
Aaron Sloman Develops a Distinctive View of

VIRTUAL MACHINERY AND EVOLUTION OF MIND

(PART 1)

September 8, 2013

Post-publication version of “Aaron Sloman develops a distinctive view of – Virtual
Machinery and Evolution of Mind (Part 1)” pages 97-102
In Alan Turing - His Work and Impact, eds S. B. Cooper & J. van Leeuwen, Elsevier 2013.

1 Virtual machines and causation

The idea of implementing one Turing machine in another can be seen as a precursor of
the increasingly important idea of a virtual machine running in a physical machine. Some
features of virtual machinery that are potentially relevant to explaining the evolution of mind
and consciousness will be discussed, including their causal powers and the differences between
implementation and reduction.

One of Turing’s achievements was the specification of a Universal Turing Machine (UTM)
within which any other Turing machine could be emulated by specifying its properties on
the tape of a UTM (Turing, 1936). This led to proofs of important theorems, e.g. about
equivalence, decidability and complexity. It can also be seen as a precursor of what we
now call virtual machinery (not to be confused with virtual reality). I shall try to show
how the combination of virtuality, causal interaction and (relative) indefinability can produce
something new to science. Part 2 (in Part III of this volume) will present implications
regarding evolution of mind and consciousness.

2 Virtuality

The UTM idea established that a computing machine can run by being implemented as a
virtual machine in another machine. (I think the gist of this idea was understood by Ada
Lovelace a century earlier.) The mathematical properties of a Turing machine’s trajectory
through its state space will not depend on whether it is run directly in physical machinery
or as a virtual machine implemented in another computation. This has proved immensely
important for theorems of meta-mathematics and computer science and for some of the
practicalities of using one computer for multiple purposes, including time-sharing. One of
the consequences is that a Turing machine implementing another Turing machine can also be
a virtual machine implemented in a UTM: so that layered implementations are possible.

In the decades following publication of Turing’s paper, engineering developments emerged
in parallel with mathematical developments, with some consequences that have not received
much attention, but are of great philosophical interest and potentially also biological import.



I’ll suggest in Part 2 that biological evolution ‘discovered’ many of the uses of virtual
machinery long before we did. Unfortunately, the word ‘virtual’ suggests something ‘unreal’
or ‘non-existent’, whereas virtual machines can make things happen: they can be causes, with
many effects, including physical effects. To that extent they, and the objects and processes
that occur in them, are real not virtual!

A possible source of misunderstanding is the fact that among a subset of computer
scientists the label ‘virtual machine’ refers to software implementations of ‘real’, ‘physical’
machines which they accurately simulate (Popek & Goldberg, 1974). The notion of ‘virtual
machine’ used in this paper includes machines whose operations cannot all be defined in
terms of physical properties, although they are all implemented in physical machinery, and
can interact with and control physical machinery. These virtual machines should not be
regarded as surrogates for ‘real’ physical machines. They are real enough, in their causal
powers, despite being virtual.

3 Causation and computation

Causation is a crucial aspect of the engineering developments in computing, as I shall now try
to explain. It is possible to take any finite collection of Turing machines and emulate them
running in parallel, in synchrony, on a UTM. This demonstrates that synchronised parallelism
does not produce any qualitatively new form of computation. The proofs are theorems about
relationships between abstract mathematical structures including sequences of states of Turing
machines – and do not mention physical causation. A running physical machine can be an
instance of such an abstract mathematical structure. However, being physical it can be acted
on by physical causes, e.g. causes that alter its speed. Moreover, as remarked in (Sloman,
1996), standard computability theorems do not apply to physical Turing machines that are
not synchronised. For example, if TM T1 repeatedly outputs ‘0’, and T2 repeatedly outputs
1, and the outputs are merged to form a binary sequence, then if something (e.g. a device
controlled by a geiger counter) causes the speeds of T1 and T2 to vary randomly and they
run forever, the result could (and most probably would) be a non-computable infinite binary
sequence, even though each of T1 and T2 conforms to theorems about Turing machines. (This
claim will be refuted if it ever turns out that the whole physical universe can be modelled on
a single Turing machine. I know of no evidence that such a model is possible.)

Likewise, if a machine has physical sensors and some of its operations depend on the
sensor readings, then the sequence of states generated may not be specifiable by any TM, if
the environment is not equivalent to a TM. So the mathematical ‘limit’ theorems do not apply
to all physically implemented information-processing systems. In fact a machine with sensors
and effectors connected to physical objects in the environment is fundamentally different
from a Turing machine running its ‘closed’ world consisting only of its (infinite tape) and
controlling transition table.

Mathematical entities, such as numbers, functions, proofs, and abstract models of com-
putation, do not have spatio-temporal locations, whereas running instances of computations
do, some of them distributed across networks. Likewise, there are no causal connections, only
logical connections, between the TM states that form the subject matter of the mathematical
theory of computation, whereas there are causal connections in the running instances,

2



depending on the physical machinery used and the physical environment. So, notions like
‘reliability’ are relevant to the physical instances, but not the mathematical abstractions.
From a mathematical point of view there is no difference between three separate computers
running the same program, and a single computer simulating the three computers running
the program. However an engineer aiming for reliability would choose three physically
separate computers with a voting mechanism as part of a flight control system, rather than a
mathematically equivalent, equally fast, implementation in a single computer (Sloman, 1996),
if all the computers use equally reliable components.

Physical details of time-sharing of the machines have other consequences. When the
three separate machines running in synchrony switch states in unison, nothing happens
between the states, whereas in the time-shared implementation on a single computer, the
underlying machine has to go through operations to switch from one virtual machine to
another. Such ‘context switching’ processes have intermediate sub-states that do not occur
in the parallel implementation. A detailed mathematical model of one machine running three
virtual machines will need to include the intermediate states that occur during switching,
but a model of three separate concurrently active machines. A malicious intruder, or a non-
malicious operating system, will have opportunities to interfere with the time-shared systems
during a context-switching process, e.g. modifying the emulated processes, interrupting them,
or copying or modifying their internal data.

Such opportunities for intervention (e.g. checking that a sub-process does not violate
access restrictions, or transferring information between devices) are often used both within
individual computers and in networked computers causally linked to external environments,
e.g. sensing or controlling physical devices, chemical plants, air-liners, commercial customers,
social or economic systems, and many more. In some cases, analog-to-digital digital-to-analog
converters, and direct memory access mechanisms now allow constant interaction between
processes. See also (Dyson, 1997).

The technology supporting the causal interactions includes (in no significant order):
memory management, paging, cacheing, interfaces of many kinds, interfacing protocols,
protocol converters, device drivers, interrupt handlers, schedulers, privilege mechanisms,
resource control mechanisms, file-management systems, interpreters, compilers, ‘run-time
systems’ for various languages, garbage collectors, mechanisms supporting abstract data types,
inheritance mechanisms, debugging tools, pipes, sockets, shared memory systems, firewalls,
virus checkers, security systems, operating systems, application development systems, name-
servers, and more. All of these can be seen as contributing to intricate webs of causal
connections in running systems, including preventing things from happening, enabling certain
things to happen in certain conditions, ensuring that if certain things happen then other things
happen, and in some cases maintaining mappings between physical and virtual processes, e.g.
in device drivers. Philosophers who think that different causal webs at different levels of
abstraction cannot coexist need to learn more engineering, unfortunately not a standard
component of a philosophy degree.

4 Causation in RVMs

A running virtual machine can have many effects, including causing its own structure to
change. Understanding how virtual machines can cause anything to happen requires a three-

3



way distinction, between: (a) Mathematical Models (MMs), e.g. numbers, sets, grammars,
proofs, etc., (b) Physical Machines (PMs), including atoms, voltages, chemical processes,
electronic switches, etc., and (c) Running Virtual Machines (RVMs), e.g. calculators, games,
formatters, provers, spelling checkers, email handlers, operating systems, etc., running in
general-purpose computers.

MMs are static abstract structures, like proofs and axiom systems. Like numbers, they
cannot do anything. They include Turing machine executions whose properties are the subject
of mathematical proofs. Unfortunately some uses of ‘virtual machine’ refer to MMs, e.g. ‘the
Java virtual machine’. These are abstract, inactive, mathematical entities, not RVMs, whereas
PMs and RVMs are active and cause things to happen.

Physical machines on our desks can now support varying collections of virtual machinery
with various kinds of concurrently interacting components whose causal powers operate in
parallel with the causal powers of underlying virtual or physical machines, and help to
control those physical machines. Some of them are application RVMs that perform specific
functions, e.g. playing chess, correcting spelling, handling email. Others are platform RVMs,
like operating systems, or run-time systems of programming languages, which are capable
of supporting many different higher level RVMs. Different RVMs have different levels of
granularity and different kinds of functionality. They all differ from the granularity and
functionality of the physical machinery. Relatively simple transitions in a RVM can use a
very much larger collection of changes at the machine code level and an even larger collection
of physical changes in the underlying PM – far more than any human can think about.
Apart from the simplest programs, even machine-code specifications are unmanageable by
human programmers. Automatic mechanisms (including compilers and interpreters) are used
to ensure that machine-level processes support the intended RVMs.

Interpreted and compiled programming languages have important differences in this
context. An interpreter ensures dynamically that the causal connections specified in the
program, are maintained. If the program is changed while running, the interpreter’s behaviour
will change. In contrast, a compiler statically creates machine code instructions to ensure that
the specifications in the program, are subsequently adhered to, and the original program, plays
no role thereafter. Changing it has no effect, unless it is recompiled (e.g. if an incremental
compiler is used). In principle the machine code instructions can be altered directly by a
running program (e.g. using the ‘poke’ command in Basic) but this is usually feasible only
for relatively simple changes and would probably not be suitable for altering a complex plan
after new obstacles are detected, and modifying the physical wiring would be out of the
question. So some kinds of self-monitoring and self-modification are simplest if done using
process descriptions corresponding to a high level virtual machine specified in an interpreted
formalism and least feasible if done at the level of physical, structure. Compiled machine
code instructions are an intermediate case.

There are two different benefits of using a suitable RVM: namely (1) the already mentioned
coarser granularity of events and states compared with a PM or low level RVM, and (2) the
use of an ontology related to the application domain (e.g. playing chess, making airline
reservations). Both of these are indispensable for processes of design, testing, debugging,
extending, and also for run-time self-monitoring and control, which would be impossible to
specify at the level of physical atoms, molecules or even transistors (partly because of explosive

4



combinatorics, especially on time-sharing, multi-processing systems where the mappings
between virtual and physical machinery keep changing). The coarser grain, and application-
centred ontology makes self-monitoring (like human debugging of the system) more practical
when high-level interpreted programs, are run than when machine code compiled programs
are run. This relates to the third aspect of some virtual machinery: ontological irreducibility.

5 Implementable but irreducible

The two main ideas presented so far are fairly familiar, namely (a) a VM can run on another
(physical or virtual) machine, and (b) RVMs running in parallel can interact causally with one
another and with things in the environment. A third consequence of 20th century technology
is not so obvious, namely: some VMs include states, processes and causal interactions whose
descriptions require concepts that cannot be defined in terms of the language of the physical
sciences: they are non-physically describable machines (NPDMs). Virtual machinery can
extend our ontology of types of causal interaction beyond physical interactions.

This is not a form of mysticism. It is related to the fact that a scientific theory can use
concepts (e.g. ‘gene’, ‘valence’) that are not definable in terms of the actions and observations
that scientists can perform. This contradicts both the ‘concept empiricism’ of philosophers like
Berkeley and Hume, originally demolished in (Kant, 1781), and also its modern reincarnation,
the ‘symbol grounding’ thesis popularised by (Harnad, 1990), which also claims that all
concepts have to be derived from experience of instances. The alternative ‘theory tethering’
thesis, explained in (Sloman, 2007), is based on the conclusion in 20th Century philosophy of
science that undefined symbols used in deep scientific theories get their meanings primarily,
though not exclusively, from the structure of the theory, though a formalisation of such a
theory need not fully determine what exactly it applies to in the world. The remaining
indeterminacy of meaning is partly reduced by specifying forms of observation and experiment
(e.g. ‘meaning postulates’ in (Carnap, 1947)) that are used in testing and applying the theory,
‘tethering’ the semantics of the theory. The meanings are never uniquely determined, since
it is always possible for new observations and measurements (e.g. of charge on an electron)
to be adopted as our knowledge and technology advance.

Ontologies used in specifying VMs, e.g. concepts like ‘pawn’, ‘threat’, ‘capture’, etc. used
in specifying a chess VM, are also mainly defined by their role in the VM, whose specification
expresses an explanatory theory about chess. Without making use of such concepts, which
are not part of the ontology of physics, designers cannot develop implementations and users
cannot understand what the program is for, or make use of it. So, when the VM runs, there
is a physical implementation that is also running, but the two are not identical: there is an
asymmetric relation between them. The PM is an implementation of the VM, but the VM
is not an implementation of the VM, and there are many other statements that are true of
one and false of the other. The RVM, but not the PM, may include threats, and defensive
moves. And neither ‘threat’ nor ‘defence’ can be defined in the language of physics. Not all
the concepts used to describe objects, events and processes in a RVM are definable in terms
of concepts of physics even though the RVM is implemented in a physical machine.

The physical machine could include some of the environment with which the RVM
interacts. The detailed description of the PM is not a specification of the VM, since the
VM could be the same even if it were implemented on a very different physical machine

5



with different physical processes occurring during the execution even of a particular sequence
of chess moves. The VM description is also not equivalent to any fixed disjunction of
descriptions since the VM specification determines which PMs are adequate implementations.
Programmers can make mistakes, and bugs in the virtual machinery are detected and removed,
usually by altering a textual specification of the abstract virtual machinery not the physical
machinery. When a bug in the program is fixed it does not have to be fixed differently
for each physical implementation – a compiler or interpreter for the language handles the
mapping between virtual machine and physical processes and those details are not part of the
specification of the common virtual machine.

Neither can the VM machine states and processes be defined in terms of physical input-
output specifications, since very different technologies can be used to implement interfaces for
the same virtual machine, e.g. using mouse, keyboard, microphone or remote email for input.
Moreover, some VMs perform much richer tasks than can be fully expressed in input-output
relations, e.g. the visual system of a human (or future robot!) watching turbulent rapids in
a river. (Compare the critique of Skinner in (Chomksy, 1959)).

The indefinability of VM ontologies in terms of PM ontologies does not imply that
RVMs include some kind of ‘spiritual stuff’ that can exist independently of the physical
implementation machinery, as assumed by those who believe in immortal minds, or souls.
Despite the indefinability there are close causal connections between VM and PM states, but
that includes things like detection of a threat causing a choice of defensive move, which is a
VM process that can cause changes in the physical display and the physical memory contents.
We thus have what is sometimes referred to as ‘downwards causation’, in addition to ‘upwards
causation’ and ‘sideways causation’ (within the RVM).

6 Implications

The complex collection of hardware, firmware, and software technologies, developed since
Turing’s time has made possible information-processing systems of enormous complexity
and sophistication performing many tasks that were previously performed only by humans
and some that not even humans can perform. This has required new ways of thinking
about non-physically describable virtual machinery (NPDVM) with causal powers. The new
conceptual tools are relevant not only to engineering tasks but also to understanding what
self-monitoring, self-controlling systems can do. Philosophy now has the task of working out
in detail metaphysical implications of multiple coexisting causal webs with causation going
sideways, upwards and downwards. Implications for evolution of mind are discussed in Part
2 of this paper, included in Part III of this volume. Finally, Part 3 of this paper, presenting
the concept of meta-morphogenesis (the processes by which the processes of change and
development change) will be included in Part IV of this volume.

References

Carnap, R. (1947). Meaning and necessity: a study in semantics and modal logic. Chicago:
Chicago University Press.

Chomksy, N. (1959). Review of skinner’s Verbal Behaviour. Language, 35 , 26–58.

6



Dyson, G. B. (1997). Darwin Among The Machines: The Evolution Of Global Intelligence.
Reading, MA: Addison-Wesley.

Harnad, S. (1990). The Symbol Grounding Problem. Physica D , 42 , 335–346.
Kant, I. (1781). Critique of pure reason. London: Macmillan. (Translated (1929) by

Norman Kemp Smith)
Popek, G. J., & Goldberg, R. P. (1974). Formal requirements for virtualizable third

generation architectures. Communications of the ACM , 17 . (7)
Sloman, A. (1996). Beyond turing equivalence. In P. Millican & A. Clark (Eds.), Machines

and thought: The legacy of alan turing (vol i) (pp. 179–219). Oxford: The Clarendon
Press. Available from
http://www.cs.bham.ac.uk/research/projects/cogaff/96-99.html#1
((Presented at Turing90 Colloquium, Sussex University, April 1990)

Sloman, A. (2007). Why symbol-grounding is both impossible and unnecessary, and why
theory-tethering is more powerful anyway. (Research Note No. COSY-PR-0705).
Birmingham, UK.
(http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#models)

Turing, A. M. (1936). On computable numbers, with an application
to the Entscheidungsproblem. Proc. London Math. Soc., 42 (2), 230–265. Available from
http://www.thocp.net/biographies/papers/turing oncomputablenumbers 1936.pdf

7


