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Intr oduction: Neats vs Scruffies

You would probably be ery unhapp about air trael if you were told that landing ag aays
under the control of programs that were so complel messy that nobody really understood
how they worked, and nobody hadre proved that thes would do something sensible in all the
situations that could possibly ariseoMid you be equally unhappo learn that your life &s in
the hands fecuse the metaphor) of a human brain?

There has been a long-standing opposition within Al between "neats" andiéstr{ifthink the
terms were first wented in the late 70s by Roger Schank and/or Bob Abelsonakt Y
University).

The neats gard it as a disgrace that maAl programs are compie ill-structured, and so hard
to understand that it is not possible fplain or predict their bel#ur, let alone pree that the

do what thg are intended to do. John McCaytn a €levised debate in 1972 once complained
about the "Look Ma no hands!" approach. Simila@garl Hewitt, complained around the same
time, in seminars, about the "Hairy kludge (pronounced klooge) a month" approach tresoftw
development. (His'actor" system \&s going to be a partial solution to this.)

The scrufies regard messy complety as ineitable in intelligent systems and point to tadiure

so far of all attempts to find evkable clear and general mechanisms, or mathematical solutions
to ary important Al problems. There are nice ideas in the General Problerar,Solyical
theorem proers, and suchli& but when confronted with nonyoproblems thg normally get
bogged dwn in combinatorial x¥plosions. Messy comptéy, according to scrufes, lies in the
nature of problem domains (e.g. outypital ewironment) and only by using lge numbers of
ad-hoc special-purpose rules or heuristics, and specially tailored representatioced dan
problems be sokd in a reasonable time.

Moreover, the scrufies tend to complain that the neats spend so much tormying about form

(e.g. defining formal syntax and semantics for their notations) thatghere content (e.g. what
information about the arld an intelligent system really needs). ysemetimes een liken the
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"theorem ewy" of those who harde after mathematical rigour to the kind of arid statistics-based
research in psychology and the social sciences that uses sophisticated mathematical techniques
(and much computer p@r) with little or no increase in understanding ofy anteresting
phenomenon.

Recently the conflict has tak on a n& twist, with the rise of connectionism. Here wevéa
branch of Al (yes, it is part of Al, not aweival discipline), that is healy mathematics-based,
yet, although the general principles on which a particular ar&twearns during its training
period may be well understood, the operation of the final system when applied to real tasks
generally depends on a totally opaque oekwof connections between processing units and
weights that modify their influence on one anatl@mly in relatvely simple cases is it possible
to interrogate the "hidden layers" of a neural net and find out what d@hee doing or wly it
works. So it looks increasingly as if systems based on neural nets will, after traininggnbe e
more inscrutable than Al programs: Weust have o trust that it is safe toxérapolate from the
test cases where theppear to perform well --xactly as we do with people to whom weei
responsibility Alas!

This is not unlile the situation in weather forecasting, where the genengdigdd principles
underlying the weather are well understoadt the boundary conditions are impossible to
measure and represent with comlete acquenti their lage scale décts are impossible to
compute within acceptable ngams of error: small errors in initial inputs to equations can
produce unpredictably Ige errors in their solutions.

Anyhow, quite apart from the implications of connectionist models of neural nets there are more
general things to be said about the neat/gcadnflict. | shall try to separate tBfent strands in

the conflict and will conclude that there are good reasonsintélligent systems performing in

real time in a real wld, or even in some purely formal problem domains, willveato be scruffy.

Still, wherever possible we should use neat theories to guide our designsxplahaions. In
particular scruffy systems should be based on neat designs.

We @n contrast the theories about therl and hav to relate to it that are used byorking

intelligent systems with theories about the design of such systdhtsll'the former object-
level-theories and the latter metasbtheories. My point is that we should s&ito make meta-

level-theories as neat as possible, including the theoriesxpktie why object-level-theories are
bound to be scry.

The scope of Al

One source of optimism about the possibility of neat designs scassely narrav view of the

scope of Al. Br example there are some who tend to think of Al as symaus with the field of
expert systems, and it is true that for métnough not all) epert systems the problem domain is
sufficiently restricted that complete analysis is possible. | prefer a definition that reflects the
range of vork reported at Al conferences, in Al journals, and the interests andiestof some

of the leading practitioners, including founders of the subject. From thigeiet Al is a \ery
general inestigation of the nature of intelligence and the principles and mechanisms required for
understanding or replicating it, and this includes topias Vikion and motor control which are
important for complete intelligent systems embodied in tlysipal world.

Like dl scientific disciplines Al thus construed has three main types of goal, empirical,
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theoretical, and practical, encompassing:

(a) empirical study and modelling okisting intelligent systems (including human beings and
other animals);

(b) theoretical analysis ana@oration of possible intelligent systems and possible mechanisms,
architectures or representations usable by such systems, and using the requiasto e
the empirical phenomena obsedwunder (a);

(c) solving practical problems in the light of (a) and (b), namely:

(c.1) using the understandingiged in (b) to deal with problems ofisting intelligent systems
(e.g. problems of human learning or emotiondidalifties)

(c.2) using the theoretical understanding to designuseful intelligent machines

(c.3) using the theoretical understanding to design machines that may not in themsedvbe
intelligent hut nevertheless usefully complement human intelligence.

In the course of these adties Al generates mesub-problems, and these lead tavi@ncepts,
new formalisms, and metechniques. On this general definition there is littléed#ince between
Al and Cognitve Sience, though inact may of the people who call themsely cognitie
scientists are ignorant of the contents of most Al research and vianadeo their an work.

Much of the theoretical @rk that &lls under this general wieof Al includes understanding
design trade-d$ relevant to intelligent systems. dF example, there are tradefefbetween

efficiengy and generality between compbaty of design and the ability to deade gracefully

when things go wrong. The rest of this paper is concerned with treed¢hat confront an

intelligent system that has to selgroblems within constraints of time and memory

Bow to the inevitable: why scruffiness is unaoidable

The main reason whscruffiness is ineitable in intelligent systems can be summarised thus: in
comple domains, neatness is defeated by combinataxbsions, unless you t@ an infinitely

fast processor or all eternity toaw for solutions.

The agument runs as folles: except in limited cases (to be discussed Wlproblem domains
have a $ructure that requires solutions to be found kgleration of branching paths in a search
space. The number of possible branches will be (at leasgpanential function of the depth of
path to solution. E.g. if N steps are required and the number of possible branches per step is as
low as 2, the number of possible paths will be 2**N. Sgee if only 50 steps are required, and
they can be &plored at the rate of a million a secondythvell need about 35 years for an
exhaustve exloration. A mere 70 stepsowld require about 37 million years. That indicates
how exponential functions xplode: adding a mere 20 of whete the cost is anxponential
function of multiplies the time or space requirements by about a million for a branahiog df

2 or over 3000,000,000 for a branchingdtor of 3. These functions gm so fast that the are
not going to be helped much by parallel implementations.

For problem domains that ka this character it isery often the case that neat, general, sound
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and complete algorithmsosk only on small problems: thi@lo not scale up because thieaveto
do so much detailed analysis of cases thatdékplode combinatorially

Non-explosve domains

Of course, not all search problems areelikat. If you hae a vey large array of names
alphabetically ordered andamt to search for a particular name, you carve(gisuitable
addressing mechanisms) use the "binary chop" method, i.e. look at the middle, then decide
whether to go left or right, then look in the middle of the remainimggone etc. With this
method the relation between problem size and solution time is thesaeof &ponential, its
logarithmic. l.e. the size of the problem is aqp@nential function of the time it tak to sole it

rather than the otheray round. So\en if the problem (the list of names) is made a million
times longer you will typically need only about 20 more steps to find a name. sThatl
telephone directoriesak.

There are other problems thatvharactable compbaty. For example if you are trying to find

some combination of Nalues of ariables that solva poblem, instead of searching through all

N factorial possible combinations you may be able to structure the problem as a search in a
relatvely homogeneous N-dimensionatator space, where there is ay @oint a function that

tells you in which direction to nve towads the solution point. Then you can home in on the
solution firly directly by maing along the line of steepest ascent to the goal, e.g. using
relaxation techniques.

For more compl& problems that can be represented in an N dimensiomabw space, for
instance pattern recognition problems, it is wellwnahat this simple hill-climbing stragg

won’t work, e.g. because you can end up on a local hillock or get lost rambling aimlessly on a
plateau with no clear direction of steepest ascenkeva, some kinds of neural nets are capable

of being trained on a particular class of problems so thattthesform such a space into a
different space in which solutions are fourayquickly by going along the direction of steepest
ascent or descent, though there is still much to be learnt about the classes of problems for which
this works, and under what conditions the training methods will produce complete and sound
problem solers.

Unfortunately it is far from olvious that all the problems that an intelligent agent needs to deal
with can be epressed in a form that is amenable to these solution methodexdmple for

some problems (e.gsearching for proofs in pure number theory) the structure of the domain
makes it impossible either to set bounds to the length of proofs epi leranching searches for
proofs. This maé&s it impossible to map the search space into a finite dimenskxtal wpace
amenable to relaxation or neural net techniques that home in on solutions without combinatorial
searching: we are am confronted by these horrendoup@nential functions.

This is wly nobody tries to solr problems in arithmetic by simply remembering Pearfve

axioms and searching for a logical proof based on those axioms. Instead we memorise all kinds
of strictly redundantdcts dewnable from those axioms, including multiplication tables and lots

of rules of thumb for solving particular problems (e.g. you can tell if agentis dvisible by

five by looking at its last digit in the decimal representation, or whether wislde by three by

seeing whether the sum of its decimal digits vgsthle by three, etc.).

These stored "lemmas" (mieusly proved results) aredcts that are strictly redundanitbhave
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been found to be useful for classes of problems that occur frequEotlyother problems
combinatorial search may still be required.

Of course, if you depend so much on stoedd you hee a rew problem which is to find a ay
of organising them so that you can tell which one, ij,as relevant to a particular task. There is
no infallible way of doing that: disagering relevance can be has hard a problem as an

So, for the full potentially infinite collection of arithmetical problems, we are about as badly of
with the stored intermediate results as we are without th@murfately howeve, it is an
empirical fct that for most peopkelives theres anly a comparatiely small, bounded, ariety of
arithmetical problems that thesver haveto solwe, so it pays to learn the ad-hoc collection of
facts and tricks that enable such problems to beedafwith or without our understanding wh

Those unfortunates who do research in pure number thewgy rbasuch complete problem
solving kit, and therefore kia o gpend their lifetime groping around without sucfeefive ads

to rapid solutions, thoughven they tend to specialise in sub-fields whereytltan tuild up
expertise in the form an ad-hoc collection of useful heuristics, lemmas, and patterns, for deciding
what’s worth trying net.

In chess, where, unkkthe set of possible proofs in number theding mae tree is finite, it is
nevertheless so lge that as igards stratgies for deciding in a reasonable time where toano
the tree might as well be infinite. Of course there are some importantelglaimall subtrees for
which winning algorithms he been disceered, and good chess players learn patterns on the
board to recognize when théave entered such subtrees, or whenytlage close to entering
them.

So unless someonevents an infinitely &st, infinitely lage, processing system,yamtelligent
agent will hae © find short cuts to solving problemsea when dealing with formally specified
domains. In d&ct, short cuts are theek o intelligence: a major component of intelligence is
productive laziness.

Heres an example of a short cut using a special purpose represent&igrpose you are asst
to find all possible ways of selectingalues between 1 and 9 inchusifor the \ariables a to i,
satisfying the follaving conditions.

1. No two variables hee the same alue.
2. all the follaving are true:

a+b+c=56

a+d+g=5b

ate+i=b

b+e+h=56

c+f+i=15

d+e+f=1

g+te+c=5b

g+h+i=15

You can search through all possiblays of assigning the 9 irgers to the 9 letters, i.e dtorial

or 362880 combinations. Mever, a lttle representational and conceptual creigtican almost
completely eliminate the searching required. The trick requires theviofmbserations
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() The problem is equalent to mapping the ingers 1 to 9 onto locations in a 3 by 3 array of
squares labelled thus

abc
def
ghi

such that all revs, columns and diagonals add up to 15.

(b) There are three distinct types of locations in the apegurring in diferent numbers of
collinear triples:

the centre (e) occurring in four triples,
corners (a, ¢, g, i) occurring in three
middle edges (b, d, f, h) occurring indwiples.

(c) So there must be threefdient types of intgers between 1 and 9 such that some occur in
four, some in three, and some inawvriples adding up to 15.

It takes \ery little work to dvide the nine intgers into these three cgteies. After that assigning

them to locations in the array so as to satisfy the conditions requires almost no backtrack
searching. After one solution is found all the others are generated quickly by using the
symmetries that are blindingly wibus in the geometrical representation though not at all
obvious in the original formulation of the problem.

This example of productie laziness used the ability to notice a relationship between an
arithmetical problem and a geometric structure, as a result of which some additional arithmetical
concepts were created (concepts ofedént kinds of numbers) which can then be used to
constrain the assignment of numbers to letters in suctayaas to more or less eliminate
searching.

This toy example is typical of create poblem solving with much harder problems in
mathematics and elsbere. Often a problem looks either unstile, or solable only by ery
tedious &haustve arch, until a relationship between domains, or between problems, is noticed
that pravides a short cut to a solution.

Sometimes disa@ring such relationships is just a matter of lu&ometimes it results from a
generalisation or modification of a similar relationship that has already beem sbchae
heuristic paver.

However, for mary kinds of problems short cutsork if you are luck but they are not perfect.
Moreover, most good short cuts cannot benked out in adance on the basis of prior analysis of

the domain: thg haveto be discuered by eploration and analysis, kkthe way in which a great

chess player (or mathematician) learns patterns by observing and generalising what turns up in
actual eperience instead of trying to deeeything in adwance by applying general inference
procedures to the rules of chess (or the axioms of a branch of mathematics).

So &en in formal and mathematical domains there are not going to be neat generally applicable
powerful methods that can be used to saVproblems in a reasonable time.
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The physical (biological, social) wrld is even harder to deal with

The requirement to diseer rules of thumb and short-cuts bypéoration and xperience is&en
more pressing in connection with problem solving in the realdMe.g. finding good ays to
build houses that are resistant to wind, rain, cold, etc.). There am@lseeasons whthings are
harder in the real @rld, including the follaving:

a. Unlike a brmal system lik dhess or number theqgrmo complete body of information is
available as a starting point: kwéedge is avays limited. (In ict we are generally both ignorant
about some things and misinformed about others.)

b. The range of possible things to do, and therefore the brand@utay fn search spaces will be
considerably higher than in chess or arithmetic: you can scratch yodnaarfor help, look for
a library, try to climb a tree, think of a numbdry to remember whether youveleen here
before, etc., etc. So search spaces are unmanagedglelydapecially if the task is to find all the
solutions, or to find the best one.

c. Things happen at speed in therld, and ery often decisions and actions are required by a
deadline in the immediate future. This rules odérsve combinatorial searches.

For all these reasons rapidly accessible, rapicigcatable rules of thumb kea © be derived or
learnt by trial and erroBecause the arld is treacherous and we are not gods, such rules are
highly fallible.

In both the real wrld and formal domains miste& are possible. A heuristic induced from actual
experience can be erroneous because the wrong generalisaionage,\&n in a mathematical
problem domain. Additional problems in the pisical world are poor obseation or
measurements, or a poor set of concepts for dealing with the phenomemayiri to think
about meement of masses without the concept of acceleration. There are no genemsdllypro
correct, algorithms for finding meerful nev notations and using them to defineaeoncepts.
Scientific and cultural delopments are sig, eratic, and often painfully wrong. And this is
inevitable.

Limits of consistency in intelligent systems

Given that some of your rules, generalizations aats may be wrong one possible (though not
infallible) way of detecting that errorsist might be to check whether thare all mutually
consistent. If not, something must be wrong, though consisti@s not imply thatwerything

is fine.

Alas, consistencchecking is itself subject to combinatoriaipdosions. Een if all compleity in

the knavledge base is due to the use of propositional comesctand no quantifiers are
involved, if there are N atomic propositions a consisteheck can ta& up to 2**N tests, which

will be an impossibly laye number for a realistic database. Of course, particular cases can be
dealt with more quicklybut in general checking consistgnin a large knavledge base is an
intractable problem.

Moreover, even if you've managed to achve internal consisterye maintaining it is a n&

problem if your beliefs are error prone, and you frequentie ta modify beliefs. Because the
knowledge base has to be redundant for reasons mentiongdusig retracting a belief raises

Scrufy Page 7



the problem of finding and dealing with other redundant beliefs, plans, rules, etc. that were
derived from the one that has been rejected.

You could in principle embed your kmdedge base in a reason maintenance system épat k
records of all such dependencies, telling you what else must be retracted as a consequence of
correcting errors, Ut agin in practice this stragg will be defeated by the sheeolyme of
dependengrelations, in ap realistic knevledge base.

So the onlypractical strat@y on revising a belief is to use whater heuristics are \&ilable for

finding closely related beliefs that also need to lvésed, and then hope that if there arg an
other beliefs that were deed from the erroneous one you will later independently detect their
wrongness and correct them beforeythead you into trouble. In practice we doaivays avoid

such trouble, and theg@rments presented here suggest that that is not just because human beings
are badly designedubbecause the problem will inhere irnyarsource-limited system.

Scruffy semantics
There is an additional kind of scfuiess that | think is inatable in intelligent systems
inhabiting a rich, and only partly kmable, world: namely scrdf semantics.

Logicians like to define formalisms whose syntax and semantics are specified precisely

A definition of the syntax of a formalism starts by assuming some class of structures (e.g. all
possible sequences of characters in some alphabet, or all possildekaeghade of certain kinds

of nodes and links) and thervigig a rigorous definition of a subset of such structures that are
taken to be syntactically well formed (in the formalism being definedy. sfacture will either

be definitely well formed or not.

Human beings often deplaepresentational formalisms that are open-endedayswhat are
incompatible with this conception of syntakor example, maps are widely useditbhere is no
set of rules specifyingxactly what is and what is not g map. It is up to someone creating a
map to decide what will be anfeftive device for the intended purpose, assuming that the
eventual user will be create and intelligent. As a result there is consideraldeation in road
maps published by dédrent firms. Some of them use considerable ingenuityvienimg nev
encodings of information, forxample whether a link between a motagvand a lesser road
allows both entry to andxé from the motonay, or only one of these -- a problem that used not
to arise for more primiie road systems.

Sometimes the ceentions used in a map argpticitly specified in a ky, but sometimes it is up
to the reader to infer them, using generahidedge of the domain and the purposes of the map.

This kind of open-endedness applies to all kinds of pictures, diagrams, charts, tables, models, etc
used in human communication. The priaxiseence of some agreed definition precisely
specifying a syntax is thexeeption rather than the rule.

Moreover, if we were not allaved this syntactic creaity in our communicatie devices we
would be impeerished not only culturally ¢t also scientifically and technicallyEven
mathematicians often createwneliagrams and notations both when searching for proofs and
when communicating concepts and proofs to others.
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Of course, natural languages are equally prone to weeaiension. Whera toddler once said
to his parents "d@day might be much more hotter than it usuallyheh a discussion of whether
to go on a picnic, theunderstood him perfectlyMore generallythe syntax of natural languages
is constantly eolving, and eolving simultaneously in diérent directions in diérent sub-
cultures.

Semantic scridihess is an\en deeper issue than syntactic séindss. Aformal semantics of
the kind defined by arski (Tarski 1956) maps well formedkgressions in a formalism onto
elements or subsets of a yimusly specified set of objects in a such aywhat whether
something is or is not so mapped is determined by a collection of recuisis.

In real life we are not in a position to specify precisely which sets of objects we are dealing with
nor the mapping rules.

Instead we muddle on with a collection of reldiy ill-specified notations, and emplo
structures using such notations with a collection of ill specified semantic rules. In particular it is
not generally the case that for human language the question whether a situation is or is not
correctly described by a sentence has a determinate arlSvet is a girde" might be
indeterminate when a wekind of animal is disceered that has some of the featuresvjmesly
regarded as essential to being a deatut not all of them. May scientific adances depend on

the introduction of n@ concepts that are later found toveasemantic indeterminateness, for
instance the concept of mass imvi@nian mechanics. When the indeterminateness is\dism

e.g. because an unanticipated situation arises in which defining criteria generate conflicts, this
often catalyses conceptual changes that enable w$etodeour concepts and theories tovile

us with a deeper more werful understanding of theasld.

A full discussion of this issue is impossible in the spaeiable here. Il simply baldly assert
that for creatie intelligent agents gropingwards ever increasing kmwledge and understanding
of an indefinitely rich and compleworld it is inevitable that the notations will kia both
syntactic and semantic indetermigasf a kind that both limits the applicability of logical and
mathematical methodsibalso preides a stimulus to creaé alvance.

So \arious kinds of scruffiness ae inevitable

If all this is correct, thenwar the years anintelligent learner in the realosld, as opposed to
some ideal wrld in the mind of wishful logicians, willlbld up an &er increasing store of ill-
defined information, much of it ingably redundant, much of it imgably wrong, and with no
hope of leeping it all internally consistent. l.aeal intelligent agents will be irretuably
scrufy.

| haveargued elsehere (Sloman 1987) that there will be additional kinds of Boads to do

with the requirements of control systems in an agent that has multiple independent sources of
motivation that can be triggered bywesvents in the wrld, and has limited information and
limited time for dealing with most of the problems. A conclusion of thgtiraent is that the

kinds of mechanisms that sometimes generate emotional states are not design defects b
inevitable consequences of optimising the design, subject to all the problems and constraints of
real life.
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What should Al do about this?

One reaction to all this is horrified rejection and a frenzied search for some gemerdl wging
formal, mathematical methods teoid the problems. An alternaé reaction is to recognize that

a major task for Al is to find ays of designing intelligent agents that redugen ¢hough thg

cannot eliminate, the bad consequences of all thisfswmss$. This is compatible with trying to
identify classes of sub-problems that are completely amenable to rigorous mathematical
treatment.

Unfortunately because we dohknow enough about the orld to prove that ary particular way

of minimizing the consequences is optimal, and | suspect that there is NO practically
implementable straggy that will be optimal for ALL situations, it seems to me that our best hope
is to see what has enged as a result of millions of years of empiricgdleration of the space of
possible designs. l.e. we should studystng animals, including especially human beings, to
find out hav they cope reasonably well in a rich, partly kmable, partly friendly fast changing
ernvironment.

It is unlikely that thg do this by praving theorems,\een theorems in non-monotonic logics.

Of course, | am not guing that mathematics and logic are irveig to Al. The whole history of
science has sho that on the contrary a mathematical approach is often essential for
understanding a complesystem, and for manaspects of Al it is clear that mathematical
analyses of problems and techniques plays an essential role both in understanding the nature of
the problem to be sodd and in designing and/iauating representations and algorithms. My
point is only that precisely defined representations and rigorous fully analysed metmds ha
be restricted to those sub-problems wherg #ne applicable and useful (e.g. aspects wflievd
vision, design and analysis oanous forms of neural computation, some aspects of motor
control, complgity analysis, and so on) and that for mdeatures of the design of intelligent
systems theworking system will hae t violate canons of mathematical and logical
acceptabilitybut for good, principled, reasons.

Conclusion

Although it may be impossible tauldd truly intelligent systems that wer become scrdy as
they struggle to understand theowd and hav to deal with it, at least we ka a reat theory as to
why it's impossible.
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