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Abstract

Clearlywe cansolve problemsby thinking aboutthem. Sometimesve have theimpresson

thatin doing sowe usewords at other timesdiagramsor images Oftenwe useboth. What
is goingonwhenwe usementaldiagramsor image® This quegion is addessedn relation

to the more gereral multi-prongedquestion what are representaions, what are they for,

how mary differenttypesarethey, in how mary differentwayscanthey be used andwhat
differencedoesit make whethe they arein the mind or on papef The questionis related
to deepproblemsabaut how vision and spatal manipubktion work. It is suggestedthatwe
arefar from understamling whatis goingon. In paricular we needto explain how peopk
undestandspatid strudure and motion, and how we canthink abou objeds in termsof
a bast topological strucure with more or lessadditional metricalinformation. | shalltry
to explain why this is a problemwith hidden depths, sinceour grag of spaial strudureis
inherently a graspof a complex rangeof possililitie s andtheir implicatons. Two classs
of examplesdisaussedat length illustraterequrementsfor humanvisualisaion capailiti es.
Oneis theproblem of removing undegarmens withoutremoving outer garments Theother
is thinking abou infinite discrée mathematal strudures,suchasinfinite ordinals. More
gquestonsareasledthananswered

1 Wecanthink with diagrams

Considerthe trick performedby Mr Bean(actuallythe actor Rowan Atkinson): remaoving his
(stretchablelinderpantsvithout removing his trouserst Is thatreally possile? Think aboutit

The first drat of this paperlocatedMr Beanin a laundeette. Toby Smith corre¢ed me, pointing out that
the shy Mr Beanwason the beach andwishedto remove his undepantsthenput on his swimmingtrunks, both
without remaoving his trousers. On 29th July 19% | postedMr Beans problemas a followup to a discussion
of achievermrentsof Al in severalinternetnews groups(compai, compai.philosopy, sci.logic, sci.cognitve) and
recevved a number of interestingand entertainiig commrents. Chris Malcolm pointed out the similarity with the
braandsweateprodem,i.e. removing a brawithout removing the sweatemvorn above it. Readersreinvited to
reinvent the jokesthatwerethenposted,abou which prodem was easierfor whom underwhich condtions. In
particdar, someme pointedout the distinction betweendifficulty dueto unfamiliarity vs difficulty dueto being
distracted.



if youhaven't previously doneso?

Is it possilbe to remove theunderpantsvithoutremoving thetrousers|eaving thewaistband
of thetrousersconstantlyaroundthe persons waist,allowing only continuaischange®f shape
of the body and the underpantsand trousers,e.g. stretching,bending,twisting, but with no
separatiorof anything into disconnectegbarts,no creationof new holes,etc.? Doesit matter
whetherthewaistbandf thetrouserss tight or not?

Many peoplecan answerthis questionby thinking aboutit and visualishg the processes
required,evenif they have not seenRowan Atkinson’s performance.A harderquestionis: in
how mary significantly differentwayscanthe underpantberemoved?

2 Somecommentson the underpants problem

It is easierto considertheunderpant®eingdistoried,ignoringwho doesit andhow, thantrying
to work out all the contortiors of postureMr Beanwould have to go throughto producethe
appropriatesequencef changes.If we abstractaway from the problemof how the wearer
makesthetransformationsapperwe cansupposeMr Beanremaingigid andstill andsomeone
elsepulls and stretcheshis underpantsperhapausing long thin tongswherenecessary (Is it
obviousthatthis changemakesno differenceto the main problem?Why?)

Even with this abstractionthere are several different ways of thinking about the
underpantgproblem. Someuseonly topological relationshig presered underall continuais
transformatios, includingthosewhich changesize,shapeanddistancesSomealsousemetrical
relationshpsinvolving shapeandsize.We canalsousetopologcal relationshipsvith structural
featuresof underspecifiedmetricalrelationships.

Thinking purelytopologcally is quite hardto do, sinceit involves finding the mostgeneral
way to characterise¢he relationshipbetweenMr. Beanandhis garmentsn theinitial andfinal
states.Fromthat point of view the startandend statesare equivalent andthereis no problem
for Mr Beanto solve. Soit cannotbe theright way to think aboutthe problemof how to doit.
Most peopledo not think like that. They conceptualis¢he problemin a largely qualitatve but
partly metricalfashion,includingvariouswaysthe underpantsnight stretchandfold. We shall
seethatit is usefulto combinedifferentabstractions.

2.1 How many distinct solutionsare there?

Most peopleat first seeonly two symmetically relatedsoluionsto the problem. Oneinvolves
stretchingheleft sideof theunderpantslown throughtheleft trousereg, overthefoot andback
uptheleft leg, leaving only theright leg throughits hole. Theunderpantganthenbe slid down
theright leg andout. A similar solution startson the right side,with the underpant@menping
throughtheleft trouserleg.

If thewaistbandof thetrouserds loosethereareseveralmorepairsof symmetrcally related
solutions,e.g. sliding onesideof the underpantsip over the headanddown the othersideand
outthroughtheleg, or sliding the central(leg-divider) partof the underpantslown insidea leg
thenover the foot and up the sameleg on the outsidce, then out pastthe waist band,over the
headanddown the otherleg. It is easierto visualisethanto describe!Anotherpair of solutins

2] have previously given audiemres the task of finding out how mary possiblenunbers of intersection(or

tangen) pointstherecanbebetweeratriange anda circlein thesameplane.lt is easiethanMr Beans problem
but mary peope missoutsomecasesinlesspronpted.
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Figurel: Mr Beanstill wearinghistrouses andunderpantsbefole andafter being
continuaislytransformednto a sphee.

startsthe sameway, andendswith the underpantgjoing off pastthe head.Thatis four pairsof
solutionssofar. But thereis at leastonestill missng! (Or more,dependinchow soluionsare
counted.)

At first | sav only two solutions,anddid not think of pulling the underpant®ver the head
until ausenepostementianedthepossibilty. Thenl lookedfor moresolutionsandnoticedthat
the centralpartof the underpantsould be movedfirst, leadingto underpantsroundthe waist.
Eventualy, afterfurtherabstractionfollowedby somearithmetc, explainedbelow, | foundnine
differentsolutions. Most peopledon't find themall.

3 A sphericd Bean

The solutionsoutlinedabove all usedmetricalnotionsincluding stretchingandtranslatio. We
cande-emphasismetricalfeatureqsize,shapegdistanceprientation sizesof anglesyandfocus
moreon topologyif we ervisagethe body shrinkingto a spherepr egg, asin Fig. 1, with the
trousersaandunderpants$ollowing faithfully, sothateachbecomes hemisferewith two holes,
while their waistbandsemainaroundthe equator

It is clearthatif the revised problemstartingfrom a sphericalshapecan be solved, the
original problemcanbe also. It is not clearwhatkinds of cognitive mechanism&nableusto
graspthatfact.

Consideringthe shrunlen Beanmakesit “obvious” (how?) thatthe underpantsanslide
outthroughoneof the holesin thetrousers.Sincetherearetwo holesthereare essentiallytwo
symnetrically relatedsoluions.

Looseningthe waistbandpermitsanothertype of solution in which the underpantslide out
pastthe band with thesphergpassinghroughoneof theleg holes.Sincetherearetwo leg holes
we have anothersymmetrcally relatedpair of soluions.

Another solution has the underpantssliding out pastthe waist band, without the sphere
passinghroughtheleg holes.

Sowith the trousersattachedandimpassal# at the waist, thereare two distinct solutions.
Looseninghewaistbancenableseveralmoredistinctsoluions. Have we foundthemall?



3.1 Holey spheres

We canthink of a two-holedhemispheresa spherewith threeholes! Thenwe canernvisage
underpantsand trouserseachas three-holedsphericalsheets concentricwith eachotherand
with thesphericaBean.Thetwo sheetdave their holesaligned,but we canignorethat.

Whatkind of cognitive processllows youto graspthethree-holedphereview? | saw it like
thatonly afterl attendedo thetaskof lookingfor moregenerakharacterisationsf theproblem
andthensaw thattalking aboutthe loosewaistbandvasa distraction:it is justanotherholein
thetrousers Similarly therewasall alongjust anothetholein theunderpantsat the waist.

What are the cognitive medanisms that enable us to perform that sort of re-
conceptualiation? How doesthe metanismrelate visual and non-visu& information, e.g.
aboutthe nature of holesandwaistbands2Vhyis the metanismsometimesotinvoked? What
triggersits invocation?

Therearetwo distinctbut relatedre-conceptualisation©neinvolvesnoticingthe similarity
in structureandfunctionbetweenrnthe big hole at the top andthe two smallholesat the bottam.
Ignoring differencesin size andlocation, they are similar in function sometlng inside (the
underpant®r trouserscancomeoutonly by goingthroughoneof thethreeholes.Alternatively
one can visualisea simple continuousdeformation,i.e. stretchingthe garmentsup over the
sphereturningtheminto spheresvith threesimilar holes.

l.e. we candiscernthe more abstractcharacterisatioreither by noting commonaspects
of the functional roles (causalpowers) of the holes despitetheir differencein size (seeing
affordances),or by visualsing a deformationwhich makes them indistinguishableanyway
(visualisng structuralchangesandrelationships Different cognitive mechanismsand skills
would be neededor thesetwo tasks.How are theseskills implementedMow do they develop?
Which animak havethem?(Cf. Kohler1927.)

Having noticed that Mr Bean with his lower garmens is equvalent to a solid sphere
surroundedoy and concentricwith two sphericalrubbersheetsachwith threeholes,we can
alsonotice(how? thatremoving the underpantsnvolves two steps:

(1) gettingthe sphereout of the underpantshroughoneof thethreeholesin theinnersheet.
(2) gettingthe underpantgthe inner sheet)out of the trouserghroughoneof the threeholesin
theoutersheet.

Suddenlyit becomeglearthattherearethreewaysof doing step(1) eachconsistentvith
threewaysof doingstep(2), sotheremustbe 3 x 3 =9 differentsoluions,covering all possible
combinatonsatthis level of abstractionyhichignoresprotrusias (e.g. legs)throughholes. It
is alsopossble to do step(2) beforestep(1), doublingthe numberof solutions!

It is worth notingthatthetypeof abstractiondentifiedherewhich enablesisto reasorabout
the combinatims of stepsdoesnot requireMr Beanandthetwo garmentgo have ary specific
shapeaslong asthe garmentsareapproximagly corvex, or at leasthave a distinction between
inside and outsice andthreecommunicatn portsbetweenthem. We candiscussthe spheres
andtheir changingrelationshig without assumingall the metrical propertiesof spheresge.g.
smoohnessconstantunature fixedradius,etc. Thisis whatl meantby “structuralfeaturesof
underspecifiedmetricalrelationships

3.2 Yetmoreabstraction

Further abstractionsare possibé. The initial configurationis topologcally equvaent
(deformableby continuouschanges)to one in which the three items are simply separated
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Figure 2: ‘Exploded’ abstiact representationof Mr Beanand his garments The
hemisphegscanbe continuousy ‘flattened’into plates.Is it ‘obvious’thatthereis
notopolagical differencebetweerthe original andfinal state?

vertically, by moving the sphereup andthetrousersdown (asin Fig. 2. This treatstherelation
of beinginside andthe relationof beingoutsde a sphericalsurfacewith holesas equvalent.
Moreover The two stretchableenclosingspherescan be continwously deformedinto two flat
sheeteachwith two holes.In thatcontext nothirg is inside or outsde anything else,andthere
is thereforeno differencebetweertheinitial andthefinal state.Eitherway, thereis no problem
to solwve!

Only mathematiansreactto the original problemthat way, concludingthatit is trivial.
Unfortunatelythat doesnt help Mr Beanget his underpant®ff. Evenwhena mathematally
satisfyirg solution to a problemhasbeenfoundat a high level of abstractionthereis still work
to bedoneif detailedactionshave to be specified.

When moving betweendifferent abstractionsve needto know whereto stop. E.g. in
analysingoptions for the removal processit is useful to go from the fully metrical initial
specificationwherethe detailedshapesndsizesarerelevant,to the minimaly metricalnearly
topolagical situation whereonly inside—outile relationsarerelevant(but still metricalbecause
being “inside” an object with holesis a metrical property). Having enumeratedoossible
stratgyiesat the minimally metricallevel (whereeachstratgy involvesuseof oneholein the
underpantandonein thetrouserswe canthenmoveto moredetailedplanningandevaluatian in
thefully metricalrepresentationyherechange®f shapeandlengtharerequired,.e. stretching
of underpantsver the heador down andunderthefoot. At thatlevel therearefar moreoptions
andthesearchspacas muchlarger.

4 Coexiding search spaces

We found that there are nine different solutions when the problemis construedas involving
threeconcentricspheregor, to be moreprecise threespheregotally orderedby an“encloses”
relation). Thisdiscoverywasnotmadeby visualisationor simulationof theremoval processbut
by usingthe generalinformationthatfor somethng to move from beinginsidea holedsphere
to beingoutsdeit mustgo throughoneof the holes.(How doesa child graspthatfact? Doesa
chimpanzee?)

Why was the full range of solutiors not obvious with the original configuration? Not
everyonespotsthe solution where both leg holesof the underpantsare moved roundto the
top of Mr Beans head,so that the underpantsare upsice down, andthen pulled off upwards
(i.e. Mr Beanexits theunderpantshroughtheir waistholewhile theunderpantgxit thetrousers



throughthe outerwaist hole). Thereare differentways of doing this which are equivalentat
a high level of abstractionthoughthey involve differentcontortionsof Mr Beananddifferent
locationswherethe underpantsisk beingtorn.

At a fully metricallevel the searchspaceis far more comple«: there are more detailed
optiors, with more explosve combinatorics.At thatlevel it is hardto seepatternsamongthe
routes,becausehe simplerstructuregot by grouping(almost)topolagically equivalentoptions
is notvisible.

This is anillustration of the generalfactthatfinding an abstractspatialrepresentatioand
combinng that with some abstractnon-spatal (arithmetic or logical) reasoningcan give a
deepeiinsightinto a problemthansimply usingvery concretespatialvisualisationcapabilities.
Information aboutsolutions at the abstractlevel can be transformedto lower-level solutions
(e.g. with metricalinformation) by addingdetails,thoughgenerallytherewill not be a unique
extension.

Having differentviews of a diagramor 3-D scenarianvolving differenttypesof abstraction
often helpsin the procesof solving a problem,e.g. planninga detailedsequencef actions.
This is usedby multi-level plannerswhich form meta-plansn oneor moreabstractiorspaces
(e.g.ABSTRIPS,NOAH) to controlthesearctmoreeffectively thana“flat” single-lezel planner
can(e.g.STRIPS.

A relatedthemein the history of mathematicss the constantdevelopmentof new forms of
abstractiorandtechniquedor relatingand combiningdifferentabstractions A similar theme
canbefoundin work onin child developnent,e.g. by Karmiloff-Smith.

In principle,givenenoughtime to explorevisually all the possilbe metricaltransformatios
we couldeventualy discoverinstantationsof all nine possibiities describedabove, thoughwe
mightnot noticethe partitioninginto nine cases.

However, even given enoughtime, mostpeoplewould not getaroundto consideringall of
theoptionsbecaus¢he morecomplex searctspacenvolvesa morecomplex book-keepingtask
if thesearchs to be exhausive. Humanarchitectureslo not copewell with deepstacksor long
gueuesthoughtheseareeasyto implementon computers.

Ourlimitationsmayarisein partbecauselifferentarraysof possibiities competan parallel
for attention. When consideringary spatialstructurethereare indefinitely mary changesof
size,shapeprientation,colour, etc. thatwe canervisageif we think of them(Sloman1996a).
Al modelsof visual or spatialreasoningdo not yet matchthis, thoughperhapghey will in the
distantfuture.

Part of the price of suchhumanflexibility is unmanageableombinabrics whensearching
for a sequencef changedo solve a problem. This canbe alleviated by usingmore abstract
patternsto control the search thoughnot everyonecando this equallywell. Could this also
explainthedifferentachiezementsof thechimpanzees Kohler'sfamousexperiment8

Explaining how capabilites at different levels of abstractionare usedand combinedto
control the searchfor a solutionto a complex problemrequiresnot only a specificationfor
the representationand mechanismsised,but alsothe architecturewhich combiresthemand
allows differentprocesseto interactfruitfully (SlomanandLogan,2000).

4.1 What makesusfail?

Why do peoplesometinesfail to visualiseanactionor changepr fail to drav aninference?
It may be dueto (i) useof poor representations(ii) useof inadequatemechanismsor
algorithns for manipulathg the representations(iii) inadequatearchitecturefor combinng



and integrating different sorts of representationand mechanismge.g. ability to construct
only simple structuresJimited possibilties for modifying structuresJimited possiblities for
analysingstructuresJimited short-termmemoryfor storing sequencesf modifications),(iv)
wrongor incompletestoredinformation(e.g.aboutchangepossiblen a phystcal systemabout
consequencead changes)(v) inadequatenechanismafor monitaing effectsof changesn order
to infer consequencesyi) lack of meta-level know-how andarchitecturasupportrequiredfor
systematally exploring all the availableinformationandall the availabletransformationg(vii)
not usingavailableknow-how e.g. becausef an attentionproblemor a motivationalproblem
or somekind of “fixation” onadifferentinadequatetratey.

The above pointsillustratesomeof the requirementgor a systemableto explain or model
humanabilities. Somefailuresmay involve transientdysfunctionssuchasdistractedattention,
or forgetfulness.Theremay be othersproducedby braindamagegeneticbrain malformatins,
drugs,chemicaldisordersgtc® Sometasksmay cometoo early for a develoging architecture,
in childhood.

5 External andinternal diagrams

Ourdiscussio shavsthatadiagramonpaperis notnecessarilyagoodmodelfor whatis grasped
whensomeoneisualisesa spatialstructure.

One personlooking at the diagrammay seeonly the more detailed, metrically specific
configurationwhereasanothercan see (“grasp”? “comprehend’?) in the samediagrama
more abstractstructurein which metrical relationsips play a reducedrole. The two views
supportdifferentwaysof seeingpossiblechangesSoevenif bothpercevershadaninternally
inspectable-D diagramthey mightstill view it quitedifferently. Simply having internalspatial
structureannotexplain whatit is to graspor visualisea spatialaspecof a sceneor problem.
(Otherwisesimply having a brainwould suffice.)

Asking whether people can build internal diagramsis less important than asking how
diagramscan be viewed, analysedjnterpreted,and used,no matterwhetherthey are internal
or external. Introspectve reports should be treatedas highly ambiguousand incomplete
descriptios, andcertainlynot asexplanations.

5.1 Representationsand transformations

All of the differentways of thinking aboutMr Beans problemrequire not only someway
of representinghe original configuration,but alsoa graspof the possibletransformatins of
that configuration,a capabilitydiscussednorefully in a discusson of ‘actual possibiities’ in
(Sloman,1996a).

We have seenthatdifferenttransformatios arepossibleat differentlevels of abstractionAt
onelevel therearemary detailedchange®f shapeasMr Beanpulls partof theunderpantsiowvn
histrousereg, overthefoot andthenbackup again.At the highestievel of abstractiorthatis a
non-operationthe spheress still in the underpantsasif a protrusionfrom the sphere(the leg)
hasbeensquashedh, leaving theunderpantéreeto rotatearoundthe sphere.

So visual experiencesof looking at the diagramat variouslevels of abstractiondiffer in
(amongotherthings) the possililities for change that are seen. Mental visualisaton without

3] conjecuredin (Sloman,1989)thatsomeautisticslack the percepual ability to move up levels of abstractio
in percepion, alsodescritedin morerecentpapes (SlomanandLogan, 200Q Sloman,200M)



an externaldiagrammustalsoinvolve assemblig possbilities for changein thinking abouta
solutionto the problem.Practicesomehav developsfluengy in doingthis: How? | learntagreat
dealby playing with Meccanosets,asa child. Differentvisualsationskills are developed by
mathematal or othersortsof training. Whatchangesluringsuchlearning?

Experiencedoftwareengineergainfacility in graspingvery abstractonfiguration®f data-
structuresalongwith proceduresvhich transformthem. Lik ewise, beinga composerpainter
mechanicaéngineerdressmaer, etc.,involves acquiringspecialise@bilitiesto graspstructures
alongwith classe®f possble transformationsf thosestructuresandtheir consequences.

Differentstructuresn the samegeneralclasscansupportvery differentnumbersandtypes
of transformation. A drawing with a few lines supportsfar fewer “immediately available”
transformatios than more comple line drawings with far morelines, junctions,regionsetc.
Thusasyou visualisea structurechangingtherequirements$or graspingwhich furtherchanges
are possble may alsobe constanyy changing. Often a changeis madeintentiorally in order
to allow new possbilities, e.g. visualisinga mechanicalink beingshortenedn orderto allow
it to rotatefurther beforebeingstopped.How do we grasp thesesecond-ader possibiities for
change?

6 Thinkin g with qualia

All thisis relatedto disputesaboutthe natureof consciousneg€halmers1996).E.g. arequalia
simply unanalysablégivens’ or arethey bestunderstoodascrucial partsof the functionirg of
aninformatian processingystem(asl have amguedin along,incompkte,still expandingpaper
availableat

www.cs.bham.ac.uk#searb/cogaf/Sloman.consciougess.golution.ps
andin (Sloman,2000a))

Our discussiorshows thatvisualqualia(e.g. anexperienceded patch)have rich “internal”
differencesdependingon what sortsof possbilities for changethe experienceris capableof
handling Change<ouldincludechange®f shapesize,orientationocation,splitting into two
or morepatchesandmary waysof acquiringnew colouredsub-rgyions(e.gablue patchin the
middle or agreenline traversingthered patch,andsoon.)

Wittgenstemn wrote: “The substratumof this experienceis the masteryof a technique”
(Wittgensein, 1953,p208).A full accounbf visualisaton (andthinking with diagramsor other
spatialstructuresyvould requireusto analysehe hugevarietyof techniquesmplicit in eventhe
simplesthumanexperiencestherebyuncovering requirementgor mechanismsbleto support
apparenthsimplequalia.

Otheranimalsmay have muchsimplerqualia,especiallyprecocialspeciesorn or hatched
with geneticallyformedvisualmechanismseadyfor use,e.g. chickens,deer horses.Altricial
speciese.qg.birdsof prey, huntingor tree-climbinganimalsandhumansstartoff morehelpless
and grow their brainswhile interactingwith the ervironment. Perhapshis ‘bootstapping’
producesa muchricher graspof structureand motion than can easily be encodedn genes.
(Contrastthis with the popularopinionthathumansare born soimmaturebecauseheir skulls
would otherwisebetoo big to passthrougha humanpelvis. Elephantsnanagesothatcant be
all thereistoiit.)



7 Visudising infinite structures

Somevisualisaton goesbeyond what canbe experiencedn perception.How do we visualise
infinite structureshe answemwill dependon thetype of infinite structure. Whenwe visualise
continuaisobjectsor continuows changeshisinvolvesthepossibiity of “zoomingin” to smaler
andsmallerportionsof the objector motion, without limit. Thatis partof whatis implied by
beingcontinuouslt alsounderliessomeof Zeno's paradoxs.

Mr. Beans probleminvolvescontinuows change(stretching bending,moving), but solving
thatproblemdoesnot deplogy mostof whatwe know aboutcontinuows motion. The difference
betweencontinuais changeand a finite successiorof discretestateswould not make ary
differenceto our previous discusson. In fact a useful way to tame a problem involving
continuais changeis to identify a small numberof key statesandignoreintermediatestates.
Thatis how we found9 or 18 distinctsolutions

We can also think aboutinfinite discretestructuresike the setof integersor the set of
proofsin someformalism Clearly we cannotcreatesomethinginfinite inside our heads. So
visualisationin this case(and probablyin all the other casestoo!) doesnot involve actual
creationandinspectionof the structurevisualised. Somethingfar more subtke happenswhen
you visualise a spatial structureor processthere neednot be ary actual spatial structureor
procesghatis inspectednor anything isomorplic with the structureor process.

Theremight be only a representatiorof inspectingthe structureor process.If donewell,
thatcouldfool usinto thinking we aredoingsometiing thatwe arent. But beingfooleddoesnt
matteraslongastheprocessvhich producegheillusion is exactly whatis neededo implement
apowerful reasoneor problemsolwer:i.e. it is agoodbiologicalsolution, like beingfooledinto
thinking tablesaresmooth solid, continuousandrigid, because¢hey look andfeelasif they are.

7.1 Infinite “images’ involving numbers

Let usconsideisomeexampksof infinite structuressuchasthesequenc®l of naturalnumbers,
0,1, 2,... etc. Thisis easilyvisualised,goingoff into the distanceaway from us, or from left to
right, for instance N satisfiePeanaos axiomsfor arithmetic.(i) Thereis aninitial element.(ii)
Every elementhasa uniquesuccessor(iii) Theinitial elementhasno predecessor(iv) Every
non-inital elementhasa uniquepredecessolv) Theaxiomof induction: propertiesvhich are
possesselly theinitial elementandpossesselly the successoof any possessparepossessed
by all theelements.

Any sequenceatisfyingthoseaxioms,e.g. aninfinite row of dots,or aninfinite sequence
of repeatedhctionsis a Peanacstructure.lt is clearthatthereare mary visualisable subsetof
N which are Peanacstructuresge.g. the evennumbers2, 4, 6, ..., or the numbersstartingfrom
999 and continuing indefinitely: 999, 1000,1001,... It is alsoclearthat Peanostructuresall
have certainpropertiessomeof which areeasierto graspthanothers.

Graspingherelationshifbetweertheaxiomaticcharacterisatioandthevisualiedstructure
is non-trivial. For hundredgthousands?9f yearsbeforePeanaameup with hisaxioms,people
thoughtaboutandusednumbersandwere ableto visualisethe infinite sequencef numbers.
Kantdiscussedomeof theissuesn 1781.

Whatcognitve mechanisrmenabledPeandao find the axioms?Considerthedifferentroles
of theaxiomsin characterisingherequiredset. Axioms (i) and(ii) guarante¢hatthe setis not
emptyandthatyou cango on alongthe sequencéorever, with no choicepoints(becaus®f the
word “unique”). Axiom (iii) preventsyou goingbackwardsbeyondtheinitial element.Axiom



(iv) impliesthatyou cango backfrom any non-inital element,andagainthe word “unique”
rulesout choicepoints therebypreventingthe sequenceloublingbackandrejoiningitself, as
this onedoes:0,1,2,3,45,6,3,4,5,6,31,5,6...1.e. axiom (iv) prevents3 having both2 and6 as
predecessordAxiom (v) is moresubtle,andpreventssequencewhich go on forever, andthen
have moreitemsbeyondthat,like S1definedbelow.

We can easilyinfer somepropertiesof a visualisedPeanostructure. E.g. given ary two
distinctelementsn thestructuretheremustbeafinite chainof successoelementstartingwith
one of themandendingwith the other So the elementscomprisea total ordering. Compare
proving this from theaxiomsusinglogic. We canalsoseethatevery initial sequencef aPeano
structureis finite, andevery alternateinitial sequenceanbe arrangedasa rectangula2 by N
block of items,whereN is somenumberandtheintervenirg onescannot.

7.2 Morecomplexinfinite structures

We canalsovisualise structuresviolating Peanacs axioms. For example,imaginethe evenand
oddnumbersseparatedut, into two sequenced), 2, 4, ... andl, 3,5, ... We canvisualisethese
concatenateth a structureS1with all theevennumtersgoingfrom left to right, followedby all
theoddnumbergyoingfrom left to right.

Then S1 hasa successorelation just as N did, but it is “obvious” that Peancs axioms
areno longersatisfiedin S1 First, not every non-initial numberhasa predecesson the new
configuration. (Thereis one exception.) Secondlythe axiom of induction no longer holds:
propertieswhich are possessetly the initial number and possessetly the successoof any
possesgoareno longerpossessely all the integersin this new organisation.An exampleis
beingeven

We canvisualisea differentinfinite seriesS2 by reversingthe oddnumbersandaddingthem
all before the even numbers. That producesa structurelike the set of positve and negative
integerswhichis infinite in bothdirections.Thereis no longerary itemwithout a predecessor
S2hassymrretry lackingin Peancstructures.

Moreover, if we startfrom the fact that there are infinitely mary prime numbers(which
is provable algebraically thoughnot so easily proved visually), we canform infinitely mary
Peanostructuresandconcatenatéghem. Startingfrom arny prime numberwe canform a Peano
structureconsising of all its powers,e.g.2t, 22,23, .3, 32,33, ...5%, 52, 5, ... It isthennothard
to visualiseall of thesesequencesoncatenatetb form S3 a totally orderedsetof numbers,
which hasinfinitely mary elementsiolatingaxiom(iv) becausehey have no predecessoil his
caneitherbeprovedformally from alogical specificatiorof theconstructiorof S3 or intuitively
by visualsingtheproces®f constructio andseeinghateachtime anew setof powersis added
its first elementhasno predecessor

7.3 Well-ordered structur es

The original sequenceéN canbe seento be “well-ordered”, i.e. every subsetof N containsa
“least” elementpnewhich hasno predecessdn the subseandwhich precedesill theothersin
thesubsetThisis connectedvith thefactthatN is inherentlyasymmetriclt is built by starting
with aninitial elementandgoing on indefinitely addingelementspne at a time, on oneside
only. Proving logically thatevery Peancstructureis well-ordereds harderthanseeinghatit is.

ExperiencednathematiciansanalsoseethatthestructureS3gotby concatenatingfinitely
mary Peancstructuresis well-ordered.
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Thiswould notbetrueif we reversedsomeof thesub-sequences,g.if all thepowersof 13
wereincludedin reverseorder Thatwould violate well-orderingsincetherewould be a subset
with nofirst element.

7.4 Justifying Peano’saxioms

Having notedthatit is easyto visualisestructureslike S1, S2, S3 which violate the axiomsin
differentways, we canseethat oneway to “justify” Peanacs axiomsis usingthemto rule out
thosestructuresl have noideaif thisis how Peanaarrivedat his axioms

Whetherthoseaxioms suffice to determineuniquey the “intended” intuitive modelis a
controversial topic discussedanorefully in my review ((Sloman,1992))of Penrose.

A Peanacstructurewhetherspecifiedaxiomatcally or visually is asymmetricMoving along
it in onedirectionalwaysleadsto theleastelementwhereagheotherdirectiongoeson forever,
which we often representby “...” Being “well-ordered” is anothertype of asymmetry:every
subsehasafirst elementthoughnot necessarily lastone.

7.5 How dowe graspan infinite ordered sequence?

It maybethatpartof whatmakesthevisualisednfinite naturalnumbersequencahatit is rather
thananon-Peanatructurds aninformation-processigimplementatiorof theasymmetryalong
with something closelyrelatedto theaxiomof induction | donotknow how to makethisprecise.

Two aspectsof such an implementation could be (1) a mechanismfor expandingan
incompkete sequencéon the right” asoften asrequired,and (2) a reasoningnechanisnthat
implicitly assumeshatpropertiepropagatedo successorarepropagatedo everythingfurther
along.This sortof mechanisms notinherentlyconnectedvith numbers.

Anyonewho canvisualise an infinite row of vertical dominoesgoing off to the right, and
thenvisualisethe wave of activation that occurswhenthe first dominofalls over causingthe
secondoneto fall over, etc. andwho findsit “obvious’ thatthey will all (eventualy) endup
knocked over, is usingthe equialentof the axiom of induction. How is the ability to do this
implemented humanbrains?It is probablypartof alarge suiteof operationgor manipulathg
finite andinfinite discretestructureswhich will be differentin detailfrom thosefor continuas
structuresput may have someoverlap,e.g. the ability to concatenatstructurespr to “move”
something alongastructure.

What makes something a visualisaton of a Peanostructure ratherthana differentsort of
structuresuchasS1, S2, or S3 depend®n the applicability everywhereof this local property-
transmiter. Theinfinite detailneednever be constructedaslong asit is availablewhenneeded
(asin lazily evaluateddata-structures)This is partly analogoudgo whatever makesit possible
indefinitelyto zoomin to continuousstructuresFor Peancstructuresve usesomethindik e an
ability indefinitelyto “zoomto theright”.

Whenandhowdoyoungchildrendevelopthisability? Howdid it evolve?Wasit a side-efect
of otherabilities?

7.6 Visualising proofsand refutations

It is easyto visuali® counterexamplesto the claim that all orderedstructuresare Peano
structuresor thatall orderedstructuresareall well-ordered.It is notsoeasyto usevisualisaton
to prove generalisationssuchasthat any concatenatiorf a well-orderedsetof well-ordered
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structureswill alsobe well-ordered.For somepeople,andperhapdor all, thatis mucheasier
to prove by reasonindogically from definitionsthanto demongtateby somehav visualisng all
possilbe concatenationsf well-orderedsets.How would onedo that?

In generalit is easierto visualisea casethat refutesa generalisatiorthan to visualise
all possibleinstancesof a generalisatiorin a reliable way. Sometines that can be doneby
visualsingasortof patternor templatewhich coversall the possibilities. MatejaJamniks work
(Jamniketal., 1999)on verifying diagrammat proofs,includesthe useof diagramdo reason
over aninfinite setof finite structuresg.g. in proving thatfor every N the sumof thefirst vV
oddnumberss N2. Thisdepend®nacommonpatternsharedoy all the structuressothatthey
canbevisualiedin a uniformway.

A much hardervisualisation of an infinite structure(or process)is requiredto prove the
CantorBernsteintheoremwhich saysthatif therearetwo setsA andB eachof whichis in one-
to-onecorrespondencwith a subsebf the other thenthereis a one-to-onanappingbetween
A andB. The proof involvesconstructinghe nev mappingfrom the two givenones,andit is
helpful whenthinking aboutthis to visualise somethindik e a pair of mirrorsfacingeachother
with raysbouncingbackandforth indefinitely.

8 Howdowedoit?

What is going on whenwe visualie theseinfinite structures?We obviously don't construct
infinite physcal structuressince our brainsare finite. However, it may be accurateto say
thatinfinite structuresare constructedn somesortof virtual machine lik e the familiar virtual
machinesthat supportsparsearraysor infinite lazily evaluatedlists, constructableén some
programmig languagesit is nothardto creatan acomputer sparsarraywith morelocations
thanthereareelectronsn theuniverse aslong aswe leave mostlocatiors containingthedefault
value.Perhapdrains(or thevirtual machinesve call mindg usesimilar tricks for representing
extremelylarge,or eveninfinite, structures.

It might be temptingto think that what we do whenwe visualisean infinite structureis
constructa very large setand usethat asan approximatbn to the infinite set, sinceafterall a
very very large visualisedcollectionof dots,like a starrysky, might aswell be infinite if we
cannottake in thewholelot andseehow mary there.

But thatwon'’t do. If you visualisethe structureS1, with ALL the even numbersfollowed
by ALL the odd numbers,then no very large finite subsetof the even numberswill do as
an approximatio to ALL of them. For example, the structureSlviolates Peancs axioms,
asexplainedabove, whereadf thereare only finitely mary even numbersprecedingthe odd
numberghenthe axiomthatevery numberhasa uniquepredecessawill nolongerbeviolated,
for thefirst oddnumbermwill now have a predecessothelastevennumber Moreovertheaxiom
of inductionwill againhold. l.e. if we replacethe infinite sequencef even numberswith a
finite subsethiswill transformS1linto a Peancstructure.Soalarge finite row of evennumbers
cannotmodeltherequiredinfinite row in this context.

Somethingdeepgoeson when we visualisethe two infinite setsas being concatenated.
Perhapsthe important point is that what we experienceas pure visualisation is actually a
combinaton of visualisaton and unconsciousut explicit specificationof rulesfor indefinite
expansim andrulesfor inference?| think thatsortof ideagoesbackto ImmanueKant(1781).)
E.g. we may have somethng like the previously mentionedmechanisnfor “continuingto the
right” waitingin thewingsto preventary interpretatiorof thesetof evensasafinite set,however
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large. Thisis like the ‘lazy evaluaton’ of aninfinite list structurein a computer:thelist hasa
‘generator’procedureand looking beyond the alreadyexpandedportion of the list causeghe
generatoprocedurdo berun, to producepreviously unavailablelist elements.

Using lazy evaluaton is a fairly abstractand sophistcatedkind of visualisation,on a par
with the domindinduction mechanisnthat was previously waiting in the wingsto propagate
propertiesalongall the naturalnumbersequence.

How mary othersortsof visualisationsinvolve sucha mixture of implicit rulesor axioms
or mechanismalongwith somethig like a spatialstructure? One of the requirementdor a
mechanisnof the sortdiscussedhereis thatwhetherthe visualised spatialstructureis finite or
infinite, discreteor continuousthe visualisationis possibé only insofar asit implicitly involves
the availability of alarge numberof possble changesn the structure asprevioudy discussed.
Whatexactlyis visualied depend®n exactly which transformatios areavailable.

9 Visudising is not lik e seeiry

Fromthe discus#on sofar, it is clearthatwhatever visualisationof a structureis, it cannotbe
something very similar to seeingevenif it feelssimilar. Thatis becauséhekind of graspingof
aspatialstructureinvolved in visualsingis part of whathappensn seeingthe structure.Hence
if visualisng involved seeingthenvisualisationwould be part of visualisng andwe’d have an
infinite regress.

Alsowe cannotseeaninfinite (discretestructurebut we canvisualiseone.And it is arguable
thatwhenwe visualisethe kind of abstractopologcal structurethatwe previoudy discussed,
that cannotbe like seeingbecauseseeingalways involves specific metrical or topological
structuresandrelationshpswhich aremissngin the abstiact visualisations.

We needanew way of thinking aboutthe problem otherthanproposinghatthebraincreates
2-D or 3-D arraysandthen*“looks at” or “inspects”them,for if the looking at or inspection
involvesunderstandinghe spatialstructurewe aregoingroundin circleschasinga non-«istent
homunculis. Theremustbe a way of understandingpatialstructure(or moregenerally)a way
of understandig, whichis notto be explainedin termsof understandig anotherstructure!

It must,however, besomething lik e atypeof information-richcontrolstatej.e. astatewhich
affectswhatthe systencanor will donext. Elsevherel have arguedthatwe needto view minds
ascontrolsystemsandrepresentationgscontrolsubstagswith syntax,pragmaticandin some
casesemanticse.g.(Sloman,1993a;Sloman,1993b;Sloman,1996b).

Whatsortof controlstate?How doesgraspingsomestructureaffect whatyou cando? Note
that“what you cando” doesnotreferonly to externalbehaiour. It includesthesortsof internal
processingvhich becomeavailable whenwe graspsomestructure. We needa theory of an
architecturahatcanaccommodatall theseprocesses.

10 Other problemsinvolving visualisation

Mr Beanstaskis justoneof mary problemswhich peopleseento beableto solve by visualishg
transformation of a structure.

Somearemucheasier:e.g.if apenry with the“head” ontopis turnedover threetimeswill
theheador thetail beontop? Thatoneis easyto do eitherby visualisngtheprocesgsimulatng
it mentally)or by reasoningaboutit. If we modify the problemto onein which the penry is
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turnedover threethousandandfive times, it is much easier(andfar morereliable)to reason
aboutthanto visualie ((Sloman,1971)).

Here,themoresophistcatedprocessyusingmeta-level knowledgeaboutthenatureof theless
sophisicatedprocessis easierandfasterto do thanthelesssophisicatedprocessvhich blindly
goesthroughthe stepsto get from the startstateto the end state. Being ableto discover new
waysof solving old problemsandbeingableto selectbetweenalternatve approachesequires
“meta-level” knowledge,i.e. the ability to reflecton andreasornaboutknowledgeandproblem
solving. Oneof the earliestinterestingexamplesof this was Sussmars Hacker (1975),which
deluggeditself by watchingitself at work, thoughit dealtonly with a tiny fragmentof the
problem like mostAl modelssofar.

Beingableto understandhe possibilty of looking for andusing“easy” shortcutsrequiresa
moresophisicatedprocessin@rchitectureahanatypical problemsolver or planner It requires
an architecturewhich supportsmechanismgor observing,analysing,evaluatng, andnoticing
patterngn internalprocesse§Sloman,2000a)).

However, having an architecturesupportng such meta-lerel abilities doesnot guarantee
generalmeta-leel competencelt seemghathumanshave to learnto berefledive in different
domains E.g. someonewho is good at noticing opportuniies for improving his software
designsmay fail to notice opportunites for improving commurncation and relationslips with
otherpeople.

Much mathematicahbility seemdo dependbn graspingpatternsaandstructuresn one'sown
thinking andreasoningprocessedik e noticing thatthe outcomeof a countirg processloesnot
dependntheorderin whichitemsarecountedor noticingthatarepetitve processancontinue
indefinitely | suspectthat our ability to visualiseinfinite structuresis relatedto the ability
to graspandreflecton propertiesof repetitve processesand our ability to manipulae them
by performingoperationdike concatenatioror reasoningaboutsubsetsddependson noticing
analogiedetweennfinite structuresaandfinite structures.

Childrendon't seemto start off with theseabilities, but, unlessdamagedy teachergor
parents?)they someha manageo bootstrapthe more sophisicatedarchitectureandto apply
it in differentdomains (For somespeculatios aboutthis in connectionwith learningabout
numbersseeSloman(1978,Chp8). andcomparewith Karmiloff-Smith (1996).)

11 Somequestiors

The examples discussedabove raise a host of interesting questions relevant both to
understandig how humanmindswork andhow to giveintelligentmachinesheability to reason
spatially

1. Whatsortof knowledge enablegpeopleto work outtheanswer?This subsunesthedeep
questiam: whatsortof knowledgeenableghemto understandhe problem?)

2. How is thatknowledgerepresenteah their brains— bothphysicallyin chemicalandneural
structuresindwithin theinformation-processingirtual machinesmplemenédin brains?
How mary differentforms of representatiomlo we have availablefor suchknowledge?
(Sloman,1971;Sloman,1985;Glasgav etal., 1995;Peterson1996;Sloman,1996b)

3. Canthe information usedbe expressedn predicatecalculus? In first-order predicate
calculus?n someothermathematicabr logical notatian?
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4. What would the knowledge actually look like if expressedn someform of predicate
calculus,or otherlogical system?(l.e. which predicatesfunctions,etc. would be used?
Which axiom® How would theinitial stateanddesiredend statebe describedVould
modaloperatorde neededge.g. to expresswhich transformationsre possibl@ Would
temporaloperatordeneededo expresshenotionof a processandthe constrainton the
processHow would therequirementhatthe waistbanchot be moved be expressed?)

5. Whatsortsof logic enginesnvould be ableto find the solutior? Whatsortof searchspace
is involved? How cansucha searchbe controlied?

6. Whatalternatvesarethereto logical representationand manipulatons? What aretheir
advantagesnddisadwantages?

7. Whatsortsof reasoningnechanismslo peopleactuallyusefor this sortof problem?Can
they uselogic? Do they ever uselogic? What alternatvesare available,for humansor
intelligentmachines?

8. Cansomeor all of the humancompetencée replicatedon computerbasedmachines
usingavery differentphysicalimplementation?

9. Which of theseabilitiesaresharedoy which otheranimals,e.g. a magpiebuilding a nest
in atreetopout of twigs of mary shapesandsizes,a squirrelworking out a routeto the
bagof nutshungup for birds,afemaleorang-utangn atreeclutchingherinfantwith one
handandusingthe otherto weave a nestfor the night, out of brancheandleaves?

11.1 HasAl mademuch progresson thesequestions?

Likemary others] have beernthinking (andwriting) aboutsuchquestionsandabouthow human
andanimalvisionworks,for mary years(seethe Referencesandhave seervariousideasabout
this re-inventedmary times. But | remaindeeplypuzzledsincenothing | have comeacrossn
Al, or in psychologyor brain science seemgo comecloseto explaining human(andanimal)
visualandspatialreasoningabilities.

Often animplementatn appeargo be doing somethinglike humanvisualisaton, but on
closerexaminaton lacksthe generalityand power: give it a slightly differentproblemandit
cannotcope. Therearenow mary wonderfulsystemdor generatingstunnngly realistic static
or moving imageson compuer displays yet such programscannotperceve and understand
suchimages.Programswhich canreasonby manipubting diagramscontaininga few discrete
structurescannotcopewith continuousstructuresor continuow change.In general programs
which reasoraboutimagesusing2-D arraysor networks do not have a graspof spaceor time
ascontinuous.Work by Hayes(1985)andothersrelatedto theideaof ‘naive physics’helpsto
definesomeaspect®f the problemof characterisingur graspof spatialstructure put doesnot
asfarasl know specifymechanismthatcansolve the problem.

Psychologicahndneuraltheoriesdo notanswetthequestionsither Neuraltheoriegendto
identify locationswherelow-level visualprocessesccur but saylittle or nothing abouthigher
level capabilitiesor how visualisationmechanismsareusedin problemsolving. Whenattempts
aremadeto formulatetheoriesabouthow brainsdo visualreasoning usuallyfind thatthey do
not describeanything that| caninterpretasa workabledesignwith explanatorypower. E.g.
talking aboutmechanismsvhich “manipulateimages”by rotating, or stretchingor translating
themexplainsnothing.It merelyre-formulatesvhatneedgo be explained.
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In orderto addmore detail to the specificationof whatneedsto be explained, | have tried
to shawv thatvisual reasoningcoversa variety of differentthings,usingtwo examplesof what
we canvisuali®: onea finite but deformablestructureand one a discretebut infinite type of
structure.

12 Spatid vslogical: what'sthe differenae?

Introspectvely, mary peopleare corvinced that thereis a deepdifferencebetweensolving
problemsby reasonindogically (or verbally)andsolvingthemby visualishg andtransforming
spatialstructuresWhethersuchintrospectios arereliableis a matterof dispue.* However, it is
notsocommony noticedthatbothsortshave muchin common,andwhatthey havein common
is probablymoreimportantandharderto accounfor thanthe differences.

Whenerer we reasonwhetherwith pictures words,imaginedmovementspr anything else,
processesccurin which structuresarecreatedandmanipulatedusuallyin virtual machineslIf
youreasonrogically or algebraicallyusingpencilandpaperyou’ll normallycreateasequencef
spatialstructuresyherethetransition from oneelemenbf thesequencéo thenext corresponds
to a stepin thereasoning(This is why visualisaton of sequenceplayssuchanimpartantrole
in alot of meta-mathematicakasoning.)

Problemsn Euclideangeometrycanoftenbe solvedwithout a spatialsequenceinsteadwe
modify adiagramin situ. (SeeNelson(1993).)Moderninteractve graphicgechnologysupports
this andalsoallows directtransformatiorof a singlelogical or algebraicstructurepresentean
the screenwithout having to producea sequencef spatially separatestructuresas happens
whenwe reasorwith sentencessquationslogical formulae.Perhap$rainsgottherefirst?

The collection of structure-manipiations possiblein a class of structuresdefines a
generalisechotion of “syntax” for suchstructures. The kinds of partsthat can be replaced
andthe kinds of featuresandrelationsthat can be changeddefinethe structuralpropertiesof
the information medium, its syntax. We can also generalisea notion of “pragmatics”from
linguistics, to referto the functionalrolesof informationstructuresn larger systems.In some
casegherewill alsobe“semantics’insofar asthe structuresareusedto describe sumnariseor
plan,otherinternalor externalstructuresactionsor goals.

We needa bettergraspof thetypesof structure-manipuladtn mechanismsghereareandthe
mary waysin which differentpossibilties for further manipubtionareactively madeavailable
by the currentcontentsof a particularstructure. This may enableus to comeup with better
theoriesof how brainsor mindsdo all this. Thatwould require,yet again,re-irventingideas
discoveredlong agoby evolution, andin the courseof doingsowe’ll probablyhave to discard
mary of our cherishedlistinctions.

4Someof the differencesbetween‘Fregeari (applicatie) and“analogicdl’ repesentationsvere analysedn
Sloman(1971). Thedifferencesareoftenmisdescribd.

5| have previously arguedthattherearenotonly two categories, but awide rangeof significantlydifferenttypes
of repesentatione.g. in (Sloman 1971, Sloman,1975 Sloman,1996). Similar stricturesapplyto otheralleged

dichaomies,e.g. betweernimplicit andexplicit, compuationalandnoncomputationalmechanismspr procedural
anddeclaratve represetations,etc.
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13 Condusion

This paperdraws attentionto a collectionof unexplainedfeaturesof our frequentlynotedability
to think andto visualise. All suchcasegwhetherdiagrammatiocor not) seemto involve the
ability to createstructures- not necessarilfthe structureswve think we arevisualisng, andnot
necessarilyphyscal structuressincethey canbe structuresn virtual machinegthe “physical
symbad systemhypotlresis”takenliterally is a hugered herring). They alsoinvolve the ability
to have readily available a collection of mechanismgor manipdating thosestructureswvhich
somehav implementour graspof the possibilties for changeinherentin a structure. The
possililities for changedeterminehow the structureis graspecdor understoodand provide the
basisfor its pragmaticandsemantidunctions.

What constitues a graspof somethiig spatialas opposedto algebraic,or continuas as
opposedo discrete,or finite asopposedo infinite, or linear asopposedo tree structured,or
planarasopposedo threedimensimal, etc. will dependin part on the collectionof typesof
transformatios andinferencesvailableandreadyto be appliedto the structure.

In somecasedhe samestructuremaybe viewedor understoodn differentwaysby making
different classesof transformationsor inferencesavailable, as in the differencebetweena
metricalandatopologcal understandingf a spatialconfiguration.

Using sucha graspin solving a problemor makinga plan involves somehav being able
to orchestratethe collection of possibé changesin such a way as to find collections of
changesvhich satisfysomecondition Whenthesituationrepresented continuais,continuas
changesanbe visualieed. Whetherwe canactuallyproducesuchchangesr only corvincing
representationsf themis notclear

Being intelligent often involves simutaneouslyviewing something in two or more ways
andrelatingthe setsof possibé changesn the differentviews. What doesand doesnot work
hasto be learntseparatelyn the context of differentclassef structuresdifferentclassesof
manipubtionsanddifferentclasseof problems which is why thereis no suchthing astotally
generaintelligence.

How all this can be implenentedin brainsor computersremainsan open problem. If
we study lots more special caseswe may eventually understandwhat sorts of structures
and mechanismgan implementsuchcapabilites, and what sortsof generalarchitecturecan
accommodatéhemall, alongwith closelyrelatedcapabilitiessuchasvision andmotorcontrol.
I don't think thiswill beeasyto do, notleastbecauseve still don't understanavhatthe problem
is.
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