
TEACH POPCORE

Aaron Sloman September 1997

This is a modified version of the Sussex local file HELP TPOP, by Mike Sharples, and is very
close to the summary of Pop-11 in the book Computers and Thought edited by Sharples et al.
However, it is more up to date, and reflects local extensions at Birmingham.

This file lists a powerful subset of the words and constructs of Poplog Pop-11 which together are
sufficient for a great many interesting programs.

Those items not enclosed in angle brackets <...> are Pop-11 reserved words (i.e. they have a
special meaning to Pop-11). A relevant help or teach file is indicated by an asterisk,
e.g. * MATCHES. To read the file place the cursor on the asterisk and type ESC h or else
do ENTER help matches Sometimes the TEACH command will produce a different file, e.g.
ENTER teach matches

CONTENTS

– Basic data types
– Comments
– Variable declarations
– Miscellaneous
– Printing facilities
– Assignments
– Inserting values in lists and vectors (using "^" and "^^")
– Defining procedures
– Miscellaneous 2
– Arithmetic operators
– Logical connectives
– Variable formats for the matcher
– Looping expressions
– Arrays
– Tracing utilities
– FURTHER READING

ITEM DESCRIPTION AND HELP FILE EXAMPLE

---- ------------------------- -------

Basic data types

<Word> A letter followed by a series of "cat"

letters or digits (including the "a_long_word"

underscore). It may also be "M1"

a series of signs such as $ "#$#$#$#"

A word is put in double quotes,

except within a list or vector

expression. *WORDS

1

<String> Can contain arbitrary characters. ’A funny %$%### string’

Constructed using single quotes.

Can contain "special" characters, E.g.

\n (newline), \t (tab) *STRINGS ’\ta tab\nand a newline’

<Number> One or more digits, with an 55

optional decimal point. *NUMBERS 3.14159

4.25e10

<List> A series of text items, such as [a b c d]

words, numbers, other lists, or [1 Acacia Avenue]

strings, within square brackets. [’a string’ 33 cat]

*LISTS [[CAT CHAT][DOG CHIEN]]

[% ... %] Decorated list brackets can be [% for x from 1 to 5 do

used with enclosed Pop-11 commands x

to make a list. *PERCENT endfor %] =>

** [1 2 3 4 5]

<vector> Like a list, but cannot be extended {a four word vector}

and takes up less space.

{% ... %} Like decorated list brackets can {% 3+3, 99*9 %} =>

contain Pop-11 commands. ** {6 891}

<record> A kind of structure with a specific recordclass triple

number of components and particular first second third;

procedures for accessing and constriple(1, 2, 3) =>

updating them, etc. *RECORDCLASS ** <triple 1 2 3>

(Or see *defclass)

Comments

;;; Begins a comment (text that will ;;; This is a comment.

be ignored by Pop-11). The comment

ends at the end of the line. *COMMENT

/* ... */ An alternative form of comment. /* comments can go

over several lines */

Variable declarations

vars Used to declare local or global vars x, y, z;

non-lexical variables. *VARS vars num = 10;

(Don’t use vars for local

variables except in a <pattern>).

2

lvars Used to declare local or global lvars x, y, z;

lexical variables *LVARS lvars num = 99;

Miscellaneous

; Semi colon terminates commands. vars a; 100 -> a;

I.e. separates imperatives. It is

a separator.

<undef> A type of object that is the vars xxx;

default value for a variable that xxx=>

has been declared, but not had a ** <undef xxx>

value assigned to it.

REF * IDENT/’Undef Records’

undef This special constant refers to an undef =>

item which is often used as the ** undef

default value for components of a

new structure (e.g. an <array>).

Printing facilities

=> Print arrow. *PRINTARROW 3 + 4 =>

** 7

==> Pretty print arrow (prints a long

list or vector tidily). *PRINTARROW

pr Prints an item (word, string, list, pr(list);

vector, etc. without "**" or newline. pr(’The cat’);

ppr Like pr, but (a) prints lists minus ppr([[the][cat]]);

any list brackets, and (b) prints a the cat

space after each item. *PPR

spr Like pr, but prints a following space spr("a");spr("b");

*SPR a b

npr Like pr, but prints a newline after npr("a");npr("b");

each item. * NPR, *PRINTING a

b

printf For more sophisticated printing see printf(

*PRINTF ’%p plus %p gives %p’,

[2 3 5]);

2 plus 3 gives 5

3

Assignments

-> Assignment arrow. Assigns a value vars a;

to a variable. TEACH * STACK 100 -> a;

Also invokes updaters, and is used 33 -> hd(list);

in defining procedures with output

locals. See below. Compare: vars a = 100;

->> Like assignment arrow, but first hd(x) ->> a -> b;

duplicates object on stack, so that

e.g. it can be assigned twice.

Inserting values in lists and vectors (using "^" and "^^")

^ Includes the value of an expression vars animal = "cat";

in a list or vector expression. [the ^animal sat]=>

*ARROW ** [the cat sat]

^^ Includes the elements of a list vars beasts = [cat pig];

inside another list. *ARROW [the ^^beasts sat] =>

** [the cat pig sat]

^ ^^ NOTE: these also work for vectors

4

Defining procedures

<Procedure> A ’package’ of Pop-11 commands, hd, sqrt, maplist,

usually with a name. May have an *, -, subscr, etc.

updater *PROCEDURES *DEFINE are all built-in

Some procedures are built-in some procedures.

user-defined.

define Start and end of a define perim(width,height);

enddefine procedure definition *DEFINE return(2*width + 2*height)

enddefine;

return Terminates execution of the define first_and_last(list);

current procedure, and returns return(hd(list),

to whatever invoked it. last(list))

Analogous to "goto enddefine". enddefine;

Items in brackets after return

are left on the stack. *RETURN

-> Indicates an ’output local’ in define perim2(w,h)->result;

a procedure header line. An 2*w + 2*h -> result;

alternative to ’return’ as a enddefine;

way of specifying the result of

a procedure call. *DEFINE, *STACK

Miscellaneous 2

readline() A Pop-11 procedure that prints a ? readline() -> input_words;

and then waits for input from the

terminal. Any words, numbers or

strings typed on the line after

the ? are returned in a list.

*READLINE

date() A procedure that returns a list date()=>

giving the current time and date. ** [18 Sep 1985 11 47 16]

*DATE

length(<item>) length([the cat sat])=>

A procedure that returns the ** 3

length of an item. *LENGTH length("iguana")=>

The length of a item is the number ** 6

of components it contains.

5

<Subscript>

An element can be picked from a vars sentence animal;

list by giving its position in [the cat sat] -> sentence;

brackets after the name sentence(2) -> animal;

*LISTSUMMARY

oneof(<list>) vars throw =

Returns an element picked at random oneof([1 2 3 4 5 6]);

from a list. *ONEOF

Arithmetic operators

+ Adds one number to another. width+height->half_perim;

* Multiplies two numbers. 3.14159*d -> circum;

/ Divides one number by another. total/items->average;

Warning: dividing one integer by

another can give a "ratio" which 10/5, 3/4 =>

may print as, e.g. 3_/4 ** 2 3_/4

abs When applied to a positive or abs(-10) =>

negative number returns its ** 10

absolute value (always positive)

*ABS

pop_pr_ratios false -> pop_pr_ratios;

This Pop-11 variable controls how

ratios are printed. If made false 10/5, 3/4 =>

it makes ratios print as decimals. ** 2 0.75

// Divides one integer by another to 10//3

get dividend and remainder, -> (remainder,dividend);

** Raises one number to the power of 2**3 =>

another. ** 8

> Compares two numbers. The result is if x > 3 then endif

true if the first is greater.

>= Compares two numbers. The result is

true if the first is greater or equal.

< Compares two numbers. The result is 4 < 3 =>

true if the first is smaller. ** <false>

6

<= Compares two numbers. The result is

true if the first is smaller or equal

to the second.

() Round brackets have two uses. They (3+2)*4 =>

can alter the order of evaluation in ** 20

expressions, or following a variable perim(45,23) =>

or expression they can signify ** 136

procedure invocation. Any arguments

to the procedure go in the brackets.

true These are constants which hold the true =>

false two special boolean values <true> ** <true>

and <false> used in conditionals false =>

and loop termination tests. *BOOLEAN ** <false>

= Tests whether two items are equal if a = 100 then ...

*EQUAL

It can also be used to initalise vars x = [1 2 3];

a variable;

== Tests whether items are identical if a == [cat] then ...

/= Tests whether two items are unequal. a /= b

(Looks inside structures) * EQUAL

/== Tests whether two items are not a /== "cat"

identical.

(Does not look inside structures)

Logical connectives
(E.g. for use in conditionals)
and Forms the ’conjunction’ of two if x > 0 and x < 100 then

boolean expressions. *AND

or Forms the ’disjunction’ of two word="cat" or word="puss"

boolean expressions. *OR

not Negates a boolean expression. not(list matches [== cat ==])

*NOT

if Marks the start of an ’if’ if english == "cat" then

conditional. *IF "chat"=>

endif;

7

then Ends the condition part of an ’if’

conditional. *THEN (Also used with

"unless")

elseif Begins a second (or subsequent) if english == "cat" then

condition in an ’if’ statement. "chat" =>

*ELSEIF elseif english == "dog" then

"chien" =>

else Marks the beginning of the else

"default" course of action in [I dont know] =>

a conditional. *ELSE endif;

endif Marks the end of a conditional.

*ENDIF

Variable formats for the matcher

matches Compares a list with a pattern. vars sentence;

It returns true if they match, [the cat sat] -> sentence;

false otherwise. It will also sentence matches [= cat =] =>

"bind" variables in the pattern, ** <true>

if there are any. *MATCHES

= Matches one item inside a list mylist matches [= cat sat]

pattern.

== Matches zero or more items inside mylist matches [== cat ==]

a pattern.

?<variable> Matches one item inside a list mylist matches [?first ==]

pattern and makes that the value

of the variable. *MATCHES

??<variable> alist matches

Matches zero or more items within [?first ??rest] =>

a list pattern and makes the list

of matched items the value of the ** <true>

variable. *MATCHES

! Use in front of a pattern to make mylist matches

the variables lvars ![?first ??rest] =>

database A Pop-11 variable whose value is database ==>

the database, a list of lists,

used with add, remove, present, etc.

*DATABASE

8

add(<list>) add([john loves mary]);

Puts an item into the database.

*ADD

remove(<pattern>) remove([john loves =]);

Removes the first item matching

the pattern from the database.

*REMOVE

flush(<pattern>) flush([== loves ==]);

Removes all items matching the

pattern from the database.

*FLUSH

present(<pattern>) if present([?x loves mary])

Searches the database for an then

item matching the database and x=>

returns true if it is found, endif;

false otherwise. Binds variables

in the pattern. *PRESENT

allpresent(<list of patterns>) if allpresent(

Searches the database for items [[?x loves ?y]

that consistently match all the [?y loves ?z]])

patterns, and returns true if then

this succeeds and false otherwise [Triangle ^x ^y ^z] =>

Binds variables in the pattern. endif;

*ALLPRESENT

it A variable that is set by ’add’, if present([?x loves mary])

’remove’, ’present’ and ’foreach’. then

Its value is the last item found it=>

in the database. *IT endif;

Looping expressions

repeat Marks the start of a repeat loop. repeat

*REPEAT readline()->line;

quitif(line /== []);

endrepeat Marks the end of a repeat loop. endrepeat;

*ENDREPEAT

times Indicates the number of times a repeat 4 times;

repeat loop is to be repeated (If "."=>

it is omitted then looping is endrepeat;

forever,unless halted by quitif).

*TIMES

9

quitif(<expression>) vars n = 2;

If the expression is true then repeat;

quit the loop. This example and quitif(n > 1000);

the one using the while loop n =>

below are equivalent (ie they n*n -> n;

give the same result). *QUITIF endrepeat;

while Marks the start of a while loop. vars n = 2;

*WHILE while n <= 1000 do

n =>

do Ends the condition part of a n*n -> n;

’while’, ’for’, or ’foreach’ loop. endwhile;

*DO

endwhile Marks the end of a while loop.

*ENDWHILE

for Marks the start of a for loop. for x in [paris london] do

*FOR [^x is a city]=>

endfor;

endfor Marks the end of a for loop.

*ENDFOR

Note: there are many different forms

of for ... endfor loops.

See *LOOPS, *FOR.

foreach Marks the start of a foreach loop, vars x y;

which matches a pattern against foreach [?x loves ?y] do

each item in the database. *FOREACH it=>

endforeach;

endforeach Marks the end of a foreach.

*FOREACH

forevery Like foreach, but takes a list of forevery

patterns and tries all possible [[?x ison ?y]

ways of matching them all [?y ison ?z]]

consistently with items in the do

database. *FOREVERY them =>

[^x is above ^z] =>

endforevery Syntax word used at the end of endforevery;

a "foreach" loop.

Arrays

<array> A compound data object with N dimensions

whose components can be accessed or

updated using N numerical subscripts.

*ARRAYS

10

newarray The simplest procedure to create a vars ten_by_seven =

Pop-11 array. * NEWARRAY newarray(

[1 10 -3 3]);

boundslist When applied to an array returns a boundslist(

list containing for each dimension ten_by_seven) =>

the upper and lower bounds. ** [1 10 -3 3]

Tracing utilities

trace <names of procedures> trace add first_and_last;

A command that alters procedures so

they print out helpful information.

(NB. You can trace built-in

procedures like ’hd’ and ’tl’). *TRACE

untrace <names of procedures> untrace add first_and_last;

A command that switches off tracing

of the named procedures. *TRACE

untraceall Switches off any traces.*UNTRACEALL untraceall;

See also *INSPECT and *DEBUGGER

11

FURTHER READING

The Pop-11 Primer, by A.Sloman, is available online as TEACH PRIMER and also available
in hard copy from the School of Computer Science Library.

TEACH * FACES, * GSTART, * USEFULKEYS

TEACH *LISTS, *LISTSUMMARY,

TEACH *BOXES *POPSUMMARY, *DEFINE, *STACK, *VARS

TEACH * DATABASE, * FOREACH

HELP * WORDS, *LISTS, *MATH, *LOOPS, *CONTROL, *ARRAYS, *STRINGS

HELP * MATCHES, *PRINT, *TRACE, *RECURSION

TEACH * RECURSION, * SETS, * SETS2, * FUNCTIONAL.STYLE

M. Sharples, et al.

Computers and Thought,

MIT Press, 1989

(This is an introduction to cognitive science using

Pop-11 programming examples as illustrations.)

James Anderson(ed)

Pop-11 Comes of Age

Ellis Horwood, 1989

(A collection of papers on the history of dialects of Pop,

the features and benefits of the language, and some

applications using Pop-11.)

Chris Thornton & Benedict du Boulay (1992)

Artificial Intelligence Through Search

Kluwer Academic (Paperback version Intellect Books)

(An introduction to AI using Pop-11 and Prolog. A good

way to learn Prolog if you know Pop-11 or vice versa.)

WARNING: books published before 1995 are likely to have out of date information about
Pop-11, though the core ideas are unchanged.

In the Poplog system there is a large collection of REF files giving definitive information about
Pop-11. These files are mostly useful for experts, but occasionally you’ll find that information
you need is available nowhere else.

The pop-forum email list and comp.lang.pop internet news group are also useful sources of
information. There is a lot of pop-11 material available by ftp from the Birmingham Poplog
directory

http://www.cs.bham.ac.uk/research/projects/poplog/

12

