
[For Evolving Knowledge Conference. Reading University Sept 1989]
IN:

Evolving Knowledge in Natural Science and Artificial Intelligence,
eds J.E.Tiles, G.T.McKee, G.C.Dean,
London: Pitman, 1990

Comments to A.Sloman@cs.bham.ac.uk

Must Intelligent Systems Be Scruffy?
Aaron Sloman

School Of Cognitive and Computing Sciences
University of Sussex

Brighton
[Now School of Computer Science, the University of Birmingham]

Intr oduction: Neats vs Scruffies
You would probably be very unhappy about air travel i f you were told that landing was always
under the control of programs that were so complex and messy that nobody really understood
how they worked, and nobody had ever proved that they would do something sensible in all the
situations that could possibly arise. Would you be equally unhappy to learn that your life was in
the hands (excuse the metaphor) of a human brain?

There has been a long-standing opposition within AI between "neats" and "scruffies" (I think the
terms were first invented in the late 70s by Roger Schank and/or Bob Abelson at Yale
University).

The neats regard it as a disgrace that many AI programs are complex, ill-structured, and so hard
to understand that it is not possible to explain or predict their behaviour, let alone prove that they
do what they are intended to do. John McCarthy in a televised debate in 1972 once complained
about the "Look Ma no hands!" approach. Similarly, Carl Hewitt, complained around the same
time, in seminars, about the "Hairy kludge (pronounced klooge) a month" approach to software
development. (His"actor" system was going to be a partial solution to this.)

The scruffies regard messy complexity as inevitable in intelligent systems and point to the failure
so far of all attempts to find workable clear and general mechanisms, or mathematical solutions
to any important AI problems. There are nice ideas in the General Problem Solver, logical
theorem provers, and suchlike but when confronted with non-toy problems they normally get
bogged down in combinatorial explosions. Messy complexity, according to scruffies, lies in the
nature of problem domains (e.g. our physical environment) and only by using large numbers of
ad-hoc special-purpose rules or heuristics, and specially tailored representational devices can
problems be solved in a reasonable time.

Moreover, the scruffies tend to complain that the neats spend so much time worrying about form
(e.g. defining formal syntax and semantics for their notations) that they ignore content (e.g. what
information about the world an intelligent system really needs). They sometimes even liken the

Scruffy Page 1

"theorem envy" of those who hanker after mathematical rigour to the kind of arid statistics-based
research in psychology and the social sciences that uses sophisticated mathematical techniques
(and much computer power) with little or no increase in understanding of any interesting
phenomenon.

Recently the conflict has taken on a new twist, with the rise of connectionism. Here we have a
branch of AI (yes, it is part of AI, not a new rival discipline), that is heavily mathematics-based,
yet, although the general principles on which a particular network learns during its training
period may be well understood, the operation of the final system when applied to real tasks
generally depends on a totally opaque network of connections between processing units and
weights that modify their influence on one another. Only in relatively simple cases is it possible
to interrogate the "hidden layers" of a neural net and find out what they are doing or why it
works. So it looks increasingly as if systems based on neural nets will, after training, be even
more inscrutable than AI programs: we’ll just have to trust that it is safe to extrapolate from the
test cases where they appear to perform well -- exactly as we do with people to whom we give
responsibility. Alas!

This is not unlike the situation in weather forecasting, where the general physical principles
underlying the weather are well understood but the boundary conditions are impossible to
measure and represent with comlete accuracy and their large scale effects are impossible to
compute within acceptable margins of error: small errors in initial inputs to equations can
produce unpredictably large errors in their solutions.

Anyhow, quite apart from the implications of connectionist models of neural nets there are more
general things to be said about the neat/scruffy conflict. I shall try to separate different strands in
the conflict and will conclude that there are good reasons why intelligent systems performing in
real time in a real world, or even in some purely formal problem domains, will have to be scruffy.
Still, wherever possible we should use neat theories to guide our designs and explanations. In
particular, scruffy systems should be based on neat designs.

We can contrast the theories about the world and how to relate to it that are used by working
intelligent systems with theories about the design of such systems. I’ll call the former object-
level-theories and the latter meta-level-theories. My point is that we should strive to make meta-
level-theories as neat as possible, including the theories that explain why object-level-theories are
bound to be scruffy.

The scope of AI
One source of optimism about the possibility of neat designs is an excessively narrow view of the
scope of AI. For example there are some who tend to think of AI as synonymous with the field of
expert systems, and it is true that for many (though not all) expert systems the problem domain is
sufficiently restricted that complete analysis is possible. I prefer a definition that reflects the
range of work reported at AI conferences, in AI journals, and the interests and activities of some
of the leading practitioners, including founders of the subject. From this viewpoint AI is a very
general investigation of the nature of intelligence and the principles and mechanisms required for
understanding or replicating it, and this includes topics like vision and motor control which are
important for complete intelligent systems embodied in the physical world.

Like all scientific disciplines AI thus construed has three main types of goal, empirical,

Scruffy Page 2

theoretical, and practical, encompassing:

(a) empirical study and modelling of existing intelligent systems (including human beings and
other animals);

(b) theoretical analysis and exploration of possible intelligent systems and possible mechanisms,
architectures or representations usable by such systems, and using the results to explain
the empirical phenomena observed under (a);

(c) solving practical problems in the light of (a) and (b), namely:

(c.1) using the understanding gained in (b) to deal with problems of existing intelligent systems
(e.g. problems of human learning or emotional difficulties)

(c.2) using the theoretical understanding to design new useful intelligent machines

(c.3) using the theoretical understanding to design new machines that may not in themselves be
intelligent but nevertheless usefully complement human intelligence.

In the course of these activities AI generates new sub-problems, and these lead to new concepts,
new formalisms, and new techniques. On this general definition there is little difference between
AI and Cognitive Science, though in fact many of the people who call themselves cognitive
scientists are ignorant of the contents of most AI research and its relevance to their own work.

Much of the theoretical work that falls under this general view of AI includes understanding
design trade-offs relevant to intelligent systems. For example, there are trade-offs between
efficiency and generality, between complexity of design and the ability to degrade gracefully
when things go wrong. The rest of this paper is concerned with trade-offs that confront an
intelligent system that has to solve problems within constraints of time and memory.

Bow to the inevitable: why scruffiness is unavoidable
The main reason why scruffiness is inevitable in intelligent systems can be summarised thus: in
complex domains, neatness is defeated by combinatorial explosions, unless you have an infinitely
fast processor or all eternity to wait for solutions.

The argument runs as follows: except in limited cases (to be discussed below) problem domains
have a structure that requires solutions to be found by exploration of branching paths in a search
space. The number of possible branches will be (at least) an exponential function of the depth of
path to solution. E.g. if N steps are required and the number of possible branches per step is as
low as 2, the number of possible paths will be 2**N. So even if only 50 steps are required, and
they can be explored at the rate of a million a second they will need about 35 years for an
exhaustive exploration. A mere 70 steps would require about 37 million years. That indicates
how exponential functions explode: adding a mere 20 of whatever the cost is an exponential
function of multiplies the time or space requirements by about a million for a branching factor of
2 or over 3000,000,000 for a branching factor of 3. These functions grow so fast that they are
not going to be helped much by parallel implementations.

For problem domains that have this character it is very often the case that neat, general, sound

Scruffy Page 3

and complete algorithms work only on small problems: they do not scale up because they hav eto
do so much detailed analysis of cases that they explode combinatorially.

Non-explosive domains
Of course, not all search problems are like that. If you have a very large array of names
alphabetically ordered and want to search for a particular name, you can (given suitable
addressing mechanisms) use the "binary chop" method, i.e. look at the middle, then decide
whether to go left or right, then look in the middle of the remaining region, etc. With this
method the relation between problem size and solution time is the reverse of exponential, it’s
logarithmic. I.e. the size of the problem is an exponential function of the time it takes to solve it
rather than the other way round. So even if the problem (the list of names) is made a million
times longer, you will typically need only about 20 more steps to find a name. That’s how
telephone directories work.

There are other problems that have tractable complexity. For example if you are trying to find
some combination of N values of variables that solve a problem, instead of searching through all
N factorial possible combinations you may be able to structure the problem as a search in a
relatively homogeneous N-dimensional vector space, where there is at any point a function that
tells you in which direction to move tow ards the solution point. Then you can home in on the
solution fairly directly by moving along the line of steepest ascent to the goal, e.g. using
relaxation techniques.

For more complex problems that can be represented in an N dimensional vector space, for
instance pattern recognition problems, it is well known that this simple hill-climbing strategy
won’t work, e.g. because you can end up on a local hillock or get lost rambling aimlessly on a
plateau with no clear direction of steepest ascent. However, some kinds of neural nets are capable
of being trained on a particular class of problems so that they transform such a space into a
different space in which solutions are found very quickly by going along the direction of steepest
ascent or descent, though there is still much to be learnt about the classes of problems for which
this works, and under what conditions the training methods will produce complete and sound
problem solvers.

Unfortunately, it is far from obvious that all the problems that an intelligent agent needs to deal
with can be expressed in a form that is amenable to these solution methods. For example for
some problems (e.g.searching for proofs in pure number theory) the structure of the domain
makes it impossible either to set bounds to the length of proofs or to avoid branching searches for
proofs. This makes it impossible to map the search space into a finite dimensional vector space
amenable to relaxation or neural net techniques that home in on solutions without combinatorial
searching: we are again confronted by these horrendous exponential functions.

This is why nobody tries to solve problems in arithmetic by simply remembering Peano’s five
axioms and searching for a logical proof based on those axioms. Instead we memorise all kinds
of strictly redundant facts derivable from those axioms, including multiplication tables and lots
of rules of thumb for solving particular problems (e.g. you can tell if an integer is divisible by
five by looking at its last digit in the decimal representation, or whether it is divisible by three by
seeing whether the sum of its decimal digits is divisible by three, etc.).

These stored "lemmas" (previously proved results) are facts that are strictly redundant but have

Scruffy Page 4

been found to be useful for classes of problems that occur frequently. For other problems
combinatorial search may still be required.

Of course, if you depend so much on stored facts you have a new problem which is to find a way
of organising them so that you can tell which one, if any, is relevant to a particular task. There is
no infallible way of doing that: discovering relevance can be has hard a problem as any.

So, for the full potentially infinite collection of arithmetical problems, we are about as badly off
with the stored intermediate results as we are without them. Fortunately, howev er, it is an
empirical fact that for most people’s liv es there’s only a comparatively small, bounded, variety of
arithmetical problems that they ever hav e to solve, so it pays to learn the ad-hoc collection of
facts and tricks that enable such problems to be solved (with or without our understanding why).

Those unfortunates who do research in pure number theory have no such complete problem
solving kit, and therefore have to spend their lifetime groping around without such effective aids
to rapid solutions, though even they tend to specialise in sub-fields where they can build up
expertise in the form an ad-hoc collection of useful heuristics, lemmas, and patterns, for deciding
what’s worth trying next.

In chess, where, unlike the set of possible proofs in number theory, the move tree is finite, it is
nevertheless so large that as regards strategies for deciding in a reasonable time where to move,
the tree might as well be infinite. Of course there are some important relatively small subtrees for
which winning algorithms have been discovered, and good chess players learn patterns on the
board to recognize when they hav e entered such subtrees, or when they are close to entering
them.

So unless someone invents an infinitely fast, infinitely large, processing system, any intelligent
agent will have to find short cuts to solving problems, even when dealing with formally specified
domains. In fact, short cuts are the key to intelligence: a major component of intelligence is
productive laziness.

Here’s an example of a short cut using a special purpose representation.Suppose you are asked
to find all possible ways of selecting values between 1 and 9 inclusive for the variables a to i,
satisfying the following conditions.

1. No two variables have the same value.
2. all the following are true:

a + b + c = 15
a + d + g = 15
a + e + i = 15
b + e + h = 15
c + f + i = 15
d + e + f = 15
g + e + c = 15
g + h + i = 15

You can search through all possible ways of assigning the 9 integers to the 9 letters, i.e 9 factorial
or 362880 combinations. However, a little representational and conceptual creativity can almost
completely eliminate the searching required. The trick requires the following observations

Scruffy Page 5

(a) The problem is equivalent to mapping the integers 1 to 9 onto locations in a 3 by 3 array of
squares labelled thus

a b c
d e f
g h i

such that all rows, columns and diagonals add up to 15.

(b) There are three distinct types of locations in the array, occurring in different numbers of
collinear triples:

the centre (e) occurring in four triples,
corners (a, c, g, i) occurring in three
middle edges (b, d, f, h) occurring in two triples.

(c) So there must be three different types of integers between 1 and 9 such that some occur in
four, some in three, and some in two triples adding up to 15.

It takes very little work to divide the nine integers into these three categories. After that assigning
them to locations in the array so as to satisfy the conditions requires almost no backtrack
searching. After one solution is found all the others are generated quickly by using the
symmetries that are blindingly obvious in the geometrical representation though not at all
obvious in the original formulation of the problem.

This example of productive laziness used the ability to notice a relationship between an
arithmetical problem and a geometric structure, as a result of which some additional arithmetical
concepts were created (concepts of different kinds of numbers) which can then be used to
constrain the assignment of numbers to letters in such a way as to more or less eliminate
searching.

This toy example is typical of creative problem solving with much harder problems in
mathematics and elsewhere. Often a problem looks either unsolvable, or solvable only by very
tedious exhaustive search, until a relationship between domains, or between problems, is noticed
that provides a short cut to a solution.

Sometimes discovering such relationships is just a matter of luck.Sometimes it results from a
generalisation or modification of a similar relationship that has already been shown to have
heuristic power.

However, for many kinds of problems short cuts work if you are lucky but they are not perfect.
Moreover, most good short cuts cannot be worked out in advance on the basis of prior analysis of
the domain: they hav eto be discovered by exploration and analysis, like the way in which a great
chess player (or mathematician) learns patterns by observing and generalising what turns up in
actual experience instead of trying to do everything in advance by applying general inference
procedures to the rules of chess (or the axioms of a branch of mathematics).

So even in formal and mathematical domains there are not going to be neat generally applicable
powerful methods that can be used to solve all problems in a reasonable time.

Scruffy Page 6

The physical (biological, social) world is even harder to deal with
The requirement to discover rules of thumb and short-cuts by exploration and experience is even
more pressing in connection with problem solving in the real world (e.g. finding good ways to
build houses that are resistant to wind, rain, cold, etc.). There are several reasons why things are
harder in the real world, including the following:

a. Unlike a formal system like chess or number theory, no complete body of information is
available as a starting point: knowledge is always limited. (In fact we are generally both ignorant
about some things and misinformed about others.)

b. The range of possible things to do, and therefore the branching factor in search spaces will be
considerably higher than in chess or arithmetic: you can scratch your ear, shout for help, look for
a library, try to climb a tree, think of a number, try to remember whether you have been here
before, etc., etc. So search spaces are unmanageably large, especially if the task is to find all the
solutions, or to find the best one.

c. Things happen at speed in the world, and very often decisions and actions are required by a
deadline in the immediate future. This rules out extensive combinatorial searches.

For all these reasons rapidly accessible, rapidly executable rules of thumb have to be derived or
learnt by trial and error. Because the world is treacherous and we are not gods, such rules are
highly fallible.

In both the real world and formal domains mistakes are possible. A heuristic induced from actual
experience can be erroneous because the wrong generalisation was made, even in a mathematical
problem domain. Additional problems in the physical world are poor observation or
measurements, or a poor set of concepts for dealing with the phenomena - like trying to think
about movement of masses without the concept of acceleration. There are no general, provably
correct, algorithms for finding powerful new notations and using them to define new concepts.
Scientific and cultural developments are slow, erratic, and often painfully wrong. And this is
inevitable.

Limits of consistency in intelligent systems
Given that some of your rules, generalizations and facts may be wrong one possible (though not
infallible) way of detecting that errors exist might be to check whether they are all mutually
consistent. If not, something must be wrong, though consistency does not imply that everything
is fine.

Alas, consistency checking is itself subject to combinatorial explosions. Even if all complexity in
the knowledge base is due to the use of propositional connectives, and no quantifiers are
involved, if there are N atomic propositions a consistency check can take up to 2**N tests, which
will be an impossibly large number for a realistic database. Of course, particular cases can be
dealt with more quickly, but in general checking consistency in a large knowledge base is an
intractable problem.

Moreover, even if you’ve managed to achieve internal consistency, maintaining it is a new
problem if your beliefs are error prone, and you frequently have to modify beliefs. Because the
knowledge base has to be redundant for reasons mentioned previously, retracting a belief raises

Scruffy Page 7

the problem of finding and dealing with other redundant beliefs, plans, rules, etc. that were
derived from the one that has been rejected.

You could in principle embed your knowledge base in a reason maintenance system that kept
records of all such dependencies, telling you what else must be retracted as a consequence of
correcting errors, but again in practice this strategy will be defeated by the sheer volume of
dependency relations, in any realistic knowledge base.

So the onlypractical strategy on revising a belief is to use whatever heuristics are available for
finding closely related beliefs that also need to be revised, and then hope that if there are any
other beliefs that were derived from the erroneous one you will later independently detect their
wrongness and correct them before they lead you into trouble. In practice we don’t always avoid
such trouble, and the arguments presented here suggest that that is not just because human beings
are badly designed but because the problem will inhere in any resource-limited system.

Scruffy semantics
There is an additional kind of scruffiness that I think is inevitable in intelligent systems
inhabiting a rich, and only partly knowable, world: namely scruffy semantics.

Logicians like to define formalisms whose syntax and semantics are specified precisely.

A definition of the syntax of a formalism starts by assuming some class of structures (e.g. all
possible sequences of characters in some alphabet, or all possible networks made of certain kinds
of nodes and links) and then giving a rigorous definition of a subset of such structures that are
taken to be syntactically well formed (in the formalism being defined). Any structure will either
be definitely well formed or not.

Human beings often deploy representational formalisms that are open-ended in ways that are
incompatible with this conception of syntax.For example, maps are widely used, but there is no
set of rules specifying exactly what is and what is not a legal map. It is up to someone creating a
map to decide what will be an effective device for the intended purpose, assuming that the
ev entual user will be creative and intelligent. As a result there is considerable variation in road
maps published by different firms. Some of them use considerable ingenuity in inventing new
encodings of information, for example whether a link between a motorway and a lesser road
allows both entry to and exit from the motorway, or only one of these -- a problem that used not
to arise for more primitive road systems.

Sometimes the conventions used in a map are explicitly specified in a key, but sometimes it is up
to the reader to infer them, using general knowledge of the domain and the purposes of the map.

This kind of open-endedness applies to all kinds of pictures, diagrams, charts, tables, models, etc
used in human communication. The prior existence of some agreed definition precisely
specifying a syntax is the exception rather than the rule.

Moreover, if we were not allowed this syntactic creativity in our communicative devices we
would be impoverished not only culturally but also scientifically and technically. Even
mathematicians often create new diagrams and notations both when searching for proofs and
when communicating concepts and proofs to others.

Scruffy Page 8

Of course, natural languages are equally prone to creative extension. Whena toddler once said
to his parents "Today might be much more hotter than it usually be’s", in a discussion of whether
to go on a picnic, they understood him perfectly. More generally, the syntax of natural languages
is constantly evolving, and evolving simultaneously in different directions in different sub-
cultures.

Semantic scruffiness is an even deeper issue than syntactic scruffiness. Aformal semantics of
the kind defined by Tarski (Tarski 1956) maps well formed expressions in a formalism onto
elements or subsets of a previously specified set of objects in a such a way that whether
something is or is not so mapped is determined by a collection of recursive rules.

In real life we are not in a position to specify precisely which sets of objects we are dealing with
nor the mapping rules.

Instead we muddle on with a collection of relatively ill-specified notations, and employ
structures using such notations with a collection of ill specified semantic rules. In particular it is
not generally the case that for human language the question whether a situation is or is not
correctly described by a sentence has a determinate answer. "That is a giraffe" might be
indeterminate when a new kind of animal is discovered that has some of the features previously
regarded as essential to being a giraffe, but not all of them. Many scientific advances depend on
the introduction of new concepts that are later found to have semantic indeterminateness, for
instance the concept of mass in newtonian mechanics. When the indeterminateness is discovered,
e.g. because an unanticipated situation arises in which defining criteria generate conflicts, this
often catalyses conceptual changes that enable us to extend our concepts and theories to provide
us with a deeper more powerful understanding of the world.

A full discussion of this issue is impossible in the space available here. I’ll simply baldly assert
that for creative intelligent agents groping towards ever increasing knowledge and understanding
of an indefinitely rich and complex world it is inevitable that the notations will have both
syntactic and semantic indeterminacy of a kind that both limits the applicability of logical and
mathematical methods but also provides a stimulus to creative advance.

So various kinds of scruffiness are inevitable
If all this is correct, then over the years any intelligent learner in the real world, as opposed to
some ideal world in the mind of wishful logicians, will build up an ever increasing store of ill-
defined information, much of it inevitably redundant, much of it inevitably wrong, and with no
hope of keeping it all internally consistent. I.e.real intelligent agents will be irretrievably
scruffy.

I hav eargued elsewhere (Sloman 1987) that there will be additional kinds of scruffiness to do
with the requirements of control systems in an agent that has multiple independent sources of
motivation that can be triggered by new events in the world, and has limited information and
limited time for dealing with most of the problems. A conclusion of that argument is that the
kinds of mechanisms that sometimes generate emotional states are not design defects but
inevitable consequences of optimising the design, subject to all the problems and constraints of
real life.

Scruffy Page 9

What should AI do about this?
One reaction to all this is horrified rejection and a frenzied search for some general way of using
formal, mathematical methods to avoid the problems. An alternative reaction is to recognize that
a major task for AI is to find ways of designing intelligent agents that reduce, even though they
cannot eliminate, the bad consequences of all this scruffiness. This is compatible with trying to
identify classes of sub-problems that are completely amenable to rigorous mathematical
treatment.

Unfortunately, because we don’t know enough about the world to prove that any particular way
of minimizing the consequences is optimal, and I suspect that there is NO practically
implementable strategy that will be optimal for ALL situations, it seems to me that our best hope
is to see what has emerged as a result of millions of years of empirical exploration of the space of
possible designs. I.e. we should study existing animals, including especially human beings, to
find out how they cope reasonably well in a rich, partly knowable, partly friendly, fast changing
environment.

It is unlikely that they do this by proving theorems, even theorems in non-monotonic logics.

Of course, I am not arguing that mathematics and logic are irrelevant to AI. The whole history of
science has shown that on the contrary a mathematical approach is often essential for
understanding a complex system, and for many aspects of AI it is clear that mathematical
analyses of problems and techniques plays an essential role both in understanding the nature of
the problem to be solved and in designing and evaluating representations and algorithms. My
point is only that precisely defined representations and rigorous fully analysed methods have to
be restricted to those sub-problems where they are applicable and useful (e.g. aspects of low lev el
vision, design and analysis of various forms of neural computation, some aspects of motor
control, complexity analysis, and so on) and that for many features of the design of intelligent
systems theworking system will have to violate canons of mathematical and logical
acceptability, but for good, principled, reasons.

Conclusion
Although it may be impossible to build truly intelligent systems that never become scruffy as
they struggle to understand the world and how to deal with it, at least we have a neat theory as to
why it’s impossible.

Scruffy Page 10

