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Abstract

This paper, combining the standpoints of philosophy and Artificial Intelligence with
theoretical psychology, summarises several decades of investigation by the author of the
variety of functions of vision in humans and other animals, pointing out that biological
evolution has solved many more problems than are normally noticed. For example, the
biological functions of human and animal vision are closely related to the ability of humans
to do mathematics, including discovering and proving theorems in geometry, topology
and arithmetic. Many of the phenomena discovered by psychologists and neuroscientists
require sophisticated controlled laboratory settings and specialised measuring equipment,
whereas the functions of vision reported here mostly require only careful attention to
a wide range of everyday competences that easily go unnoticed. Currently available
computer models and neural theories are very far from explaining those functions, so
progress in explaining how vision works is more in need of new proposals for explanatory
mechanisms than new laboratory data. Systematically formulating the requirements for
such mechanisms is not easy. If we start by analysing familiar competences, that can
suggest new experiments to clarify precise forms of these competences, how they develop
within individuals, which other species have them, and how performance varies according
to conditions. This will help to constrain requirements for models purporting to explain
how the competences work. For example, Gibson’s theory of affordances needs a number
of extensions, including allowing affordances to be composed in several ways from lower
level proto-affordances. The paper ends with speculations regarding the need for new
kinds of information-processing machinery to account for the phenomena.
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1 From Kant to Gibson and beyond

1.1 What are the functions of vision?

The purpose of the workshop for which this paper was prepared was to discuss a computational
approach to “Closing the gap between behaviour and neurophysiological level”. My approach
to this topic is to focus almost entirely on what needs to be explained rather than to present
any neurophysiological model, though conjectures regarding some of the design features
required in such a model are offered in Section 7.

This is one of a series of interim reports on a journey towards understanding human vision
as forming a subset of a large collection of competences within an integrated multi-functional,
self-extending information-processing architecture: a whole mind. Over several decades I have
been trying, as a philosopher-designer, to understand what the functions of vision are, and
how vision relates to the rest of the information-processing architecture, especially in humans
but also in other animals. This paper adds some observations arising in part from work
on a project to explore requirements and possible designs for a robot that can perceive and
manipulate 3-D objects. The main outcome has been expanding the list of human visual
capabilities that we still do not know how to explain.

My initial motivation came from trying to understand the role of visual processing
in mathematical discovery and reasoning, for instance in proving theorems in elementary
Euclidean geometry, but also in more abstract reasoning, for example about infinite structures,
which can be visualised but cannot occur in the environment. This work started in my DPhil
(Sloman, 1962), which was an attempt to defend the view of mathematical knowledge as both
non-empirical and synthetic, proposed by Kant (1781), but rejected by many contemporary
mathematicians and philosophers. This is a topic that links many disciplines, including
mathematics, psychology, neuroscience, philosophy, linguistics, education and, since the
1950s, Artificial Intelligence.1

1.2 Vision’s role in mathematical discovery

I shall try to show how the role of vision in mathematical reasoning is connected with the
ability in humans and some other animals to perceive and reason about structures and
processes in the environment, including possible processes that are not actually occurring.

Studying vision’s role as the basis for important human mathematical competences focuses
attention on aspects of vision that are ignored by most other researchers including: those who
study vision as concerned with image structure (e.g. Kaneff, 1970); those who study vision
as a source of geometrical and physical facts about the environment (e.g. Marr, 1982); those
who regard vision as primarily a means of controlling behaviour (e.g. Berthoz, 2000 and
many recent researchers in AI/Robotics and psychology who regard cognition as closely tied
to embodiment); and those who regard vision as acquisition of information about affordances
(e.g. J. J. Gibson (1979); E. J. Gibson and Pick (2000)).

The work of James Gibson on affordances comes close to identifying competences related to
1 For details see “Could a child robot grow up to be a mathematician and philosopher?” available online

here: http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#math-robot
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mathematics, but I shall show that his theory has to be broadened in various ways, especially
since perception of affordances depends on perception of what I call proto-affordances
(Sections 4, 4.2 and 5.1), which include actual and possible processes not necessarily produced
by the perceiver. The ability to represent combinations of proto-affordances is important
for perceiving more complex affordances, for predicting and planning future processes, for
explaining past events and for understanding vicarious affordances (Section 4.3). The ability
to perceive and reason about combinations of and interactions between proto-affordances
(Section 5.8) is the core of the connection between functions of vision and mathematical
competences, as explained in later sections.

Analysis of examples reveals further details, including the need to be able to use an
“exosomatic” ontology referring to things in the environment (e.g. 3-D surface and processes
involving them) as opposed to patterns in sensory and motor signals. Other competences
requiring extended ontologies are also mentioned, e.g. the meta-semantic ability to see mental
states of others, such as emotional states (Section 6.6).

For a full understanding of what evolution has achieved and what future robots may have
to do, we need parallel investigations of many different kinds of vision: in insects and other
invertebrates, in birds, in primates, etc. There are some who believe that all research should
start from the simplest systems and work up, but it is better to avoid both dogmatism and
narrowness, and see what can be learnt by explorations pursing different directions, as long
as the explorers communicate.

1.3 Scientific communication problems

Communication requires shared concepts, however, and that can be a problem. Much
philosophical research is connected with the fact that we can have a collection of words
that we are very familiar with, and use successfully in day to day communication, but
whose mode of operation is far more complex than we realise, because they correspond
to concepts whose structure is not obvious (e.g. “truth”, “knowledge”, “understanding”,
“consciousness”, “justification”, “science” and “emotion”). As a result, when such words are
used to define scientific objectives or report results of scientific investigations, researchers often
fail to notice disparities between their everyday use of the concepts and their professional use:
disparities that can obstruct the advance of knowledge, by obscuring the differences between
what researchers have actually achieved, and their claims to have modelled phenomena they
describe as “seeing”, “learning”, “understanding language”, “feeling emotions”, or “being
conscious”. A similar point was made by McDermott (1981), in a criticism of many AI
research reports.

I shall illustrate this by showing that our ordinary concept of “seeing” covers everyday
human achievements that go far beyond the topics normally studied in empirical and
computational research on vision. In particular, seeing is not restricted to information about
what exists in the environment: Seeing what is possible or impossible (discussed in more
detail in Sloman, 1996, and below in sections 4 and 6) is different from seeing what exists,
and requires different mechanisms and forms of representation. J.J. Gibson’s (1979) notion
of perception of affordances turns out to be a special case.

5



1.4 Why complete architectures matter

Ordinary phenomena of seeing inherently involve interactions between sensory mechanisms,
action-control mechanisms and more central systems that arise from different stages in our
evolutionary history and grow during different stages in individual development. So the
functions of vision differ from one species to another and can change over time within an
individual as the information-processing architecture grows. Some of those developments,
such as what language the individual learns to read, or which gestures are understood, are
culture-specific.

A full understanding of vision requires investigation of different multifunctional
architectures in which visual systems with different collections of competences can exist.

An architecture with more sophisticated ‘central’ mechanisms can make possible more
sophisticated visual functions. For instance, a central mechanism able to use an ontology of
causal and functional roles is required for a system that can see something causing, preventing,
or enabling something else to occur. The ability to make use of an ontology including mental
states (a meta-semantic ontology) is required if a visual system is to be able to perceive facial
expressions, such as happiness, sadness, surprise, etc. and make use of the information.

The requirement to use such ontologies is ignored by machine vision researchers who train
pattern recognisers to attach labels to pictures on the basis of 2-D image features. Linking
labels such as “happy” and “sad” with image features, without any understanding of the
causes of happy or sad mental states or their likely consequences, does not constitute seeing
someone as looking happy or sad. Likewise, seeing 3-D structures and processes, and causal
interactions between them, requires the use of an ontology that refers to contents of a 3-D
environment, which is quite different from being trained to use a set of labels for 2-D images or
image sequences generated by such an environment. Understanding a 3-D ontology involves
being able to ask and answer questions about surfaces and volumes, about spatial relations,
about kinds of motion, about kinds of interaction, and being able use the information in
planning or controlling actions, and being able to explain perceived events. More subtly, it
can involve discovering the need to extend the ontology beyond what can be sensed, e.g. to
include different physical substances and their properties. These requirements are discussed
further in Section 5.

1.5 Links to philosophy

Many philosophers who study problems relating to human minds and human knowledge,
focus mainly on trying to clarify how our current concepts work, for example Ryle (1949)
(who described conceptual analysis as studying “logical geography” of concepts), and work
referred to in Clark (1994). There is an alternative approach. Instead of simply analysing
how our ordinary concepts referring to mental phenomena work, since learning about AI
and the design-based approach to understanding minds, around 1969, I have been trying to
characterise deeper aspects of the functions performed by human minds (including their visual
sub-systems). This exposes a more varied collection of functions than our ordinary concepts
categorise and distinguish. Sloman (2007b) describes the underlying space of possibilities
as defining a “logical topography”, on the basis of which we can show that familiar sets of
concepts provide only one among many “logical geographies”, just as a portion of terrain can

6



be divided into political or social regions in different ways.

By analysing the different sets of functions supported by different information-processing
architectures we can come up with a theory-based survey of possibilities for a mind or a visual
system. For each system design there is a specific “logical topography”, a set of possible states,
processes and causal interactions that can occur within the architecture, some involving also
interactions with the environment.

The set of possibilities generated by each architecture can be subdivided and categorised
in different ways for different purposes. E.g. the purposes of common sense classification are
different from the purposes of scientific explanation.

If we adopt the design-based approach when observing actual performances by adult
humans, infants, toddlers, nest-building birds, squirrels, and other animals, and constantly ask
“how could that work”, we can generate various collections of requirements for information-
processing architectures and mechanisms that could support the observed variety of visual
functions in robots. Very often, it is not obvious whether a particular theory meets that
criterion: so using a theory as a basis for designing, implementing and testing working artificial
systems is a crucial part of the process of explaining how natural systems work.

This sort of enquiry can often reveal serious confusions and over-simplifications in our
ordinary concepts, even though they work well enough most of the time in non-scientific
contexts. For example, notions like “learning”, and “memory” are normally used in ignorance
of the variety of ways in which complex information-processing systems can acquire and use
information, and adapt themselves to changing circumstances, on various time scales.

Figure 1: Many people see nothing wrong with the contents of this circle, but can be shown to
have acquired all the information, without making use of it.

1.6 The logical geography of our talk about seeing

Similar comments can be made about the ordinary use of “see”. For example, many people
think it is impossible to see something without being conscious that you have seen it, yet there
are cases where people perform actions that require seeing things even though they would not
be described as being conscious of what they see. Opening a door while sleep-walking, and
not remembering stopping at a red traffic light while driving to work are examples.

Figure 1 gives another example. Some people cannot see anything wrong with the phrase
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displayed even when pressed repeatedly to look very carefully. A subset of those individuals
can then be asked while their eyes are shut “Where was the ‘the’?”, or “How many words
were there?”. At that point some of them notice the mistake in the phrase. Presumably some
part of them did see what was there, and stored the information but did not use it until it
was required for answering a different question about the contents of the display. Similar
results are available from many laboratory experiments in visual and auditory perception
(e.g. dichotic listening experiments). We can clarify different concepts of seeing by analysing
architectures that do, and architectures that do not support what could be called “unconscious
seeing”.

Another example is the common assumption that, when not hallucinating, we see only
things that exist in the environment. That may be a correct assumption as regards the
functions of vision in insects and other animals. Yet, as will be explained in Sections 4, 4.2
and 5.1, seeing affordances, and seeing the lower-level proto-affordances they include, involves
seeing the possibility of actions that can be performed and processes that can occur, and also
seeing constraints on such possibilities. This involves seeing that some things that do not exist
in the environment can or cannot occur in that environment. If an architecture supports that
kind of seeing, it is misguided to look for retinal projections of what is seen: something that
does not exist cannot be projected to form an image.

Gibson’s work can be seen as making this sort of point, though I shall try to show that
his objections to naive notions of the functions of vision do not go far enough, because he did
not see that affordances are a subset of a more general class (implicitly acknowledged after
his death in E. J. Gibson and Pick (2000)).

There are many other conceptual confusions related to notions like “feeling”,
“consciousness”, “emotion”, “understanding”, and “attention” that can be clarified in terms of
different sets of capabilities supported by different architectures (Sloman, 2002). Researchers
working on functions of mind and vision often focus on a narrow range of functions, without
asking how the functions studied fit into a complete architecture.

Many specific visual functions have been modelled in working systems, but currently
available AI techniques still leave large gaps, and all existing models will probably be viewed
as toys when we look back at them fifty or a hundred years from now, because they account
for such a small subset of human or animal competences. That criticism applies also to my
own system-building experiments, done with colleagues and students (including the Popeye
system mentioned below).

Although designing and testing working systems is often informative, what may be of
longer-lasting value, as suggested in Sloman (2008), is assembling ever-expanding sets of
requirements and sketching out a sequence of very high level designs for meeting more and
more of those requirements, while testing the designs wherever possible both by model building
and by deriving predictions that can be checked in laboratories or in fieldwork. However,
outline designs for systems meeting a large collection of requirements are very difficult to
implement at present.

This paper should be viewed as work-in-progress, reporting some of the results of extended
exploration of requirements for human-like visual systems. It describes some unobvious, yet
important, functions of vision that need to be explained by specifications of a working machine
that could serve those functions in addition to the more obvious functions. The paper ends
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Figure 2: To understand human capabilities we need to know what requirements and
constraints they satisfy, i.e. where they fit in niche space, and also what sorts of designs
for information-processing systems can meet those requirements, i.e. where we fit in design
space, and how those spaces are related.

with some speculations about sorts of mechanisms (using a large collections of multi-stable,
interlinked dynamical systems) that may be required, and which do not yet exist in any known
computational models, and which may be hard to identify in neural mechanisms, using current
observational techniques.

2 The need to compare alternative designs

2.1 Niche space and design space

Understanding how a complex system works includes knowing what would happen if various
aspects of the design were different, or missing. So understanding how humans work requires
us to relate the human case to many others, namely other products of biological evolution
and possible future engineering products. The comparison with different biological designs
extends a familiar theme for neuropsychologists, namely attempting to understand normal
human functions by comparing them with various effects of brain damage or genetic brain
abnormality.

We can summarise this as follows (building on Sloman, 1982, 1984, 1994, 1995, 2000):
We need to study the space of possible sets of requirements or niches, niche space, and we
need to study the space of possible designs for working systems that can meet different sets
of requirements, design space. And as suggested in Figure 2 we need to understand the
various relationships between regions of design space and regions of niche space. Of course,
in their full generality these two spaces are far too large to be studied, so we must find ways
of homing in on appropriate “neighbourhoods” in those spaces. Unfortunately, it is often
tempting to do that in a way that is strongly influenced by the mechanisms and formalisms
we are familiar with, which can cause us to be blind to some of the things that need to be
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explained. An example discussed later is the failure of researchers to notice that much of
what we see consists of processes in the environment, because our current tools are much
better suited to investigations of perception and recognition of static structures. Another
common hindrance is that many researchers know only how to build software that manipulates
numerical information, so they ignore the requirement to build visual systems that are capable
of producing structural descriptions of perceived entities, processes and unrealised possibilities
(including affordances). Moreover, the currently available computational tools for creating
and manipulating complex information structures do not seem to be up to some of the tasks
described below in connection with spatial reasoning. By examining requirements that are
often ignored we may accelerate development of suitable information-processing mechanisms.

Our notion of niche space is not the same as the notion of niche space of a type of organism
used by biologists, a notion that is concerned with the space of possible environments a
particular kind of organism can live and reproduce in. Our notion covers sets of requirements
for all possible organisms and robots.

The study of niche space and design space should help us understand how the two spaces
are related: which regions of design space map onto which regions of niche space, and in which
ways different designs meet or fail to meet particular sets of requirements, or meet them more
or less well. This requires a descriptive notion of biological fitness, which specifies how the
competences provided by an implemented design relate to the various competences specified
in a set of requirements.

This is much richer and more complex than any numerical notion of biological fitness
measured in terms of survival value, or number of progeny. No numerical measure that
produces a linear ordering of cases is adequate for understanding any family of complex
designs: the numerical information, or position in a ranking, loses far too much detailed
information about specific benefits and disadvantages of various design features in different
niches to be a useful evaluation criterion – like most numerical evaluation functions used in
computational models of evolution or learning. When a design involves cooperating parts,
assigning a number, or ranking to the whole design does not provide information about
the strengths and weaknesses, or even the functions, of the component designs. Contrast
the production of numerical values with the detailed information about advantages and
disadvantages of various alternative products in consumer research reports, e.g. in Which?
magazine.

Full understanding of particular subsets of design space and niche space requires us to
explain the pressures that lead to changes over time as systems in those subsets both evolve
across generations and support development and learning within individuals. So we also
need to understand trajectories in both spaces, some of which are evolutionary trajectories
of species, some developmental trajectories of individuals, and some social or cultural
trajectories. The evolutionary trajectories can include changes within some components of
an organism for which other components define the niche. Some evolutionary developments
primarily involve changes in behaviours of organisms rather than physical structures, though
physical changes may follow. A broader view would also take in trajectories followed by
ecosystems containing many species.
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2.2 Varieties of representation: Generalised Languages (GLs)

Complex systems may differ in many ways, some of which are described later. A particularly
important feature of any information-processing system is how it is capable of encoding
information during various stages of acquisition, analysis, storage, retrieval, and use of
the information. Researchers designing computational models often have commitments to
particular forms of representation,2 since those are the ones for which they have programming
tools. Those commitments can severely restrict the kinds of research questions they ask, and
the answers they consider.

For example, many researchers who use neural nets will make heavy use of vectors of
numerical values, matrices for transforming vectors, and algorithms designed for controlling
such numerical transformations. A different kind of researcher will be more inclined to use
symbolic structures such as trees and graphs, for example trees used to represent syntactic
structures of sentences or plans, and graphs used to represent maps, partially ordered plans,
or the structures in images.

There are many scientific disputes regarding whether non-human animals can learn to
use a language. However these disputes are posed in terms of a notion of language that has
certain features common to human languages, including (a) structural variability of sentences
(sentences can have more or less complex syntactic structures, with different levels of nesting),
(b) compositional semantics (the meaning of a complex whole depends systematically on
the meanings of the parts and how they are assembled, which allows novel meanings to be
expressed or understood), (c) use of linear sequences of arbitrary symbols to form sentences
and (d) the use of sentences for communication between individuals.

If we drop condition (c), namely use of linear sequences of arbitrary symbols, then we can
allow use of spatial structures combined spatially in different ways (as in maps, diagrams,
pictures, flow-charts etc.). Dropping that constraint allows us to consider a wider variety of
forms of representation that satisfy the first two conditions, namely structural variability and
compositional semantics. If we drop condition (d), namely use of symbols for communication,
then we can still allow other uses such as thinking, reasoning, planning, or perceiving complex
scenes. A further generalisation is to allow semantics of complex wholes to depend not only
on constituents and structure but also context. This relaxation is normal for indexicals
(linguistic components such as “now”, “that”, “you”, etc). We can generalise the role of
context in resolving ambiguity in ways that would take too long to explain here.3

The resulting notion of a language, a Generalised Language, (G-language or GL) requiring
only conditions (a) and (b) was proposed in Sloman (1979) and elaborated in Sloman and
Chappell (2007). A neural model that excludes the possibility of GLs used internally for
various purposes such as perception of processes and structures, planning future actions,
thinking about what might happen, and reasoning about possible consequences of processes
in the environment would be incapable of meeting some of the requirements described below.
Future robots are likely to need internal GLs of various sorts, possibly including some

2I use the word “representation” to refer to whatever is used to encode information. It could be some
physical structure or process, or a structure or process in a virtual machine. It could be transient or enduring.
It may be used for a single function or for many functions.
See also http://www.cs.bham.ac.uk/research/projects/cogaff/misc/whats-information.html

3A partial account is in http://www.cs.bham.ac.uk/research/projects/cosy/papers/#dp0605
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geometrical and topological components in addition to discrete symbols. Spatial forms of
representation have often been proposed as having advantages in certain contexts compared
with more logical, or sentential, forms of representation, e.g. Sloman (1971); Funt (1977);
Glasgow, Narayanan, and Chandrasekaran (1995); Sloman (2007a).

Preverbal children and many non-human animals can perceive and react to processes as
they occur. That requires mechanisms providing the ability to represent changes while they
happen. Perhaps the same mechanisms, or closely related mechanisms, can be used to reason
about processes that are not happening. If some other primates and very young children
use internal GLs, that suggests strongly that GLs supporting structural variability and
compositional semantics evolved before external human languages used for communication,
and that GLs also precede the learning of communicative language in individual humans.4

We shall later give several examples of human visual competences, including geometric
reasoning competences, that seem to require use of GLs, for example in Sections 4.2, 5.2, 5.8,
6, 6.11, 6.12, and 7. The suggestion that GLs are used for all these purposes, including the
representation of processes at different levels of abstraction, poses deep questions for brain
science, as we’ll see later.

3 Wholes and parts: beyond “scaling up”

Most of the rest of this paper addresses only a small subset of the problems, concerned with
requirements for visual systems. Some high level features of possible mechanisms for satisfying
those requirements will also be discussed near the end, in Section 7.

3.1 Putting the pieces together: “scaling out”

This investigation is motivated by interest in a larger set of problems, not just
explaining vision. The larger set of problems includes understanding information-processing
requirements for a human-like (or chimp-like, or crow-like) organism to perceive, act and
learn in the environment. We also aim to produce design requirements for human-like or
animal-like robots, and if possible to sketch some features of designs capable of meeting those
requirements.

This means that the designs for mechanisms providing particular competences (e.g. visual
competences) must “scale out”: instances of a design must be capable of interacting with other
components in a larger design that satisfies requirements for the complete animal or robot.

This contrasts with the frequently mentioned need to “scale up”, namely coping
successfully with larger and more complex inputs. Many human competences do not scale
up, including parsing, planning, and problem-solving competences. It is possible to produce
a highly efficient implementation of some competence that scales up very well but does not
scale out: it cannot be integrated with other human competences. Numerical competences of
current computers are an obvious example. Less obviously, the most impressive programs that
perform board games do not scale out. Even less obviously, I suspect that none of the current

4As explained in more detail in
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#glang
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implementations of linguistic processing, vision, planning, or problem-solving can scale out.
In particular, they are generally designed to work on their own in some test situation, not to
work with one another. More detailed examples of the scaling-out requirement are provided
later, e.g. in Sections 5 and 6.4.

3.2 Understanding tradeoffs: regions in design space

Most AI researchers (and most funding agencies interested in AI) are motivated mainly by the
goal of producing new useful machines, and therefore have little interest in this comparative
investigation of different sets of naturally occurring requirements and designs, produced by
evolutionary and developmental processes in biology. If something works well for a practical
application, the fact that it does not scale out, i.e. cannot easily be integrated within a
multifunctional architecture combining many human abilities, may be irrelevant to the goals
of the designers.

However, ignoring these existence proofs can lead to unsuccessful, blinkered searches for
solutions to hard engineering problems.

Like some of the founders of AI, I am more concerned with trying to advance understanding
of how humans and other animals work than with building new machines, but unlike most of
them I believe this requires trying to understand human information-processing mechanisms,
not just in their own terms, but as a special case of something more general that takes different
forms in different animals, and in different sorts of possible robots. Thus the goal is not what
some people describe as achieving “human-level AI”, but something more general.5

3.3 Biological mechanisms vs biological wholes

For several decades the relevance of biological mechanisms for AI (e.g. neural nets and
evolutionary computations) has been recognised. What is relatively new in the computational
modelling community is moving beyond studying what biological mechanisms can do, to
finding out what whole animals, can do and how they do it, which is one way of studying
requirements to be met by new designs.

Finding out how information flows around brain circuits connected to the eyes, which has
received a lot of attention prompted by new non-invasive machinery for measuring what goes
on in brains, does not tell us what the information is, how it is represented, or what the
information is used to achieve, which can include things as diverse as fine-grained motor
control, triggering saccades, aesthetic enjoyment, recognition of terrain, finding out how
something works, or control of intermediate processes that perform abstract internal tasks.

It is possible to make progress in the case of simple organisms where neurophysiology
corresponds closely to information-processing functions. Measuring brain processes may

5This cross-disciplinary, cross-species, approach has been promoted in a number of recent tutorials and
workshops, including the Tutorial on “Representation and learning in robots and animals” at IJCAI’05
(http://www.cs.bham.ac.uk/research/projects/cosy/conferences/edinburgh-05.html), the AISB’06
Symposium (http://www.cs.bham.ac.uk/research/cogaff/gc/aisb06/), the Workshop on “Natural and
Artificial Cognition” in June 2007 (http://tecolote.isi.edu/∼wkerr/wonac/), the BBSRC workshop
reported in these proceedings. and the CoSy project’s “Meeting of Minds” workshop in September 2007
(http://www.cs.bham.ac.uk/research/projects/cosy/conferences/mofm-paris-07/).
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be informative in connection with evolutionarily older, simpler, neural circuits (e.g. some
reflexes), but many of the newer functions are extremely abstract, and probably only very
indirectly related to specific neural events. In those cases, results of brain imaging may
show some correlations without explaining what is being done or how it is being done. For
example, if speakers of two very different languages with different phonetic structures, different
grammars, and different vocabularies are given some piece of information (e.g. that a hungry
lion is nearby) the brain processes involved in acquiring that information will be very different,
and may differ even for speakers of the same language, depending on what those speakers
have learnt and in what order.

Suppose that when two such individuals hear and understand reports with the same
semantic content, similar parts of their brains show increased activity: that will not answer
any of the deep questions about how understanding works. E.g. we shall be no nearer knowing
how to produce a working model with the same functionality.

The journey towards full understanding still has a long way to go, and may even be
endless, since human minds, other animal minds and robot minds can vary indefinitely. This
multidisciplinary research programme is very different from doing experimental psychology,
studying brain mechanisms, or building intelligent machines, yet combines aspects of all of
them, along with studies of philosophy, evolution, ethology and linguistics, as illustrated
in Sloman (1979); Sloman and Chappell (2005); Chappell and Sloman (2007); Sloman and
Chappell (2007).

A problem for such a programme is the difficulty of evaluating intermediate results. Over-
emphasising the need for falsifiable hypotheses can slow down scientific creativity. Instead,
as proposed by Lakatos (1980) (who extended some of Popper’s ideas), we need to allow that
distinguishing degenerative and progressive research programmes can take years, or decades.

3.4 Models that “scale out”

It should now be clear that being biologically inspired need not bring any advances. For
example, some computational modellers try to derive requirements from results of laboratory
experiments on humans. If different highly constrained laboratory tasks produce different
reaction times, or if certain changes in a visual task increase error rates, or if performance
changes in a certain way as a result of practice, then AI researchers sometimes set themselves
the goal of designing working systems that perform the same tasks, while mimicking the time
differences, error rate changes and other features of the experimental data. But designing an
AI model to match observed performance in such a laboratory experiment leaves open the
question: does that model “scale out”, i.e. can it be extended to form part of a larger model
meeting a much wider range of requirements? Not all mechanisms that perform like part of
a system are useful parts of something that performs like the whole system.

If not all the requirements for a machine have been specified, then it may be possible to
produce a working design that meets the partial requirements but which cannot be extended
to a design that satisfies all the requirements, because it meets the partial requirements in
the wrong way.

For example, if you want a machine to model a good human chess player, then part of the
requirement is that the machine should be able to win games of chess against good human
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players without taking much longer than humans do to make each move. We already have
such chess playing machines. But if you add other requirements, such as that the player
should be able to give advice to a weaker player, not by specifying moves for particular board
positions but by playing in such a way as to help the weaker player learn both from mistakes
and from successes, then it turns out that the obvious designs that do well as competent
chess-players are not easily extendable to meet the further requirements, because they blindly
execute algorithms (programmed or produced by training) without knowing what they do or
why. Such reflective knowledge is not necessary for winning, if the available machines are
fast enough to produce results by exhaustive search. However knowledge about higher level
features of various games is necessary for explaining how to win, or how to avoid different
ways of losing, and for choosing a style of play that is tailored to a learner’s needs.

The ability of a design with functionality F1 to scale out to include new functionality F2
is partly a matter of degree: it depends on how much extra mechanism is needed to provide
F2. The more essential use the extra mechanism makes of the original mechanism, the better
the original mechanism scales out.

A computer vision system can be very good at being trained to recognise certain classes
of objects in images, and to match experimental observations, without being extendable so
that it can understand why the same object looks different from different viewpoints, and
how the appearance changes as the viewpoint changes. (Note that understanding why could
simply involve being able to predict such changes, and being able to plan appearance changes
in order to gain new information. It need not involve being able to explain why, or even to
formulate the generalisations in any communication.) Further, insofar as recognition merely
involves being able to apply a label to a portion of an image, it need not be extendable so as
to allow the machine to see what actions can be performed on different objects or what the
consequences of those actions will be.

3.5 Vision and mathematical reasoning

Most people would not see human mathematical abilities as relevant to the functions of
vision, whereas my interest in understanding vision started when I was doing a DPhil in
philosophy (Sloman, 1962) attempting to defend Kant’s philosophy of mathematics against
the then prevalent Humean empiricist thesis that all knowledge that is not empirical must
be essentially trivial, like the ‘definitional’ knowledge that all triangles have three angles and
that all prime numbers have no proper divisors. These are analogous to ‘All bachelors are
unmarried’, conveying nothing more than you already know if you understand the words.
Many philosophers call such propositions “analytic” (Sloman, 1965).

In his Critique of Pure Reason, Kant had claimed, in opposition to Hume, that there are
ways of discovering new truths that extend our knowledge (i.e. they are “synthetic”, not
analytic) and which are not empirical. He included truths of arithmetic and geometry, such
as the truth that seven plus five equals twelve and the truth that the space occupied by a left
hand cannot be superimposed on the space occupied by a right hand, no matter how much
they are translated and rotated in 3-D space.

My previous experience as a mathematics student convinced me that Hume and
contemporary analytic philosophers were wrong and Kant was right. Discovering or
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understanding a proof is both different from empirically investigating how the world works
and different from reflecting on and rephrasing definitions.

Building on the work of Frege and others, Whitehead and Russell (1910–1913) tried to
show that although mathematics was non-trivial it could all be reduced to logic (Frege thought
that was true of arithmetic but not geometry), whereas I, like many mathematicians, knew
from first hand experience that doing mathematics often used spatial reasoning rather than
logical reasoning alone.

When trying to prove a theorem, mathematicians frequently use the ability to see both
structural relationships and also the possibility of and the consequences of changing such
relationships. For instance, if you look at a triangle with vertices labelled A, B and C, you
can see that it is possible to draw a straight line from any vertex, e.g. A, to the point which
I’ll refer to as M, the middle of the line BC, the opposite side. Even without drawing the line
AM, you can see that doing so will produce two triangles sharing a side. You can also see
that those two triangles have co-linear sides of the same length: BM and CM, both of which
are the same perpendicular distance from the opposite vertex A. From this you can infer that
the two triangles must also have the same area, showing that the line AM divides the original
triangle into two triangles of the same area, even though in general they will have different
shapes.

I am not claiming that every human being can see these things. Clearly very young
children cannot. Moreover, the ability may develop only in certain environments.

What exactly ‘see’ means here requires explanation: some would prefer to say that they
‘infer visually’, or something like that. The point is that, however we describe the ability, it
is connected with visual competences and needs to be explained by any adequate theory of
how human vision works. Some readers will already have noticed a connection with Gibson’s
theory of affordances, discussed in later sections. It turns out that his theory has to be
extended to account for the role of vision in reasoning.

Looking at a physical triangle is not necessary. Even when thinking about an imaginary
triangle rather than one drawn on paper, many people can visualise drawing new lines and can
reason visually about the consequences. You probably did that when reading my description
of what could be done to the triangle, since I deliberately did not provide a figure. Some
mathematicians reading my example will be able to translate the theorem into a logical form,
and then work out a derivation from some logical formalisation of Euclidean geometry, such
as Hilbert’s axiomatisation, but they are rare. I am not denying that it is possible to do
geometry only within a logical framework, but it is certainly unusual. Most mathematicians
first discover proofs geometrically even if they belong to the mathematical sub-culture that
feels duty bound later on to produce a purely logical version. That obligation was challenged
in Appendix II of (Sloman, 1962), which argued that an extra-logical justification is required
for accepting the logical axioms and rules as adequate to the purpose.6

Not all mathematical discoveries are based on visual reasoning. For example, very different
discoveries, some of them documented in Chapter 8 of Sloman (1978), occur as a child
learns to count, and then (sometimes unconsciously) discovers different uses for the counting
process and different features of the counting process, such as the fact that the result of

6Hilbert’s axiomatisation of Euclidean geometry is conveniently available at: http://www.math.umbc.edu/
∼campbell/Math306Spr02/Axioms/Hilbert.html
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counting a collection of objects is not altered by rearranging the objects but can be altered
by breaking one of the objects into two objects. That kind of mathematical discovery depends
on perceiving structures and relationships in procedures that can be followed.

Figure 3: A child may first discover empirically that any one-to-one mapping from one set
of objects to another (e.g. the grey arrows) can be converted to any other such one-to-one
mapping (e.g. the black arrows) by swapping ends on one side, two at a time. E.g. the right
hand ends of the grey arrow from A to G and the grey arrow from D to E can be swapped,
then the right hand ends of arrows from B to H and from C to F, etc. gradually eliminating
discrepant mappings. Formulating the general algorithm is left as an exercise for the reader.
How does the visual system find a discrepant mapping? How does it find another to swap with
it?

Sometimes abstract structures relating the application of procedures, have to be noticed,
rather than spatial structures and relationships. For example, a child who has learnt to count
may discover that in order to work out the size of the set formed by combining a collection
of M objects and a collection of N objects all it has to do is recite N numerals after M. E.g.
reciting three numerals after “five” gives “six, seven, eight”. A child may discover this for a
few cases and then notice that there is a general pattern that can always be relied on. This
depends on an information-processing architecture that includes self-observation mechanisms
that (a) detect features of the processes generated when procedures are applied, (b) work
out a common pattern and then (c) notice new instances of that pattern. The ability to
understand why the pattern can be relied on always to work requires additional capabilities
in the architecture, and usually develops later, as part of the process of becoming a young
mathematician. (This process is often terminated by going to school.)

In contrast, simultaneous perception of spatial and temporal relationships can lead to the
discovery that any one-to-one mapping between elements of two finite sets can be converted
into any other such mapping by successively swapping ends of mappings, as illustrated in
Figure 3. This sort of discovery requires quite abstract visual capabilities. For example,
vision is needed to detect a remaining discrepant mapping (e.g. the grey link that goes from
B to H instead of from B to F, in the figure). Then it is necessary to find a mapping with
which to swap it, namely the mapping that goes to F from C. If the right hand ends are
swapped the new mapping from B to F can be left thereafter. However the new mapping
from C to H will then need to be swapped with one that goes to G.

Initially the procedure might be followed using physical links, e.g. lines drawn on paper
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that are rubbed out and redrawn, or coloured threads joining objects which can be relocated.
Later the young mathematician can simulate the process, i.e. imagine doing it, in order to
work out the consequences, without actually changing anything in the environment.

A side effect of applying such a strategy repeatedly, seems to be production of implicit
understanding that it will always work, even if the child cannot articulate the strategy nor
explain why it works.

This seems to depend on the architecture allowing one process to observe that another
process has some consequences that do not depend on the particularities of the example, and
which are therefore necessary consequences of the procedure. This discovery may use the fact
that the visualising or imagining process ignores details that can vary from case to case.

It is worth noting (as argued in Sloman, 1962) that even using explicit logical reasoning
depends on the ability to visualise structural relations between symbolic structures, and
possible structural changes, e.g. constructing a new proposition using components of premiss
propositions.

3.6 Development of visual competences

Many people can see and think about geometrical possibilities and relationships. Very young
children cannot see all of them, let alone think about them. Why not? And what has to change
in their minds and brains to enable them to see such things? Answering those questions will
require explaining how such mathematical visual reasoning works and what needs to develop
in order to allow it to work.

There are developments that would not normally be described as mathematical, yet are
closely related to mathematical competences. For example, a very young child who can easily
insert one plastic cup into another may be able to lift a number of cut-out pictures of objects
the child can recognise from recesses, and know which recess each picture belongs to, but be
unable to get a back into is recess: the picture is placed in roughly the right location and
pressed hard, but that is not enough. The child apparently has not yet extended his or her
ontology to include boundaries of objects and alignment of boundaries. The problem does
not arise for circular cups because of their symmetry. Some time later such a child will easily
insert a picture into its recess, presumably after learning about alignment of boundaries.

How such extension of competences happens is not known. Such learning may include at
least three related aspects:

• developing new forms of representation;

• extending the learner’s ontology to allow new kinds of things that exist;

• developing new ways of manipulating representations for purposes of perception,
planning or reasoning, including acquiring new algorithms.

In some cases there is also development of new motor skills making use of the new cognitive
competences, e.g. learning to play a musical instrument or play a competitive game.

When all of those developments have occurred and the new extensions have been used a
lot, many special cases of their use can be developed and stored for rapid retrieval and use,
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allowing new problems to be solved far more quickly than before. Such components can then
be building blocks used in further developments. Learning to read text or music illustrates
all of this very well.

In the case of the child playing with puzzle pieces, what has to be learnt, namely facts
about boundaries and how they constrain possible movements, is something that can be
studied mathematically. Presumably what the very young child learns is a precursor to being
able to think mathematically about bounded regions of a plane. Later mathematical education
will build on general abilities to see structures and processes and see how some structures
can constrain or facilitate certain processes, as illustrated in Sauvy and Suavy (1974). This
is related to, but more general than, learning about affordances, as explained in the next
section.

4 Affordance-related visual competences: seeing processes
and possibilities

4.1 Perceiving and reasoning about changes

Visual, geometrical, reasoning capabilities depend on several visual competences, such as: (a)
the ability to attend to parts and relationships of a complex object, including “abstract”
parts like the midpoint of a line and relationships between widely separated objects or
features, such as collinearity, similarity of size, or parallelism, (b) the ability to discern the
possibility of changing what is in the scene, e.g. adding a new line, moving something to a new
location, altering a relationship between two or more objects, (c) the ability to work out the
consequences of making those changes, e.g. working out which new structures, relationships
and further possibilities for change will come into existence if those changes are made.

One of the consequences of making a change is the production of a new set of possibilities
for change and constraints limiting further changes. For example, drawing a new line across an
old line produces a new point of intersection, and new bounded regions in the neighbourhood
of that point. These new features can then be the basis of further changes, e.g. colouring a
region, labelling the point, using the point as the centre of a circle, etc. Being able to see such
possibilities in diagrams was part of the geometric reasoning capability discussed in Sloman
(1971), and explored further in Sloman (1982). Later it became clear that such mathematical
capabilities are closely related to perception of what Gibson called “affordances” (J. J. Gibson,
1979; Sloman, 1989).

It is not always noticed that both the ability to see and make use of affordances and the
ability to contemplate and reason about geometric constructions depend on a more primitive
and general competence, namely the ability to see processes (as opposed to merely seeing
structures), and the closely related ability to see the possibility of processes that are not
actually occurring, and also constraints that limit those possibilities. It seems unlikely that
all animals that have visual capabilities include these abilities to see that various processes
are possible even if they do not occur, or to see that some processes are blocked by features
of the environment that could be removed in order to allow the processes to occur. This is
one of the topics to be investigated in a study of different regions of niche space and design
space in biological systems.
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Implicit in our discussion so far is the fact that “multi-strand” relationships can hold
between two objects, insofar as not only the whole objects are spatially related (e.g. above,
near, north-west of) but also parts of the object. Consequently, when objects move that can
produce “multi-strand processes”, in which many relationships change simultaneously.

Gibson’s perceived affordances were concerned only with opportunities for actions that
the perceiver could perform, including moving towards, avoiding, grasping, lifting, pushing,
obstructing, catching, throwing, changing viewpoint, etc. Most of these actions involve
physical processes that have much in common with processes in the environment that are
not intentional actions, for instance objects blown in the wind, or a rotten branch breaking
and falling because of its weight. There are also processes that occur when intentional actions
are performed by others.

It is clear that most normal humans are able to perceive what is common between processes
that they produce, processes that others produce and processes that are not parts of anyone’s
intentional actions, e.g. two surfaces coming together or moving apart, an object rotating,
one object moving into or moving past another, and so on. Being able to represent what is
common to all processes satisfying some abstract conditions independently of how then are
perceived and whether the agent initiates them imposes important requirements on the forms
of representation. It implies, for example, that representation of perceived processes should
not be restricted to incipient motor processes, even if incipient motor processes sometimes
play a role.

4.2 Proto-affordances and possible processes

Not only can we see such processes when they actually occur independently of our own actions,
we can also perceive and think about the possibility of such a process occurring without having
to regard it is an action we can produce, or a process that can affect us. You can see a rock
on a steep hillside and think about what would happen if the rock started rolling down,
no matter what the cause of the rolling. In short, we can see what could be called proto-
affordances: namely relations in the environment that enable or constrain processes that are
possible in a situation. They could become parts of positive or negative affordances for the
perceiver under certain circumstances, but need not be regarded as affordances in order to be
seen, thought about, or predicted. The notion of a proto-affordance is essentially the notion
a situation in which some process can occur or is prevented from occurring, or constrained
in some way. This is different from the notion of a micro-affordance, namely an affordance
related to a small sub-action of an action involved in an affordance, or a potentiated action
triggered by seeing objects that have affordances (Ellis & Tucker, 2000). Proto-affordances
need not involve actions.

The ability to see that certain processes are possible even when they are not within the
power of the perceiver to produce, i.e. the ability to perceive proto-affordances, underlies the
ability to perceive what we shall call “vicarious” affordances, namely affordances for others.
This requires the ability to represent the possibility of things happening in the environment
independently of any of the perceiver’s goals being achieved or obstructed, and independently
of the agent doing anything in the environment. Thinking about future possible processes
extends that to representing processes that may occur in situations that are not currently
perceived – for instance thinking about what will happen if it rains, or if the wind blows –
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without specifying any details or any specific viewpoint. In other words, these abilities use an
ontology that is not restricted to sensorimotor contents. They need an “exosomatic ontology”,
the ability to refer to entities and processes that can exist outside the body, independently
of any sensory or motor signals. A pre-verbal child or non-verbal animal that can see and
reason about such proto-affordances and vicarious affordances is probably using a spatial GL,
as suggested in Section 2.2.

4.3 Vicarious affordances and exosomatic ontologies

When perceived possibilities involve what someone else can or cannot do, we can describe
them as involving “vicarious” affordances. Learning to see vicarious affordances can be very
important for adults whose children need help while they learn ever more complex (and
sometimes dangerous tasks), or for animals that need to anticipate or constrain the behaviours
of other animals in fighting with them, attempting to catch and eat them, or attempting
to avoid being eaten by them. It need not be the case that perception of such vicarious
affordances has to be based on being able to use such affordances in one’s own actions. An
animal that needs to escape from a flying predator by choosing a appropriate shelter need
not itself ever have been a flying hunter.

In many animals, instead of an ability to perceive potential negative affordances for
predators and make use of them there is an inherited tendency to react to predators by
seeking shelter in appropriate locations, e.g. running into burrows. In those animals the
problem has been solved by evolution and a fixed solution adopted. A more sophisticated
animal might be able to choose between two shelters by assessing their difficulty for the
predator, as humans can do.

In more advanced cases, observation of the capabilities of a predator or enemy can lead
to a new design for a shelter that is deliberately built for the purpose, as started happening
after aircraft came into use in warfare in the 20th century, and potential targets were either
camouflaged or protected in bomb-proof shelters. The use of black-outs during night bombing
raids were an example where people accepted conditions that removed their own affordances in
order to reduce the positive affordances for the enemy. It is an open research question whether
other animals can reason about vicarious affordances, though it seems that both pre-verbal
human children and some chimpanzees can perceive and react altruistically to affordances for
others, as shown by Warneken and Tomasello (2006).7 That research emphasises questions
about altruistic motivation, whereas I am drawing attention to the representational and
conceptual competences that make it possible to be both helpful and unhelpful to others.

4.4 Evolutionary significance of independently mobile graspers

A feature of the ability to perceive and use affordances that is not often noted is that there are
commonalities between affordances related to doing things with left hand, with right hand,
with both hands, with teeth and with tools such as tongs and pliers. Compare Figure 4. In
principle it is possible that all the means of grasping are represented in terms of features of
the sensorimotor signals involved, but the variety of such patterns is astronomical. Even using

7Videos are available at http://email.eva.mpg.de/∼warneken/video.htm
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Figure 4: Four examples of grasping: two done by fingers, and two by a plastic clip. In all
cases, two 3-D surfaces move together, causing something to be held between them, though
retinal image projections and sensorimotor patterns in each case are very different.

only one hand, an object can be grasped in many different ways and because hands can move
independently of eyes, the variety of retinal projections produced by grasping processes is so
great that having to learn all the relevant image structures separately would be a mammoth
task.

If, however, grasping is represented more abstractly, in terms of 3-D relations between
surfaces in space, using an amodal form of representation, using an exosomatic ontology, i.e.
referring to things outside the body instead of only to sensorimotor signals, the variety of cases
can be considerably reduced: for instance very many types of grasping involve two surfaces
moving together with an object between them until contact is achieved, after which, if the
surfaces move together the object moves with them. Sub-cases of that general process-pattern
include different object weights and sizes, different kinds of surface (e.g. rigid, compressible,
smooth, rough, etc.), flat vs curved vs articulated grasping surfaces, and so on. The most
abstract representation can be used for high level planning of actions involving grasping,
including, for example, the common requirement for the two grasping surfaces to be further
apart during the approach than the diameter of the thing to be grasped. More detailed
information about the specific case can then be used either when planning details, or during
action execution to control the detailed motion.

I suspect that biological evolution long ago “discovered” the enormous advantages of
amodal, exosomatic, representations and ontologies as compared with representations of
patterns in sensorimotor signals. Since the 3-D process-features described in the last
paragraph are common to grasping with the left hand, grasping with the right hand, grasping
with two hands, grasping with the mouth, and also grasping done by other individuals,
enormous economy can be achieved by directly representing the process that occurs in the
environment, rather than learning and storing myriad different relations between motor
signals that produce grasping, and sensor signals that result. The ability of infants to
transfer information about affordances from one hand or foot to another, and the economy
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achieved by using more general forms of representation, is mentioned in E. J. Gibson and
Pick (2000), though they do not discuss the visual and cognitive mechanisms and detailed
forms of representation required.

There are also forms of grasping that are more complex than a process in which two
surfaces close in on something between them, for instance, grasping of tools or implements
for use in particular ways, such as holding a pen for writing, a screwdriver for turning, a
knife for cutting, a fork for prodding and lifting food, a wooden ball for bowling, a pair of
scissors for cutting, and a baby for bathing or dressing. Those variants are not discussed
in this paper, though the perceptual, representational, and control requirements for each of
them would add significantly to the points made here.

Although 2-D image projections are often helpful for controlling the fine details of an
action during visual servoing (as noted in Sloman, 1982), using an exosomatic ontology
and representing the 3-D spatial structures and processes, rather than using only somatic
sensorimotor signal patterns, can make it possible for an individual to learn about an
affordance in one situation and transfer that learning to another where sensor inputs and
motor signals are quite different: e.g. discovering the consequences of grasping an object with
the right hand then transferring what has been learned to other or observing grasping one by
another individual and then attempting to produce a similar spatial process.

The possibility of such transfer depends on a general ability to project 3-D processes to
possible sensory signals (e.g. working out what to look for when grasping with the left hand
for the first time), and to possible motor signals, e.g. working out how to make the grasping
happen in a new way. If there are generic, re-usable, mappings between 3-D processes in
the environment and sensor and motor signal patterns, then concepts referring to abstract
features of environmental processes, and generalisations expressed using such concepts, will
be widely re-usable.

Using such a powerful form of representation makes it unnecessary to rely on magical
properties of “mirror neurones”, unless those neurones are simply part of the brain’s
mechanism for constructing and using amodal exosomatic representations. Which evolved
first will not be discussed here.

Another example may be the ease with which we can feel the shape of a surface or the
depth of a hole by stroking or poking with a firmly held stick instead of relying on contact
with fingers. Our brains have developed ways of mapping different sensorimotor patterns into
the same kinds of exosomatic representations.

5 Towards a more general visual ontology

5.1 More on proto-affordances

Both affordances for oneself and affordances for others depend on something more
fundamental: namely causal relationships that arise from structural relationships between
objects or parts of objects in the environment. In Section 4.2 we labelled these “proto-
affordances”. An animal or machine that can perceive and represent such relationships in the
environment, may be able to make far more predictions, explain far more phenomena, and
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plan far more solutions to practical problems than one that is restricted to representing only
information about sensorimotor patterns, or information about its own present affordances
for action.

For example, if a ball is in the space between two vertical surfaces of large rocks, the
surfaces may prevent the ball moving horizontally in one direction while allowing it to move
horizontally in another direction – parallel to the surfaces. If something is moving, and there
is a large object in the path, then the presence of that obstacle can prevent the indefinite
continuation of the motion. These possibilities for processes and constraints on possibilities
for processes exist and can be perceived independently of whether they are relevant to the
goals or actions of any perceiver.

We describe causal relationships between objects or parts of objects that make some
processes possible and others impossible as “proto-affordances”, since they have the potential,
in appropriate contexts, to be the basis for affordances of animals or robots that might
have goals or might attempt actions that would be enabled or constrained by these causal
relationships.

But a particular proto-affordance, such as the potential of one object to impede the motion
of another, can be the basis for a wide variety of action affordances. E.g. it could produce
a negative affordance for an agent trying to push the moving object towards some remote
location. It could provide a positive affordance for some individual wishing to terminate the
motion of a moving object, e.g. a mother wishing to obstruct something rolling down a hill
towards her infants.

5.2 The need for generative process representations

An animal or a machine that can discover such proto-affordances, and has means of
representing them that allow manipulation of representations, may have the ability to combine
a given set of proto-affordances in different ways in order to generate representations of a
huge variety of affordances. An animal that can only learn about and store information
about positive and negative affordances that it has already encountered will have a far more
constrained understanding of what can and cannot occur in the environment, and will be
more limited in its ability to think about entirely new processes and structures before it has
ever encountered them. This may be one of the main differences between humans and most
other animals. However, some non-human animals seem to show evidence of creative problem
solving that uses the ability to combine proto-affordances to form new complex affordances. A
particularly famous example was the New Caledonian crow Betty, who seems to have invented
several ways of transforming a straight piece of wire into a hook in order to lift a bucket of
food from a glass tube (Weir, Chappell, & Kacelnik, 2002).

It is not known what forms of representation birds or other animals are capable of using
when perceiving or reasoning about 3-D processes and proto-affordances. Anyone who tries
making a rigid nest in a tree, by using only one hand and adding only one twig at a time
should develop a healthy respect for the intelligence of certain nest-building birds.

Most AI vision researchers, and many psychologists assume that the sole function of visual
perception is acquiring information about which objects exist in the environment, and what
their properties and relationships are, whereas the facts assembled here suggest that another
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major function of vision (at least in humans, and probably several other species) is to acquire
information from the environment about what does not exist but could exist. Moreover, if
the ability to reason about consequences of possible processes uses the visual representations
involved in perceiving actual processes, then one of the functions of visual mechanisms is
to do reasoning, presumably using GLs (Section 2.2). This conforms with the experience of
many mathematicians and scientists.

It is not clear how much of this ability to construct, manipulate and use representations of
actual and possible processes exists at birth (as the ability to run with the herd exists in some
mammals at birth) but that manipulative ability certainly develops, as does the ability to
see both what actually exists in the environment and what is possible in any given situation.
Examples of such learning in human infants and children are presented in E. J. Gibson and
Pick (2000), although much of the book focuses on how a child learns about affordances for
itself and for others rather than more general learning about properties of the environment.8

5.3 Complex affordances: Combining process possibilities

One of the important things learnt by a child (or animal) exploring the environment by acting
in it, is that affordances can be combined to form more complex affordances. This depends on
the fact that actions can be combined to form more complex actions, which in turn depends
on the more basic fact about the physical environment that processes can be combined to form
more complex processes. Reasoning about such complex processes in advance depends on the
ability to combine simpler proto-affordances to form more complex ones.

Because processes occur in space and time, and can have spatially and temporally related
parts, they can be combined in at least the following ways:

• processes occurring in sequence can form a more complex process;

• two processes can occur at the same time (e.g. two hands moving in opposite directions);

• processes can overlap in time, e.g. the second starting before the first has completed;

• processes can overlap in space, for example a chisel moving forwards into a rotating
piece of wood;

• one process can modify another, e.g. squeezing a rotating wheel can slow down its
rotation;

• one process can launch another, e.g. a foot kicking a ball.

The ability to represent a sequence of processes is part of the ability to form plans prior
to executing them. It is also part of the ability to predict future events, and to explain past
events, but this is just a special case of a more general ability to combine proto-affordances.
How is this done?

Both pre-verbal children and animals without human language seem to perceive spatial
structures and processes and to be able to do some reasoning about spatial relations and
processes, e.g. when they solve a problem for the first time. Examples are reported in

8The developing ability of a child to see new kinds of things by growing an ontology is discussed in more detail
in an online presentation on “Evolution of ontology-extension”, at http://www.cs.bham.ac.uk/research/

projects/cosy/papers/#pr0604
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Warneken and Tomasello (2006). They are unlikely to be reasoning by means of a human
language, or a logical formalism.

5.4 Generative forms of representation

How do animal brains represent a wide variety of processes? Formal grammars are capable
of summarising infinitely varied classes of symbolic structures. A grammar for sentences in a
spoken language can generate a potentially infinite variety of acoustic processes. There have
also been various attempts to produce systematic ways of generating and representing spatial
structures. For example, in the 1960s various researchers experimented with grammars for
classes of pictures. Later that was followed by work on classes of 3-D structures. One
example was the “geon” theory of Biederman, proposing (implausibly) that humans see
all 3-D structures as derivable from a small set of primitive objects that can be deformed
and combined in various ways (Hayworth & Biederman, 2006). Marr’s (1977) theory of 3-
D perception based on generalised cylinders was a variant on this sort of theory. Others
have proposed alternative ways of generating classes of 3-D structures. Varley, Martin, and
Suzuki (2004), generalising earlier work by Huffman, Clowes and Waltz, report on mechanisms
for interpreting a wide variety of 2-D depictions of 3-D polyhedra. There have been many
experiments with schemes for generating classes of pictures of plant-like, or animal-like shapes.

The demands on a system for representing spatial processes are greater than demands on
generative specifications of spatial structures. There are far more processes that can occur
in any environment than static structures, since each structure can be moved or deformed
in many ways (translating, rotating, stretching, compressing, shearing twisting, etc.) and
any two structures can move in relation to each other in many different ways. That extra
complexity is not expressible just by adding an extra dimension to a vector, which suffices
for the move from 3-D to 4-D points. So a system that can represent, see, predict and reason
about processes will need to be far more complex than mechanisms for coping with static 3-D
structures.

The set of possible processes can be constrained by a context, but even then the
remaining set can be very large. There are many familiar human and biological contexts
that determine distinct vast and varied collections of possible spatial processes, for example
a child’s playroom, a kitchen, a group of people at a dinner table, a garden, a motorway,
various situations in which birds build nests, scenarios in which lions hunt their prey, a lion
eating its prey (a collection of processes that change their character as more of the animal has
been opened up and eaten), etc. A theory of how biological vision works must explain what
kinds of information about spatial processes particular animals are capable of acquiring, how
the information is represented, how it is used, how the ability to acquire and use more kinds
of information develops, and so on.

5.5 Generative schemes for spatial processes

There are not many formal generative schemes for classes of spatial processes. Newton’s
laws characterise an infinite variety of possible motions of point masses and larger structures.
There have also been various attempts at dance notation. Computer programming languages
are powerful representations of processes, and some of them are used to represent processes
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simulating 3-D physical processes. But the representations have hitherto mostly been required
for generating graphical displays, and not for supporting perceptual and cognitive processes
in a perceiver of the simulated world.

I don’t know whether anyone has attempted to produce a generative scheme for
combinations of spatial processes that are likely to occur in the environment inhabited
by particular sorts of animals, or by a child in a particular culture. In AI, symbolic
planning formalisms have been in use since the 1950s, and these provide a means of
representing individual events in terms of preconditions and postconditions. Complex and
varied combinations of these event representations allow processes to be represented consisting
of sequences of events. The importance of such forms of representation was recognised
very early, e.g. by Miller, Galanter, and Pribram (1960). However, discrete sequences are
not enough: the notations used in such planning systems are not suitable for representing
the many kinds of spatial process that can occur in our environment in which features
and relationships change continuously, and changes occur concurrently at different levels of
abstraction. For example such planning formalisms cannot capture the process of wiping a
sink clean as perceived when someone actually does it, though the formalism will work for an
arbitrarily “chunked” summary of the process, e.g. pick up cloth; wipe sink; rinse cloth!

It seems that in order to accommodate the variety of processes humans and other animals
can perceive and understand, they will need forms of representation that have the properties
we ascribed to spatial GLs in Section 2.2, with the benefits described in Sloman (1971).

5.6 Varieties of learning about processes

In the first few years of life, a typical human child must learn to perceive and to produce many
hundreds of different sorts of spatial process, some involving its own body, some involving
movements of other humans and pets, and some involving motion of inanimate objects,
with various causes. Researchers are often amazed at the speed with which young children
extend their vocabulary, after they start talking. I suspect that if anyone ever finds a way
to count the rate at which a pre-verbal child extends its ontology and its ability to construct
and manipulate new representations in its mental virtual machine, we shall be even more
impressed.

This learning process almost certainly requires forms of representation and an ontology
that are not given at birth (as happens for the vast majority of animals) but are built up
in layers, where the processes in later layers can be both more complex and more abstract
than the processes represented in earlier layers, and depend increasingly on the geographic,
climatic and cultural influences on the child’s environment.

For example, topological processes where contact relationships, containment relationships,
alignment relationships go into and out of existence are different from metrical processes where
things change continuously. Process representations restricted to changes of shape, size, and
geometrical or topological interactions between objects are not as rich as representations
that refer to kinds of material and their causal and functional roles, e.g. elasticity, rigidity,
impenetrability, stickiness, weight, etc.

Moreover, the very same physical process can include both metrical changes, as something
is lowered into or lifted out of a container and discrete topological changes as contact,
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containment, or overlap relationships between objects and spatial regions or volumes change.

5.7 Process-primitives and compound processes

In each context there are different sets of ‘primitive’ processes and different ways in which
processes can be combined to form more complex processes. Some simple examples in a child’s
environment might include an object simultaneously moving and rotating, where the rotation
may be closely coupled to the translation, e.g. a ball rolling on a surface, or independent of
the translation, e.g. a frisbee spinning as it flies. Other closely coupled adjacent processes
include: A pair of meshed gear wheels rotating; a string unwinding as an axle turns; a thread
being pulled through cloth as a needle is lifted; a pair of laces being tied together by a moving
hands and fingers; a bolt simultaneously turning and moving further into a nut or threaded
hole; a sleeve sliding on an arm as the arm is stretched; and sauce in a pan moving as a spoon
moves round in it.

Many compound processes arise when a person or animal interacts with a physical object.
Compound 3-D processes are the basis of an enormous variety of affordances. For example,
an object may afford grasping, and lifting, and as a result of that it may afford the possibility
of being moved to a new location. The combination of grasping, lifting and moving allows a
goal to be achieved by performing a compound action using the three affordances in sequence.
The grasping itself can be a complex process made of various successive sub-processes, and
some concurrent processes – for example concurrently changing relationships between different
parts of the surface of the object and different parts of the grasping hand, as metrical and
topological relationships change between:

1. palm and fingers

2. the grasped object

3. the spatial envelope of the hand

4. the spatial envelope of the grasped object or object part.

It is often thought that the only significant result of making use of an affordance
is producing a physical change in the environment. But an immediate, more abstract,
consequence of a physical change is typically the existence of new positive and negative
affordances. The handle on a pan lid may afford lifting the lid, but once the lid is lifted
not only is there a new physical situation, there are also new affordances: for pouring the
contents of the pan, adding other things to the pan, stirring the contents, seeing the state of
the contents, etc. The last example illustrates the fact that an action can alter the information
available in the environment, which is an epistemic affordance, just as the action of moving
closer to an open door (Figure 5) alters epistemic affordances.9

9Further discussion of epistemic affordances and how they change can be found in http://www.cs.bham.

ac.uk/research/projects/cosy/papers/#dp0702
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Figure 5: As you move nearer the door you will have access to more information about the
contents of the room, and as you move further away you will have less. Why? If you move left
or right you will change the information available to you. In all these cases, physical actions
change the epistemic affordances in a situation.

5.8 Reasoning about interacting spatial processes

We have seen that processes that occur close together in space and time can interact in a wide
variety of ways, depending on the precise spatial and temporal relationships. It is possible to
learn empirically about the consequences of such interactions by observing them happen, and
either collecting statistics to support future predictions, or formulating and testing universal
generalisations. However, humans and some other animals sometimes need to be able to
consider and work out consequences of possible combinations that they have never previously
observed, for example approaching a door that is shut, while carrying something in both
hands, for the first time. It does not take a genius to work out that an elbow can be used to
depress the handle while pushing to open the door.

E. J. Gibson and Pick (2000) state on page 180 that the affordance of a tool can be
discovered in only two ways, by exploratory activities and by imitation. There are many
unsolved problems about what sorts of mechanism can extract and store re-usable information
about how to do something on the basis of observing either other people performing actions
or performing them oneself. However the most important point in the present context is that
a third way of discovering affordances was not mentioned, namely working out what processes
are possible when objects are manipulated, and what their consequences will be.

A very strong requirement for human-like visual mechanisms is that they should produce
representations (e.g. GLs, if our theory is correct) that can be used for reasoning about novel
spatial configurations and novel combinations of processes, which in humans seems often to
involve the same kind of reasoning as led to the study of Euclidean geometry long before
the development of logic and algebra as we know them. Likewise, young children can reason
about spatial processes and their implications long before they can do logic and algebra (as
Piaget realised) and to some extent even before they can talk. As remarked in Sloman and
Chappell (2007), this has implications for the evolution and development of language.

The requirement to be able to use information gained visually to reason about the
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consequences of novel processes is an important example of the need for designs to scale
out, introduced earlier in Section 3.

I assume that by “exploratory activities” Gibson and Pick meant to refer to physical
exploration and play, interacting with objects in the environment, including their own bodies.
The missing “third way”, namely working things out, can also involve exploratory activities,
but the explorations can be done with representations of the objects and processes instead
of using the actual physical objects. The representations used to explore possibilities can
be entirely mental, e.g. visualising what happens when some geometrical configuration is
transformed, or they can include diagrams or models, for instance 2-D pictures representing
3-D structures, with processes represented by marks on the pictures (Sloman, 1971; Sauvy &
Suavy, 1974). The biological advantages of being able to reason about future actions have
often been pointed out, e.g. by Craik (1943); Popper (1972).

Although reasoning with representations in place of the objects can be fallacious, and
often is, nevertheless, when done rigorously, it is mathematical inference rather than empirical
inference. As documented at length in (Lakatos, 1976) the methods of mathematics are far
from infallible. But that does not make them empirical in the same way as the methods of the
physical sciences are. This claim is subtle and complex and will not be substantiated here.
A more detailed discussion can be found in the online presentation mentioned in Footnote 1.

The ability to think about and reason about novel combinations of familiar types of process
is often required for solving new problems, for example realising for the first time that instead
of going from A to B and then to C it is possible to take a short cut from A to C, or realising
that a rigid circular disc can serve as well as something long and thin (like a screwdriver) to
lever something up, or realising for the first time that a pair of long cylinders placed under
a large box can make the box easier to move along a flat surface, though the cylinders will
repeatedly have to be moved from the back of the pushed object to the front, as the motion
proceeds.

The majority of work on reasoning in AI makes use of forms of representation that are
close to logic and algebra, namely what were called “Fregean” representations in Sloman
(1971), because, as Frege was the first to note, they all use the function-argument syntactic
form. However, humans, and possibly some other animals have the ability to visualise things
changing and can use visualisation to work out consequences of processes. That was described
as reasoning with “analogical” representations in the 1971 paper. Attneave (1974) makes a
very similar distinction, though he compares analogical representations with Fregean ones
thus “What is a relation in one system may be a part, or an element, in the other.”

5.9 Creative reasoning about processes and affordances

E. J. Gibson and Pick (2000) mention various kinds of “prospectivity” that develop in children
but they focus only on empirically learnt kinds of predictive rules, and ignore the child’s
growing ability to design and represent novel complex multi-stage processes that can achieve
some goal. Such prospectivity involves working out what will happen if something is done,
instead of merely using a learnt correlation or imitating an observed action.

The ability to work things out is facilitated and enhanced by the ability to form verbal
descriptions, as in inventing stories, but linguistic competence is not a prerequisite for the
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ability, as can be seen in the creative problem-solving of pre-verbal children and some
other animals. Human children, and some other animals, seem to be able to work out
the consequences of some actions using geometric and topological reasoning – an ability
also required for doing some kinds of mathematics, e.g. proving theorems in Euclidean
geometry. Before doing mathematics explicitly, children need to develop a kind of visual and
manipulative fluency regarding spatial structures, relationships and processes that is built
up by playing with many different examples. Sauvy and Suavy (1974) present examples of
activities that can help young children to develop their understanding of topological structures
and processes. If we can produce a theory of what the information-processing mechanisms
are that make that possible we may be in a much better position to design such educational
games and toys.

Figure 6: A person trying to move a chair that is too wide to fit through a door can work out
how to move it through the door by combining a collection of translations and 3-D rotations
about different axes, some done in parallel, some in sequence. Traditional AI planners cannot
construct plans involving continuous interacting actions.

As illustrated in Figure 6, affordances can interact in complex ways when combined,
because of the changing spatial relationships of objects during the processes of performing
the actions. A large chair may afford lifting and carrying from one place to another, and a
doorway may afford passage from one room to another. But the attempt to combine the two
affordances by lifting and carrying the chair to the next room may fail when the plan is tried,
e.g. if it is found during the process of execution that the chair is too wide to fit through the
doorway.

A very young child may not be able to do anything about that, but an older child who has
learnt to perceive the possibility of rotation of a 3-D object, may realise that a combination of
small rotations about different axes combined with small translations can form a compound
process that results in the chair getting through the doorway. (Is any other type of animal
capable of working that out?)

At an early stage the child may merely be able to do this one step at a time: seeing the
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possibility of the first rotation, then, after performing the rotation, seeing the possibility of
forward motion, which is soon obstructed. Then another rotation may be tried followed by
another translation to achieve the final goal. At a later stage the child may be able to see
the possibility of the whole sequence of actions by visualising in advance the situation that
will arise after each step. After searching in imagination through a set of possible action
sequences the child may be able to work out by visual reasoning how to move the chair into
the next room, and then do it. Although that description will be understood intuitively by
most readers, it is not at all clear what sort of brain mechanism or computer mechanism can
perform that reasoning function or achieve that learning.

If that is done often, the whole process may be learnt as a re-usable pattern for moving
large objects that can be made to fit a variety of specific cases, without having to be re-
discovered every time.

That learning requires some abstract, possibly parametrised, representation of the process
to be created, stored in a re-usable form, and integrated with some kind of indexing mechanism
that allows its relevance to be recognised when new related problems are encountered, so that
the whole design process does not need to be repeated each time.

It is also possible to learn to separate complex affordances that have positive and negative
aspects into components so as to retain only the positive aspects. This is a type of process
“de-bugging” that children and adults often have to do, though many politicians ignore the
need when designing policies. A colleague reported to me that his child had learnt that open
drawers could be closed by pushing them shut. The easiest way to do that was to curl his
fingers over the upper edge of the projecting drawer and push, as he would push other objects.
The resulting pain led him to discover that the pushing could be made slightly less convenient
by flattening his hand when pushing, so as to produce the desired result without the unwanted
side effects.

It is important to notice the difference between merely discovering empirically that using
a flat hand avoids the painful result (and achieves a completely shut drawer) and seeing why
that is so. This requires understanding consequences of actions in which the gap between
two surfaces is reduced while there is something between the surfaces.10 Being able to do
geometrical reasoning enables a child who is old enough to work out why pushing with a flat
hand prevents fingers being caught between the two surfaces. Such a child could also work
out that if the drawer is recessed and the front of the chest juts out immediately above the
drawer, it will be necessary to make sure that the flat hand does not project above the edge
of the drawer in the last stages of pushing.

5.10 The need for explanatory theories

It is clear that many humans can perform such reasoning by visualising processes in advance
of producing them, but it is not at all clear what representations are used to manipulate
information about the shapes and affordances of the objects involved. A shallow answer
(at least as old as Craik’s book) is that we build internal models of the environment and
manipulate them in order to discover the consequences. But this leaves open the question

10This is an example of Kantian causal reasoning discussed in presentations at WONAC, June 2007: http:
//www.cs.bham.ac.uk/research/projects/cogaff/talks/#wonac
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what such a model could be. If the model has too much in common with the things in the
environment then the internal model cannot be part of the explanation of how the external
processes are perceived and controlled.

It is often thought that such a predictive model must be isomorphic with what it
represents. An internal model that is isomorphic with the environment would lack appropriate
explanatory power, since it would shift our problem to the problem of explaining how the
person (or a “homunculus” perceiving the model), could work out what to do with it. Crude
explanations in terms of internal models simply produce an infinite regress. The requirements
for adequate theories are discussed in more detail in Section 6 below.

The lack of a suitable theory about how spatial structures and processes can be represented
means that we cannot yet give a similar range of capabilities to robots, although a noteworthy
early effort at giving a machine the ability to reason spatially (only in 2-D) about actions in
the environment was Funt’s PhD (1977).

Although there has been much work on giving machines with video cameras or laser
scanners the ability to construct representations of 3-D structures and processes that can be
projected onto a screen to show pictures or videos from different viewpoints, we still lack the
ability to give robots spatial representation capabilities that are usable for other purposes
such as manipulating objects, planning manipulations, and reasoning about them, except in
very simple cases, for instance motions of objects that do not touch one another, or motions
of objects that are all rigid and have simple shapes, e.g. moving cylinders or cubes.

AI planning systems developed in the 1960s as exemplified in the STRIPS planner (Fikes
& Nilsson, 1971) and more complex recent planners (surveyed in Ghallab, Nau, & Traverso,
2004) all make use of the fact that knowledge about affordances can be abstracted into reusable
information about the preconditions and effects of actions. Once that is done, it provides a
new kind of cognitive affordance: concerned with acting on information structures. That
early AI work demonstrated the possibility of combining knowledge about simple actions to
provide information about complex actions composed of simple actions.

However, STRIPS and its successors assume that the information about actions and
affordances can be expressed in terms of implications between propositions expressed in a
logical formalism. The planning process searches for a sequence (or partially ordered network)
of discrete actions that will transform the initial problem state into the desired goal state. But
we need a richer mechanism to handle actions that involve interactions between continuous
processes, like the changes that occur while an arm-chair is being rotated and translated
simultaneously, or while a sink is being wiped clean with a cloth.

5.11 Seeing logical relationships

Consider an argument like
All computers consume energy
Fred is using a computer,
Therefore
Fred is using something that consumes energy

When normally sighted people do logic or algebra they use the ability to see structural
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relationships between formulae: a kind of geometrical competence. For example, detecting the
logical validity of the above argument depends on noticing that there are structural relations
between parts of the argument. People can learn to recognise such groups of sentences as
instances of a spatial pattern, such as this:

All Ps are Qs
A is using a P
Therefore
A is using a Q

where “A”, “P”, and “Q” are variables capable of being replaced by a referring expression and
two predicate expressions, respectively, to produce different instances. A still more general
expression could be formed by replacing “is using” with a relation variable.

The examples in previous sections concerned acquiring and using information about what
sorts of changes can and cannot occur in a physical situation. Something similar can occur
when the ability is applied not to solid movable objects in the environment, but to patterns
that can be perceived on the surfaces of objects, such as symbols drawn in the sand, or on
paper representing logical structures.

Although humans normally check the structure of such reasoning using vision, there are
other ways to check such an inference: a computer running the language Prolog may do it
by performing the “resolution” operation on computer data-structures, i.e. matching two
structures and linking variables in one to parts of the other. So the same reasoning process
may be implemented in different sorts of mechanisms – including both visual and logical
mechanisms.

At my first AI conference, in 1971, I challenged the then AI orthodoxy by arguing that
intelligent machines would need to be able to reason geometrically as well as logically, and
that some reasoning with diagrams should be regarded as being valid and rigorous, and in
some cases far more efficient than reasoning using logic, because logical representations are
topic-neutral and sometimes lose some of the domain structure that can be used in searching
for proofs.

But it soon became clear that, although many people had independently concluded that
AI techniques needed to be extended using spatial reasoning techniques, neither I nor anyone
else knew how to design machines with the right kinds of abilities, even though there were
many people working on giving machines the ability to recognise, analyse and manipulate
images, or parts of images, often represented as 2-D rectangular arrays, though sometimes
in other forms, e.g. using log-polar coordinates, e.g. Funt (1977). Other examples were
presented in Glasgow et al. (1995). More recent examples are Jamnik, Bundy, and Green
(1999); Winterstein (2005).

5.12 An objection: blind mathematicians

It could be argued that the description of mathematical reasoning as “visual” must be wrong
because people who have been blind from birth can reason about shapes and do logic and
mathematics even though they cannot see.11 That argument ignores the fact that some of

11E.g. Jackson (2002) reports on a number of blind mathematicians.
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the visual apparatus produced by evolution to support seeing and reasoning about structures
and processes in the environment is in brain mechanisms that perform some of their functions
without optical input: like the normal ability to see what can change in a situation when
those changes are not occurring, or the ability to visualise a future sequence of actions that
are not now being performed, and therefore cannot produce retinal input.

Moreover, since the same 3-D situation can generate infinitely many views, it would be
explosively expensive to represent a recurring 3-D situation in terms of corresponding retinal
contents, so it is possible that some biological organisms, including humans, have the ability
to represent the environment using amodal, non-retinotopic forms of representation whose
registration with the optic array changes across saccades and other physical movements (as
discussed in Trehub, 1991; Grush, 2004). Such a representation could also be linked to tactile
and haptic information even if it originally evolved under pressure to cope with the vast
amount of near and far scene information provided in parallel through vision. So people who
have been blind from birth may still be using the bulk of the visual system that evolved in their
ancestors, just as sighted people may be using it when they dream about seeing things, and
when they visualise diagrams with their eyes shut. However, the process of learning about
the specific spatial structures and processes in the environment must be very different for
blind people. The learning processes are different in a different way for individuals born with
other disabilities, e.g. with missing limbs, or with faulty physical control mechanisms as in
cerebral palsy. The fact that many such individuals acquire a common humanity via different
routes is an indication of how much of human mentality is independent of our specific form
of embodiment. That is probably not true of all species, though many are highly adaptable
if injured.

5.13 Use of abstraction is not metaphor

The claim that visual mechanisms using abstract patterns can support reasoning of the sort
done in mathematics should not be confused with the common claim that spatial concepts
are used as metaphors for non-spatial topics, for instance the claim that we must use spatial
metaphors in thinking about numbers or about time. Such claims are based on a failure
to understand that there are high level domain-neutral concepts (e.g. “order”, “between”,
“more than”, “is a subset of”) which are equally applicable to many different domains for
example because all those domains have some common topological features. Points on a line,
times in a temporal interval, and any set of integers all form total orderings, and both can
be divided into ordered subsets in many different ways. Seeing that there is an abstract,
generally applicable, pattern, is different from seeing structural mappings between partly
similar instances.

An animal or machine that can abstract the possibility of joining a vertex of a triangle to
the middle of the opposite side (see Section 3.5) from instances of that process, and can form
a pattern that is applicable to all triangles, past and future, is doing something different from
creating a single such triangle with such a line drawn on it and mapping parts of it on to
other triangles in order to modify them in the same way. Observing the commonality between
modifications of two specific triangles may trigger the discovery of the general pattern, but
if the general pattern has not been understood as a re-usable pattern with many instances,
then each new instance of a triangle has to be separately tested for the possibility of being
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part of a process that can be mapped onto the original model.

Using manipulable structures in one domain to represent patterns in another domain for
the purpose of reasoning about them, because both domains share some features (without
necessarily being isomorphic), is a different matter from using the first domain as a metaphor
for the second domain: metaphors do not provide valid inferences, although they are often
usefully suggestive.

These ideas are not new: Several famous examples of visual proofs are presented in Nelsen
(1993). Many theorists, including great logicians such as Frege (see Merrick, 2006) and
mathematicians such as Poincaré, 1905, have pointed at the use of visualisation and spatial
reasoning capabilities in mathematics and logic. It will be clear from earlier comments about
exosomatic ontologies and representations in Section 4 that I do not agree with Poincaré’s
claim “But every one knows that this perception of the third dimension reduces to a sense of
the effort of accommodation which must be made, and to a sense of the convergence of the
two eyes, that must take place in order to perceive an object, distinctly. These are muscular
sensations quite different from the visual sensations which have given us the concept of the
two first dimensions.” I suspect he would have modified his views if he had been involved in
designing robots that can perceive and reason about 3-D scenes.

However, I am not aware of work that spells out detailed engineering requirements for
a working visual system capable of being used for mathematical visual reasoning, or work
that proposes a design that can meet those requirements, although a few special cases have
been partly modelled in AI programs, fairly recent examples being Jamnik et al. (1999);
Winterstein (2005). A partial set of requirements for such a system is in a presentation
mentioned in Footnote 1.

6 Studying mechanisms vs. studying requirements.

6.1 The importance of requirements

It has gradually become clear that finding suitable explanatory mechanisms is only one part
of the problem of studying minds, including studying vision. Less obvious than the need
to find mechanisms is the need to clarify precisely what the mechanisms are needed for. It
is not very difficult to specify hundreds of different algorithms for analysing, comparing or
transforming images or parts of images represented as 2-D arrays – as was done, for example,
in the 1960s, in Azriel Rosenfeld’s research group in Maryland (Rosenfeld, 1969)12 – but
not so easy to specify what the high level requirements are that determine what sorts of
algorithm and what forms of representation are needed for modelling or replicating human
visual abilities, including the ability to reason visually.

Engineers are accustomed to distinguishing specifying requirements from specifying a
design. The requirements can guide the search for designs, in addition to providing criteria
for evaluating designs. However, we still have no comprehensive generally agreed inventory
of the capabilities that need to be modelled and explained in an artificial, human-like visual

12It is worth remembering that in those days computers ran millions of times more slowly than now, and
memories were measured in kilobytes not gigabytes, so that things that are trivial now were monumental
achievements then.
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system, although there are many fragmentary requirements studied by different researchers
in psychology, neuroscience, AI, education, history of art (Gombrich, 1960), etc. This paper
adds more fragments to the collection but does not claim completeness.

Unfortunately, AI researchers (and other modellers) too often launch into seeking designs,
on the assumption that the requirements are clear, e.g. because they think everyone knows
what a visual system has to be able to do, or because they deliberately focus on a very
narrow set of requirements defined by behaviours observed in psychology experiments, or
requirements defined by some benchmark test, such as recognition of objects in a collection
of images. There is nothing intrinsically wrong with such research, but it can lead researchers
(and their students) to ignore the question of what else needs to be explained in addition
to those behaviours. Moreover, as already remarked, successful models or explanations of a
limited set of behaviours may not scale out.

A deeper problem, is that there is as yet not even a generally agreed ontology for
discussing requirements and designs. That is we do not have an agreed set of concepts for
describing cognitive functions in great detail, with sufficient precision to be used in specifying
requirements for testable working systems. (For example, how would you decide whether a
robot really is visualising a route, or merely constructing and manipulating a data-structure
representing that route?)

6.2 Mistaken requirements

Figure 7: This figure (after a drawing by Oscar Reutersvärd in 1934) has many components
that can be interpreted as representing parts of a 3-D scene, with a wide variety of affordances,
e.g. possible ways of moving the individual cubes, or ways of inserting something into the
gaps between the cubes. Yet the whole scene, made up of all the fragments with the depicted
relationships and locally consistent affordances, is geometrically impossible. This shows that
seeing the scene depicted here cannot involve constructing a model isomorphic with the whole
scene, since no such model can exist.

Section 5 of Sloman (1989), entitled “Previous false starts”, presents a list of nine fairly
common mistaken assumptions about how vision systems should work. Much of this paper is
implicitly an extension of that list. For example it is tempting to suppose that a requirement
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for 3-D vision mechanisms is that they must construct a 3-D model of the perceived scene, with
the components arranged within the model isomorphically with the relationships in the scene.
This is in fact how some AI vision systems work, for instance in robots that move around using
laser range-finders to create a model of all the visible surfaces in the environment. Such a
model can be used to generate graphical displays showing the appearance of the environment
from different viewpoints. However, Figure 7 shows that we are able to see a complex structure
without building such a model, for there cannot be a model of an impossible scene.

An alternative hypothesis is that what a visual system needs to do is construct a large
collection of fragments of information of various sorts about surfaces, objects, relationships,
possible changes and constraints on changes in the scene (including positive and negative
affordances), with most of the information fragments represented at least approximately in
registration with the optic array, though in an amodal form, insofar as they refer to entities
that are not all currently visible, or use a 3-D ontology and have the potential to be linked
to control of actions or to be matched against different sorts of sensory information. This
form of representation, which could include spatial GLs (Sec. 2.2), can be thought of as a
generalisation of generalised aspect-graphs.

The idea of an aspect-graph has probably been reinvented several times using different
labels. For instance, in (Minsky, 1978) they were called “frame systems”. The core idea is
that a 3-D object will present distinct 2-D views which can be linked to form a graph where
the edges of the graph represent actions that a viewer can perform, such as moving left,
or right or up or down. These actions are associated with both continuous changes in the
2-D view (e.g. relative lengths of lines and sizes of angles changing) and also discontinuous
changes, e.g. an edge or face disappearing or coming into view. This seems to be the same
idea as Kant discussed in (Kant, 1781) in connection with different views presented by the
same house as you move around it or move up or down within it. This idea can be generalised
so that more actions are included, such as touching or pushing, or grasping an object and
more changes are produced such as two objects coming together or moving apart, or an object
rotating, or sliding or tilting, or becoming unstable, etc,

An animal or robot that does not have a good representation of the 3-D structures,
relationships and processes involved will have to build up many generalised aspect graphs
empirically, using myriad viewpoints, different ways of performing the same action, etc.,
in order to learn all the relevant mappings between sensorimotor signals and the resulting
sensorimotor signals. However if a representation of the relevant 3-D structures and processes
is available, along with mechanisms that are able to work out geometric and topological
consequences of changing relationships, that can be used to derive consequences that have
never been experienced before, e.g. the result of performing an action with your left hand
on a green triangular block of a particular size for the first time. For this reason, we need to
understand the differences between somatic and exosomatic ontologies and representations,
where the former are concerned with patterns (at various levels of abstraction) in sets of
sensory and motor signals and the latter are concerned with entities in the environment
that exist independently of anything perceiving or acting on them. Somatic, sensorimotor
ontologies refer to things that can only exist in the body of an animal or robot. A great
deal of current research in vision and robotics focuses on mechanisms that manipulate only
representations of sensorimotor phenomena, e.g. statistical patterns relating multi-modal
sensor and motor signals, whereas one of the main claims of this paper is that human-
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like systems need, in addition, amodal exosomatic ontologies and forms of representation
suited to them. Their great advantage is that a single representation of a process can in the
environment, such as two fingers grasping a berry, can ignore all the variations in sensor and
motor signals that depend on precisely how the grasping is done and the viewpoint from which
the process is observed, and which other objects may partially occlude relevant surfaces.

6.3 Is consistency-checking required?

Of course, this ability to acquire such general, reusable forms of representation, requires
the perceiver to be able to take in visual (and possibly haptic and tactile) sensory input and
construct a representation of the 3-D structure in the scene (as opposed to only representations
of the appearances). If that representation of the 3-D scene is made up of many piecemeal
representations of fragments of the scene and the possible effects of processes involving those
fragments, then in principle those fragments could form an inconsistent totality as shown in
Figure 7. So it would seem that an intelligent robot or animal must constantly check whether
it has consistent percepts.

However, since no portion of the 3-D environment is capable of containing impossible
objects, there is normally no need for such a visual system to check that all the derived
information is consistent, except in order to eliminate ambiguities. This is just as well since
in general consistency checking is an intractable process, which scales exponentially with the
number of items to be checked.

Humans can learn to check consistency, at least in some contexts, and that enables them to
see that the configuration of cubes depicted in the figure is impossible. However a very young
child will not notice the impossibility, and even an adult might not notice the impossibility if
a picture of an impossible scene contains a large number of objects arranged not in an triangle
but in a more complex configuration.

6.4 Obvious and unobvious requirements: ontological blindness

Many people, e.g. (Neisser, 1967), have noticed the need for hierarchical decomposition of
complex perceived objects and the usefulness of a mixture of top down, bottom up and middle
out processing in perception of such objects. A recent example of a visual learning system
that automatically acquires a layered network of image features as a result of being exposed
to a collection of pictures showing objects that the system learns to recognise is Fidler and
Leonardis (2007).

What is not so often noticed is that in addition to part-whole hierarchies there are also
ontological layers, as illustrated in the Popeye program13 described in Chapter 9 of Sloman
(1978). The program was presented with images made of dots in a rectangular grid, such as
Figure 8, which it analysed and interpreted in terms of:

• a layer of dot configurations (which could, for example, contain collections of collinear
adjacent dots);

13So-called because it was implemented in the Edinburgh University AI programming language POP-2.
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• a layer of line configurations, where lines are interpretations of “noisy” sets of collinear
dots, and can form configurations such parallel pairs, and junctions of various sorts;

• a layer of 2-D overlapping, opaque ‘plates’ with straight sides and rectangular corners,
which in Popeye were restricted to the shapes of cut-out capital letters, such as “A”,
“E”, “F”, “H” etc. represented in a noisy fashion by collections of straight line segments;

• a layer of sequences of capital letters represented by the plates, also in a “noisy” fashion
because the plates could be jumbled together with overlaps;

• a layer of words, represented by the letter sequences.

Figure 8: This is a typical example of a configuration of dots presented to the Popeye program
in Chapter 9 of Sloman (1978), which attempted to find a known word by concurrently looking
for structures in several ontological layers, with a mixture of top-down, bottom-up and middle-
out influences. If the noise and clutter were not too bad, the program, like humans could detect
the word before identifying all the letters and their parts. It also degraded gracefully as noise
and clutter made the problem harder.

The Popeye program illustrated the need for some visual systems to use ontologies at
different levels of abstraction processed concurrently, using a mixture of top-down, bottom-
up and middle-out processing, where lower levels are not parts of the higher levels but rather
represent the higher levels.

At each ontological layer there are part-whole hierarchies. E.g. a complex group of dots
may be made of smaller groups of dots. Going from one ontological layer to another is not a
matter of grouping parts into a whole, but interpreting one sort of structure as representing
another, for instance, interpreting configurations of dots as representing configurations lines.
A complex configuration of lines could be made of simpler configurations, which are ultimately
made of line-segments. Configurations of lines can be interpreted as representing overlapping
2-D plates. A complex opaque plate (e.g. the plate representing the “E” in Figure 8) could
be made of smaller, simpler rectangular plates. In this situation a dot may be a part of a row
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of dots, but it is not a part of a plate or letter or a word, though it is part of something that
may represent plates letters or words.

The same letters and words can be represented in different ways, e.g. using different
fonts, and different conventions for projecting fonts into 2-D configurations. For example,
in one place a word may be represented using outline letters, and in another place using
filled letters, though Popeye could not handle that. Popeye could handle overlapping letters,
though most other text-reading programs do not allow the notion of overlap and would fail
on these pictures, unlike humans.

Text represented using several ontological layers may be regarded as a very contrived
example, but similar comments about ontological layers can be made when a working machine
is perceived, such as the internals of an old fashioned clock. There will be sensory layers
concerned with changing patterns of varying complexity in the optic array. A perceiver will
have to interpret those changing sensory patterns as representing 3-D surfaces and their
relationships, some of which change over time. At a higher level of abstraction there are
functional categories of objects, e.g. levers, gears, pulleys, axles, strings, and various more or
less complex clusters of such objects, such as escapement mechanisms.

The ability to perceive the operation of a complex machine may have to use an ontology
including different kinds of substance, for instance both rigid parts, flexible elastic strings or
springs, flexible chains with weights on the end, whose density needs to be high. At a still
higher level of abstraction there are causal and functional roles, such as providing energy to
drive the machine, transmitting energy from one part to another, and in some kinds of engine
mechanisms for varying the torque and controlling speed either by modifying the energy
source or by applying brakes, etc.

There are many vision researchers who appreciate the need for a vision system to move
between a 2-D ontology and a 3-D ontology. For a recent survey see Breckon and Fisher
(2005). The need for such layers will be evident to anyone who works on vision-based text-
understanding. However it is rare to include as many ontological categories, in different layers
as I claim are needed by an intelligent human-like agent interacting with a 3-D environment,
or to relate those layers to different processing layers in the central architecture as explained
in Sloman (2001).

6.5 Different uses of 3-D information

Another subtle issue is the need to contrast merely requiring information about 3-D structure
(e.g. “amodal completion” of perceived volumes) with specifying that the information needs
to be represented so that it can be used in a certain way. Representation of information for
the purposes of recognition involves different requirements from the representations that can
be used for projecting images from different viewpoints, for servo-control of manipulation,
for planning future actions, or for understanding how something works. The need for
representations to be usable for diverse applications is another example of the problem of
“scaling out”, mentioned in Section 3.

Perception of intelligent agents in the environment involves yet another level of
abstraction, insofar as some perceived movements are interpreted as actions with purposes.
For instance a hand moving towards a cup might be seen as intentional, whereas changing
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patterns of wrinkles on a sleeve, or motion of shadows might be seen as unintended side-effects.

6.6 Seeing mental states

Moreover, if eyes and face are visible, humans will often see not just actions but also mental
states, such as focus of attention in a certain direction, puzzlement, worry, relief, happiness,
sadness, and so on. Insofar as these are all seen rather than inferred in some non-visual
formalism, the percepts will be at least approximately in registration with the optic array.
Happiness is seen in one face and not in another. The requirement for perceptual mechanisms
to use an ontological layer that includes mental states raises many problems that will not be
discussed here, for example the need to be able to cope with referential opacity. Representing
something that is itself an information user requires meta-semantic competences. These
subtleties are ignored by researchers who train computer programs to label pictures of faces
using words such as “happy”, “angry”, and claim that their programs can recognise emotional
states.

The ability to perceive some processes as intentional actions produced by other agents
with mental states, including desires and beliefs probably had to evolve (and has to develop in
children or robots) before the ability to produce and understand intentional communications.

The need for ontological layers to be used in perceptual processing was noticed long ago
in connection with natural language understanding, which involves, for example, phonemic,
morphemic, syntactic, semantic and pragmatic layers. So, since one of the uses of vision is
reading written language, it should have been obvious that visual perception also requires
ontological layers: but that fact has been generally ignored by vision researchers, except in
those cases where the distinction between the 2-D ontology of images and the 3-D ontology
of scenes has been noticed. The point being made here is that those two ontological layers
do not suffice for the full variety of human and animal visual perception. We need to add
several more layers including: 2-D and 3-D processes, causal relations, functional relations,
actions, mental states of perceived agents, social phenomena, and all the forms of perception
that differ from one adult specialisation to another, e.g. in athletics, hunting animals, various
kinds of craft, engineering, scientific research, etc.

Figure 8 shows that even within the set of 2-D phenomena that play a role in visual
perception, there are different ontological levels, that are relevant to different cognitive sub-
functions. For instance, painters, unlike sculptors, have to learn to ignore what they know
about the 3-D structures they see and attend to the 2-D relations features and relationships
to be depicted in drawings and paintings, some related to edges, some to surface markings,
some to shading, some to surface curvature, and so on.

6.7 Perceiving 2-D processes in the optic array

2-D processes involving changes in the optic array are also important, as J.J. Gibson pointed
out. As noted in Sloman (1982), apart from perception of static scenes, vision is also required
for online control of continuous actions (visual servoing) which requires different forms of
representation from those required for perception of structures to be described, remembered,
used in planning actions, etc.
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Sometimes a 2-D projection is more useful than a 3-D description for the control problem,
as it may be simpler and quicker to compute, and can suffice for particular task, such as
steering a vehicle through a gap.

But it is a mistake to think that only continuously varying percepts are involved in online
visual control of actions: there is also checking whether goals or sub-goals have been achieved,
whether the conditions for future processes have not been violated, whether new obstacles or
new opportunities have turned up, and so on. Those can involve checking discrete conditions.

Unfortunately research on ventral and dorsal streams of neural processing has led some
researchers (e.g. Goodale & Milner, 1992) to assume that control of action is separate from
cognition, or worse, that spatial perception (“where things are”) is a completely separate
function from categorisation (“what things are”), apparently ignoring the fact that what an
object is may depend on where its parts are in relation to one another, or where it is located
in a larger whole.

6.8 Structures and processes

A major theme that pervades engineering design and especially software design is the
relationship between structure and process. But the more general relevance of this theme
is not always noticed. For instance, doing school Euclidean geometry involves seeing how a
particular structure can be the starting point for various processes, and seeing how processes
of construction can produce new structures from old ones, e.g. in proving theorems, such as
Pythagoras’ theorem.

Some processes transform structures discretely, e.g. by changing the topology of something
(adding a new line to a diagram, separating two parts of an object, altering contact or
containment relations) others continuously (e.g. painting a wall, pushing or lifting an object,
or blowing up a balloon).

Understanding how an old-fashioned clock works involves seeing causal connections and
constraints related to possible processes that can occur in the mechanism.

Performing many actions involves doing several things concurrently, e.g. (a) producing
processes (e.g. grasping), (b) seeing those processes, and (c) using visual servoing to control
the fine details, (d) predicting future processes. Some or all of this may be done unconsciously,
as in posture control and many skilled performances. (Such unconscious use of expertise does
not make the actions unintentional.)

Another theme that has been evident for many decades is the fact that percepts can
involve hierarchical structure, although not all the structures should be thought of as loop-
free trees like parse-trees. Seeing a bicycle, or even a simple closed polygon, requires use of
a graph rather than a tree, though to a first approximation most animals and plants have a
tree-like structure (e.g. decomposition into parts that are decomposed into parts, etc.)

6.9 Layered ontologies

We have seen, in Section 6.4, that in addition to part-whole decomposition, perception can
use layered ontologies. For example, one sub-ontology might consist entirely of 2-D image
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structures and processes, whereas another includes 3-D spatial structures and processes, and
another kinds of ‘stuff’ of which objects are made and their properties (e.g. rigidity, elasticity,
solubility, thermal conductivity, etc.), to which can be added mental states and processes, e.g.
seeing a person as happy or sad, or as intently watching a crawling insect.

The use of multiple ontologies is even more obvious when what is seen is text, or sheet
music, perceived using different geometric, syntactic, and semantic ontologies.

What did not strike me until 2005 when I was working on an EU-funded robot project
(CoSy) is what follows from the combination of the two themes (a) the content of what is
seen is often processes and process-related affordances, and (b) the content of what is seen
involves both hierarchical structure and multiple ontologies. These themes together imply a
set of requirements for a visual system that makes current working models seem very far from
what we need either in order to understand human and animal vision, or in order to produce
working models for scientific or engineering purposes.

Very many people are now working on how to cope with the fact that digital camera
technology, occlusion of one object by another, poor lighting, confusing colours and textures,
intervening fog or dirty windows, and other common occurrences leads to pervasive problems
of noise and ambiguity that have to be accounted for. This has led to a lot of research
on mechanisms for representing and manipulating uncertainty, for instance propagating
inferences based on noisy and ambiguous low level information.

What is not always noticed is that a consequence of use of layered ontologies is that humans
have ways of seeing high level structures and processes whose descriptions are impervious to
the low level uncertainties: you can see that there definitely is a person walking away from
you on your side of the road and another walking in the opposite direction on the other side
of the road, even though you cannot tell the precise locations, velocities, accelerations, sizes,
orientations and other features of the people and their hands, feet, arms, legs, etc. The latter
information may be totally irrelevant for your current purposes (looking to see whether any
cars are coming, before you cross the road).

Is it possible that the processes of dealing with uncertainty could be made far more
efficient and much simpler if they were ignored for a while and some effort put into the
problem of finding the determinate, certain, higher level information first and then adding
the uncertain details constrained by what is already certain? Of course, finding ontologies,
forms of representation. and mechanisms to perform those high level tasks may be very
difficult.

Some notes on this can be found in this discussion paper on predicting affordance changes,
including both action affordances and epistemic affordances: http://www.cs.bham.ac.uk/
research/projects/cosy/papers/#dp0702

6.10 Seeing is prior to recognising

Much research on visual perception considers only one of the functions of perception, namely
recognition. It is often forgotten that there are many things we can see that we cannot
recognise or label, and indeed that is a precondition for learning to categorise things.

When you see a complex new object that you do not recognise you may see a great deal
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of 3-D structure, which includes recognising many types of surface fragment, including flat
parts, curved parts, changes of curvature, bumps, ridges, grooves, holes, discontinuous curves
where two curved parts meet, and many more. In addition to many surface fragments, many
of their relationships are also seen.

Not only are relationships within objects important, but also relationships between
objects, and also between different parts of objects. When someone is seen to grasp something
manually, there are many different configurations that can be involved in grasping the same
object, depending on how different parts of the hand are related to different parts of the
grasped object. For many years my own work on vision (e.g in the Popeye project) assumed
that perception involves perception of structure at different levels of abstraction, although
the need to perceive and control processes during continuous visual servoing was mentioned
in Sloman (1982). However, it was not until working on requirements for a robot that
can manipulate 3-D objects in 2005 that I realised that it is also necessary to be able to
see processes at different levels of abstraction, as explained with a number of examples in
this online presentation: http://www.cs.bham.ac.uk/research/projects/cosy/papers/
#pr0505.

6.11 Seeing processes

Biological considerations suggest that, for most animals, perception of processes must be the
most important function, since perception is crucial to the control of action, in a dynamic,
sometimes rapidly changing environment that can include mobile predators and mobile prey,
and where different parts of the environment provide different nutrients, shelter, etc. So
from this viewpoint perception of structures is just a special case of perception of processes
– processes in which not much happens.

Unfortunately, not only has very little (as far as I know) been achieved in designing visual
systems that can perceive a wide range of 3-D spatial structures (as opposed to recognising
objects in images), there is even less AI work on perception of processes, apart from things
like online control of simple movements which involves sensing one or two changing values and
sending out simple control signals, for instance “pole balancing” control systems. There seems
also to be very little research in psychology and neuroscience on the forms of representations
and mechanisms required for perception of processes involving moving or changing structures,
apart from research that merely finds out who can do what under what conditions. Examples
of the latter include Heider and Simmel (1944.), Michotte (1962) and Johansson (1973).

Addressing that deficiency (including explaining how GLs for process representation work)
should be a major goal for future vision research, both in computational modelling but also
in neuroscience. Some speculations about mechanisms are presented in Section 7.

6.12 Seeing possible processes: proto-affordances

We have already noted that an important feature of process perception is the ability to
consider different ways a process may continue, some of them conditional on other processes
intervening, such as an obstacle being moved onto or off the path of a moving object.
Many cases of predictive control include some element of uncertainty based on imprecise
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measurements of position, velocity or acceleration. This sort of uncertainty can be handled
using fuzzy or probabilistic control devices which handle intervals instead of point values.

However there are cases where the issue is not uncertainty or inaccuracy of measurement
but the existence of very different opportunities, such as getting past an obstacle by climbing
over it, or going round it on the left or on the right. It may be very clear what the alternatives
are, and what their advantages and disadvantages are. E.g one alternative may involve a
climb that requires finding something to stand on, while another requires a heavy object to
be pushed out of the way, and the third requires squeezing through a narrow gap.

The ability to notice and evaluate distinct possible futures is required not only when an
animal is controlling its own actions but also when it perceives something else whose motion
could continue in different ways. How the ability to detect such vicarious affordances is used
may depend on whether the perceived mover is someone (or something) the perceiver is trying
to help, or a prey animal, or a predator.

Groups concerned with attempting to conserve an endangered species sometimes have to
learn to recognise affordances for members of that species.

In simple cases, prediction and evaluation of alternative futures can make use of a
simulation mechanism. But the requirement to deal explicitly with alternative possibilities
requires a more sophisticated simulation than is needed for prediction: a predictive simulation
can simply be run to derive a result, whereas evaluation of alternatives requires the ability
to start the simulation with different initial conditions so that it produces different results.
It also requires some way of recording the different results so that they can be used later for
evaluation or further processing. For example, it may be necessary to use the fact that after
the first choice new situations can arise with new choices that depend on the first choice. In
relatively simple domains, such as discrete board games, storing multiple branching futures
going several steps ahead may use fairly simple logical or other forms of representation (though
space requirements can expand exponentially with number of steps considered, so that early
pruning of poor alternatives is usually required).

The ability to cope with branching futures in a continuous spatial environment poses
problems that do not arise in “toy” discrete grid-based environments. The agent has to be
able to chunk continuous ranges of options into relatively small sets of alternatives in order
to avoid dealing with explosively branching paths into the future. How to do this may be
something learnt by exploring good ways to group options by representing situations and
possible motions at a high level of abstraction. For example all the motions that share some
topological feature such as entering a certain region of space can often be grouped together
as one option.

Learning to see good ways of subdividing continuous spatial regions and continuous ranges
of future actions involves developing a good descriptive ontology at a higher level of abstraction
than sensor and motor signals inherently provide. The structure of the environment, not some
feature of sensorimotor signals makes it sensible to distinguish the three cases: moving forward
to one side of an obstacle, moving so as to make contact with the obstacle and moving so as to
go to the other side. Further useful subdivisions may also be generated by the environment,
e.g. if the wall beyond the left side of the obstacle has two doors known to lead into the same
room beyond the wall, and only the further door is open.

In addition to “chunking” of possibilities on the basis of differences between opportunities
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for an animal or robot to move as a whole there are ways of chunking them on the basis of
articulation of the agent’s body into independently movable parts. For example, if there are
two hands available, and some task requires both hands to be used, one to pick an object
up and the other to perform some action on it (e.g. removing its lid) then each hand can
be considered for each task, producing four possible combinations. However if it is difficult
or impossible for either hand to do both tasks, then detecting that difficulty in advance may
make it clear that the set of futures should be pruned by requiring each hand to do only one
task, leaving only two options. Noticing that one task is better suited to one of the hands
can then reduce the set under consideration to one case, even though that case covers a very
large variety of slightly different processes in the space of motion trajectories.

In humans, and some other species, during the first few years of life a major function
of play and exploration in an infant is providing opportunities for the discovery of many
hundreds of concepts that are useful for chunking sets of possible states of affairs and possible
process, and learning good ways to represent them so as to facilitate predicting high level
consequences, which can then be used in rapid decision-making strategies.

Being able to detect, reason about, compare and evaluate alternative possible futures
requires a form of representation that goes beyond mere simulation of the motion, although
a simulation that can be restarted at saved decision points and pushed in different directions
when restarted could play a role – and that may have been a precursor to more sophisticated
forms of planning.

More sophisticated mechanisms are required if the results of different forward projections
need to be stored and compared.14 That requires use of a form of representation that can
express abstract summaries of the alternatives, whose relationships can also be represented
during a comparison process, before a decision is taken, whether it is a decision about what
to predict or a decision about what to do. In the 1960s and 1970s AI researchers showed
how to do some of this using logic-based forms of representation. Doing it with spatial GLs
(Sect. 2.2) could use partly similar mechanisms, but different forms of representation would
be required.

The ability to perceive not just what is happening at any time but what the possible
branching futures are – including, good futures, neutral futures, and bad futures from the
point of view of the perceiver’s goals and actions, is an aspect of J.J. Gibson’s theory of
perception as being primarily about affordances for the perceiver rather than acquisition of
information about some objective and neutral environment. However, I don’t think Gibson
considered the need to be able to represent, compare and evaluate multi-step branching
futures: that would have been incompatible with his adamant denial of any role for
representations and computation.

14E.g. using a “fully deliberative” architecture, defined in
http://www.cs.bham.ac.uk/research/projects/cosy/papers/#dp0604
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7 Speculation about mechanisms required: new kinds of
dynamical systems

Preceding sections have assembled many facts about animal and human vision that help to
constrain both theories of how brains, or the virtual machines implemented on brains work,
and computer-based models that are intended to replicate or explain human competences.
One thing that has not been mentioned so far is the extraordinary speed with which animal
vision operates. This is a requirement for fast moving animals whose environment can
change rapidly (including animals that fly through tree-tops). An informal demonstration
of the speed with which we can process a series of unrelated photographs and extract quite
abstract information about them is available online here http://www.cs.bham.ac.uk/research/
projects/cogaff/misc/multipic-challenge.pdf

(Compare people turning corners, looking out of trains, coming out of railway stations or
airports in new towns, watching TV documentaries about places never visited, etc.)

No known mechanism comes anywhere near explaining how that is possible especially at
the speed with which we do it.

7.1 Sketch of a possible mechanism

Figure 9: A crude impressionistic sketch indicating a collection of dynamical systems some
closely coupled with the environment through sensors and effectors others more remote, with
many causal linkages between different subsystems, many of which will be dormant at any
time. Some of the larger dynamical systems are composed of smaller ones. The system does
not all exist at birth but is grown, through a lengthy process of learning and development partly
driven by the environment, as sketched in Chappell and Sloman 2007

Perhaps we need a new kind of dynamical system. Some current researchers (e.g., Beer,
2000) investigate cognition based on dynamical systems composed of simple “brains” closely
coupled with the environment through sensors and effectors. We need to extend those ideas
to allow a multitude of interacting dynamical systems, some of which can run decoupled
from the environment, for instance during planning and reasoning, as indicated crudely in
Figure 9. During process perception, changing sensory information will drive a collection of

48

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/multipic-challenge.pdf
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/multipic-challenge.pdf


linked processes at different levels of abstraction. Some of the same internal processing may
be used to represent non-existent processes that could occur, when they are imagined in order
to reason about what their consequences would be if they occurred.

Many dynamical systems are defined in terms of continuously changing variables and
interactions defined by differential equations, whereas our previous discussion, e.g. in
Section 5.6, implies that we need mechanisms that can represent discontinuous as well as
continuous changes, for example to cope with topological changes that occur as objects are
moved, or goals become satisfied. Another piece of evidence for such a requirement is the
sort of discrete ‘flip’ that can occur when viewing well known ambiguous figures such as the
Necker cube, the duck-rabbit, and the old-woman/young-woman picture. It is significant that
such internal flips can occur without any change in sensory input.

It is possible that adult human perception depends on the prior construction of a very
large number of multi-stable dynamical systems each made of many components that are
themselves made of “lower level” multistable dynamical systems. Many of the subsystems will
be dormant at any time, but the mechanisms must support rapidly activating an organised,
layered, collection of them partly under the control of current sensory input, partly under
control of current goals, needs, or expectations, and partly under the control of a large
collection of constraints and preferences linking the different dynamical systems.

On this model, each new perceived scene triggers the activation of a collection of dynamical
systems driven by the low level contents of the optic array and these in turn trigger the
activation of successively higher level dynamical systems corresponding to more and more
complex ontologies, where the construction process is constrained simultaneously by general
knowledge, the current data, and, in some cases, immediate contextual knowledge. Sub-
systems that are activated can also influence and help to constrain the activating subsystems,
influencing grouping, thresholding, and removing ambiguities, as happened in the Popeye
program described in Section 6.4.

As processes occur in the scene or the perceiver moves, that will drive changes in some of
the lower level subsystems which in turn will cause changes elsewhere, causing the perceived
processes to be represented by internal processes at different levels of abstraction. Some the
same mechanisms may be used when when possible but non-existent processes are imagined
in order to reason about their consequences.

On this view, a human-like visual system is a very complex multi-stable dynamical system:

• composed of multiple smaller multi-stable dynamical systems

• that are grown over many years of learning,

• that may be (recursively?) composed of smaller collections of multi-stable dynamical
systems that can be turned on and off as needed,

• some with only discrete attractors, others capable of changing continuously,

• many of them inert or disabled most of the time, but capable of being activated rapidly,

• each capable of being influenced by other sub-systems or sensory input or changing
current goals, i.e. turned on, then kicked into new (more stable) states bottom up, top
down or sideways,
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• constrained in parallel by many other multi-stable sub-systems,

• with mechanisms for interpreting configurations of subsystem-states as representing
scene structures and affordances, and interpreting changing configurations as
representing processes,

• using different such representations at different levels of abstraction changing on
different time scales,

• where the whole system is capable of growing new sub-systems, permanent or temporary,
some short-term (for the current environment) and some long term (when learning to
perceive new things), e.g.

– learning to read text
– learning to sight read music
– learning to play tennis expertly,

etc.

That specification contrasts with “atomic-state dynamical systems”, described in Sloman
(1993) as dynamical systems:

• with a fixed number of variables that change continuously

• with one global state

• that can only be in one attractor at a time

• with a fixed structure (e.g. a fixed size state vector).

The difficulties of implementing a dynamical system with the desired properties (including
components in which spatial GLs are manipulated) should not be underestimated. The
mechanisms used by brains for this purpose may turn out to be very different from mechanisms
already discovered.

8 Concluding comments

In Sloman (1989) it was proposed that we need to replace ‘modular’ architectures with
‘labyrinthine’ architectures, reflecting both the variety of components required within a visual
system and the varieties of interconnectivity between visual subsystems and other subsystems
(e.g. action control subsystems, auditory subsystems, and various kinds of central systems).

One way to make progress may be to start by relating human vision to the many
evolutionary precursors, including vision in other animals. If newer systems did not replace
older ones, but built on them, that suggests that many research questions need to be
rephrased to assume that many different kinds of visual processing are going on concurrently,
especially when a process is perceived that involves different levels of abstraction perceived
concurrently, e.g. continuous physical and geometric changes relating parts of visible surfaces
and spaces at the lowest level, discrete changes, including topological and causal changes at
a higher level, and in some cases intentional actions, successes, failures, near misses, etc. at
a still more abstract level. The different levels use different ontologies, different forms of
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representation, and probably different mechanisms, yet they are all interconnected, and all in
partial registration with the optic array (not with retinal images, since perceived processes
survive saccades).

It is very important to take account of the fact that those ontologies are not to be defined
only in terms of what is going on inside the organism (i.e. in the nervous system and the
body) since a great deal of the information an organism needs is not about what is happening
in it, but what is happening in the environment, though the environment is not some unique
given (as implicitly assumed in Marr’s theory of vision (1982), for example) but is different
for different organisms, even when located in the same place. They have different niches.

As Ulric Neisser pointed out in his (1976) it is folly to study only minds and brains without
studying the environments those minds and brains evolved to function in.

One of the major points emphasised here is that coping with our environment requires
humans to be able to perceive, predict, plan, explain, reason about, and control processes
of many kinds, and some of that ability is closely related to our ability to do mathematical
reasoning about geometric and topological structures and processes. So perhaps trying to
model the development of a mathematician able to do spatial reasoning will turn out to provide
a major stepping stone to explaining how human vision works and producing convincing
working models. Perhaps it will show that Immanuel Kant got something right about the
nature of mathematical knowledge, all those years ago.
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