a pair or a prologterm, false if not.

prolog deref(O

1

)! O

2

If O

1

is a prologvar it is dereferenced and its value returned; any other item is simply

returned. Dereferencing does not extend to any sub-components of (the dereferenced value

of) O

1

(cf. prolog full deref).

prolog full deref(O

1

)! O

2

This procedure returns a fully dereferenced version of O

1

, such that the only prologvars re-

maining in O

2

are uninstantiated ones. Any sub-components of O

1

which contain prologvars

will be copied during the dereferencing, but other, non-variable components may not be.

26.4. PROLOG DATATYPES 521

prolog functor(O

1

)! O

2

WORD! prolog functor(PROLOGTERM) When used as an accessor, returns the prolog

functor of O

1

. If O

1

is a prologterm, then its real functor (a word) is returned; if O

1

is a

pair, then the word "." is returned; if O

1

is any other datatype, then the item itself is

returned. When used as an updater, prolog functor works only on prologterms; there are

few circumstances in which changing the functor of a term can be justi�ed.

prolog maketerm(O

1

; n)! O

2

Creates and returns a term with prolog functor O

1

and prolog arity n, the arguments being

taken from the next n items on the stack. If n is 0 then O

1

is returned; if O

1

is the word

"." and n is 2, then a pair is returned; otherwise O

1

must be a word and a prologterm is

returned (cf. consprologterm).

prolog newvar()! PROLOGVAR

Creates and returns a new, uninstantiated prologvar.

prolog termspec(O

1

)! n! O

2

This procedure returns the prolog arity and the prolog functor of O

1

. If O

1

is a prologterm

then n and O

2

will be the real arity and functor of the term; if O

1

is a pair then n will be 2

and O

2

will be the word "."; otherwise n will be 0 and O

1

will be returned as O

2

.

prolog undefvar(O)! b

This procedure returns true if O is an uninstantiated prologvar, false if not. O is not

dereferenced, so this may return false where isprologvar(prolog deref(O)) would return

true.

prolog var number(PROLOGVAR)! n

prolog var number(false) When applied to an uninstantiated prologvar, this returns some

integer n. The value of n may vary between applications, but any two prologvars which

are sharing will always return the same n, i.e. this procedure de�nes an equivalence on

prologvars. (It is primarily used for generating the printing representations of variables.)

When applied to the value false, the numbering is reset so that subsequent calls will resume

522 CHAPTER 26. THE POPLOG PROLOG SYSTEM

counting from 1. If applied to any other datatype, false is returned.

prologterm key

The key for objects of type prologterm.

prologvar key

The key for objects of type prologvar.

26.5 Variable instantiation and uni�cation

These next procedures provide for the instantiation of prologvars. This may be done ex-

plicitly via prolog assign or implicitly through a call to the uni�er. In either case, each

assignment done both updates the value �eld of the prologvar and keeps a record of the as-

signment on the trail so that it may be undone if backtracking ever returns past that point.

The bindings can only be undone, however, if a proper choice point has been established

before the assignments are made. In fact, due to the trail compaction performed by the

garbage collector (explained above), prologvars assigned to before a choice point has been

established (i.e. before the �rst sysPLOG SAV E has been executed) are e�ectively con-

stants; they will be elided at the next garbage collection and any references to them replaced

with their current values. An example demonstrates this e�ect:

prolog_vars X;

prolog_assign(X, "cat");

X =>

** <prologvar cat>

sysgarbage();

X =>

** cat

26.5. VARIABLE INSTANTIATION AND UNIFICATION 523

prolog assign(PROLOGVAR;O)

Updates the value of PROLOGVAR to be O and pushes PROLOGVAR onto the trail for

resetting on backtracking. No checking or dereferencing is done, so this procedure should

only be used when the condition

prolog_undefvar(PROLOGVAR)

is true (cf. prolog assign check).

prolog assign check(PROLOGV AR;O)

A checking version of prolog assign; this performs the same operations but will mishap

unless the condition prolog

u

ndefvar(PROLOGVAR) is true.

prolog unify(O

1

; O

2

)! b

This procedure returns true if O

1

uni�es with O

2

, false if not. If the uni�cation succeeds,

any prologvars in the two items will be instantiated in such a way that the condition

prolog full deref(O

1

) = prolog full deref(O

2

)

is true. If the uni�cation fails, some or all of the prologvars in the two items may

still be instantiated. In either case, instantiated variables will not be reset until the next

PLOG RESTORE is done (cf. prolog unifyc).

prolog unifyc(O

1

; O

2

; P)

Attempts the uni�cation of O

1

and O

2

, and if successful calls the procedure P . (P is

the continuation for the uni�cation - see above.) A proper choice point is created for the

uni�cation using sysPLOG SAV E and sysPLOG RESTORE so that if P is called, any

prologvars in O

1

and O

2

which are instantiated by the uni�cation remain so for the duration

of that call. Once P has returned, or if it is never invoked at all, any variable bindings

created by the uni�cation are reset before the call of prolog unifyc itself returns. Thus a

caller of this procedure will see no di�erence in O

1

and O

2

before and after the call.

524 CHAPTER 26. THE POPLOG PROLOG SYSTEM

26.6 Prolog VM instructions

Two distinct sets of Prolog VM instructions are provided. One works in conjunction with

the continuation stack and trail to support the creation of choice points and backtracking;

the other provides special purpose uni�cation code for e�cient head-matching of clauses.

26.7 VM instructions: backtracking

The instruction sysPLOG SAV E creates a choice point. A call of this procedure causes

the state of the Prolog procedure being compiled to be saved on entry to that procedure.

The state is represented by three variables: the continuation stack pointer, the trail pointer

and a pointer to the next free Prolog variable. A call of sysPLOG RESTORE causes these

state variables to be restored to their saved values, and thus implements backtracking to the

previous choice point.

sysPLOG SAV E()

Marks the procedure currently being compiled as a Prolog procedure. This ensures that the

Prolog state (continuation stack pointer, trail pointer and nextfreevariable pointer) will be

saved on each entry to the procedure, and that appropriate portions of the Prolog memory

area will be saved if ever the procedure is included as part of a process record. Only one call

of this instruction has any practical e�ect inside a procedure, and two calls cannot be made

without an intervening sysPLOG RESTORE.

sysPLOG RESTORE()

Restores the state of the continuation stack and trail from the current saved values. The

trail is unwound back to the saved position, and all the variables removed from it are reset to

be unde�ned. The pointer to the next free variable is also restored. This procedure cannot

be called without a preceding call to sysPLOG SAV E.

sysPLOG RESTART ()

26.8. VM INSTRUCTIONS: UNIFICATION 525

Re-saves the state of the continuation stack and trail, and the pointer to the next free Prolog

variable. It is used when a second choice point is to be set up by a procedure, e.g. when a

tail-recursive call is optimised to a backward jump.

26.8 VM instructions: uni�cation

Some arguments to the Prolog VM uni�cation instructions are QUALIFIED; that is, the

interpretation of an argument (and therefore its value) depends on the value of another ar-

gument - the argument QUALIFIER. An argument quali�er may assume one of the following

value: true, false, a word or an integer. The e�ect of these upon the argument which is

quali�ed is as follows:

true the item it quali�es denotes a word which is the name of a variable which needs to

be pushed (using sysVAL);

false the item it quali�es denotes a constant which needs to pushed (using sysPUSHQ);

a word which is the name of a selector procedure (e.g. fast front) which is applied to

the item it quali�es;

an integer which is used to subscript the Prolog term which it quali�es.

More than one argument of an instruction may be quali�ed (there being one quali�er per

quali�ed argument).

sysPLOG ARG PUSH(O;O

Q

UALIFIER)

Plants code to push (on to the user stack) either O, the value of the (lexical/permanent)

identi�er associated with the word O, or some component of the datastructure O, depending

on the value of O

Q

UALIFIER (see above).

sysPLOG IFNOT ATOM(O;O

Q

UALIFIER;ATOM;ATOM

Q

UALIFIER; FAIL

L

ABEL)

protected procedure variable Plants a

526 CHAPTER 26. THE POPLOG PROLOG SYSTEM

LOG IF NOT ATOM instruction: this will

{ dereference O (quali�ed by O

Q

UALIFIER) if it is a Prolog variable;

{ unify O and ATOM (quali�ed by ATOM

Q

UALIFIER) using a restricted form of

uni�cation where ATOM must be an atom which does not require dereferencing;

{ jump to the label FAIL

L

ABEL if the uni�cation fails.

sysPLOG TERM SWITCH(O;O

Q

UALIFIER; TERM; V AR

L

ABEL; FAIL

L

ABEL)

Plants a PLOG TERM SWITCH instruction: this will

{ dereference O (quali�ed by O

Q

UALIFIER) if it is a Prolog variable;

{ jump to the label V AR

L

ABEL if O is an uninstantiated Prolog variable;

{ compare the functor of TERM with the functor of O otherwise, and jump to FAIL

LABEL if they are di�erent.

26.9 Invoking prolog

The Prolog system may be invoked either in top-level mode, where each term read is executed

as a goal, or in assert mode, where terms are interpreted as clauses to be added into the

database.

prolog [macro variable] Switches subsystem from POP-11 to Prolog top-level, autoloading

the Prolog system if necessary.

prolog compile(STREAM) [procedure variable] If the Prolog system is loaded, this com-

piles Prolog program text from the character source STREAM. Calling prolog compile from

Pop is the same as doing a reconsult from Prolog: clauses are added to the database rather

26.10. VARIABLE DECLARATIONS 527

than executed, and new procedure de�nitions supersede existing de�nitions of the same

name. STREAM may be one of:

{ A character repeater procedure;

{ A string or word representing a �lename (the �lename "user" or 'user' is treated as a

synonym for the character repeater charin);

{ A device record.

The compiler does an initial "see" on the �le it is given to make it the current input

stream. prolog compile will mishap if the Prolog system is not loaded.

26.10 Variable declarations

prolog lvars [library macro variable]

Declares lexical variables initialised to uninstantiated prologvars. See section ??.

prolog vars [library macro variable] Declares permanent variables initialised to uninstan-

tiated prologvars. See section ??.

prolog lvars is a macro (see HELP * MACRO) providing a syntax for constructing

Prolog variables in POP-11. The POP-11 words to which the Prolog variables are assigned

are declared as lexical variables (see HELP * LVARS).

The statement

prolog_lvars k, l;

is equivalent to

528 CHAPTER 26. THE POPLOG PROLOG SYSTEM

lvars k, l;

prolog_newvar() -> k;

prolog_newvar() -> l;

See the Prolog �le HELP * TERMSINPOP for more information on prolog newvar.

prolog vars is a macro (see HELP * MACRO) providing a nice syntax for constructing

Prolog variables in POP-11. The statement

prolog_vars k, l;

is equivalent to

vars k, l;

prolog_newvar() -> k;

prolog_newvar() -> l;

See the Prolog �le HELP * TERMSINPOP for more information on prolog

n

ewvar.

