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Abstract

Research on algorithms and representations
once dominated AI. Recently the importance
of architectures has been acknowledged, but
researchers have different objectives, presup-
positions and conceptual frameworks, and this
can lead to confused terminology, argumenta-
tion at cross purposes, re-invention of wheels
and fragmentation of the research. We propose
a methodological framework: develop a gen-
eral representation of a wide class of architec-
tures within which different architectures can
be compared and contrasted. This should fa-
cilitate communication and integration across
sub-fields of and approaches to AI, as well as
providing a framework for evaluating alterna-
tive architectures. As a first-draft example we
present the CogAff architecture schema, and
show how it provides a draft framework. But
there is much still to be done.

1 Introduction

AI has always been concerned with algorithms and
representations, but we also need to understand how
to put various parts together into complete working
systems, within an architecture. It is now common
in AI and Cognitive Science to think of humans
and other animals, and also many intelligent robots
and software agents, as having a virtual machine
information processing architecture which includes
different layers, and which, in the case of animals,
evolved at different stages. But many different
architectures are proposed, and there is no clear
framework for comparing and evaluating them.

Explicit or implicit theories of mental architecture
are not new. Early empiricist philosophers thought
of the mind as a collection of ‘ideas’ floating
around in a sort of spiritual soup and forming
attachments to one another. Kant [10] proposed a
richer architecture with powerful innate mechanisms
that enable experiences and learning to get off the
ground, along with mathematical reasoning and other
capabilities. Freud’s theories directed attention to
a large subconscious component in the architecture.

Later Craik proposed (in 1943) that animals build
‘models’ of reality in order to explore possible actions
safely without actually performing them. Popper (in
[15] and earlier works) advocated similar mechanisms
allowing our mistaken hypotheses to ‘die’ instead of
us. Recent work has added more detail. Albus (p.184
of [1]) depicts MacLean’s idea of a ‘triune’ brain with
three layers: one reptilian with one old and one new
mammalian layer. A neuropsychiatrist, Barkley, has
recently begun to develop a sophisticated architectural
model, partly inspired by J. Bronowski, to account
for similarities and differences between normal human
capabilities and sufferers from attention disorders
[2], though most psychologists and neuroscientists
find it very difficult to think about virtual machine
architectures. Shallice and Cooper are among the
exceptions [4].

In the meantime, AI researchers have been
exploring many sorts of architectures. See Nilsson’s
account ([13], Ch 25) of triple tower and triple
layer models. Architectures like SOAR, ACT-R,
and Minsky’s Society of Mind have inspired many
researchers, but there is no general overview of the
space of interesting or important architectures, or the
different types of requirements against which they can
be evaluated, though Dennett [7] makes a good start.
In short, there are no adequate surveys of ‘design
space’ and ‘niche space’ and their relationships
(described briefly in [24]). As a first-draft partial
remedy, we offer the CogAff schema depicted in
figures 1(a), (b) and 2(a), (b), and described below.

2 Conceptual confusions

A problem surrounding the study of architectures is
the diversity of high level aims of AI researchers.
Some try to solve engineering problems and care only
about how well their solutions work, not whether they
model natural systems. Other researchers attempt to
understand and model humans, or other animals. A
few are attempting to focus only on general principles
equally applicable to natural and artificial systems.
An effect of all this is that there is much confusion
surrounding the description of what instances of the
proposed architectures are supposed to be able to
do. For instance, someone who describes a system



Figure 1: (a) (b)
The CogAff architecture schema combines cognitive and affective components. Nilsson’s ‘triple tower’ model, with
information flowing (mainly) through perceptual, central, and motor towers, is superimposed on his ‘triple layer’ model,
where different layers, performing tasks of varying abstractness, use different mechanisms and representations. In (a)
the two views are superimposed. Components in different boxes have functions defined by their relationships with other
parts of the system. In (b) a fast (but possibly stupid) alarm system receives inputs from many components and can send
control signals to many components. An insect’s architecture might include only the bottom layer. Some animals may
have reactive and deliberative layers. Subsumption architectures have several levels, all in the reactive layer. Humans
seem to have all three layers. See the text and fig. 2 for details. The diagrams leave out some components (e.g. motive
generators) and some information pathways, e.g. ‘diagonal’ routes.

as ‘learning’ may merely mean that it adaptively
solves an engineering problem. Another may be
attempting to model human learning, perhaps without
being aware of the huge variety of types of learning.
An engineer may describe a program as using ‘vision’
simply because it makes use of TV cameras to obtain
information, which is analysed in a highly specialised
way to solve some practical problem, ignoring the fact
that animal vision has many other aspects, for instance
detecting ‘affordances’ [8, 22, 26].

Study of emotion has recently become very
fashionable in psychology and AI, often ignoring the
vast amount of conceptual confusion surrounding the
term ‘emotion’, so that it is not clear what people mean
when they say that their systems have emotions, or
model emotions, or use affective states [28, 27, 16]
Social scientists tend to define ‘emotion’ so as to
focus on social phenomena, such as embarrassment,
attachment, guilt or pride, whereas a brain scientist
might define it to refer to brain processes and
widespread animal behaviours. The word has dozens
of definitions in the psychological and philosophical
literature, because different authors attend to different
subsets of emotional phenomena.

McDermott’s critique [11] of AI researchers who
use mentalistic labels on the basis of shallow analogies
has been forgotten. We offer the CogAff schema as
a first-draft framework for describing and comparing
architectures and the kinds of states and processes they
support. We can then see how definitions of mental
phenomena often focus on special cases all of which

the schema can accommodate, e.g. as we have shown
elsewhere in the case of emotions and vision [25, 22,
26].

2.1 Architecture-based concepts

Understanding the variety of information processing
architectures helps to clarify confused concepts,
because different architectures support different sets
of capabilities, states and processes, and these
different clusters characterise different concepts. For
instance, the fullest instantiations of the CogAff
schema account for at least three classes of
emotions: primary, secondary and tertiary emotions,
extending previous classifications. [6, 14, 23, 28].
An architecture-based analysis can lead to further
refinements in the classification of affective states.
[25]. Likewise, different concepts of ‘seeing’ relate
to visual pathways through different subsystems in a
larger architecture. ‘Blindsight’ [31] could arise from
damage to connections between meta-management
and intermediate high level perceptual buffers,
destroying self-awareness of visual processing, while
lower level pathways remain intact.

Architectures differ not only between species,
but also while an individual develops, and after
various kinds of brain damage or disease. The
resulting diversity requires even more conceptual
differentiation. ‘What it is like to be a bat’ [12] may
be no more obscure to us than ‘What it is like to be a
baby’, or an Altzheimer’s sufferer.
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2.2 Cluster concepts

Many of our mental concepts are ‘cluster concepts’:
they refer to ill-defined subsets of a cluster of
properties. E.g. if an architecture supports capabilities
of types C1, . . . Ck, then boolean combinations
of those capabilities can define a wide variety of
concepts. Our pre-theoretical cluster concepts lack
that kind of precision; so, for a given mental
concept M , there may be some combinations of
Cs that definitely imply presence of M , and others
which definitely imply absence of M , without any
well-defined boundary between instances and non-
instances. Cluster concepts may have clear cases at
extremes and total indeterminacy in a wide range of
intermediate cases, because there has never been any
need, nor any basis, for labelling those cases. Worse,
we may be unaware of the full range of capabilities
(Ci) relevant to clarifying the concept.

When we have a clear view of the space
of architectures we can consider the families of
capabilities supported by each type of architecture,
and define new more precise concepts, just as
we have defined primary, secondary and tertiary
emotions in terms of reactive, deliberative and meta-
management mechanisms e.g. [25]. Asking which
definitions are correct is pointless, like asking whether
mathematicians are ‘correct’ in defining ‘elliptical’
to apply to circles. Wheel-makers need a different
concept.

Some architectures may support all the mental
concepts we normally apply to humans. Others
may support only simplified forms e.g. ‘sensing’,
but not all of our notions of ‘pain’, ‘emotion’,
‘consciousness’, etc. An insect has some sort of
awareness of its environment even if it is not aware
that it is aware, because there is no meta-management.

If we had a clear idea of the information
processing architecture of a foetus at different stages
of development, then for each stage we could specify
concepts that are relevant. New-born infants, like
insects, are limited by their architecture: e.g. they
may be incapable of puzzlement about infinite sets or
the mind-body problem. Likewise, when describing
AI systems, we need to be careful not to over-describe
simplified architectures.

If we have a well-defined space of possible
architectures, and can investigate precisely which
concepts are applicable to which subsets, we can
develop agreed terminology for describing agents.

3 What sorts of architectures?

We cannot (yet) hope for a complete survey of possible
information processing architectures since we are
so ignorant about many cases, e.g. animal visual
systems. Perhaps evolution, like human designers,
has implicitly relied on modularity and re-usability

in order to achieve a robust and effective collection
of biological information processing architectures.
Figure 1 depicts a biologically-inspired framework
covering a variety of architectures, with different
subsets of components. It makes a three-fold
division between perception, central processing, and
action, and contrasts three levels of processing, which
probably evolved at different times. (More fine-
grained divisions are also possible.) Slow central
mechanisms and fast environments may generate
a need for fast (but possibly stupid) relatively
global ‘alarm’ mechanisms. The need for speed in
detecting urgent opportunities and dangers rules out
use of elaborate inferencing mechanisms in an alarm
mechanism, though they may exist in a deliberative
layer. Alarm mechanisms are therefore likely to be
pattern-based, and to make ‘mistakes’ at times, though
they may be trainable.

Architectures may include different subsets of
the CogAff schema. Fig. 2 depicts a conjectured
human-like schema H-CogAff,1 but CogAff allows
much simpler instances. Insects probably have only
the bottom (reactive) layer (possibly with alarms),
and much early AI work was concerned only with
the middle portion of the middle (deliberative) layer.
HACKER [30] combined portions of the top two
layers. SOAR’s ‘impasse detection’ is a type of
meta-management. Brooks subsumption architectures
(e.g. in [3]) include multiple control levels all within
the reactive layer, and nothing in the other layers.
Moreover, architectures with similar components can
differ in their communication pathways.

3.1 Layered architectures

The idea of hierarchic control is very old both in
connection with analog feedback control and more
recently in AI systems. There are many proposals for
architectures with two, three or more layers, including
those described by Albus and Nilsson mentioned
previously, subsumption architectures [3], the ideas
in Johnson-Laird’s discussion (1993) of consciousness
as depending on a high level ‘operating system’, and
Minsky’s notion of A, B and C brains.

On closer inspection, the layering means different
things to different researchers. Such ambiguities may
be reduced if people proposing architectures agree
on a broad conceptual framework specifying a class
of architectures and terminology for describing and
comparing them, as illustrated in the next section.

1. Our terminology is provisional. We refer to CogAff
as a schema rather than an architecture because not
every component specified in it must be present in every
architecture to which it is relevant: e.g. it is intended
to cover purely reactive agents and software agents which
merely contain deliberative and meta-management layers.
H-CogAff is schematic in a different sense: it is a
conjectured architecture for human-like minds where many
components are incomplete or under-specified.
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Figure 2: (a) (b)
The ‘Human-like’ sub-schema H-Cogaff: (a) lists some components supporting motive processing and ‘what if’
reasoning in deliberative and meta-management layers. Humans seem to have all those mechanisms, perhaps organised
as in (b). The alarm sub-systems might include the brain’s limbic system. An interrupt filter partly protects resource-
limited deliberative and reflective processes from excessive diversion and redirection, using a dynamically varying
penetration threshold, dependent on the urgency and importance of current tasks – soldiers in battle and footballers
don’t notice some injuries. Different ‘personae’ can control processing at different times, e.g. when at home with family,
driving a car, interacting with subordinates, in the pub with friends, etc. Such an architecture has various kinds of
information stores, and diverse information routes through the system, only a subset of which are shown.

3.2 Dimensions of architectural variation

We present a first draft list of dimensions in which
architectures can be compared.
1. Pipelined vs concurrently active layers
Often [13] the layers have a sequential processing
function: sensory information comes in via low level
sensors (‘bottom left’), gets abstracted as it goes up
through higher central layers, until action options are
proposed near the top, where some decision is taken
(by ‘the will’!), and control information flows down
through the layers and out to the motors (‘bottom
right’). We call this an ‘Omega’ architecture because
the pattern of information flow is shaped like an
Ω. Many models in AI and psychology have this
style e.g. [1]. The ‘contention scheduling’ model
[4] is a variant in which the upward information
flow activates a collection of competing units where
winners are selected by a high level mechanism. The
CogAff schema accommodates such pipelines, but
also permits alternatives where the different layers
are all concurrently active, and various kinds of
information constantly flow within and between them
in both directions, as in fig. 2(b).

2. Dominance vs functional differentiation
In some designs, higher levels completely dominate
lower levels, as in a rigid subsumption architecture,
where higher levels can turn lower level behaviour on
or off, or modulate it. Such hierarchical control is

familiar in engineering, and CogAff allows, but does
not require, it. In the H-CogAff ‘human-like’ sub-
schema (fig. 2), higher levels partially control lower
levels but sometimes lose control, e.g. to reactive
alarm mechanisms or because other influences divert
attention, such as sensory input with high salience
(loud noises, bright flashes) or newly generated
motives with high ‘insistence’ (e.g. hunger, sitting
on a hard chair, etc.). In animals most lower level
reactive mechanisms cannot be directly controlled
by deliberative and meta-management mechanisms
though indirect control through training is possible.

3. Direct control vs trainability
Even if higher levels cannot directly control lower
levels, they may be capable of re-training them,
as happens in the case of many human skills.
Repeated performance of certain sequences of actions
carefully controlled by the deliberative layer may
cause an adaptive reactive layer to develop new
chained behaviour sequences, which can later be
performed without supervision from higher layers.
Fluent readers, expert car drivers, skilled athletes,
musical sight-readers, all make use of this.

4. Processing mechanisms vs processing functions
Some instances of CogAff may use the same kinds of
processing mechanisms (e.g. neural nets) in different
layers which perform different functions, concerned
with different levels of abstraction. Alternatively,
diverse functions may be implemented in diverse
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mechanisms, e.g. neural nets, chemical controls,
symbolic reactive rulesystems, and sophisticated
deliberative mechanisms with ‘what if’ reasoning
capabilities, using formalisms with compositional
semantics. The latter might be used to represent
remote or hidden entities, past events, and possible
future actions and consequences of actions. If those
can be categorised, evaluated, and selected this would
support planning, finding explanations of past events,
mathematical reasoning, and general counterfactual
reasoning. Such deliberative mechanisms require
temporary workspace containing changing structures
– not needed for most reactive systems.

Deliberative mechanisms that, unlike reactive
mechanisms, explicitly represent alternative actions
prior to selection, might be implemented in reactive
mechanisms, which in turn are implemented in
various kinds of lower level mechanisms, including
chemical, neural and symbolic information processing
engines, and it is possible that the reliance on these
is different at different levels in the architecture.
Some kinds of high level global control may use
chemical mechanisms (e.g. hormones) which would
be unsuitable for intricate problem solving. If it
ever turns out that animal brains require quantum
computational mechanisms, e.g. for speed, then these
mechanisms could also be accommodated within the
CogAff framework.

5. Varieties of representation
Distinctions between different sorts of representations,
e.g. logical, qualitative, diagrammatic, procedural,
neural etc. are all relevant, since different components
of a complex architecture may have different
requirements.

6. Varieties of learning
There is much research in AI and psychology on
learning and individual development. CogAff is
compatible with many kinds of learning mechanisms
in different parts of the system, including neural
nets, trainable reactive systems, extendable knowledge
stores, changeable motive generators and motive
comparators (see below), extendable forms of
representation and ontologies, etc. More subtle types
of learning and development can include forming
new connections between parts of the architecture,
e.g. linking new visual patterns either to reactive
behaviours as in athletic training, or to abstract
concepts, as in learning to read a foreign language or
detect a style of painting.2

In humans the meta-management layer is not a
fixed system: not only does it develop from very
limited capabilities in infancy, but even in a normal
adult it is as if there are different personalities ‘in
charge’ at different times and in different contexts.
Learning can extend the variety.

7. Springs of action, and arbitration mechanisms
Architectures can support ‘intrinsic’ and ‘derivative’

motives, where the latter are sub-goals of intrinsic
or other derivative motives. Architectures differ in
the varieties of motives they can generate and act
on and how they are generated, and whether they
are represented explicitly or only implicitly in control
states. They can also differ in how conflicts are
detected and resolved. To illustrate, we mention
several contrasts.

Some architectures generate all motives in
one mechanism receiving information from other
components (e.g. near the ‘top’ of an Omega
architecture) whereas other architectures support
distributed motive generation, including reactive and
deliberative triggering (fig. 2(b)). In some of the latter,
motives generated in different places cannot be acted
on unless processed by some central system, whereas
others (e.g. H-CogAff) allow distributed concurrent
motive activation and behaviour activation. In some
reactive systems all reactively generated goals are
processed only in the reactive layer, whereas in others
a subset of reactive goals can be transmitted to a
deliberative layer for evaluation, adoption or rejection,
and possibly planning and execution.

Architectures also differ regarding the locus
and mechanisms of conflict resolution and motive
integration. In centralised decision-making all
conflicts are detected and resolved in one sub-
mechanism, whereas in others, some conflicts might
be detected and resolved in the reactive layer, some
might be detected and resolved using symbolic
reasoning in the deliberative or meta-management
layer, and some might be resolved using highly trained
motor sub-systems. Deciding whether to help granny
or go to a concert, deciding whether to finish an
unfinished sentence or to stop and breathe, deciding
whether to use placatory or abusive vocabulary when
angry, might all be handled by different parts of the
system. In some architectures loci of integration never
vary, while others change through learning.

Some systems use ‘numerical’ conflict resolution,
e.g. voting mechanisms, while others use rule-
based or problem-solving decision systems capable of
creative compromises, and some are hybrid mixtures.

8. ‘Peephole’ vs ‘multi-window’ perception
Perceptual architectures vary. A ‘peephole’ model
uses a fixed entry locus (using simple transducers
or more complex sensory analysers) into the central
mechanisms, after which information may or may
not be passed up a processing hierarchy, as in the
Omega model. In a ‘multi-window’ model [22, 28]
perceptual processing is itself layered, concurrently
producing different kinds of perceptual information
to feed directly into different central layers, e.g.

2. H-CogAff with its many components and many
links also makes possible multiple forms of damage and
degradation including changes within components and
changes to connections.
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delivering more abstract and more large scale percepts
for higher layers, while fine control of movement
uses precise and continuously varying input fed into
the reactive system or directly to motor subsystems
(fig. 2(b)). Perceptual systems also vary according
to whether they are purely data-driven or partly
knowledge-based, and whether they can be affected by
current goals. Empirical support for the multi-window
multi-pathway model for humans includes different
effects of different kinds of brain damage.

9. Motor pathways
Connections from central to motor mechanisms may
use either the ‘peephole’ model, with all motor signals
going through a narrow channel from the central
system (e.g. bottom right as in the Omega model),
or a ‘multi-window’ architecture where different sorts
of instructions from different central layers can go to
a layered, hierarchical motor system, which performs
the necessary decomposition to low level motor
signals along with integration as needed, as in [1] and
fig. 2(b). The latter seems to be required for skilled
performance of complex hierarchical actions.

10. Specialised ‘boxes’ vs emergence
Some architecture diagrams have a box labelled
‘emotions’. In others, emotions, like ‘thrashing’ in an
operating system. are treated as emergent properties
of interactions between functional components such
as alarm mechanisms, motive generators and attention
filters, [32, 25]. An architecture like fig. 2(b)
can explain at least three different classes of
emergent emotions involving disturbances caused
by or affecting different layers of the architecture.
Whether a capability needs a component, or emergent
interactions between components is not always clear.
The attention filter in fig. 2(b) could use either a
special mechanism (easier to implement and control)
or the emergent effects of interactions between
competing components (more general and flexible)
although the trade-offs depend on the particular
architecture. The ‘emergent’ approach is illustrated
by the contention scheduling model.

11. Dependence on external language
Some models postulate a close link between high
level internal processes and an external language.
For instance, some claim that mechanisms like meta-
management require a public language and social
system, and some regard language as essential for
human-like minds [7]. Others [19] regard internal
mechanisms and formalisms for deliberation and high
level self-evaluation as pre-cursors to the development
of human language as we know it. (Compare Barkley
[2]). It appears from the capabilities of many
animals, that rich and complex information processing
mechanisms evolved long before external human-like
languages, and probably still underpin them. In that
sense the use of ‘language’ to think with is prior to
its use in external communication, though we are not

denying the impact of external language.

12. Internal vs partly external implementation
Most AI design work focuses on internal processing.
However, Simon pointed out in 1969 that animals
often use the environment as a short term or long term
memory: so their implementation extends beyond
their bodies. Human examples include trail-blazing
and calculating on paper. Strawson argued in [29]
that what is within an individual cannot suffice to
determine that some internal representation or thought
refers to the Eiffel tower, as opposed to an exactly
similar object on a ‘twin earth’. Unique reference
depends in part on the causal and spatial relationships
to the thing referred to. So not all aspects of human-
like thought can be fully implemented internally:
some depend on external relations [20, 21].

13. Self-bootstrapped ontologies
We have argued that if we specify an architecture we
shall understand what sorts of processes can occur in
it, and will be able to define an appropriate set of
concepts for describing its ‘mental’ states.

However, some learning mechanisms can develop
their own ways of clustering phenomena according to
what they have been exposed to, and their successes
and failures. In a robot with the architecture in
fig. 2(b) the meta-management layer might develop
a collection of concepts for categorising its own
internal states and processes that nobody else can
understand intuitively because nobody else has been
through that particular history of learning processes.
Subsequent effects of using those ‘personal’ concepts
may exacerbate the complexity and idiosyncratic
character of the robot’s internal processing. (Compare
the difficulty of understanding what a complex
neural network is doing, after it has been trained.)
Partial understanding ‘from outside’ might come from
analysing the history and its effects on the architecture.
For systems with that degree of sophistication and
reflective capability, scientific understanding of their
processing may forever be limited to very coarse-
grained categorisations and generalisations.

4 Discussion

In this short paper we have tried to show (albeit with
much missing detail) that a general formulation of a
wide class of architectures can facilitate comparative
analysis of different proposed architectures, by
providing a common vocabulary for describing
structure and function. Our CogAff schema is a
first-draft example that accommodates a wide range
of architectures (though not, for instance, distributed
software systems). We have tried to bring out some
of the options that may need to be considered when
trying to design, compare and evaluate architectures,
though we have said nothing here about the even larger
variety of multi-agent architectures.
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After specifying a particular case of the schema,
we can analyse the types of capabilities, states and
processes enabled within that special case. This
provides a basis for refining vague or indeterminate
cluster concepts of ordinary language (e.g. ‘emotion’,
‘believe’, ‘intention’, ‘learning’) so that they become
more precise, with clear criteria for deciding which
animals or robots exemplify them. This avoids endless
debates about which animals ‘really’ think, etc.

Different architectures will support different
collections of concepts, and care is required if familiar
human mental concepts are being used: they may not
always be applicable to some of the simpler artificial
systems, illustrating McDermott’s argument.

A schema such as CogAff also provides a basis
for developing an enriched theory of learning where
varieties of learning and development that are possible
depend not only on the mechanisms that are present
within components of the architecture, but also on the
scope for the architecture to extend itself with new
components or new links. Because so many types
of change are possible in more complex systems, we
can expect to have to replace our ordinary concepts of
‘learning’ and ‘development’ with a family of more
precise architecture-based concepts. (There is no
space here for a full analysis.)

We can use the schema to explore some of
the varieties of evolutionary trajectories. In some
recent experiments [17] it appears that for simple
sorts of reactive agents and a range of environments,
adding simple affective mechanisms is more beneficial
(for survival over many generations) than adding
(simplified) deliberative capabilities. Because a
schema like CogAff invites us to consider ways of
extending an architecture which does not already have
all possible links and components, we can use it to
define ‘neighbourhoods’ in design space. We can
then explore those neighbourhoods analytically or by
doing computational experiments, or by looking for
paleontological evidence.

Further investigation might help us understand
better why the vast majority of the earth’s biomass
consists of relatively unintelligent organisms, with
only reactive components. Part of the answer may
be requirements of food chains needed to support
animals with more complex brains! However, there
may be more fundamental reasons why large numbers
of relatively stupid, but inexpensive and expendable,
individuals (with affective control states) are normally
more successful than smaller numbers of larger,
more expensive and more intelligent organisms. By
understanding those reasons we can understand the
exceptional conditions that promote evolution of
additional, more expensive, deliberative mechanisms.

In later stages of evolution, the architecture might
support new types of interaction and the development
of a culture. For instance if the meta-management
layer, which monitors, categorises, evaluates and

to some extent controls or redirects other parts of
the system, absorbs many of its categories and its
strategies from the culture, then the same concepts
can be used both for self-description and for other-
description: a form of social control.

Versions of the third layer providing the ability to
attend to and reflect on some intermediate perceptual
processes could cause intelligent robots to discover
qualia, and wonder whether humans have them!

We can also use our framework to clarify and
refine architectural concepts developed in psychology.
The common reference to ‘executive function’ by
psychologists and brain scientists conflates aspects of
the deliberative and meta-management layers. That
they are different is shown by the existence of AI
systems with sophisticated planning and problem
solving and plan-execution capabilities, but without
meta-management (reflective) capabilities. In conse-
quence, some planners cannot notice obvious types
of redundancy in the plans they produce, nor subtle
looping behaviour when planning. After developing
these ideas we found that the neuropsychiatrist
Barkley (op. cit.) had reached closely related
conclusions starting from empirical data.

Study of a general schema for a wide class of
architectures should help AI researchers designing and
comparing agent architectures, and also philosophers,
brain scientists, social scientists, ethologists and
evolutionary biologists. CogAff seems to be a useful
first draft, though much remains to be done.
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