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Abstract

Clearlywecansolve problemsby thinking aboutthem.Sometimeswe have theimpression
that in doing sowe usewords, at other timesdiagramsor images. Oftenwe useboth.What
is goingon whenweusementaldiagramsor images? This question is addressedin relation
to the moregeneral multi-prongedquestion: what are representations, what are they for,
how many different typesarethey, in how many differentwayscanthey beused, andwhat
differencedoesit make whether they arein the mind or on paper? Thequestion is related
to deepproblemsabout how vision andspatial manipulation work. It is suggestedthat we
arefar from understanding what is going on. In particular we needto explain how people
understandspatial structure andmotion, andhow we can think about objects in termsof
a basic topological structure with moreor lessadditional metrical information. I shall try
to explain why this is a problemwith hidden depths, sinceour grasp of spatial structure is
inherently a graspof a complex rangeof possibilities andtheir implications. Two classes
of examplesdiscussedat length illustraterequirementsfor humanvisualisation capabiliti es.
Oneis theproblemof removing undergarmentswithoutremovingouter garments. Theother
is thinking about infinite discrete mathematical structures,suchasinfinite ordinals. More
questionsareaskedthananswered.

1 Wecan think with diagrams

Considerthe trick performedby Mr Bean(actuallythe actorRowan Atkinson): removing his
(stretchable)underpantswithout removing his trousers.1 Is thatreally possible? Think aboutit

1The first draft of this paperlocatedMr Beanin a launderette. Toby Smith corrected me, pointing out that
theshyMr Beanwason thebeach, andwishedto remove his underpantsthenput on his swimmingtrunks, both
without removing his trousers. On 29th July 1995 I postedMr Bean’s problemas a followup to a discussion
of achievementsof AI in several internetnews groups(comp.ai, comp.ai.philosophy, sci.logic,sci.cognitive) and
received a number of interestingandentertaining comments. Chris Malcolm pointed out the similarity with the
braandsweaterproblem, i.e. removing a brawithout removing thesweaterworn above it. Readersareinvited to
reinvent the jokesthat werethenposted,about which problem waseasierfor whomunderwhich conditions. In
particular, someone pointedout the distinctionbetweendifficulty dueto unfamiliarity vs difficulty dueto being
distracted.



if youhaven’t previouslydoneso.2

Is it possible to removetheunderpantswithoutremoving thetrousers,leaving thewaistband
of thetrousersconstantlyaroundtheperson’swaist,allowing only continuouschangesof shape
of the body and the underpantsand trousers,e.g. stretching,bending,twisting, but with no
separationof anything into disconnectedparts,no creationof new holes,etc.? Doesit matter
whetherthewaistbandof thetrousersis tight or not?

Many peoplecananswerthis questionby thinking aboutit andvisualising the processes
required,even if they have not seenRowan Atkinson’s performance.A harderquestionis: in
how many significantlydifferentwayscantheunderpantsberemoved?

2 Somecommentson the underpantsproblem

It is easierto considertheunderpantsbeingdistorted,ignoringwhodoesit andhow, thantrying
to work out all the contortions of postureMr Beanwould have to go throughto producethe
appropriatesequenceof changes. If we abstractaway from the problemof how the wearer
makesthetransformationshappenwecansupposeMr Beanremainsrigid andstill andsomeone
elsepulls andstretcheshis underpants,perhapsusinglong thin tongswherenecessary. (Is it
obviousthatthischangemakesnodifferenceto themainproblem?Why?)

Even with this abstraction there are several different ways of thinking about the
underpantsproblem. Someuseonly topological relationships preserved underall continuous
transformations,includingthosewhichchangesize,shapeanddistances.Somealsousemetrical
relationshipsinvolvingshapeandsize.Wecanalsousetopological relationshipswith structural
featuresof under-specifiedmetricalrelationships.

Thinking purelytopologically is quitehardto do, sinceit involves finding themostgeneral
way to characterisetherelationshipbetweenMr. Beanandhis garmentsin the initial andfinal
states.Fromthatpoint of view the startandendstatesareequivalent andthereis no problem
for Mr Beanto solve. Soit cannotbetheright way to think abouttheproblemof how to do it.
Most peopledo not think like that. They conceptualisetheproblemin a largely qualitative but
partly metricalfashion,includingvariouswaystheunderpantsmight stretchandfold. We shall
seethatit is usefulto combinedifferentabstractions.

2.1 How many distinct solutionsare there?

Most peopleat first seeonly two symmetrically relatedsolutionsto theproblem.Oneinvolves
stretchingtheleft sideof theunderpantsdown throughtheleft trouserleg,overthefoot andback
up theleft leg, leaving only theright leg throughits hole.Theunderpantscanthenbeslid down
theright leg andout. A similar solution startson theright side,with theunderpantsemerging
throughtheleft trouserleg.

If thewaistbandof thetrousersis loosethereareseveralmorepairsof symmetrically related
solutions,e.g. sliding onesideof theunderpantsup over theheadanddown theothersideand
out throughtheleg, or sliding thecentral(leg-divider) partof theunderpantsdown insidea leg
thenover the foot andup the sameleg on the outside, thenout pastthe waist band,over the
headanddown theotherleg. It is easierto visualisethanto describe!Anotherpair of solutions

2I have previously given audiences the task of finding out how many possiblenumbersof intersection(or
tangent) pointstherecanbebetweena triangle anda circle in thesameplane.It is easierthanMr Bean’s problem,
but many people missoutsomecasesunlessprompted.
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Figure1: Mr Beanstill wearinghistrousersandunderpants,beforeandafterbeing
continuouslytransformedinto a sphere.

startsthesameway, andendswith theunderpantsgoingoff pastthehead.Thatis four pairsof
solutionssofar. But thereis at leastonestill missing! (Or more,dependinghow solutionsare
counted.)

At first I saw only two solutions,anddid not think of pulling theunderpantsover thehead
until ausenetpostermentionedthepossibility. ThenI lookedfor moresolutionsandnoticedthat
thecentralpartof theunderpantscouldbemovedfirst, leadingto underpantsaroundthewaist.
Eventually, afterfurtherabstraction,followedby somearithmetic, explainedbelow, I foundnine
differentsolutions.Mostpeopledon’t find themall.

3 A spherical Bean

Thesolutionsoutlinedabove all usedmetricalnotionsincludingstretchingandtranslation. We
cande-emphasisemetricalfeatures(size,shape,distance,orientation,sizesof angles)andfocus
moreon topologyif we envisagethebodyshrinkingto a sphere,or egg, asin Fig. 1, with the
trousersandunderpantsfollowing faithfully, sothateachbecomesahemispherewith two holes,
while theirwaistbandsremainaroundtheequator.

It is clear that if the revised problemstartingfrom a sphericalshapecan be solved, the
original problemcanbe also. It is not clearwhat kindsof cognitive mechanismsenableus to
graspthatfact.

Consideringthe shrunken Beanmakes it “obvious” (how?) that the underpantscanslide
out throughoneof theholesin thetrousers.Sincetherearetwo holesthereareessentiallytwo
symmetrically relatedsolutions.

Looseningthewaistbandpermitsanothertypeof solution in which theunderpantsslideout
pasttheband,with thespherepassingthroughoneof theleg holes.Sincetherearetwo leg holes
wehaveanothersymmetrically relatedpair of solutions.

Another solution has the underpantssliding out past the waist band,without the sphere
passingthroughtheleg holes.

So with the trousersattachedandimpassable at the waist, therearetwo distinct solutions.
Looseningthewaistbandenablesseveralmoredistinctsolutions.Havewe foundthemall?
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3.1 Holey spheres

We canthink of a two-holedhemisphereasa spherewith threeholes! Thenwe canenvisage
underpantsand trouserseachas three-holedsphericalsheets,concentricwith eachotherand
with thesphericalBean.Thetwo sheetshave theirholesaligned,but wecanignorethat.

Whatkind of cognitiveprocessallowsyouto graspthethree-holedsphereview? I saw it like
thatonly afterI attendedto thetaskof lookingfor moregeneralcharacterisationsof theproblem
andthensaw that talking aboutthe loosewaistbandwasa distraction:it is just anotherhole in
thetrousers.Similarly therewasall alongjustanotherholein theunderpants,at thewaist.

What are the cognitive mechanisms that enable us to perform that sort of re-
conceptualisation? How doesthe mechanismrelate visual and non-visual information, e.g.
aboutthenatureof holesandwaistbands?Whyis themechanismsometimesnot invoked?What
triggers its invocation?

Therearetwo distinctbut relatedre-conceptualisations.Oneinvolvesnoticingthesimilarity
in structureandfunctionbetweenthebig holeat thetop andthetwo smallholesat thebottom.
Ignoring differencesin sizeand location, they are similar in function: something inside (the
underpantsor trousers)cancomeoutonly by goingthroughoneof thethreeholes.Alternatively
one can visualisea simplecontinuousdeformation,i.e. stretchingthe garmentsup over the
sphere,turningtheminto sphereswith threesimilarholes.

I.e. we can discernthe more abstractcharacterisationeither by noting commonaspects
of the functional roles (causalpowers) of the holes despitetheir differencein size (seeing
affordances),or by visualising a deformationwhich makes them indistinguishableanyway
(visualising structuralchangesand relationships). Different cognitive mechanismsandskills
wouldbeneededfor thesetwo tasks.How are theseskills implemented?How do they develop?
Which animals havethem?(Cf. Kohler1927.)

Having noticed that Mr Bean with his lower garments is equivalent to a solid sphere
surroundedby andconcentricwith two sphericalrubbersheetseachwith threeholes,we can
alsonotice(how?) thatremoving theunderpantsinvolves two steps:
(1) gettingthesphereoutof theunderpantsthroughoneof thethreeholesin theinnersheet.
(2) gettingtheunderpants(theinnersheet)out of thetrousersthroughoneof thethreeholesin
theoutersheet.

Suddenlyit becomesclearthat therearethreewaysof doingstep(1) eachconsistentwith
threewaysof doingstep(2), sotheremustbe3 � 3 = 9 differentsolutions,covering all possible
combinationsat this level of abstraction,which ignoresprotrusions(e.g. legs)throughholes.It
is alsopossible to dostep(2) beforestep(1), doublingthenumberof solutions!

It is worthnotingthatthetypeof abstractionidentifiedherewhichenablesusto reasonabout
thecombinationsof stepsdoesnot requireMr Beanandthetwo garmentsto have any specific
shapeaslong asthegarmentsareapproximately convex, or at leasthave a distinction between
insideandoutside andthreecommunication portsbetweenthem. We candiscussthe spheres
and their changingrelationships without assumingall the metricalpropertiesof spheres,e.g.
smoothness,constantcurvature,fixedradius,etc.This is whatI meantby “structuralfeaturesof
under-specifiedmetricalrelationships”.

3.2 Yet moreabstraction

Further abstractionsare possible. The initial configuration is topologically equivalent
(deformableby continuouschanges)to one in which the three items are simply separated
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Figure2: ‘Exploded’ abstract representationof Mr Beanand his garments. The
hemispherescanbecontinuously ‘flattened’into plates.Is it ‘obvious’ that there is
no topological differencebetweentheoriginal andfinal state?

vertically, by moving thesphereup andthetrousersdown (asin Fig. 2. This treatstherelation
of beinginsideandthe relationof beingoutside a sphericalsurfacewith holesasequivalent.
Moreover The two stretchableenclosingspherescan be continuously deformedinto two flat
sheetseachwith two holes.In thatcontext nothing is inside or outsideanything else,andthere
is thereforenodifferencebetweentheinitial andthefinal state.Eitherway, thereis noproblem
to solve!

Only mathematiciansreact to the original problemthat way, concludingthat it is trivial.
Unfortunatelythatdoesn’t helpMr Beangethis underpantsoff. Evenwhena mathematically
satisfying solution to a problemhasbeenfoundat a high level of abstraction,thereis still work
to bedoneif detailedactionshave to bespecified.

When moving betweendifferent abstractionswe needto know where to stop. E.g. in
analysingoptions for the removal processit is useful to go from the fully metrical initial
specification,wherethedetailedshapesandsizesarerelevant,to theminimally metricalnearly
topological situation whereonly inside–outside relationsarerelevant(but still metricalbecause
being “inside” an object with holes is a metrical property). Having enumeratedpossible
strategiesat the minimally metrical level (whereeachstrategy involvesuseof onehole in the
underpantsandonein thetrousers)wecanthenmovetomoredetailedplanningandevaluation in
thefully metricalrepresentation,wherechangesof shapeandlengtharerequired,i.e. stretching
of underpantsover theheador down andunderthefoot. At thatlevel therearefarmoreoptions
andthesearchspaceis muchlarger.

4 Coexisting search spaces

We found that thereare nine different solutionswhen the problemis construedas involving
threeconcentricspheres(or, to bemoreprecise,threespherestotally orderedby an“encloses”
relation).Thisdiscoverywasnotmadeby visualisationor simulationof theremovalprocess,but
by usingthegeneralinformationthat for something to move from beinginsidea holedsphere
to beingoutsideit mustgo throughoneof theholes.(How doesa child graspthat fact?Doesa
chimpanzee?)

Why was the full rangeof solutions not obvious with the original configuration? Not
everyonespotsthe solution whereboth leg holesof the underpantsare moved round to the
top of Mr Bean’s head,so that the underpantsareupside down, andthenpulled off upwards
(i.e. Mr Beanexits theunderpantsthroughtheirwaistholewhile theunderpantsexit thetrousers
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throughthe outerwaist hole). Therearedifferentwaysof doing this which areequivalentat
a high level of abstraction,thoughthey involve differentcontortionsof Mr Beananddifferent
locationswheretheunderpantsrisk beingtorn.

At a fully metrical level the searchspaceis far more complex: thereare more detailed
options, with moreexplosive combinatorics.At that level it is hardto seepatternsamongthe
routes,becausethesimplerstructuregot by grouping(almost)topologically equivalentoptions
is notvisible.

This is an illustration of the generalfact thatfinding an abstractspatialrepresentationand
combining that with someabstractnon-spatial (arithmetic or logical) reasoningcan give a
deeperinsightinto a problemthansimply usingvery concretespatialvisualisationcapabilities.
Information aboutsolutions at the abstractlevel can be transformedto lower-level solutions
(e.g. with metricalinformation) by addingdetails,thoughgenerallytherewill not bea unique
extension.

Having differentviewsof adiagramor 3-D scenarioinvolvingdifferenttypesof abstraction
often helpsin the processof solving a problem,e.g. planninga detailedsequenceof actions.
This is usedby multi-level planners,which form meta-plansin oneor moreabstractionspaces
(e.g.ABSTRIPS,NOAH) tocontrolthesearchmoreeffectively thana“flat” single-levelplanner
can(e.g.STRIPS).

A relatedthemein thehistoryof mathematicsis theconstantdevelopmentof new formsof
abstractionandtechniquesfor relatingandcombiningdifferentabstractions.A similar theme
canbefoundin work on in child development,e.g.by Karmiloff-Smith.

In principle,givenenoughtime to explorevisually all thepossible metricaltransformations
we couldeventually discover instantiationsof all ninepossibilities describedabove, thoughwe
mightnotnoticethepartitioninginto ninecases.

However, evengivenenoughtime, mostpeoplewould not getaroundto consideringall of
theoptionsbecausethemorecomplex searchspaceinvolvesamorecomplex book-keepingtask
if thesearchis to beexhaustive. Humanarchitecturesdonotcopewell with deepstacksor long
queues,thoughtheseareeasyto implementoncomputers.

Our limitationsmayarisein partbecausedifferentarraysof possibilities competein parallel
for attention. Whenconsideringany spatialstructurethereare indefinitely many changesof
size,shape,orientation,colour, etc. thatwe canenvisageif we think of them(Sloman1996a).
AI modelsof visualor spatialreasoningdo not yet matchthis, thoughperhapsthey will in the
distantfuture.

Part of the priceof suchhumanflexibili ty is unmanageablecombinatorics whensearching
for a sequenceof changesto solve a problem. This canbe alleviatedby usingmoreabstract
patternsto control the search,thoughnot everyonecando this equallywell. Could this also
explain thedifferentachievementsof thechimpanzeesin Kohler’s famousexperiments?

Explaining how capabilities at different levels of abstractionare usedand combinedto
control the searchfor a solution to a complex problemrequiresnot only a specificationfor
the representationsandmechanismsused,but alsothe architecturewhich combinesthemand
allowsdifferentprocessesto interactfruitfully (SlomanandLogan,2000).

4.1 What makesus fail?

Why dopeoplesometimesfail to visualiseanactionor change,or fail to draw aninference?
It may be due to (i) use of poor representations,(ii) use of inadequatemechanismsor

algorithms for manipulating the representations,(iii) inadequatearchitecturefor combining
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and integrating different sortsof representationsand mechanisms(e.g. ability to construct
only simplestructures,limited possibilities for modifying structures,limited possibilities for
analysingstructures,limited short-termmemoryfor storingsequencesof modifications),(iv)
wrongor incompletestoredinformation(e.g.aboutchangespossiblein aphysicalsystem,about
consequencesof changes),(v) inadequatemechanismsfor monitoring effectsof changesin order
to infer consequences,(vi) lack of meta-level know-how andarchitecturalsupportrequiredfor
systematically exploringall theavailableinformationandall theavailabletransformations, (vii)
not usingavailableknow-how e.g. becauseof anattentionproblemor a motivationalproblem
or somekind of “fixation” onadifferentinadequatestrategy.

Theabove pointsillustratesomeof therequirementsfor a systemableto explain or model
humanabilities. Somefailuresmayinvolve transientdysfunctions, suchasdistractedattention,
or forgetfulness.Theremaybeothersproducedby braindamage,geneticbrainmalformations,
drugs,chemicaldisorders,etc.3 Sometasksmaycometoo early for a developing architecture,
in childhood.

5 External and internal diagrams

Ourdiscussion showsthatadiagramonpaperisnotnecessarilyagoodmodelfor whatisgrasped
whensomeonevisualisesaspatialstructure.

One personlooking at the diagrammay seeonly the more detailed,metrically specific
configurationwhereasanothercan see(“grasp”? “comprehend”?) in the samediagrama
more abstractstructurein which metrical relationships play a reducedrole. The two views
supportdifferentwaysof seeingpossiblechanges.Soevenif bothperceivershadaninternally
inspectable2-D diagramthey mightstill view it quitedifferently. Simplyhaving internalspatial
structurescannotexplain what it is to graspor visualisea spatialaspectof a sceneor problem.
(Otherwisesimplyhaving abrainwouldsuffice.)

Asking whetherpeoplecan build internal diagramsis less important than asking how
diagramscanbe viewed, analysed,interpreted,andused,no matterwhetherthey are internal
or external. Introspective reports should be treatedas highly ambiguousand incomplete
descriptions,andcertainlynotasexplanations.

5.1 Representationsand transformations

All of the different ways of thinking aboutMr Bean’s problemrequirenot only someway
of representingthe original configuration,but alsoa graspof the possibletransformations of
thatconfiguration,a capabilitydiscussedmorefully in a discussion of ‘actual possibilities’ in
(Sloman,1996a).

Wehaveseenthatdifferenttransformationsarepossibleatdifferentlevelsof abstraction.At
onelevel therearemany detailedchangesof shapeasMr Beanpullspartof theunderpantsdown
his trouserleg, over thefoot andthenbackupagain.At thehighestlevel of abstractionthatis a
non-operation:thesphereis still in theunderpants,asif a protrusionfrom thesphere(the leg)
hasbeensquashedin, leaving theunderpantsfreeto rotatearoundthesphere.

So visual experiencesof looking at the diagramat variouslevels of abstractiondiffer in
(amongother things) the possibilities for change that areseen. Mental visualisation without

3I conjecturedin (Sloman,1989)thatsomeautisticslack theperceptual ability to moveup levelsof abstraction
in perception, alsodescribedin morerecentpapers (SlomanandLogan, 2000; Sloman,2000b)
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an externaldiagrammustalsoinvolve assembling possibilities for changein thinking abouta
solution to theproblem.Practicesomehow developsfluency in doingthis: How? I learntagreat
dealby playing with Meccanosets,asa child. Differentvisualisationskills aredeveloped by
mathematical or othersortsof training.Whatchangesduringsuchlearning?

Experiencedsoftwareengineersgainfacility in graspingveryabstractconfigurationsof data-
structuresalongwith procedureswhich transformthem. Likewise,beinga composer, painter,
mechanicalengineer, dressmaker, etc.,involvesacquiringspecialisedabilitiestograspstructures
alongwith classesof possible transformationsof thosestructuresandtheir consequences.

Differentstructuresin thesamegeneralclasscansupportvery differentnumbersandtypes
of transformations. A drawing with a few lines supportsfar fewer “immediately available”
transformations thanmorecomplex line drawings with far more lines, junctions,regionsetc.
Thusasyouvisualiseastructurechanging,therequirementsfor graspingwhich furtherchanges
arepossible may alsobe constantly changing. Often a changeis madeintentionally in order
to allow new possibilities, e.g. visualisinga mechanicallink beingshortenedin orderto allow
it to rotatefurtherbeforebeingstopped.How do wegrasp thesesecond-order possibilities for
change?

6 Thinkin g with qualia

All thisis relatedto disputesaboutthenatureof consciousness(Chalmers,1996).E.g.arequalia
simply unanalysable‘givens’ or arethey bestunderstoodascrucialpartsof the functioning of
aninformation processingsystem(asI havearguedin a long,incomplete,still expandingpaper,
availableat

www.cs.bham.ac.uk/research/cogaff/Sloman.consciousness.evolution.ps
andin (Sloman,2000a))

Our discussionshows thatvisualqualia(e.g.anexperiencedredpatch)have rich “internal”
differencesdependingon what sortsof possibilities for changethe experienceris capableof
handling. Changescouldincludechangesof shape,size,orientation,location,splitting into two
or morepatches,andmany waysof acquiringnew colouredsub-regions(e.ga bluepatchin the
middleor agreenline traversingtheredpatch,andsoon.)

Wittgenstein wrote: “The substratumof this experienceis the masteryof a technique”
(Wittgenstein,1953,p208).A full accountof visualisation(andthinkingwith diagramsor other
spatialstructures)wouldrequireusto analysethehugevarietyof techniquesimplicit in eventhe
simplesthumanexperiences,therebyuncoveringrequirementsfor mechanismsableto support
apparentlysimplequalia.

Otheranimalsmayhave muchsimplerqualia,especiallyprecocialspeciesbornor hatched
with geneticallyformedvisualmechanismsreadyfor use,e.g. chickens,deer, horses.Altricial
species,e.g.birdsof prey, huntingor tree-climbinganimalsandhumans,startoff morehelpless
and grow their brainswhile interactingwith the environment. Perhapsthis ‘bootstrapping’
producesa much richer graspof structureand motion than can easily be encodedin genes.
(Contrastthis with thepopularopinion thathumansarebornso immaturebecausetheir skulls
wouldotherwisebetoo big to passthrougha humanpelvis. Elephantsmanage,sothatcan’t be
all thereis to it.)
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7 Visualising infinite structur es

Somevisualisation goesbeyondwhatcanbeexperiencedin perception.How do we visualise
infinite structures?Theanswerwill dependon thetypeof infinite structure.Whenwe visualise
continuousobjectsor continuouschangesthisinvolvesthepossibility of “zoomingin” to smaller
andsmallerportionsof theobjector motion,without limit . That is partof what is implied by
beingcontinuous. It alsounderliessomeof Zeno’sparadoxes.

Mr. Bean’s probleminvolvescontinuous change(stretching,bending,moving), but solving
thatproblemdoesnot deploy mostof whatwe know aboutcontinuous motion. Thedifference
betweencontinuous changeand a finite successionof discretestateswould not make any
differenceto our previous discussion. In fact a useful way to tame a problem involving
continuous changeis to identify a small numberof key states,andignoreintermediatestates.
Thatis how we found9 or 18distinctsolutions.

We can also think about infinite discretestructures,like the set of integersor the set of
proofs in someformalism. Clearly we cannotcreatesomethinginfinite inside our heads.So
visualisation in this case(and probably in all the other casestoo!) doesnot involve actual
creationandinspectionof thestructurevisualised. Somethingfar moresubtle happens:when
you visualise a spatialstructureor processthereneednot be any actualspatialstructureor
processthatis inspected,noranything isomorphic with thestructureor process.

Theremight be only a representationof inspectingthe structureor process.If donewell,
thatcouldfool usinto thinkingwearedoingsomething thatwearen’t. But beingfooleddoesn’t
matteraslongastheprocesswhichproducestheillusion is exactlywhatis neededto implement
apowerful reasoneror problemsolver: i.e. it is agoodbiologicalsolution,likebeingfooledinto
thinking tablesaresmooth,solid,continuousandrigid, becausethey lookandfeelasif they are.

7.1 Infinite “images” involving numbers

Let usconsidersomeexamplesof infinite structures,suchasthesequenceN of naturalnumbers,
0, 1, 2, ... etc.This is easilyvisualised,goingoff into thedistanceaway from us,or from left to
right, for instance.N satisfiesPeano’s axiomsfor arithmetic.(i) Thereis aninitial element.(ii)
Every elementhasa uniquesuccessor. (iii) The initial elementhasno predecessor. (iv) Every
non-initial elementhasa uniquepredecessor. (v) Theaxiomof induction: propertieswhich are
possessedby theinitial element,andpossessedby thesuccessorof any possessor, arepossessed
by all theelements.

Any sequencesatisfyingthoseaxioms,e.g. an infinite row of dots,or an infinite sequence
of repeatedactionsis a Peanostructure.It is clearthat therearemany visualisablesubsetsof
N which arePeanostructures,e.g. theevennumbers,2, 4, 6, ..., or thenumbersstartingfrom
999 andcontinuing indefinitely: 999, 1000,1001,... It is alsoclear that Peanostructuresall
havecertainproperties,someof whichareeasierto graspthanothers.

Graspingtherelationshipbetweentheaxiomaticcharacterisationandthevisualisedstructure
is non-trivial. For hundreds(thousands?)of yearsbeforePeanocameupwith hisaxioms,people
thoughtaboutandusednumbersandwereableto visualisethe infinite sequenceof numbers.
Kantdiscussedsomeof theissuesin 1781.

Whatcognitive mechanisms enabledPeanoto find theaxioms?Considerthedifferentroles
of theaxiomsin characterisingtherequiredset.Axioms (i) and(ii) guaranteethatthesetis not
emptyandthatyoucangoonalongthesequenceforever, with nochoicepoints(becauseof the
word “unique”). Axiom (iii) preventsyou goingbackwardsbeyondthe initial element.Axiom
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(iv) implies that you cango backfrom any non-initial element,andagainthe word “unique”
rulesout choicepoints, therebypreventingthesequencedoublingbackandrejoining itself, as
this onedoes:0,1,2,3,4,5,6,3,4,5,6,3,4,5,6...I.e.axiom (iv) prevents3 having both 2 and6 as
predecessors.Axiom (v) is moresubtle,andpreventssequenceswhich go on forever, andthen
havemoreitemsbeyondthat,likeS1definedbelow.

We caneasily infer somepropertiesof a visualisedPeanostructure. E.g. given any two
distinctelementsin thestructure,theremustbeafinite chainof successorelementsstartingwith
oneof themandendingwith the other. So the elementscomprisea total ordering. Compare
proving this from theaxiomsusinglogic. Wecanalsoseethatevery initial sequenceof aPeano
structureis finite, andevery alternateinitial sequencecanbearrangedasa rectangular2 by N
blockof items,whereN is somenumber, andtheintervening onescannot.

7.2 Mor ecomplexinfin ite structur es

We canalsovisualise structuresviolating Peano’s axioms.For example,imaginetheevenand
oddnumbersseparatedout, into two sequences,0, 2, 4, ... and1, 3, 5, ... Wecanvisualisethese
concatenatedin astructureS1with all theevennumbersgoingfrom left to right, followedby all
theoddnumbersgoingfrom left to right.

Then S1 hasa successorrelation just as N did, but it is “obvious” that Peano’s axioms
areno longersatisfiedin S1. First, not every non-initial numberhasa predecessorin thenew
configuration. (There is one exception.) Secondlythe axiom of induction no longer holds:
propertieswhich arepossessedby the initial number, andpossessedby the successorof any
possessor areno longerpossessedby all the integersin this new organisation.An exampleis
beingeven.

Wecanvisualiseadifferentinfinite seriesS2by reversingtheoddnumbersandaddingthem
all before the even numbers. That producesa structurelike the set of positive and negative
integerswhich is infinite in bothdirections.Thereis no longerany item without a predecessor.
S2hassymmetry lackingin Peanostructures.

Moreover, if we start from the fact that thereare infinitely many prime numbers(which
is provable algebraically, thoughnot so easilyproved visually), we can form infinitely many
Peanostructuresandconcatenatethem. Startingfrom any primenumberwe canform a Peano
structureconsisting of all its powers,e.g.

�������������
	����
������������������	������
���������
�����
	����
���
It is thennothard

to visualiseall of thesesequencesconcatenatedto form S3, a totally orderedsetof numbers,
whichhasinfinitely many elementsviolatingaxiom(iv) becausethey havenopredecessor. This
caneitherbeprovedformally from alogicalspecificationof theconstructionof S3, or intuitively
by visualisingtheprocessof construction andseeingthateachtimeanew setof powersis added
its first elementhasnopredecessor.

7.3 Well-ordered structur es

The original sequenceN canbe seento be “well-ordered”, i.e. every subsetof N containsa
“least” element,onewhichhasnopredecessorin thesubsetandwhichprecedesall theothersin
thesubset.This is connectedwith thefactthatN is inherentlyasymmetric.It is built by starting
with an initial elementandgoing on indefinitely addingelements,oneat a time, on oneside
only. Proving logically thateveryPeanostructureis well-orderedis harderthanseeingthatit is.

ExperiencedmathematicianscanalsoseethatthestructureS3gotby concatenatinginfinitely
many Peanostructures,is well-ordered.
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Thiswouldnotbetrueif wereversedsomeof thesub-sequences,e.g.if all thepowersof 13
wereincludedin reverseorder. Thatwould violatewell-orderingsincetherewould bea subset
with nofirst element.

7.4 Justifying Peano’saxioms

Having notedthat it is easyto visualisestructures,like S1, S2, S3, which violatetheaxiomsin
differentways,we canseethat oneway to “justify” Peano’s axiomsis usingthemto rule out
thosestructures.I haveno ideaif this is how Peanoarrivedathis axioms.

Whetherthoseaxiomssuffice to determineuniquely the “intended” intuitive model is a
controversial topicdiscussedmorefully in my review ((Sloman,1992))of Penrose.

A Peanostructurewhetherspecifiedaxiomatically or visually is asymmetric.Moving along
it in onedirectionalwaysleadsto theleastelement,whereastheotherdirectiongoesonforever,
which we often representby “...” Being “well-ordered” is anothertype of asymmetry:every
subsethasa first element,thoughnotnecessarilya lastone.

7.5 How do wegraspan infinite ordered sequence?

It maybethatpartof whatmakesthevisualisedinfinite naturalnumbersequencewhatit is rather
thananon-Peanostructureis aninformation-processingimplementationof theasymmetryalong
with somethingcloselyrelatedto theaxiomof induction. I donotknow how tomakethisprecise.

Two aspectsof such an implementation could be (1) a mechanismfor expanding an
incompletesequence“on the right” asoften asrequired,and(2) a reasoningmechanismthat
implicitly assumesthatpropertiespropagatedto successorsarepropagatedto everythingfurther
along.Thissortof mechanismis not inherentlyconnectedwith numbers.

Anyonewho canvisualisean infinite row of vertical dominoesgoing off to the right, and
thenvisualisethe wave of activation that occurswhenthe first dominofalls over causingthe
secondoneto fall over, etc. andwho finds it “obvious” that they will all (eventually) endup
knocked over, is usingthe equivalentof the axiom of induction. How is the ability to do this
implementedin humanbrains?It is probablypartof a largesuiteof operationsfor manipulating
finite andinfinite discretestructures,whichwill bedifferentin detailfrom thosefor continuous
structures,but mayhave someoverlap,e.g. theability to concatenatestructures,or to “move”
somethingalongastructure.

What makessomething a visualisation of a Peanostructure,ratherthana differentsort of
structuresuchasS1, S2, or S3, dependson theapplicabilityeverywhereof this local property-
transmitter. Theinfinite detailneedneverbeconstructed,aslongasit is availablewhenneeded
(asin lazily evaluateddata-structures).This is partly analogousto whatever makesit possible
indefinitelyto zoomin to continuousstructures.For Peanostructureswe usesomethinglike an
ability indefinitelyto “zoomto theright”.

Whenandhowdoyoungchildrendevelopthisability? Howdid it evolve?Wasit a side-effect
of otherabilities?

7.6 Visualising proofsand refutations

It is easy to visualise counter-examplesto the claim that all orderedstructuresare Peano
structures,or thatall orderedstructuresareall well-ordered.It is notsoeasyto usevisualisation
to prove generalisations, suchasthat any concatenationof a well-orderedsetof well-ordered
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structureswill alsobewell-ordered.For somepeople,andperhapsfor all, that is mucheasier
to proveby reasoninglogically from definitionsthanto demonstrateby somehow visualising all
possible concatenationsof well-orderedsets.How wouldonedo that?

In generalit is easierto visualisea casethat refutesa generalisationthan to visualise
all possibleinstancesof a generalisationin a reliable way. Sometimes that can be doneby
visualisingasortof patternor templatewhichcoversall thepossibilities. MatejaJamnik’swork
(Jamniket al., 1999)on verifying diagrammatic proofs,includestheuseof diagramsto reason
over an infinite setof finite structures,e.g. in proving that for every � thesumof the first �
oddnumbersis � �

. Thisdependsonacommonpatternsharedby all thestructures,sothatthey
canbevisualisedin auniformway.

A much hardervisualisation of an infinite structure(or process)is requiredto prove the
Cantor-Bernsteintheorem,whichsaysthatif therearetwo setsA andB eachof whichis in one-
to-onecorrespondencewith a subsetof theother, thenthereis a one-to-onemappingbetween
A andB. Theproof involvesconstructingthenew mappingfrom the two givenones,andit is
helpful whenthinking aboutthis to visualisesomethinglike a pair of mirrorsfacingeachother
with raysbouncingbackandforth indefinitely.

8 How do wedo it?

What is going on whenwe visualise theseinfinite structures?We obviously don’t construct
infinite physical structuressinceour brainsare finite. However, it may be accurateto say
that infinite structuresareconstructedin somesortof virtual machine,like the familiar virtual
machinesthat supportsparsearraysor infinite lazily evaluatedlists, constructablein some
programminglanguages.It is nothardto createin acomputerasparsearraywith morelocations
thanthereareelectronsin theuniverse,aslongasweleavemostlocationscontainingthedefault
value.Perhapsbrains(or thevirtual machineswecall minds) usesimilar tricks for representing
extremelylarge,or eveninfinite, structures.

It might be temptingto think that what we do when we visualisean infinite structureis
constructa very large setandusethat asan approximation to the infinite set,sinceafter all a
very very large visualisedcollectionof dots, like a starrysky, might aswell be infinite if we
cannottake in thewholelot andseehow many there.

But that won’t do. If you visualisethe structureS1, with ALL the evennumbersfollowed
by ALL the odd numbers,then no very large finite subsetof the even numberswill do as
an approximation to ALL of them. For example, the structureS1violates Peano’s axioms,
asexplainedabove, whereasif thereareonly finitely many even numbersprecedingthe odd
numbersthentheaxiomthateverynumberhasa uniquepredecessorwill no longerbeviolated,
for thefirst oddnumberwill now haveapredecessor, thelastevennumber. Moreover theaxiom
of inductionwill againhold. I.e. if we replacethe infinite sequenceof even numberswith a
finite subsetthis will transformS1into a Peanostructure.Soa largefinite row of evennumbers
cannotmodeltherequiredinfinite row in thiscontext.

Somethingdeepgoeson when we visualisethe two infinite setsas being concatenated.
Perhapsthe important point is that what we experienceas pure visualisation is actually a
combination of visualisation andunconsciousbut explicit specificationof rules for indefinite
expansion andrulesfor inference?(I think thatsortof ideagoesbackto ImmanuelKant(1781).)
E.g. we mayhave something like thepreviously mentionedmechanismfor “continuing to the
right” waitingin thewingstopreventany interpretationof thesetof evensasafinite set,however
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large. This is like the ‘lazy evaluation’ of an infinite list structurein a computer:the list hasa
‘generator’procedureandlooking beyond the alreadyexpandedportion of the list causesthe
generatorprocedureto berun, to producepreviouslyunavailablelist elements.

Using lazy evaluation is a fairly abstractandsophisticatedkind of visualisation,on a par
with the domino/inductionmechanismthat waspreviously waiting in the wings to propagate
propertiesalongall thenaturalnumbersequence.

How many othersortsof visualisationsinvolve sucha mixture of implicit rulesor axioms
or mechanismsalongwith something like a spatialstructure?Oneof the requirementsfor a
mechanismof thesortdiscussedhereis thatwhetherthevisualisedspatialstructureis finite or
infinite, discreteor continuous,thevisualisationis possibleonly insofarasit implicitly involves
theavailability of a largenumberof possible changesin thestructure,aspreviously discussed.
Whatexactly is visualiseddependsonexactlywhich transformations areavailable.

9 Visualising is not lik eseeing

Fromthediscussion so far, it is clearthatwhatever visualisationof a structureis, it cannotbe
something very similar to seeingevenif it feelssimilar. Thatis becausethekind of graspingof
aspatialstructureinvolved in visualisingis part of whathappensin seeingthestructure.Hence
if visualising involvedseeingthenvisualisationwould bepartof visualising andwe’d have an
infinite regress.

Alsowecannotseeaninfinite (discrete)structurebutwecanvisualiseone.And it is arguable
thatwhenwe visualisethekind of abstracttopological structurethatwe previously discussed,
that cannotbe like seeingbecauseseeingalways involves specificmetrical or topological
structuresandrelationshipswhicharemissing in theabstract visualisations.

Weneedanew wayof thinking abouttheproblem,otherthanproposingthatthebraincreates
2-D or 3-D arraysand then“looks at” or “inspects” them,for if the looking at or inspection
involvesunderstandingthespatialstructurewearegoingroundin circleschasinganon-existent
homunculus. Theremustbea way of understandingspatialstructure(or moregenerally)a way
of understanding, which is not to beexplainedin termsof understandinganotherstructure!

It must,however, besomethinglikeatypeof information-richcontrolstate,i.e. astatewhich
affectswhatthesystemcanor will donext. ElsewhereI havearguedthatweneedto view minds
ascontrolsystemsandrepresentationsascontrolsubstateswith syntax,pragmaticsandin some
casessemantics,e.g.(Sloman,1993a;Sloman,1993b;Sloman,1996b).

Whatsortof controlstate?How doesgraspingsomestructureaffectwhatyoucando?Note
that“what youcando” doesnotreferonly to externalbehaviour. It includesthesortsof internal
processingwhich becomeavailablewhenwe graspsomestructure. We needa theoryof an
architecturethatcanaccommodateall theseprocesses.

10 Other problemsinvolving visualisation

Mr Bean’staskis justoneof many problemswhichpeopleseemtobeabletosolvebyvisualising
transformations of astructure.

Somearemucheasier:e.g. if apenny with the“head” on top is turnedover threetimeswill
theheador thetail beontop?Thatoneis easyto doeitherby visualisingtheprocess(simulating
it mentally)or by reasoningaboutit. If we modify the problemto onein which the penny is
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turnedover threethousandandfive times, it is mucheasier(andfar morereliable) to reason
aboutthanto visualise ((Sloman,1971)).

Here,themoresophisticatedprocess,usingmeta-level knowledgeaboutthenatureof theless
sophisticatedprocess,is easierandfasterto dothanthelesssophisticatedprocesswhichblindly
goesthroughthe stepsto get from the startstateto the endstate. Being ableto discover new
waysof solving old problemsandbeingableto selectbetweenalternative approachesrequires
“meta-level” knowledge,i.e. theability to reflecton andreasonaboutknowledgeandproblem
solving. Oneof theearliestinterestingexamplesof this wasSussman’s Hacker (1975),which
debuggeditself by watchingitself at work, thoughit dealt only with a tiny fragmentof the
problem,likemostAI modelssofar.

Beingableto understandthepossibility of looking for andusing“easy”shortcutsrequiresa
moresophisticatedprocessingarchitecturethana typical problemsolver or planner. It requires
an architecturewhich supportsmechanismsfor observing,analysing,evaluating, andnoticing
patternsin internalprocesses((Sloman,2000a)).

However, having an architecturesupporting suchmeta-level abilities doesnot guarantee
generalmeta-level competence.It seemsthathumanshave to learnto bereflective in different
domains. E.g. someonewho is good at noticing opportunities for improving his software
designsmay fail to noticeopportunities for improving communication andrelationships with
otherpeople.

Muchmathematicalability seemsto dependongraspingpatternsandstructuresin one’sown
thinking andreasoningprocesses,likenoticing thattheoutcomeof a counting processdoesnot
dependontheorderin whichitemsarecounted,or noticingthatarepetitiveprocesscancontinue
indefinitely. I suspectthat our ability to visualiseinfinite structuresis relatedto the ability
to graspand reflect on propertiesof repetitive processes,andour ability to manipulate them
by performingoperationslike concatenationor reasoningaboutsubsetsdependson noticing
analogiesbetweeninfinite structuresandfinite structures.

Childrendon’t seemto start off with theseabilities, but, unlessdamagedby teachers(or
parents?),they somehow manageto bootstrapthemoresophisticatedarchitectureandto apply
it in differentdomains. (For somespeculations aboutthis in connectionwith learningabout
numbers,seeSloman(1978,Chp8). andcomparewith Karmiloff-Smith (1996).)

11 Somequestions

The examples discussedabove raise a host of interesting questions, relevant both to
understanding how humanmindswork andhow to giveintelligentmachinestheability to reason
spatially.

1. Whatsortof knowledgeenablespeopleto work out theanswer?(Thissubsumesthedeep
question: whatsortof knowledgeenablesthemto understandtheproblem?)

2. How is thatknowledgerepresentedin theirbrains– bothphysicallyin chemicalandneural
structuresandwithin theinformation-processingvirtual machinesimplementedin brains?
How many different forms of representationdo we have availablefor suchknowledge?
(Sloman,1971;Sloman,1985;Glasgow etal., 1995;Peterson,1996;Sloman,1996b)

3. Can the information usedbe expressedin predicatecalculus? In first-orderpredicate
calculus?In someothermathematicalor logicalnotation?
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4. What would the knowledgeactually look like if expressedin someform of predicate
calculus,or otherlogical system?(I.e. which predicates,functions,etc. would beused?
Which axioms? How would the initial stateanddesiredendstatebe described?Would
modaloperatorsbe needed,e.g. to expresswhich transformationsarepossible? Would
temporaloperatorsbeneededto expressthenotionof aprocessandtheconstraintson the
process?How would therequirementthatthewaistbandnotbemovedbeexpressed?)

5. Whatsortsof logic engineswouldbeableto find thesolution? Whatsortof searchspace
is involved? How cansuchasearchbecontrolled?

6. Whatalternativesarethereto logical representationsandmanipulations?Whataretheir
advantagesanddisadvantages?

7. Whatsortsof reasoningmechanismsdopeopleactuallyusefor thissortof problem?Can
they uselogic? Do they ever uselogic? What alternativesareavailable,for humansor
intelligentmachines?

8. Can someor all of the humancompetencebe replicatedon computer-basedmachines
usinga verydifferentphysicalimplementation?

9. Which of theseabilitiesaresharedby which otheranimals,e.g.a magpiebuilding a nest
in a treetopout of twigs of many shapesandsizes,a squirrelworking out a routeto the
bagof nutshungup for birds,a femaleorang-utangin a treeclutchingherinfantwith one
handandusingtheotherto weaveanestfor thenight, outof branchesandleaves?

11.1 HasAI mademuch progresson thesequestions?

Likemany others,I havebeenthinking(andwriting) aboutsuchquestions,andabouthow human
andanimalvisionworks,for many years(seetheReferences)andhaveseenvariousideasabout
this re-inventedmany times. But I remaindeeplypuzzledsincenothing I have comeacrossin
AI, or in psychologyor brain science,seemsto comecloseto explaining human(andanimal)
visualandspatialreasoningabilities.

Often an implementation appearsto be doing somethinglike humanvisualisation, but on
closerexamination lacks the generalityandpower: give it a slightly differentproblemandit
cannotcope. Therearenow many wonderfulsystemsfor generatingstunningly realisticstatic
or moving imageson computer displays, yet suchprogramscannotperceive and understand
suchimages.Programswhich canreasonby manipulatingdiagramscontaininga few discrete
structurescannotcopewith continuousstructuresor continuous change.In general,programs
which reasonaboutimagesusing2-D arraysor networksdo not have a graspof spaceor time
ascontinuous.Work by Hayes(1985)andothersrelatedto theideaof ‘naive physics’helpsto
definesomeaspectsof theproblemof characterisingourgraspof spatialstructure,but doesnot
asfarasI know specifymechanisms thatcansolve theproblem.

Psychologicalandneuraltheoriesdonotanswerthequestionseither. Neuraltheoriestendto
identify locationswherelow-level visualprocessesoccur, but saylittle or nothing abouthigher-
level capabilitiesor how visualisationmechanismsareusedin problemsolving.Whenattempts
aremadeto formulatetheoriesabouthow brainsdo visualreasoningI usuallyfind thatthey do
not describeanything that I can interpretasa workabledesignwith explanatorypower. E.g.
talking aboutmechanismswhich “manipulateimages”by rotating,or stretchingor translating
themexplainsnothing.It merelyre-formulateswhatneedsto beexplained.
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In orderto addmoredetail to thespecificationof whatneedsto be explained,I have tried
to show thatvisual reasoningcoversa varietyof differentthings,usingtwo examplesof what
we canvisualise: onea finite but deformablestructureandonea discretebut infinite type of
structure.

12 Spatial vs logical: what’s the differ ence?

Introspectively, many peopleare convinced that there is a deepdifferencebetweensolving
problemsby reasoninglogically (or verbally)andsolvingthemby visualisingandtransforming
spatialstructures.Whethersuchintrospectionsarereliableis amatterof dispute.4 However, it is
notsocommonly noticedthatbothsortshavemuchin common,andwhatthey have in common
is probablymoreimportantandharderto accountfor thanthedifferences.5

Wheneverwe reason,whetherwith pictures,words,imaginedmovements,or anythingelse,
processesoccurin whichstructuresarecreatedandmanipulated,usuallyin virtual machines.If
youreasonlogicallyoralgebraicallyusingpencilandpaper, you’ll normallycreateasequenceof
spatialstructures,wherethetransition from oneelementof thesequenceto thenext corresponds
to a stepin thereasoning.(This is why visualisation of sequencesplayssuchanimportantrole
in a lot of meta-mathematicalreasoning.)

Problemsin Euclideangeometrycanoftenbesolvedwithoutaspatialsequence:insteadwe
modifyadiagramin situ. (SeeNelson(1993).)Moderninteractivegraphicstechnologysupports
this andalsoallows directtransformationof a singlelogical or algebraicstructurepresentedon
the screenwithout having to producea sequenceof spatially separatestructures,ashappens
whenwe reasonwith sentences,equations,logical formulae.Perhapsbrainsgot therefirst?

The collection of structure-manipulations possible in a class of structuresdefines a
generalisednotion of “syntax” for suchstructures. The kinds of parts that can be replaced
andthe kinds of featuresandrelationsthat canbe changeddefinethe structuralpropertiesof
the information medium, its syntax. We can also generalisea notion of “pragmatics”from
linguistics,to refer to the functionalrolesof informationstructuresin largersystems.In some
casestherewill alsobe“semantics”insofarasthestructuresareusedto describe,summariseor
plan,otherinternalor externalstructures,actionsor goals.

We needa bettergraspof thetypesof structure-manipulation mechanismsthereareandthe
many waysin which differentpossibilities for furthermanipulationareactively madeavailable
by the currentcontentsof a particularstructure. This may enableus to comeup with better
theoriesof how brainsor mindsdo all this. That would require,yet again,re-inventingideas
discoveredlong agoby evolution, andin thecourseof doingsowe’ll probablyhave to discard
many of ourcherisheddistinctions.

4Someof the differencesbetween“Fregean” (applicative) and“analogical” representationswereanalysedin
Sloman(1971). Thedifferencesareoftenmisdescribed.

5I havepreviouslyarguedthattherearenotonly two categories,but awiderangeof significantlydifferenttypes
of representation,e.g. in (Sloman, 1971; Sloman,1975; Sloman,1996b). Similar stricturesapplyto otheralleged
dichotomies,e.g.betweenimplicit andexplicit, computationalandnon-computationalmechanisms,or procedural
anddeclarativerepresentations,etc.
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13 Conclusion

Thispaperdrawsattentionto acollectionof unexplainedfeaturesof our frequentlynotedability
to think and to visualise. All suchcases(whetherdiagrammaticor not) seemto involve the
ability to createstructures– not necessarilythestructureswe think we arevisualising, andnot
necessarilyphysical structures,sincethey canbe structuresin virtual machines(the “physical
symbol systemhypothesis” taken literally is a hugeredherring). They alsoinvolve theability
to have readily availablea collectionof mechanismsfor manipulating thosestructureswhich
somehow implementour graspof the possibilities for changeinherentin a structure. The
possibilities for changedeterminehow thestructureis graspedor understood,andprovide the
basisfor its pragmaticandsemanticfunctions.

What constitutes a graspof something spatialas opposedto algebraic,or continuous as
opposedto discrete,or finite asopposedto infinite, or linear asopposedto treestructured,or
planarasopposedto threedimensional, etc. will dependin part on the collectionof typesof
transformations andinferencesavailableandreadyto beappliedto thestructure.

In somecasesthesamestructuremaybeviewedor understoodin differentwaysby making
different classesof transformationsor inferencesavailable, as in the differencebetweena
metricalanda topological understandingof aspatialconfiguration.

Using sucha graspin solving a problemor makinga plan involvessomehow beingable
to orchestratethe collection of possible changesin such a way as to find collections of
changeswhichsatisfysomecondition. Whenthesituationrepresentedis continuous,continuous
changescanbevisualised. Whetherwe canactuallyproducesuchchangesor only convincing
representationsof themis notclear.

Being intelligent often involves simultaneouslyviewing something in two or more ways
andrelatingthesetsof possible changesin thedifferentviews. Whatdoesanddoesnot work
hasto be learntseparatelyin the context of differentclassesof structures,differentclassesof
manipulationsanddifferentclassesof problems, which is why thereis no suchthing astotally
generalintelligence.

How all this can be implementedin brainsor computersremainsan openproblem. If
we study lots more special caseswe may eventually understandwhat sorts of structures
andmechanismscan implementsuchcapabilities, andwhat sortsof generalarchitecturecan
accommodatethemall, alongwith closelyrelatedcapabilitiessuchasvisionandmotorcontrol.
I don’t think thiswill beeasyto do,not leastbecausewestill don’t understandwhattheproblem
is.
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