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Abstract

‘DesigningaMind’ abbreviatedas‘DAM’ is easierto typethanthefull title of thesymposium.Many peopleareworking
on architecturesof variouskinds for intelligentagents.However differentobjectives,presuppositions,techniquesand
conceptualframeworks(ontologies)areusedby differentresearchers.Thesedifferencestogetherwith thefactthatmany
of thewordsandphrasesof ordinarylanguageusedto refer to mentalphenomenaareradicallyambiguous,or worse,
indeterminatein meaning,leadsto muchargumentationat crosspurposes,misunderstanding,re-inventionof wheels
(roundandsquare)andfragmentationof theresearchcommunity. It washopedthatthissymposiumwouldbringtogether
many different sortsof researchers,along with a well known novelist with ideasaboutconsciousness,who might,
together, achievesomethingthatwouldnothappenwhile they continuedtheirseparateways.This introductionsetsouta
conceptualframework whichit is hopedwill helpthatcommunicationandintegrationto occur. Thatincludesexplaining
someof theexistingdiversityandconceptualconfusionandoffering somedimensionsfor comparingarchitectures.

1 Intr oduction

It is now commonin Artificial IntelligenceandCognitive
Scienceto think of humansandother animals,andalso
many intelligent robots and software agents,as having
an information processingarchitecturewhich includes
different layerswhich operatein parallel,andwhich, in
the caseof animals,evolved at differentstages.This is
not a physicalarchitecture,but somethingmoreabstract.

In the early days of AI there was far more talk of
algorithmsandrepresentationsthanof architectures,but
in recentyearsit hasbecomeclear to many peoplethat
we also need to understandhow to put various parts
(including algorithmsand representations)togetherinto
a larger working system,and for that an architectureis
required.

Somecomputerscientistsstill use the word ‘archi-
tecture’only to refer to the physicalor digital electronic
architectureof a computer, as was common about 20
or 30 years ago, and still is in courseson computer
architectures.However theword canalsobeusedto refer
to thearchitectureof acompany, asymphony, acompiler,
operatingsystem,a theory or a mind. In particular, it
can be used to describeany complex systemmadeof
coexisting partswhich interactcausallyin orderto serve
somecomplex functionor producesomebehaviour. The
partsmay themselves have complex architectures.The
systemandits partsneednot bephysical. Nowadaysthe
word often refersto non-physicalaspectsof computing
systems,i.e. virtual machines. E.g. an operatingsystem
or chessprogramis avirtual machinewith anarchitecture,
though it will need to be implementedin a physical
system,usuallywith averydifferentarchitecture.

‘Information processing’is anotherterm which has

both narrow and broad interpretations: some people
restrict it to refer to the kinds of bit-manipulations
that computersdo. However it can be used to refer
to a wide range of phenomenain both discrete and
continuousvirtual machinesof variouskinds, including
acquiringperceptualinformation aboutan environment,
storing facts, deriving new consequences,searchinga
memory or databasefor answersto questions,creating
plans or strategies, generatinggoals, taking decisions,
giving instructionsor exercisingcontrol. As the last two
illustrate, not all information is factual: there is also
control information,includingvery simpleon-off control
signals, variations in continuous control parameters,
labelsfor actionsto perform,anddescriptionsof what is
to bedone.

1.1 Inf ormation processingmodels

Thinking of a brainor mind asaninformationprocessing
systemwith an architectureis quite old in philosophy,
psychologyandneuroscience.TheearlyBritishempiricist
philosophersthoughtof amind asmadeof a collectionof
‘ideas’ (experiences)floatingaroundin a sortof spiritual
soup and forming attachmentsto one another. Kant
(1781)proposedaricherarchitecturewith powerful innate
elementsthat enable having experiencesand learning
from from them to get off the ground, along with
mathematicalreasoningand other capabilities. About a
centuryagoFreud’s division of themind into ‘superego’,
‘ego’ and ‘id’ (among other things) directed attention
to a large subconsciouscomponentin the architecture,
also implicit in Kant’s notion of a schema. Somewhat
laterCraik (1943)put forwardtheideathatanimalsbuild
‘models’ of reality in order to explore consequencesof



actionssafelywithout actuallyperformingthem(though
it is notclearwhetherheunderstoodthenotionof amodel
in a virtual machine). Popper(e.g. in his 1976 and
earlierworks)advocatedsimilarmechanismsallowingour
mistakenhypothesesto die insteadof us.

Recentwork has addedmore detail, someinspired
by neuroscience,some by computationalmodels and
someby both. Albus (1981, p.184)depictsMacLean’s
idea of a ‘triune’ brain with three layers: a reptilian
level and two more recently evolved (old and new
mammalian)layers. (This maybe insulting to intelligent
reptiles.) More recently, AI researchershave been
exploring a numberof variants,of varyingsophistication
and plausibility, and varying kinds of control relations
betweenlayers. For instance,seeNilsson’s (1988, Ch
25) accountof triple tower and triple layer models,and
various modelspresentedat this symposium,including
our own distinction betweenreactive, deliberative and
meta-managementlayers.

It is also now commonplaceto construe many
biological processes,including biological evolution and
developmentof embryosasinvolving acquisitionanduse
of information.Perhapsthebiosphereis bestconstruedas
an information processingvirtual machinedriven partly
by co-evolutionaryinteractions.

1.2 Prerequisitesfor progress

Theoriesabout architecturesfor minds, brains, or AI
systems raise a host of problems. One is that
superficially similar architecturesmay have important
differences(somedescribedbelow) that have not been
analysedadequatelyby researchers.As a result there
is no systematicoverview of the spaceof interesting
or important architectures,or the different types of
requirementswhich architecturesmay be required to
satisfy, againstwhich they can be evaluated. In short
therearenoadequatesurveysof ‘designspace’and‘niche
space’andtheir relationships.SeeSloman(1994,1998b).

A worse problem is that there is considerable
terminological confusion, obscuredby the confidence
with which peopleuse words and phrasesreferring to
mental states and processes,including, for example,
‘belief’, ‘desire’, ‘intention’, ‘consciousness’,‘learning’,
‘emotion’, ‘personality’, ‘understanding’, and many
others.

AI researcherswho blithely use mentalistic labels
to describevariousmechanismson the basisof shallow
analogieswere beratedlong agoby McDermott (1981).
However thehabitdoesnot dieeasily.

Moreover, a socialpsychologistinterestedin human
relationsis likely to define‘emotion’ so as to cover the
phenomenaassociatedwith social relationshipssuchas
embarrassment,attachments,guilt, pride, loyalty, etc.,
whereasa brain scientist studying rodentsmay define
the word so that it refers to the brain processesand
observable behaviours found in such animals. Other

foci of interestleadto yet moredefinitionsof ‘emotion’
and there are dozensof them in the psychologicaland
philosophicalliterature. By taking a broaderview than
any of theirproponents,weshouldbeableexplainhow to
accommodateall of thesedefinitions(at leastthoserelated
to real phenomena)in the sameframework in the same
generalframework.

1.3 Ar chitecture-basedconcepts

The task of getting a clear overview of the variety of
informationprocessingarchitecturesandtheproblemsof
clarifying ourconfusedconceptsarecloselyconnected.

Thatis becauseeacharchitecturesupportsacollection
of capabilities,statesandprocesses,anddifferentclusters
of suchcapabilitiesand the statesand processesdefine
different concepts. For example an operatingsystem
thatdoesnot supportmulti-processingcannotsupportthe
distinctionbetweenthrashingandnot thrashingnor does
it make senseto ask about its interrupt priority levels.
Likewise an architecturefor an animalor robot supports
a family of mental conceptsand different architectures
supportdifferentfamilies.

Thus we need to be clear about the architectural
presuppositionsof our concepts. Otherwise,different
researcherswill focus attentionon different aspectsof
reality, andadoptdefinitionssuitedto their interests,not
realising that they are ignoring other equally important
phenomena,liketheproverbialgroupof blind peopleeach
trying to describean elephanton the basisof what they
individually canfeel.

It is not hard to convince a blind man that he is in
contactwith only a small region of a large structure. It
is much harder to convince people producing theories
of mind that they are attending to a tiny part of a
huge system. Psychologistshave produceddozensof
distinct definitions of ‘emotion’, and insteadof taking
this asa clue that thereis a rangeof diversephenomena
which shouldbe given different labels,they often argue
about which definition is ‘correct’. Our own analysis
of varioussortsof humanemotionshasbegun to show
how in a suitably rich architecture, several different
typesof processescan occur which correspondto what
we sometimescall emotions,which we now distinguish
as primary, secondaryand tertiary emotions,extending
the classificationof Damasioand others. SeeDamasio
(1994);Picard(1997);Sloman(1998a,2000);Slomanand
Logan(2000).

2 Deceptiveclarity

Evolution hasproducedbrainswhich, at leastin humans,
give their owners some information about their own
internal processing. This information is deceptively
compelling,and often thoughtto be incapableof being
erroneousbecauseit is sodirect. We seemto have direct
accessto our thoughts,decisions,desires,emotionsand,

2



above all our own consciousness.This familiarity leads
many peopleto think they know exactly what they are
talking about when they engagein debatesabout the
natureof mind,andproposetheoriesaboutconsciousness,
experience,awareness,the ‘first-personviewpoint’, and
soon.

However, thediversityof opinionsaboutthenatureof
thephenomena,especiallythewidely differingdefinitions
offered by various psychologists,cognitive scientists,
brain scientists,AI theoristsand philosophersof terms
like ‘emotion’ and‘consciousness’,castsseriousdoubton
theassumptionthatweall know whatwearereferringto.

2.1 Two sourcesof confusion

The confusion has several roots, one of which is the
hidden complexity and diversity of the phenomena:
the architectural presuppositionsof human mentality
are extraordinarily complex, and still far from being
understood. Moreover there are differencesnot only
betweenhumanbeingsat differentstagesof development
or when suffering from various kinds of damageor
disease,but also betweenhumansand different sorts
of animals and artefacts. So if mental conceptsare
inherently architecture-relative the study of mind will
require many families of conceptsto describeall the
phenomenaadequately, unlike the study of the physical
world. Of coursedifferent conceptsare required for
differentlevels in the physicalontology, e.g. sub-atomic
physics,chemistry, astrophysics,geology, etc. In contrast,
conceptsof mind involve both differencesof levels and
differencesof architecturesatall levels.

Another source of confusion is a common type
of philosophicalerror, namely believing that we have
a clear understandingof concepts just becausethey
refer to phenomenathat we experiencedirectly. This
is as mistaken as thinking we fully understandwhat
simultaneityis simply becausewe have directexperience
of seeinga flash and hearing a bang simultaneously.
Einsteintaughtusotherwise.

From the fact that we can recognisesomeinstances
andnon-instancesof a conceptit doesnot follow thatwe
know what is meantin general by sayingthat something
is or is not an instance.Thereareendlessdebatesabout
whichanimalshaveconsciousness,whethermachinescan
be conscious,whetherunborninfantshave experiences,
or whethercertainseriouslybrain-damagedhumansstill
have minds. Our disagreementeven over what counts
as relevant evidence,is a symptomthat our conceptsof
mentalityarefarmoreconfusedthanwerealise.

Thereis no pointattemptingto resolvesuchquestions
by empirical researchwhen we cannotagreeon which
evidenceis relevant. Doeswincing behaviour in a foetus
prove that it feelspainandis thereforeconscious,or is it
amerephysiologicalreaction?How canwedecide?Does
thepresenceof a particulartypeof neuralstructureprove
that the foetus(or someotheranimal) is conscious,or is

thelink betweenphysicalmechanismsandconsciousness
too tenuousfor any suchproof to be possible,as many
philosophershaveargued?

We canexplain why thereis so muchconfusionand
disagreementby exposingthe hiddencomplexity of the
presuppositionsof our ordinaryconcepts,thediversityof
the phenomenareferredto, andthe indeterminatenessof
mostof our ‘cluster’ concepts.

2.2 Cluster concepts

Many concepts,besidesbeing architecture-based,are
‘cluster concepts’, referring to ill-defined clusters of
capabilitiesandfeaturesof individuals. If anarchitecture
supportscapabilitiesof types C1, . . .Ck and produces
processeswith features F1, . . .Fn, then different
combinationsof thosecapabilitiesandfeaturescandefine
a wide variety of statesand processes. But our pre-
theoreticalcluster conceptslack that kind of precision.
For a given mental concept M there may be some
combinationsof CsandFsthatdefinitely imply presence
of M, and otherswhich definitely imply absenceof M,
but thereneednot beany well-definedboundarybetween
instancesof M andnon-instances.That is shown by the
intensedebatesaboutintermediatecases.

This does not mean that there is a fuzzy or
probabilistic boundary. Fuzzy boundariessometimes
occurwherethereis smoothvariationanda probabilistic
classifieris at work. With clusterconceptstherecanbe
clearcasesat extremesandtotal indeterminacy asregards
a wide rangeof intermediatecases,becausethere has
neverbeenany need,nor any basis,for separatingout the
intermediatecases.

Making all this clear will show how we can define
differentfamiliesof morepreciseconceptsrelatedto the
capabilitiessupportedby differentarchitectures.Which
definitions are correct is a pointless question, like
askingwhethermathematiciansare ‘correct’ in defining
‘ellipse’ so as to include circles. Wheel-makers and
mathematicianshavedifferentconcerns.

2.3 Refining and extendingconcepts

Whenwe have a clearview of the spaceof architectures
thatareof interest(includingarchitecturesfor human-like
systems,for other animals, for variouskinds of robots
and for various sorts of software agents)we can then
considerthe familiesof conceptsgeneratedby eachtype
of architecture. We can expect some architecturesto
supportsomeof ourmentalconcepts(in simplifiedforms)
e.g. ‘sensing’, but not necessarilyall of our notionsof
‘pain’, ‘emotion’, ‘intelligence’, ‘consciousness’,etc.

For instance,an insect has somesort of awareness
of its environmenteven if it hasnothinglike full human
consciousness,e.g. if it is not aware that it is aware
of its environment. Preciselywhich sort of awareness
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Figure1: A possibleunstructuredarchitecture
In principle, an architecture might be a completely
unstructured mess which we could never hope to
understand. This is how some view products of
evolution. Alternativelyevolution, like humandesigners,
may be incapableof producingvery complex successful
designsunlessthey havea high degreeof structure and
modularity, which can provide a principled basis for
definingconceptsof typesof statesandprocessesthatcan
occur.

it has cannot be answeredwithout knowing about its
informationprocessingarchitecture.

Similarly it maybeacceptableto usesimplifiedforms
of our ordinary conceptsin describing some existing
AI systems,even thoughnoneof them comesclose to
matching typical human mentality. And if we had a
clearideaof the informationprocessingarchitectureof a
foetusat different stagesof development,then for each
stagewe could specify conceptsof pain, or awareness
that are relevant. However, we shouldnot assumethat
all conceptsapplicableto adult humanswill be relevant.
For instance,it is almostcertainthat a foetus,or even a
new-borninfantis not yet capableof beingpuzzledabout
the relationshipbetweenits mentalstatesandits bodyor
wonderingwhetheragooddeitywouldallow painto exist.
It is possiblethata new born infant lacksan architecture
capableof supportingwonderingaboutanything.

3 What sorts of architectures?

We know so little aboutpossibleinformationprocessing
mechanismsand architectures(especially the extraor-
dinarily powerful visual mechanismsimplementedin
animalbrains)that it is prematureto hopefor a complete
survey of types of architecturesand their capabilities.
It could turn out, as some have claimed, that any
information-processingarchitectureproducedby millions
of yearsof evolution is boundto be far too messyand
unstructuredfor us to understandasengineers,scientists
or philosophers(Figure1).

Alternatively, it may turn out that evolution, like
humandesignersmust useprinciplesof modularity and
re-usability in order to achieve a robust and effective
collection of architectures,such as we find in many
kinds of animals. Figures2(a) and (b) indicate more
structuredandmodulararchitectures,combininga three-
fold division betweenperception,centralprocessing,and
action,andthreelevelsof processing,with andwithout a
global ‘alarm’ mechanism.However, suchdiagramscan
be misleadingpartly becausethey convey very different
designsto different researchers.A frequentconfusion
is betweendiagramsindicating state-transitions(flow-
charts) and diagramsindicating persisting, interacting
componentsof an architecture. In the former an arrow
representsa possiblechangeof state. In the latter it
representsflow of informationbetweencomponents.My
diagramsareof thelatterkind.

To help us understandwhat to look for in naturally
occurring architectures,it may be useful to attempt a
preliminary overview of somefeaturesof architectures
that have alreadybeenproposedor implemented. We
can then begin to understandthe trade-offs between
variousoptionsandthatshouldhelpus to understandthe
evolutionarypressuresthatshapedour minds.

3.1 Layered architectures

Researchersonarchitecturesoftenproposeacollectionof
layers.Theideaof hierarchiccontrolsystemsis very old
bothin connectionwith analogfeedbackcontrolandmore
recently in AI systems. There are many proposalsfor
architectureswith threeor more layers, including those
describedby Albus and Nilsson mentionedpreviously,
thesubsumptionarchitectureof Brooks(1991),the ideas
in Johnson-Laird’sdiscussion(1993)of consciousnessas
dependingon a high level ‘operatingsystem’,the multi-
level architectureproposedfor story understandingin
OkadaandEndo(1992),Minsky’s notion of A, B andC
brainsin section6.4of Minsky (1987)andalsoin several
of thepapersat thisconference.

3.2 Dimensionsof architectural variation

On closer inspection,the layering in multi-level archi-
tecturesmeansdifferent things to different researchers.
Thereseemto beseveralorthogonaldistinctionsat work,
which,at present,I canonly classifyverycrudely.
1. Concurrentlyactivevspipelinedlayers
In Albus(1981)andsomeof whatNilsson(1998)writes,
the layershave a sequentialprocessingfunction: sensory
informationcomesin (e.g.on the‘left’) via sensorsto the
bottomlayer, getsabstractedasit goesup throughhigher
layers,thennearthetop somedecisionis taken,andthen
controlinformationflowsdown throughthelayersandout
to the motors(on theotherside). I call this an “Omega”
architecturebecausethe patternof information flow is
shapedlike an

�
. Many AI modelshave this style. The
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Figure2: (a) (b)
Nilssondistinguishes‘triple tower’ models,with informationflowing (mainly) in througha perceptualtower to a central processing
tower, thenout to a motortower, and‘triple layer’ modelswhere differentlayers performdifferentfunctions.Dependingon processing
speedsin thesemechanismsthere mayalsobea needfor a fastglobal ‘alarm’ mechanism.Figure (a) servesasa mnemonicindicating
the triple towerand triple layer views superimposed,where thevariouscomponentsin theboxeswill havefunctionsdefinedby their
relationshipswith otherpartsof thesystem.In (b) a globalalarmsystemis indicated,receivinginputsfromall themaincomponentsof
thesystemandcapableof sendingcontrol signalsto all thecomponents.Sincesuch alarm systemsneedto operatequickly whenthere
are impendingdangers or short-livedopportunities,they cannotmake useof elaborate inferencingmechanisms,andmustbe pattern
based.Globalalarmmechanismsare likely therefore to make mistakesat times,thoughthey maybetrainable.

enhancedversionof Normanand Shallice’s “contention
scheduling”model,describedin Glasspool’s contribution
to this symposium,is a variantof the Omega schemain
which theupward informationflow activatesa collection
of competingschematawherewinnersareselectedby a
high level mechanismfor controllingattention.

An alternative is an architecturewherethe different
layersare all concurrentlyactive, with variouskinds of
control and other information constantlyflowing within
andbetweenthem in both directions,as in figure 2 and
the‘Cogaff ’ architecturein 3.
2. Dominancehierarchiesvsfunctionaldifferentiation
A second distinction concernswhether higher levels
dominatelower levelsor merelyattemptto control them,
not alwayssuccessfullyandsometimeswith thedirection
of control reversed. In the subsumptionmodel (Brooks
1991)higherlevelsnot only dealwith moreabstractstate
specifications,goalsand strategies, but also completely
dominatelower levels. I.e. they can turn lower level
behaviour off, speedit up, slow it down, modulateit in
other ways, etc. This conformsto the standardidea of
hierarchicalcontrolin engineering.

By contrast,in anon-subsumptivelayeredarchitecture
(figures 2 and 3) the ‘higher’ levels manipulatemore
sophisticated and abstract information, but do not
necessarilydominatethelower levels,althoughthey may
sometimesattemptto do so. Higher levels may be able
partially to control the lower levels but sometimesthey
losecontrol,eithervia alarmmechanismsorbecauseother
influencesdivertattention,suchassensoryinputwith high
salience(loud noises,bright flashes)or newly generated
motiveswith high ‘insistence’(e.g. hunger, sitting on a

hardchair, etc.). In sucha model the majority of lower
level reactivemechanismscannotbedirectlycontrolledby
the deliberative and metamanagementlayers,especially
thoseconcernedwith controllingbodily functions.Some
trainingmaybepossible,however.
3. Directcontrol vstrainability
In somelayeredsystemsit is assumedthat higher levels
can directly control lower levels. A separateform of
controlwhich is not ‘immediate’ is re-training.It is clear
that in humanshigherlevelscansometimesretrainlower
levelsevenwhenthey can’t directlycontrolthem.

For instance, repeatedperformanceof certain se-
quencesof actionscarefullycontrolledby thedeliberative
layer cancausea reactive layer to develop new chained
condition-actionbehaviour sequences,whichcanlaterrun
without higher level supervision.Fluent readers,skilled
athletes,musicalsight-readers,all make useof this. (The
natureof the boundarybetweencentralmechanismsand
actioncontrolmechanismsis relevanthere.)
4. Different kinds of processing vs different control
functions
On somemodelsdifferent layersall usethe samekinds
of processingmechanisms(e.g. reactive behaviours) but
perform different functions, e.g. becausethey operate
at different levels of abstraction. In other modelsthere
are different kinds of processingas well as different
functionalroles.

For instance,Figures2 and3 presenta lowest level
that is purely reactive, whereasthe secondand third
levels can do deliberative, ‘what if ’, reasoning,using
mechanismsableto representpossiblefutureactionsand
consequencesof actions,categorisethem,evaluatethem,
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The Birmingham Cogaff Ar chitecture

We havebeenexploring ideasbasedon the collectionof mechanismsdepictedin Figure 2(b) enhancedwith additional components
required to make everythingwork. In (a) we list someadditional componentsrequired to supportprocessingof motives,‘what if ’
reasoningcapabilitiesin thedeliberative layer, andaspectsof self-control. It is conjecturedthat there is a store of different,culturally
influenced,‘personae’which takecontrol of thetoplayerat differenttimes,e.g. whena personis at homewith family, whendriving a car,
wheninteractingwith subordinatesin theoffice, in thepubwith friends,etc. In (b) relationsbetweensomeof thecomponentsareshown
alongwith a global alarm system,receivinginputsfromeverywhere andsendinginterrupt andredirectionsignalseverywhere. It also
showsa variable-thresholdinterrupt filter, which partly protectsresource-limiteddeliberative and reflectiveprocessesfromexcessive
diversionandredirection.Thefilter shouldbethoughtof as‘wrappedaround’ thehigherlevels,with a dynamicallyvaryingpenetration
threshold,dependent,for instance, on theurgencyandimportanceof currenttasks.

and make selections. This is not how reactive systems
behave. TraditionalAI planningsystemscando this, and
similar mechanismsare able to explain pastevents, do
mathematicalreasoning,or do generalreasoningabout
counterfactual conditionals. However, it is possible,
indeed likely, that the deliberative mechanismswhich
go beyondreactivemechanismsin explicitly representing
alternative actions prior to selection are themselves
implementedin reactive mechanisms,which canoperate
on structuresin a temporaryworkspace.

Reactive mechanismsmaybeimplementedin various
kinds of lower level mechanisms,including chemical,
neuralandsymbolicinformationprocessingengines,and
it is possiblethat the reliance on theseis different at
different levels in the architecture. Somekinds of high
level globalcontrolmayusechemicalmechanismswhich
would betoo slow andunstructuredfor intricateproblem
solving.

Some have argued that human capabilities require
quantum mechanismsthough I have never seen a
convincingaccountof how they couldexplainany detailed
mentalphenomena.
5. Where arespringsof action
A fifth distinction concerns whether new ‘intrinsic’
motives(which arenot sub-goalsgeneratedin a planning
process)all comefrom a singlelayeror whetherthey can

originatein any layer. In onevariantof theOmegamodel,
informationflows up the layersandtriggersmotivational
mechanismsat the top. In other models, processes
anywherein the systemmay include motive generators,
for instancephysiologicalmonitorsin the reactive layer.
The motives they generatemay be handledentirely by
reactive goal-directedbehaviours, or they may needto
be transferredto the deliberative layer for evaluation,
adoptionor rejection,andpossiblyplanning.
6. Handlingcompetingmotives
Not all motiveswill be mutually consistent,so therehas
to be someway of dealingwith conflicts. Architectures
differ regardingthe locusof suchconflict resolutionand
themechanismsdeployed.

For instance,in someformsof contention-scheduling
models,schemataform coalitionsandoppositionson the
basisof fixedexcitatoryandinhibitory links in anetwork,
and then some kind of numerical summationleads to
selection,which is alwaysdoneat the samelevel in the
hierarchy. In othermodelsthedetectionof conflictsmight
usesymbolicreasoning,andtheresolutionmight bedone
at differentlevelsfor differentsortsof conflicts.

For instancethedecisionwhetherto helpgranny or go
to themarvellousconcertmight behandledin onepartof
thesystem,andthedecisionwhetherto continueuttering
thecurrentunfinishedsentenceor to stopandtakeabreath
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anotherway, andthedecisionto useplacatoryor abusive
vocabulary whenaddressingsomewho hasangeredyou
might behandledby yet anotherpartof thesystem.
7. Perceptualto central connections
Architectureswith perceptualcomponentsdiffer in the
relationshipsbetweenmodesof processingin perceptual
modulesandmorecentrallayers. E.g. is the perceptual
processingitself layered, producing different levels of
perceptual information to feed into different central
layers, or is there a fixed entry level into the central
mechanisms,after which the information may or may
not be passedup a hierarchy, as in the Omega model.
The latter might be describedas the ‘peephole’ model
of perceptionthe former the ‘multi-window’ model of
perception.

In ‘peephole’ perceptual systems, the sensory
mechanisms(simpletransducersormorecomplex sensory
analysers)produceinformationabouttheenvironmentand
directit all to somecomponentof thecentralarchitecture.
Thatmaytriggerprocesseswhich affectotherparts.

In Figures2 and3 it is suggestedthat the perceptual
processesare themselves layered, handling different
levels of abstractionconcurrently, with a mixture of
top-down and bottom up processing,and with different
routes into different parts of the central system. For
instancedeliberative mechanismsmay needperceptual
informationchunkedat a fairly high level of abstraction,
whereasfine control of movementmay require precise
andcontinuouslyvarying input into the reactive system.
Differential effects of different kinds of brain damage
seemto supportthe multi-window multi-pathway model,
which canalsobedefendedon engineeringgrounds.
8. Central to motorconnections
An analogous distinction concerns the relationship
betweencentraland motor processing. Justas there is
what I called ‘multi-window’ perceptionand ‘peephole’
perception,so too with action. At oneextremethereis
only a ‘narrow’ channellinking the motor systemonly
with thelowestlevel centralmechanism,asin theOmega
model: therearemotorsandthey all get signalsdirectly
from one part of the central mechanism(analogousto
‘peephole’perception).At anotherextremetherecanbea
layered,hierarchicalmotorcontrol systemwherecontrol
informationof differentsortscomesin directlyatdifferent
levels,from differentlayersin thecentralsystem.

Humansseemto have motor systemswith complex
hierarchicalskills, andprobablyalsomany otheranimals.

In someproposedarchitectures(e.g. Albus (1981))
this hierarchicalorganisationof actionis acknowledged,
but insteadof theactionhierarchybeingaseparate‘tower’
(in Nilsson’s terminology) communicatingwith several
central processinglayers it is folded in to the central
control hierarchy. Of course, the two models could
describeequivalent systems,but it may sometimesbe
moreusefulto think of the centralsystemandthe action
systemsasbothhaving hierarchicorganisation.This may
help us understandhow the whole systemevolved in

humansandotheranimalsand the increasedmodularity
may help with designtasks. However that is still only a
conjecture.Similar commentsareapplicableto different
architecturesfor perception.
9. Emergencevs‘boxes’
One of the notable featuresof recent AI literature is
the proliferationof architecturediagramsin which there
is a specialbox labelled ‘emotions’. ContrastFigures
2 and 3, where there is no specific componentwhose
functionis to produceemotions,andinsteademotionsare
explainedasemergentpropertiesof interactionsbetween
componentswhich are there for other reasons,such as
alarmmechanismsandmechanismsfor divertingattention
(whichcanhappenwithoutany emotionbeinggenerated).
Elsewhere I have shown how at least three different
classesof emotions (primary, secondaryand tertiary
emotions)emergein thethreelayer‘Cogaff ’ architecture.
(Thismaybecomparedwith theemergenceof ‘thrashing’
in a multi-processingarchitecture. The thrashingis a
resultof heavy loadandinteractionsbetweenmechanisms
for paging,swappingandallocatingresourcesfairly.)

Theproblemmaybepartly terminological:e.g.some
theoristswrite as if all motives are emotions. Then a
componentthat can generatemotivesmay be described
asan‘emotiongenerator’by onepersonandasa ‘motive
generator’by another. Separatingthem accordsbetter
with ordinaryusage,sinceit is possibleto have motives
and desireswithout being at all emotional,e.g. when
hungry. This is just oneof many areaswherewe needfar
greaterconceptualclarity, which may comein part from
furtherstudyof varietiesof architecturestheir properties,
andthestatetransitionsthey support.

Thereare probablymany caseswhereit is not clear
whether some capability needsto be a componentof
the architecture,or an emergent featureof interactions
betweencomponents.The attentionfilter in Figure3(b)
is an example. Insteadof a specialfiltering mechanism,
the effects of filtering may be producedby interactions
betweencompetingcomponents.Thefirst alternativemay
be easierto implementand control. The secondmay
be more flexible and general. There are many design
tradeoffs still to beanalysed.
10. Dependenceon language
Somemodelspostulatea close link betweenhigh level
internalprocessesandanexternallanguage.For instance,
it is often suggested(Rolls 1998) that mechanisms
analogousto meta-managementcouldnot exist without a
public languageusedby socialorganisms,andin someof
Dennett’swritingsconsciousnessis explainedasakind of
‘talking to oneself’.

A contrary view is that internal mechanisms
and formalisms for deliberation and high level self-
evaluationandcontrol werenecessarypre-cursorsto the
developmentof humanlanguageasweknow it.

Thetruth is probablysomewherein between,with an
interplaybetweenthedevelopmentof internalfacilitating
informationprocessingmechanismsandsocialprocesses
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which theninfluenceandenhancethosemechanisms,for
instanceby allowing a cultureto affect the development
in individualsof categoriesfor internalprocessesof self-
evaluation. (Freud’s ‘super-ego’). However, it appears
from the capabilitiesof many animalswithout what we
call language,that very rich and complex information
processingmechanismsevolved long before external
human-like languages,andprobablystill underpinthem.
We couldextendtheword ‘language’to referto formsof
internalrepresentationandsaythattheuseof languageto
think with is prior to its usein externalcommunication.
11. Purely internal vspartly externalimplementation
A more subtle distinction concerns how far the
implementationof an organism or intelligent artefact
dependsentirely on the internal mechanismsand how
far the implementationis sharedwith the environment.
The developmentin the 70’s of ‘compliant wrists’ for
robots,which madeit far easier, for example,to program
the ability to pusha cylinder into a tightly fitting hole,
illustrated the advantagein some casesof off-loading
information processing into mechanical interactions.
Trail-blazing and the designof ergonomically effective
toolsandfurnitureareotherexamples.

From a philosophicalviewpoint a more interesting
caseis theability to referto a spatiallylocatedindividual
unambiguously. As explained long ago in Strawson
(1959), whatever is within an individual cannotsuffice
to determinethatsomeinternalrepresentationor thought
refers to the Eiffel tower, as opposedto an exactly
similar object on a ‘twin earth’. Insteadthe referential
capabilitydependsin partontheagent’scausalandspatial
relationshipsto the thing referred to. So attempting
to implementall aspectsof mental functioning entirely
within a brain or robot is futile: thereis alwaysa subtle
residuethat dependson external relations. (In referring
to partsof oneself,or partsof one’s own virtual machine
the problemis solved internally, asexplainedin Sloman
(1985,1987).)
12. Self-bootstrappedontologies
I have been arguing that when we have specifiedan
architecturewe shall understandwhat sortsof processes
canoccurin it, andwill be ableto definean appropriate
setof conceptsfor describingits ‘mental’ states.

However, some learning mechanismscan develop
their own ways of clustering phenomenaaccordingto
what they have beenexposedto andvariousotherthings,
suchas rewardsand punishments.If a systemwith the
kind of meta-managementlayer depictedin the Cogaff
architectureusesthat ability on itself, it may develop a
collection of conceptsfor categorising its own internal
statesand processesthat nobody else can understand
becausenobody else has been through that particular
history of learning processes.The role thoseconcepts
play in subsequentinternalprocessingmayexacerbatethe
uniqueness,complexity andidiosyncraticcharacterof its
internalprocessing.

For systemswith that degree of sophisticationand

reflective capability, scientific understandingof what is
goingon within it may forever be limited to very coarse-
grainedcategorisationsandgeneralisations.Thiscouldbe
astrueof robotsasof humans,or batsNagel(1981).

4 Human-lik e architectures

I have tried to bring out someof the designoptionsthat
needto be facedwhentrying to explain the architecture
of a human mind. When we understandwhat that
architectureis, we can use it to define collections of
conceptsthatwill beusefulfor describinghumanmental
statesand processes,though we can expect to do that
only to a certaindegreeof approximationfor the reasons
in the previous paragraph. However that may suffice
to provide useful clarificationsof many of our familiar
conceptsof mind, suchas ‘desire’, ‘moods’, ‘emotion’
and‘awareness’.

In particular, so many typesof changeare possible
in such complex system that we can expect to find
our ordinary conceptsof ‘learning’ and ‘development’
drowning in a sea of more precisearchitecture-based
concepts.

We may also be in a better position to understand
how, after a certainstageof evolution, the architecture
supportednew typesof interactionand the development
of a culture, for instanceif the meta-managementlayer,
whichmonitors,categorises,evaluatesandto someextent
controls or redirectsother parts of the system,absorbs
many of its categoriesandits strategiesfrom the culture.
It seemsthatin humansthemeta-managementlayeris not
afixedsystem:notonly doesit developfrom very limited
capabilitiesin infancy, but even in a normaladult it is as
if therearedifferentpersonalities“in charge” at different
times and in different contexts (e.g. at home with the
family, driving a car, in theoffice,at thepubwith mates).

This suggestsnew ways of studying how a society
or culture exerts subtle and powerful influences on
individuals through the meta-managementprocesses.
The existenceof the third layer does not presuppose
the existence of an external human language (e.g.
chimpanzeesmay have some reflective capabilities),
thoughit doespresupposetheavailability of someinternal
formalism,asdo thereactiveanddeliberative layers.

When an external languagedevelops, one of its
functions may be to provide the categories and values
to be usedby individuals in judging their own mental
processes(e.g. asselfish,or sinful, or clever, etc.) This
would be a powerful form of social control, far more
powerful thanmechanismsfor behavioural imitation, for
instance.It mighthaveevolvedpreciselybecauseit allows
whathasbeenlearntby acultureto betransmittedto later
generationsfar morerapidly than if a genomehadto be
modified.However, evenwithout this socialrole thethird
layerwould beusefulto individuals,andthatmight have
beenarequirementfor its originalemergencein evolution.
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We canalsohopeto clarify moretechnicalconcepts.
The common reference to “executive function” by
psychologistsand brain scientists seems to conflate
aspectsof the deliberative layer andaspectsof the meta-
managementlayer. Thatthey aredifferentis shown by the
existenceof AI systemswith sophisticatedplanningand
problemsolving andplan-executioncapabilitieswithout
meta-management(reflective) capabilities. A symptom
would be a plannerthat doesn’t notice an obvious type
of redundancy in the plan it produces,or subtlelooping
behaviour.

One consequenceof having the third layer is the
ability to attendto andreflecton one’sown mentalstates,
which could causeintelligent robots to discover qualia,
andwonderwhetherhumanshave them.

All this should provide much food for thought for
AI researchersworking on multi agent systems, as
well as philosophers,brain scientists,social scientists
and biologists studying evolution. I hope the DAM
symposium makes some useful contribution to the
clarificationof theseideas.
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