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Abstract
Animals and robots perceiving and acting in a world require an ontology that accom-
modates entities, processes, states of affairs, etc., in their environment. If the perceived
environment includes information-processing systems, the ontology should reflect that.
Scientists studying such systems need an ontology that includes the first-order ontology
characterising physical phenomena, the second-order ontology characterising perceivers
of physical phenomena, and a (recursive) third order ontology characterising perceivers
of perceivers, including introspectors. We argue that second- and third-order ontologies
refer to contents of virtual machines and examine requirements for scientific investigation
of combined virtual and physical machines, such as animals and robots. We show how
the CogAff architecture schema, combining reactive, deliberative, and meta-management
categories, provides a first draft schematic third-order ontology for describing a wide
range of natural and artificial agents. Many previously proposed architectures use only
a subset of CogAff, including subsumption architectures, contention-scheduling systems,
architectures with ‘executive functions’ and a variety of types of ‘Omega’ architectures.
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Adding a multiply-connected, fast-acting ‘alarm’ mechanism within the CogAff framework
accounts for several varieties of emotions. H-CogAff, a special case of CogAff, is postulated
as a minimal architecture specification for a human-like system. We illustrate use of the
CogAff schema in comparing H-CogAff with Clarion, a well known architecture. One
implication is that reliance on concepts tied to observation and experiment can harmfully
restrict explanatory theorising, since what an information processor is doing cannot, in
general, be determined by using the standard observational techniques of the physical
sciences or laboratory experiments. Like theoretical physics, cognitive science needs to be
highly speculative to make progress.

Keywords Architecture, biology, emotion, evolution, information-processing, ontology,
ontological blindness, robotics, virtual machines
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1 Ontologies and information processing

An ontology used by an organism or robot is the set of objects, properties, processes etc.
that the organism (be it a scientist or a seagull) or robot recognises, thinks in terms of, and
refers to in its interactions with the world. This paper discusses some of the components of
an ontology required both for an understanding of biological phenomena and for the design
of biologically inspired robots. The ontology used by scientists and engineers studying
organisms and designing robots will have to include reference to the mechanisms, forms
of representation and information-processing architectures of the organisms or robots.
Insofar as these natural or artificial agents process information, they will use ontologies.
So the ontologies used by scientists and engineers will have to refer to those ontologies.
I.e. they will have to include meta-ontologies. If we wish to talk about many different
organisms or robots (e.g. in discussing evolution, comparing different animals in an
ecosystem, or comparing robot designs) our ontology will need to encompass a variety
of architectures. At present such comparative studies are hampered by the fact that
different authors use different terminology in their ontologies, and produce architecture
diagrams using different conventions that make it difficult to make comparisons. In this
paper we present an approach to developing a common framework for describing and
comparing animals and robots, by introducing a schematic ontology for some of the high
level aspects of a design. We do not claim that this is adequate for all the systems studied
in AI, psychology and ethology, but offer it as a first step, to be refined and extended over
time.

1.1 Non-physical aspects of organisms and their environments

It is relatively easy to observe the gross physical behaviour of organisms, their
physical environment, and to some extent, their internal physical, chemical, physiological
mechanisms. But insofar as biological organisms are to a large extent control systems
(Wiener, 1961), or more generally information-processing systems, finding out what they
do as controllers or as information processors is a very different task from observing
physical behaviour, whether internal or external (Sloman, 1993; Sloman and Chrisley,
2003). 1

That is because the most important components of an information processor may be

1 Throughout this paper, we use ‘information’ in the colloquial sense in which information is
about something rather than in the technical sense of Shannon. I.e. like many biologists, software
engineers, news reporters, information agencies and social scientists, we use ‘information’ in the
sense in which information can be true or false, or can more or less accurately fit some situation,
and in which one item of information can be inconsistent with another, or can be derived from
another, or may be more general or more specific than another. None of this implies that the
information is expressed or encoded in any particular form, such as sentences or pictures or
neural states, or that it is communicated between organisms, as opposed to being acquired
or used by one organism. We have no space to rebut the argument in Rose (1993) that only
computers, not animals or brains, are information processors, and the ‘opposite’ argument of
Maturana and Varela summarised in Boden (2000) according to which only humans process
information, namely when they communicate via external messages.
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components of virtual machines rather than physical machines. Like physical machines,
virtual machines do what they do by virtue of the causal interaction of their parts, but such
parts are non-physical (by ‘non-physical’, we do not mean ‘not physically realised’ or ‘made
ultimately of non-physical stuff’ but merely ‘not easily characterised with the vocabulary
and methods of the physical sciences’). Compare the notion of a ‘propaganda machine’.
Entities in virtual machines can include such things as grammars, parsers, decision makers,
motive generators, inference engines, knowledge stores, recursive data-structures, rule sets,
concepts, plans and emotional states, rather than molecules, transistors or neurones.

An example of a component of a virtual machine in biology is the niche of a species.
A niche is not a geographical location or a physical environment; for an ant, a badger,
and a cat may be in the same physical location yet have very different niches, providing
different information for them to process, e.g. different affordances such as opportunities,
threats and obstacles (Gibson, 1986).

The niche is not something that can be observed or measured using instruments
employed in the physical sciences. Yet the niche is causally very important, both in the
way that the organism works (e.g. as an information processor) and in the way that
a species evolves (Sloman, 2000a). A niche is part of what determines features of new
generations, and in some cases may be involved in reproducing itself also, for instance if
members of a species all alter the environment in such a way as to enhance their biological
fitness. An example would be termites building and maintaining their cathedrals, which
help to produce new generations which will do the same. So the niche, the set of abstract
properties common to results of such genetically induced actions, could be labelled as part
of an ‘extended genotype’, by analogy with Dawkins’ ‘extended phenotype’ (Dawkins,
1982).

Additional conceptual problems bedevil the task of deciding what features, especially
non-physical ones, of a biological system are to be replicated in robots. For instance,
many of our colloquial concepts are inadequate for specifying design features. E.g. the
question whether a certain animal, or robot, has emotions or is conscious or feels pain
suffers from the multiple confusions in our current notion(s) of mental states and processes
(Sloman, 2002a, 2001a; Sloman et al., 2004). So, in part, our task is to explain how to make
those obscure concepts clearer, for instance by interpreting them as ‘architecture-based’
concepts (op.cit). 2

1.2 Orders of ontology

The fact that all organisms acquire and use information, and some also store it,
transform it, derive new information from old, and combine it in various ways, places
strong constraints on the ontology appropriate for a scientific understanding of organisms,
or the ontology used in designing biologically-inspired robots.

Obviously, organisms are also physical systems, which can be described using the

2 In Sloman and Chrisley (2003) we contrast ‘architecture-based concepts’, used in referring
to systems with a particular sort of architecture, and ‘architecture-driven concepts’ used by
organisms or robots with a particular architecture, and show how certain architectures may
support the use of architecture-driven concepts referring to qualia.
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ontology of the physical sciences (physics and chemistry). But it has long been recognized
that an extended ontology based on a notion of information is useful in biology. Although
talk of information processing by organisms (and by low-level components of organisms,
such as neurons) is now commonplace in biology, there remains the task of finding out
exactly what information is acquired, used or derived by particular sorts of organisms,
and also how it is represented and what mechanisms manipulate it.

Any system which processes information will have its own ontology: the objects,
properties, processes etc. that the information that the system processes is about. In
some cases it will be about information processing, whether in itself or in something
else. Therefore, we can make a distinction between different orders of ontology required
for describing natural systems and designing biologically inspired robots. A first-order
ontology is an ontology used to refer to arbitrary entities, properties, relationships,
processes etc., for instance an ontology including physical objects, properties such as
mass, length, chemical concentrations, and so on. But the designer or scientist may wish
to refer to something that includes information-processing, representations, perception,
etc. In that case, a subset of the designer’s ontology will be a second-order ontology: which
refers to another ontology used by the system (organism or robot) under consideration.

Furthermore, some organisms (and some robots) also have to take account of the fact
that some of the entities in their environment are information-processors, or that they
themselves are. These organisms will somehow need to use an appropriate ontology to
enable them to make use of information about information-processing systems. So if one
animal (or robot), A, takes account of what another animal (or robot), B, perceives,
wants, intends, knows, etc., then part of A’s ontology includes a second-order ontology.
The scientist or designer who talks about A’s ontology will be using a third-order ontology
in that case. The ontology used by A need not have the generality of theoretical computer
science, cybernetics or philosophy, but will be suited to the organism’s or robot’s own
needs and its capabilities, which can vary enormously, both between individual organisms
and within the lifetime of one organism. All but the first-order ontologies involve semantic
content, referring to entities with semantic contents (e.g. plans, percepts, intentions, etc).
We therefore label them as meta-semantic ontologies, a notion that will be seen to be
important in the discussion of architectures with meta-management, below. Obviously,
ontologies can continue to nest to arbitrarily higher orders, but these three orders of
ontology should suffice for the points we wish to make.

The requirements on depth, precision and correctness of an ontology will vary,
depending on who is using the ontology and for what purposes. The third-order ontology
used by a scientist or engineer to talk about A will need considerable clarity and precision,
even though the second-order ontology used by A to think about B falls far short of that,
since A is not designing B or explaining how B works. Human designers and scientists
often switch between using second-order ontologies that are adequate for ordinary life
(e.g. talking about emotions of other people) and using third-order ontologies without
realising that the concepts in their second-order ontologies will not suffice for use in
scientific third-order ontologies (Sloman et al., 2004).
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2 Ontologies in science, and how they change

Progress in science takes many forms, including discovering generalisations, refuting
generalisations, and discovering new observable types of phenomena. Many of those are
discoveries use an existing ontology. If your ontology already includes pressure, volume
and temperature as properties of a sample of gas, then no new entities need be postulated
in order to formulate laws relating variations in pressure, volume and temperature. 3

Sometimes scientific progress requires a change in ontology. For example, the discovery
that gases are made of previously unknown particles with new kinds of properties (e.g.
molecules with mutually repulsive forces) required an extension of the ontology of physics
to accommodate the new entities and their properties. In general the deepest advances
(both in science and in the conceptual development of an individual) are those that
extend our ontologies – for they open up both new classes of questions to pose and new
forms of explanations to be investigated. These are not cases where the ontology can
be extended simply by defining new concepts in terms of old ones: far more subtle and
complex processes are involved, as explained in chapter 2 of Sloman (1978) and in Carnap
(1947). 4

2.1 Multi-level ontologies

Some extensions to an ontology are simple additions, for instance adding a new sub-
atomic particle or a new type of force to the ontology of physics. Others involve creation
of a new ontological level with its own objects, properties, relations, events and processes.
Sometimes a new ontological level is proposed as lying ‘below’ the previous levels and
providing a deeper explanation for them (as happened when sub-atomic particles were
added to physics, and more profoundly when quantum mechanics was added to physics).
It is also possible to propose a new ‘higher’ ontological level whose entities and processes
are somehow based on or dependent on a previously known ‘lower’ ontological level. An
example is the ontological level of biology, including notions like gene, species, inheritance,
fitness and niche, all of which are nowadays assumed to be in some sense based on the
ontological level of physics, though the precise relationship is a matter of debate. A less
well-known case is the ‘autopoesis’ ontological level associated with Maturana and Varela
involving notions of self-organisation, self-maintenance, self-repair, etc. discussed in Boden
(2000). An even more controversial case is the Gaia ontological level proposed in Lovelock
(1979), scorned by some scientists but not all.

The use of higher ontological levels is not a peculiarity of science: our ordinary mental
and social life would not be possible without the use of ontologies involving mental, social,
economic, legal, and political entities, properties, relationships, events and processes.
For example, our society makes heavy use of interlinked notions of law, transgression,

3 However, as Newton and many other scientists have discovered, a mathematical ontology may
need to be extended. For instance, people may understand that changes can be measured but
lack the concept of an instantaneous velocity, or may know about velocity but be unable to
think about acceleration.
4 A partial critique of the idea of ‘Symbol grounding’ as a solution to this problem is presented
in http://www.cs.bham.ac.uk/research/cogaff/talks/#talk14 .
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punishment, motive, belief, decision, etc. It seems that some other animals may have
simplified versions of such ontological levels, insofar as they acquire and use information
about dominance hierarchies, for instance. Since these things, like the niches mentioned
previously, can be involved in causal relationships (e.g. ignorance can cause poverty, and
poverty can sometimes cause crime) we can think of them as parts of a machine, namely a
‘virtual machine’, in the sense in which a running computer operating system is a virtual
machine. This is explained below.

In general the relationships between ontological levels are not well understood: we use
intuitive, informal ways of thinking about them, though these can generate apparently
irresolvable disputes, for instance disputes about whether progress in science should
eliminate or justify the ontological level of folk-psychology.

2.2 Virtual machine ontologies

A species of ontological layering that is easier to understand than most is found in
computing systems where the ontological level of a virtual machine (e.g. a chess-playing
machine, a compiler, a theorem prover, an operating system) is implemented on top of
an underlying digital electronic machine, a relation often mediated by a hierarchy of
intermediate virtual machines. Unlike most other cases, the ontological level of software
virtual machines in computers is a product of human design. Consequently, insofar as
we have designed and implemented these machines, and know how to modify, extend,
debug, and use them, we have a fairly deep understanding of what they are and how they
work, though this case is generally ignored by most philosophers and scientists discussing
ontological levels and supervenience, e.g. Kim (1998).

Articulating and formalising all the features of natural or artificial information-
processing systems poses many difficulties, including the difficulty of analysing the causal
powers of virtual machine events and processes, discussed in more detail in Sloman and
Scheutz (2001). 5

For those who study animals or design robots there is a further complication, namely,
that the subject of investigation is an information-processing system that must itself
(implicitly or explicitly) use an ontology which delimits the types of things it can
perceive, think about, learn, desire, decide, etc. Moreover, in more sophisticated cases
the information-processing architecture can, as in humans, extend the ontology it uses.
It follows that whereas most scientists (e.g. physicists, chemists, geologists) can use
ontologies without thinking about them or understanding how they work, this is a luxury
that roboticists and biologists cannot afford if we wish to understand animal behaviour or
design intelligent robots. Roboticists who successfully design and implement information-
processing virtual machines forming control systems for their robots must have at least an
intuitive grasp of ontological layering, in contrast with those who eschew design in favour
of evolving robot controllers. It is possible to produce artificially evolved systems that are
as little understood as products of biological evolution.

Scientists and engineers need to understand the variety of processes by which deployed

5 The discussion is extended in http://www.cs.bham.ac.uk/research/cogaff/talks/ in talks 22,
23 and 26.
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ontologies develop. We previously noted that there is a kind of intelligence and problem-
solving that involves the development of new ontologies, of which certain forms of scientific
advance are an important special case. Most forms of ontological change have not been
modelled in AI or explained theoretically. If we wish to understand such intelligence in
nature, or to give such capacities to our robots, we will have to understand ontological
change in individuals and in communities. Differences between precocial and altricial
species are relevant, as explained below.

2.3 Assessing proposed new ontologies

Not all proposed extensions to our ontologies are equally good: Priestley’s phlogiston
with its negative mass lost the battle against Lavoisier’s ontology permitting new processes
in which oxygen in air combines with solid substances when they burn to produce
solid oxides weighing more than the original solids. Some ontological victories are only
temporary: Young’s wave-based ontology for light demolished Newton’s particle-based
ontology, but the latter received a partial revival when the ontology of physics was
extended to include photons.

As those examples show, it can be very difficult to decide whether a proposed new
ontology is a good one. In part that is because testing is not always easy. Some extensions
remain hypothetical for many years until they are explained in the framework of a broader
theory: for example it took many years for the existence of genes and some of their
properties to be explained using biochemistry.

The difficulty of choosing between rival theories on the basis of experiment and
observation led Lakatos (1970) to develop his theory of progressive and degenerating
research programmes, whose relative merits can only be distinguished in the long term.
During the interim some people will use one new ontology while some prefer an alternative
change, and some claim that the previous ontology was good enough.

This paper is in part about the ontology required for adequate theories concerning the
capabilities of biological organisms such as birds, apes and humans, and in part about
the fact that some disputes in biology, psychology and AI arise out of unacknowleged
differences in ontologies used by different scientists. When a group of scientists cannot
think about a class of entities, properties, relations, and processes they will not be able to
perceive instances of them as instances. We call this ‘ontological blindness’. It can have
many causes and different sorts of cures may be required. A full account of the processes
by which the ontologies used by scientists change or grow is beyond the scope of this
paper. However, we illustrate the process by describing some features of the ontology
required for scientific investigation of intelligent animals and robots, and an application
of the ontology in developing an explanatory architecture, H-CogAff, described below in
section 7.

3 Ontological blindness and its cure

If some researchers are ‘ontologically blind’ to certain important features of naturally
occurring information-processing systems, this can restrict not only their understanding
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of animals, but also their ability to design new biologically-inspired machines. As implied
above, this is just a special case of a general problem at the frontiers of science.

A particular variant of the sort of ontological blindness we are discussing would involve
attributing too simple an ontology to an organism that is treated as an information-
processor. An example would be not noticing that an organism can take account of
the intentions or emotional states of conspecifics, in addition to taking account of their
location and physical movements. The ability to monitor and perhaps modify one’s own
information processing (as opposed to one’s own movements or temperature changes,
for example) might also go unnoticed by observers, whether they are scientists looking
for explanatory theories or robot designers looking for inspiration. Partial ontological
blindness may occur when scientists notice a phenomenon (e.g. vision) but misconstrue
it, using the wrong ontology to describe it, e.g., thinking of vision as merely providing
information about physical shape, structure, colour, and texture (Marr, 1982), and
ignoring perception of affordances (Gibson, 1986).

3.1 Some consequences and causes of ontological blindness

A consequence of not noticing the more abstract capabilities in organisms (or the need
for them in robots) is using too simple an ontology in explanatory theories (or design
specifications). This can sometimes either be caused by, or cause, adoption of formalisms
or information-encoding mechanisms that are not capable of supporting the diversity
required for the ontology. This is linked to inadequate theories about mechanisms for
acquiring, storing, transforming and using that information. Thus ontological blindness
can be linked to paucity of formalisms and paucity of information-processing mechanisms
discussed by theorists and designers.

All of this will be familiar, or at least obvious once stated, to many biologists,
psychologists, neuroscientists and roboticists. For instance it is totally consistent with the
methodology reported in Arbib’s WGW’02 paper Arbib (2002), which we read only after
producing our paper for the conference and which provides many detailed examples of
varieties of information processing in organisms and robots. Our objective is not merely to
contribute to the sort of detailed analysis presented by Arbib, but to present a conceptual
framework which can help us to characterise the aims of such research and to draw
attention to gaps and unanswered questions that can usefully drive further research: i.e.
discovering types of ontological blindness in order to remedy them.

3.2 Ontological blindness concerning organisms

Which specific forms of ontological blindness may be hindering progress both in
understanding organisms and in designing robots? A researcher who thinks the function
of visual systems is merely to provide information about lower-order physical phenomena
such as geometrical shapes, motion, distances, and colours Marr (1982), or statistical
correlations between image patterns, may never notice situations where vision provides
information about abstract relationships between relationships Evans (1968), information
about affordances, e.g. graspability, obstruction, danger, opportunity Gibson (1986), or
information about causal relationships that produce or prevent change, e.g. a rope tied
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to a post and a stick constraining motion of the stick Kohler (1927).

Similarly, a researcher who thinks the only goals organisms can have, are to achieve
or prevent certain ‘low-level’ physical occurrences, such as maintaining a particular
temperature or hormonal concentration, approaching a physical location, may never notice
other sorts of goals whose description is more abstract, such as the goal of trying to work
out what caused a noise, or the goal of improving a way of thinking about certain problems,
or the goal of finding out what another animal is looking at.

Someone who thinks that all learning is learning of associations may fail to notice cases
where learning includes extension of an ontology, or development of a new representational
formalism Karmiloff-Smith (1996). Chomksy (1959)’s attack on Skinner provides many
examples.

Whether or not these latter forms of learning can be or are realised in or implemented
in a purely associative learning mechanisms is beside the point; a theorist who ‘sees’ only
the associative mechanisms will be ontologically blind to other forms of learning, just as
a scientist who ‘sees’ only atoms, molecules, and their interactions will be ontologically
blind to muscles, nerves, digestive systems and homeostatic mechanisms in animals.

We believe that ontological blindness of types mentioned above has hampered work on
biologically-inspired machines. However, ontological blindness need not be permanent: a
recurring feature of the history of science is a process of extending the ontologies employed,
thereby changing what becomes not only thinkable but also observable, somewhat like
learning to read a foreign language in an alien culture. A language for talking about
different ontologies requires a meta-ontology. We’ll try to show how a good meta-
ontology for information-processing architectures can drive fruitful ontological advances.
Our proposed first-draft meta-ontology is a generative schema.

3.3 Architecture-based exploration of ontologies

We suggest that one useful way (not the only way) in which we can overcome some
kinds of (temporary) ontological blindness is to use a generative schema for a class of
architectures defining a space of possible designs to be related to a dual space of possible
niches for which such designs may be more or less ‘fit’ in different ways. If this provides
us with a framework for systematically extending our ideas about architectures, functions
and mechanisms, it may, to some extent, help to overcome ontological blindness. It may
also help us generate a unified terminology for describing designs and explanatory theories.

Suppose we find that a particular explanatory architecture is inadequate to explain
some capabilities, e.g. visual problem solving, or competence in certain games. We can
then use the architecture-schema to generate alternative architectures that differ in terms
of forms of representation, forms of reasoning, and forms of control and see if one of them
comes closer to the required capabilities.

Alternatively, if we find that a particular explanatory model fails to replicate some
observed behaviour, and we cannot find any change that works, this may prompt us
to ask whether that is because there are aspects of the niche that we have not yet
identified (e.g. forms of perception, or kinds of goals the organism needs to have, or
ways of learning that we have not considered). This can lead to an extension of our
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ontology for niches (an extension of ‘niche space’) which then leads us to look at the
proposed architecture and consider new ways of modifying it in ways suggested by the
schema, e.g. making more functional divisions within the architecture, considering using
new forms of representation or new mechanisms within existing components, or adding or
removing forms of communication between components in the architecture. This, in turn,
may lead us to consider a kind of architecture not previously thought of, or may lead to
the idea of a new kind of function for a sub-mechanism, promoting a search for suitable
sub-mechanisms.

Evaluating the suitability of the modified architecture for the supposed niche may
show that it would fit better in a different niche, and that may lead to the hypothesis
that we have mis-identified the niche of the organism under study, causing us to extend
our ontology for types of niche.

Moreover, by noticing how new types of states and processes can arise in the proposed
modified architecture we discover the usefulness of new architecture-based concepts
as explained in Sloman and Scheutz (2001); Sloman (2001a); Sloman and Chrisley
(2003). This parallels the history of computer science and software engineering, in which
explorations of new designs led to the discovery of new useful concepts which feed back into
new designs, for instance discovering the usefulness of notions like ‘deadlock’, ‘thrashing’
and varieties of ‘fairness’, in consequence of moving from single-threaded to multi-threaded
operating systems.

It is also possible to discover that our meta-ontology, the schema for generating
architectures, is too restrictive; so one of the possible forms of advance is extending
or modifying the schema. Later we describe a first draft schema, CogAff (figure 1), for
describing a wide class of information-processing architectures for animals and robots and
show how it can help to reduce such ontological blindness. We also present a first-draft
particular architecture, H-CogAff (figure 5), proposed for human-like systems, arrived at
by applying this methodology. Both the schema and the architecture are the result of
many years of work in this area, and have developed gradually. Both are still in need
of further development, which will take many years of multi-disciplinary collaborative
research.

4 How to avoid the problem?

One of the recurring themes in AI is that natural systems are too complex for us to
design, so that an alternative is proposed: e.g., design a system that can learn and train
it instead of programming it, or design an evolutionary mechanism and hope that it will
produce the required result.

The ability of a new-born human infant to learn a huge variety of things it lacks at
birth may at first seem to be an existence proof that the first approach works. But if
we don’t know what sort of learning mechanisms infants have, we may fail to design a
machine with the required capabilities. An apparently helpless and almost completely
incompetent human infant may in fact be born with more sophisticated architecture-
building mechanisms than those available at birth in precocial species, like deer that can
walk, suckle, and run with the herd within hours.
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At least we know that biological evolution started from systems with no intelligence,
so those who are tempted to avoid thinking about how to design biologically-inspired
robots may instead try to evolve them, since animals provide an existence proof of the
power of evolutionary mechanisms. But this may not lead beyond the most elementary
of robots in the foreseeable future, because of both the computational power required
for replicating evolution of complex animals and also the problem of designing suitable
evaluation functions (Zaera et al., 1996).

In natural evolution, implicit evaluation functions develop partly through co-
evolutionary processes which alter niches. Replicating this may require simulating the
evolution of many species, leading to astronomical computational requirements. Moreover,
insofar as the process is partly random there is no way of knowing whether simulated
evolution will produce what we are trying to replicate. Even on earth there was never any
guarantee that penguins, piranhas or people would ever evolve. So the time required to
evolve a robot like those organisms may include vast numbers of failed attempts. Perhaps
explicit design, inspired by nature, will be quicker.

Moreover, from a scientist’s point of view the mere existence of an evolved design,
whether natural or artificial, does not aid our understanding if we are not able to say what
that design is, e.g. what the information-processing architecture is and how it explains
the observed behaviour. An engineer should also be wary of relying on systems whose
capabilities are unexplained.

People working on artificial evolution have to design evaluation functions, evolutionary
algorithms and the structures on which the algorithms operate. But the design of the
evolutionary system does not explain how a product of such a system works. It merely
provides a source of more unexplained examples, and partially explains how they were
produced.

The task of trying to understand a product of natural or artificial evolution is not
unlike the task of finding out how to design it, since both understanding and designing
involve specifying what sorts of architecture the system has, what mechanisms it uses,
what sorts of information it acquires, how it represents or encodes the information, and
how it stores, manipulates, transforms and uses the information, and understanding what
difference it would make if various features were changed.

5 How to attack the problem

This paper is motivated by the belief that (a) we shall have to do some explicit design
work in order to build robots coming anywhere near the capabilities of humans and
other mammals and (b) knowing how to design something like X is a requirement for
understanding how X works. So both engineers and scientists have to think about designs.

Of course doing explicit design is consistent with leaving some of the details of the
design to be generated by learning or adaptive processes or evolutionary computations,
just as evolution in some cases pre-programs almost all the behavioural capabilities
(precocial species) and in others leaves significant amounts to be acquired during
development (altricial species). In the altricial case, what is needed is higher-order design
of bootstrapping mechanisms Sloman (2001a,b). In that case, design-based explanations
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may produce understanding only of what is common to a class of individuals whose
individual development and learning processes produce great diversity.

5.1 Organisms are (information-processing) machines

Machines need not be artificial: organisms are machines, in the sense of ‘machine’ that
refers to complex functioning wholes whose parts work together to produce effects. Even
a thundercloud is a machine in that sense. In contrast, each organism can be viewed
simultaneously as several machines of different sorts.

Clearly organisms are machines that can reorganise matter in their environment
and within themselves, e.g. when growing. Like thunderclouds, windmills and dynamos,
animals are also machines that acquire, store, transform and use energy. However, unlike
most of the systems studied by physical scientists or built by engineers in the past,
organisms are also information-processing machines (some people would say ‘cybernetic
systems’).

Many objects whose behaviour is directed by something in the environment acquire
the energy from the same thing: a string pulling an object, a wall causing a change of
direction, wind blowing something, etc. In each case the source of energy also determines
the resulting behaviour, e.g. the direction of movement. Most (perhaps all?) organisms,
however, use internal (mostly chemical) energy to power behaviour invoked by external
information. Having sensed environmental features then, depending on their current state,
they select useful actions, and use internal energy to achieve them, for example producing
motion in the direction of a maximal chemical or temperature gradient, or motion towards
a light, or a potential mate or food. (Compare the discussion of ‘switching organs’ in von
Neumann (1951), for which ‘the energy of the response cannot have been supplied by the
original stimulus. It must originate in a different and independent source of power.’ (p
426))

5.2 Varieties of information-based control

Information acquired through sensors and the action-selection processes will be different
for organisms with different niches, even in the same location, for instance a caterpillar, a
sparrow, and a squirrel on the same tree branch. The use of the information will also vary
with the internal state, e.g. selecting motion towards food when hungry or towards other
things otherwise. For most non-living things the influence of the environment is purely
through physical forces, and resulting behaviour is simply the resultant (vector sum) of the
behaviours produced by individual forces. In contrast, an information-processing system
can consider options available in a situation, and then decide not to act on some external
information when there are conflicting needs.

But we need to be careful about familiar words like ‘consider’ and ‘decide’, for in the
context of the simple organisms lacking human-like deliberative capabilities, consideration
of an option may merely amount to activation of some set of neurons capable of producing
the appropriate behaviour, and deciding may amount to no more than the result of
a competitive ‘winner-takes-all’ process among clusters of neurons. We could call that
a ‘proto-deliberative’ system, found in many organisms capable of producing different
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behaviours depending on the circumstances and capable of switching discontinuously
between behaviours as the situation changes continuously, e.g. a predator approaches,
as discussed in Arbib (2002).

In a more sophisticated organism (or robot), considering options may involve building
structural descriptions of the options, deriving consequences of each of them, deriving
consequences of the consequences, building descriptions of pros and cons, and then using
some rule or algorithm to select the best option. The organism may also store the reasons
for the selection, in case they are needed later if the situation changes. The reasons may
also contribute to a learning process. This is an example of what we call a ‘deliberative
system’.

Deliberative systems come in many forms, though they all involve some ability to
represent non-existent possibilities Sloman (1996a), which we can summarise as the ability
to do ‘what if ’ reasoning. They can differ in the variety of types of non-actual possibilities
that they can consider and select, the variety of forms of representation that they can use
for this purpose and the variety of uses to which they put this capability, e.g. planning
future actions, explaining observed events, predicting what another agent will do, or
forming hypotheses about unobserved portions of the environment.

Simple versions may be able to do only one-step look-ahead and may use fixed formats
for all the possibilities they consider. More sophisticated deliberative mechanisms may be
able to do more complex searches and use structural descriptions of varying complexity,
depending on the task, and using compositional semantics as a source of generality. They
may also be able to use representations of hypothetical situations to speculate about the
past, about remote or hidden objects, or about unobserved explanations for observed
phenomena. So deliberative processes in our sense of the phrase, are not restricted to
planning and action-selection tasks.

The extra generality and flexibility required to support complex and varied deliberative
processes may incur a heavy cost in brain mechanisms and prior learning of re-usable
generalisations. The cost of the brain mechanisms for storing large numbers of rapidly
retrieved, re-usable generalisations, and mechanisms for supporting the construction and
use of temporary descriptions of many kinds may be a partial explanation of the rarity
of sophisticated deliberative capabilities in animals: very few animals can exist near the
peak of a food pyramid.

According to Arbib’s description of a frog (op. cit.), it has proto-deliberative
capabilities, in our sense, though he uses the label ‘deliberative’. However some of his
more complex examples come closer to what we call deliberative architectures. The choice
of labels is unimportant. What is important is to understand the architectural differences
and their implications. We still have much to learn about the space of design options and
their trade-offs.

5.3 Information-processing architectures

Investigating these phenomena in order to design robots that replicate them, requires
deep theories regarding various types of internal processing. Obviously biological evolution
produces many changes in physical design. Not so obviously there are changes in
information-processing capabilities, which are sometimes far more dramatic than the
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physical changes. For example, apes and humans are physically very similar (i.e. there are
simple structural mappings between most of their physical parts) whereas some of their
information-processing capabilities are very different as shown by their behaviour and its
products (their extended phenotype). On a small scale their movements may be similar:
walking, climbing, jumping, grasping, eating, etc. But on a large scale there are huge
differences insofar as only humans, given a suitable environment, make excavators, cranes,
skyscrapers, aeroplanes, farm many kinds of food, do mathematics and write poetry.
Creatures with structurally similar bodies can have structurally very dissimilar minds. 6

Furthermore, given that brains are highly complex and therefore extremely sensitive to
boundary conditions, even organisms with identical brain structure can have very different
minds. A level of characterisation above the physical, anatomical level will do better at
modelling this substantial difference by representing it with a substantial difference in the
characterisation itself.

5.4 Hidden differences in information-processing

Given its abstract, non-physical nature, information-processing may be difficult to
detect in natural systems using observational techniques usual in the physical sciences.

Even when similar behaviours are observed in different organisms it does not follow
that the behaviours are the outcome of similar internal processes Hauser (2001). Less
obviously, similar behaviours in the same organism at different stages of development,
or training, e.g. grasping, breathing, smiling, visual-tracking, may be products of very
different internal processes.

Furthermore, as argued in Sloman (2001b), two organisms in the same environment
may perceive radically different things. For example, a deer and a lion apparently gazing at
the same scene will not necessarily see the same things, since their niches and affordances
differ substantially. In particular, altricial species (which are born under-developed and
almost helpless, e.g. lions) may develop major aspects of their visual capabilities during
early development whereas adults of precocial species (born with a more advanced
collection of capabilities, e.g. deer, sheep) have simpler capabilities mostly produced by
their genes – e.g. enabling new-born grazing animals to stand, walk find and suck nipples
or even run with the herd within hours of being born. Hunters, nest-builders and berry-
pickers appear to perform intricate actions taking account of multiple constraints and
affordances, whereas the actions of grazers are not dependent on understanding such
complex structures and processes in the environment. This could explain why the kind of
genetic encoding of affordance detection that suffices for grazers is inadequate for other
altricial species.

6 Some may argue that the minds have similar architectures, but differ only in their information
content. However that does not explain why the same content cannot be acquired by both sorts
if their minds have similar architectures initially.
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5.5 Varieties of information-processing systems

We still have much to learn about information-processing systems. The simplest kinds
can be described in terms of homeostatic feedback loops or hierarchical control loops,
possibly characterised by sets of partial differential equations. But we also know that
there are many information-processing machines (including parsers, planners, problem-
solvers, operating systems, compilers, email networks, theorem provers, market trading
systems, chess computers) whose most useful explanatory description does not take that
form.

There is no reason to assume that all biological information processors will turn out to
be simply large collections of analog feedback loops, even adaptive ones: work in AI in the
last half century demonstrated that there can be much more powerful alternative forms of
information-processing and control, that are particularly useful for some tasks, for instance
those in which it is not immediately evident what the consequences of each available
action are – as in most tasks where a complex structure subject to many constraints
has to be built from diverse components. But we do not yet have a good overview of all
the alternative mechanisms, or their strengths and weaknesses, and that makes theory
construction very difficult.

6 How to describe information processors: niches and designs

It is only recently that scientists and engineers have begun to understand requirements
for investigating and modelling information-processing systems. Using an overly restricted
conceptual framework can constrain the questions asked and the theories proposed in
the study of humans and other animals. This can also lead to a narrow view of robot
functionality Braitenberg (1984).

It is also common to use a restricted notion of computation, defined in terms of
something like a Turing machine Sloman (2002b). An alternative is to treat ‘computation’
and ‘information-processing’ as very broad terms applicable to a wide range of types of
control systems. For instance, we do not exclude information-processing systems that
contain continuously varying states, whereas Turing machines and their equivalents must
be discrete. 7

6.1 Towards an ontology for agent architectures: CogAff

We are attempting to complement and broaden existing approaches by developing
a schematic framework called ‘CogAff’, 8 depicted in figure 1, for comparing and
contrasting a wide range of information-processing architectures (typically virtual machine
architectures, which will not necessarily map in any simple way to the underlying physical
architecture). Although investigation of specific architectures is important, scientists
and engineers also need to understand the class of possible designs from which they
make selections, lest they unwittingly ignore important alternatives, and reach mistaken

7 See also talks 4 and 22 in http://www.cs.bham.ac.uk/research/cogaff/talks/
8 Described in previous papers, e.g. Sloman (2000b, 2001a, 2002a)
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conclusions. In order to understand the trade-offs between alternatives we also need a
generative framework for talking about types of niches, or sets of requirements, relative
to which architectures can be evaluated, possibly using multiple dimensions of evaluation,
as noted in Sloman (2000a).

Fig. 1. CogAff schema component grid

6.2 Terminological inconsistencies.

The CogAff framework permits combinations of mechanisms producing concurrent
processes roughly classified as reactive, deliberative and meta-management (sometimes
labelled ‘reflective’) processes. Unfortunately there is much terminological confusion
among researchers studying architectures. Some people use ‘reactive’ to exclude state
changes. We don’t. Some distinguish reflexes from reactive mechanisms, whereas we treat
them as a subset of reactive mechanisms. Our use of ‘reactive’ excludes only deliberative
processes involving explicit consideration and comparison of possible alternatives of
varying complexity, whereas proto-deliberative systems, described earlier, are classified
as reactive. (Perhaps it would be better to use some intermediate categories.) A reactive
system may also be able to invoke and execute stored plans, where the plans have been
produced by evolution, by training, or by another part of the system. Compare Nilsson
(1994). In contrast, some people describe anything that makes choices as ‘deliberative’.

There is no question of trying to prove that our terminology is right or wrong. The
important thing is to understand the variety of types of mechanisms that are available
and the different ways in which they can be combined in an integrated architecture. We
offer the CogAff schema only as a first draft, very sketchy, starting point, illustrating the
more general point that we need a generative schema.

Not all three-layered architectures described in the literature are the same, even if
the diagrams look the same and similar-sounding terminology is used. For instance, an
architectural layer labelled as ‘deliberative’ is often regarded simply as a planning system,
whereas our notion of a deliberative mechanism includes the ability to consider alternative
explanations of some observed facts or to speculate about distant or hidden objects. Some
people use ‘reflective’ to refer to an architectural layer containing mechanisms that observe
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what happens when plans are executed in the environment, and perhaps learn from the
results, whereas we treat that as a feature of what we call the ‘deliberative’ layer. The
processes in our third layer, the meta-management layer, described in (Beaudoin, 1994),
are concerned with observing, evaluating, and controlling information-processing processes
within the rest of the architecture. Insofar as this requires manipulating information
about information, we describe it as a meta-semantic function. The representational
requirements for meta-semantic competence go beyond the requirements for representing
physical states and processes within the agent or in the environment, e.g. because of the
need to support referential opacity: expressions that fail to refer can be part of a meta-
semantic description. For instance, I can think the person following me wants to mug me,
when there is no person following me. Moreover, I can later describe myself as having had
the mistaken thought.

Some researchers would restrict meta-management, or reflection, to self-observation of
processes within the central cognitive system, whereas our notion of meta-management
includes the ability to attend to intermediate structures and processes in perceptual and
action mechanisms, some of which may have semantic content. For instance you can attend
to an aspect of your visual experience in which one object obscures a part of another
object that you are trying to see. Similarly you can attend to whether a movement you
are making is done in a relaxed or tense way, or with or without precise control. (Relaxed
precision is a requirement for many sporting and artistic achievements.)

In (Sloman and Chrisley, 2003) we have tried to show how this ability to monitor
internal information-processing states can involve mechanisms that account for many of
the features of what philosophers refer to as ‘qualia’.

There may be both reactive and deliberative meta-management processes, since what
distinguishes them is what they are concerned with and not what mechanisms they use. 9

In the case of animals, including humans, these processes use mechanisms and forms of
representation that evolved at different times. Within this framework we can analyse the
trade-offs that might have led to evolution of hybrid systems with various subsets of the
components accommodated in the CogAff schema. However, we stress that our three-way
distinction between different architectural layers is a first crude sub-division, and detailed
investigations of evolutionary and developmental trajectories are likely to show interesting
intermediate cases, requiring a more refined ontology.

A particularly interesting possibility suggested by this framework is that the ontology
and forms of representation used for perceiving and reasoning about information
processing in others may have co-evolved with and overlapped with those used for
self monitoring and control i.e. meta-management, though there are many who believe
that social uses of meta-semantic competence must have preceded self-directed meta-
management, or self-consciousness. (The ‘simulative reasoning’ approach to belief and
plan ascription, favoured by some AI researchers is consistent with both views.)

9 To add to the confusion, everything has to be ultimately implemented in reactive processes,
otherwise nothing would ever happen.
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6.3 Layers in perceptual and action systems: multi-window perception and action

The three-way distinction does not apply solely to central processing, but allows us
to distinguish perceptual and action sub-systems according to whether or not they have
components that operate concurrently at different levels of abstraction related to the three
architectural layers. In sections 1 and 2 we pointed out that scientists can view the same
subject matter on different levels of abstraction. This ability is not restricted to scientists,
nor even to humans. We all perceive on the meta-mental level when we see the state of
mind of another person (seeing someone as happy, angry, in pain or attentive). There may
be cases of non-human organisms perceiving on the deliberative or meta-management
levels, as opposed to being capable only of doing feature detection or pattern recognition
of the lowest order. In Sloman (2001b) and Sloman and Chrisley (2003) we labelled the two
options ‘multi-window’ and ‘peephole’ perception. The same contrast can apply to action
systems. The possibility of layered perception and action systems should be reflected in
any attempt to characterise the space of possible architectures for biological or robot
intelligence. Later, in section 7.2, we discuss an objection to this idea.

6.4 The CogAff grid: a first draft schema

Figure 1 schematically indicates possible types of concurrently active sub-mechanisms
within an architecture. Information can, in principle, flow in any direction between boxes,
or between sub-mechanisms within a box. Thus data-driven perception of high level
features involves information flowing up the left hand box, undergoing different kinds
of processing to meet the needs of different layers in the central box. In contrast, top-
down processing could involve information flowing down, because more abstract percepts,
and prior information in different central layers, can influence processing of low level
features. Simple reflex actions could involve information flowing directly from the low level
perceptual layer to the low level action layer. More sophisticated reflexes could involve
high level, abstract, perceptual information triggering low level internal mechanisms, as
happens in some emotional reactions, for instance. Proprioceptive information would come
from some point in the action hierarchy to a central mechanism, and so on.

Not all architectures include mechanisms corresponding to all parts of the grid.
Different architectures will have different components and different communication links
between components. For instance, some may have only the reactive layer (which may
include several different sub-layers, as in most subsumption architectures, indicated in
figure 2). Some may include ‘diagonal’ information links, for instance high level perceptual
processes triggering low level internal reactions (which may be part of what happens in
some aesthetic experiences). Additional mechanisms and information stores that do not
fit neatly into the CogAff boxes may be needed to support the mechanisms in the boxes.

6.5 Omega architectures

A popular sub-category of the CogAff schema is what we call an Omega architecture,
depicted in figure 3, which uses only a subset of the possible sub-mechanisms and routes
permitted by the schema, forming roughly the shape of an Omega: Ω. Omega architectures
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Fig. 2. Common subsumption architectures are subsumed by CogAff

use an information pipeline, with ‘peephole’ perception and action, as opposed to ‘multi-
window’ perception and action described in section 6.3. The ‘upward’ portion of the
pipeline generates possible actions triggered by the sensory input. Selections among
options are made at the top and and the chosen options are decomposed into low level
motor signals on the ‘downward’ pathway. The ‘contention scheduling’ architecture of
Cooper and Shallice (2000) has this sort of structure, as does the three-layered architecture
of Albus (1981) which superficially resembles the H-CogAff architecture described below,
but turns out on closer examination to be an Omega-type architecture with something
called ‘the will’ at the top selecting among options generated at lower levels. People
who have not understood the requirement for concurrent hierarchical processing within
perceptual and action sub-systems (what we called ‘multi-window’ perception and action)
tend to take the Omega structure for granted, though they may propose different sorts
of intermediate mechanisms generating options and different sorts of ‘top-level’ decision-
making mechanisms.

6.6 Alarm mechanisms

Some architectures include one or more ‘alarm mechanisms’ (figure 4), i.e. reactive
sub-systems with inputs from many parts of the rest of the system and outputs to many
parts, capable of triggering global reorganisation of activities, a feature of many emotional
processes. Alarm mechanisms may be separate sub-systems running in parallel with the
systems they monitor and modulate, or they may be distributed implicitly within the
detailed sub-mechanisms, e.g. in conventional programs using very large numbers of tests
scattered throughout the code. The former, more modular, type of alarm sub-system may
allow more global forms of adaptation and more global kinds of control options when
dealing with emergencies, at the cost of architectural complexity.
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Fig. 3. The ‘Omega’ type of architecture uses a pattern of information
flow between layers in the CogAff schema reminiscent of a Greek letter Ω

Fig. 4. Grid with ‘alarm’ mechanisms

6.7 An objection considered

An objector might ask: how can one distinguish architectures that have input and
output only at the lowest level (like the ‘omega’ architectures discussed in section 6.5)
from those with input and output on multiple levels, given that all high-level input and
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output must be realised by low-level input or output? Surely, when an organism receives
the high-level visual input that there is food nearby, it does so by virtue of receiving low-
level input, e.g. photons hitting retinal cells and producing image features such as intensity,
colour, texture, optical flow, etc., and variations therein. Similarly, executing a high-level
plan to return to one’s mate, by following a route, requires executing a sequence of low-
level behaviours and muscle movements. This line of thought suggests that something
like the ‘Omega’ model (figure 3) is the only possible architecture for organisms that
perceive and act on higher levels. In such architectures (a) all input received is low-level,
although possibly transformed into higher-level categories during deliberation, etc., and
(b) all output is low-level, although possibly the result of deliberation involving more
abstract characterizations of action,

This argument ignores good reasons for distinguishing between the Omega architecture
and architectures involving true, multi-level perception and action (such as H-CogAff,
figure 5). The latter satisfy specific requirements on the high-level perceptual processes
(Sloman, 1989). For example, for multi-level perception, we would require there to
be higher-level representations (such as affordances involving more abstract ontological
categories) which are the product of dedicated perceptual modules that:

(a) have the function of producing said representations (e.g., they evolved, or were
designed, to do this, and this is all they do, unlike general-purpose inference
mechanisms);

(b) run in parallel with other processes and partly independently of general-purpose
central reasoning, learning, planning mechanisms; and

(c) use some special-purpose, modality-specific, forms of representation, e.g. higher-level
representations that are in registration with low level sensory arrays that are different
for different sensory modalities, vision, hearing, touch, etc. (Compare the ‘place-
tokens’ in Marr (1982).)

And similarly, mutatis mutandis, for multi-level action. Note that the modularity
assumed here is weaker than, e.g., Fodor (1983) in that the modules need not be cognitively
impenetrable nor totally encapsulated. That is, high level and low level visual processes
can be very much influenced by central processes, including current goals and problem
contexts, and still be modular and therefore distinct from an Omega architecture.

It is not uncommon for AI visual systems to have dedicated mechanisms for extracting
some higher level information from low level visual data, for instance, classification and
location of 2-D regions, or 3-D objects, or 4-D trajectories of 3-D objects, or parsing
in the case of reading sentences. In the case of H-CogAff we postulate more subtle and
sophisticated visual processing, for instance categorising other agents in terms that use
meta-semantic ontologies, e.g. seeing another as happy, or sad, or as intending to do
something, as explained in Sloman (1989). We have found no mention of this sort of thing
in connection with Clarion (discussed below in section 8) or any other well-known AI
architecture, although the growing awareness of the importance of perceived affordances,
following Gibson (1986) points in this direction.

Another way to distinguish Omega-style from true multi-level perception and action
would be to require input and output mechanisms to be non-deliberative. On this
view (which is probably inconsistent with the module-based approach just described),
if deliberative mechanisms are involved in the transformation from low-level to high-level

24



input, and from high-level to low-level action, then the Omega architecture best describes
that organism. If, however, the low-level input of an organism is transformed into high-
level categories by way of non-deliberative, automatic, blind, reactive processes, that are
incapable of considering and comparing alternative high-level interpretations of the same
data, then that organism can be said to be engaging in true, multi-level perception.

An intermediate case would be dedicated perceptual mechanisms which, like parsers,
sometimes need to search for coherent global interpretations of collections of locally
ambiguous sensory data. This may have some similarities with the cognitive processes
involved in searching for a plan, a proof or an explanation. But if the required functionality
is implemented in mechanisms that are dedicated to processing of sensory input in order
to produce higher level percepts, that is consistent with the label ‘multi-level’ perception,
in contrast with an Omega architecture.

We conjecture that a great deal of human perceptual learning involves developing
such dedicated perceptual and action mechanisms, e.g. in learning to read, learning to
understand spoken language, and learning many athletic skills.

Similar remarks can be made about multi-level action mechanisms. But note that these
architectural features are independent: An architecture may have multi-level perception
without having multi-level actions, and, like Clarion (discussed in section 8) may have
multi-level output without having multi-level perception.

All of the kinds of architectures we have been discussing are ‘virtual machine’
architectures as explained in sections 1.1 and 2. This implies that there need not be any
simple mapping between the components of the architectures and physical components of
brains or computing machines in which the architectures are implemented (or realised).
This means that empirical investigations testing claims about architectures used in
animals will be very dependent on indirect evidence.

7 Links to empirical research

Using the framework developed in previous sections, including the notion of a virtual
machine architecture and the notion of a generative schema for a class of architectures,
of which CogAff is a simple example, we can study organisms by trying to identify
architectures that contain components and information linkages able both to explain
observed capabilities and also to suggest research questions that will extend what we
know about the organisms, generating new requirements for explanatory architectures.

7.1 CogAff and emotions

For example, we have shown in (Sloman, 2001a) how a full three level architecture, of
the sort represented within the CogAff schema, can explain at least three different classes
of emotions found in humans namely primary emotions involving alarm mechanisms in
the reactive layer, secondary emotions involving reactive and deliberative layers triggering
alarms which modulate processing in both layers, and tertiary emotions in which alarm
mechanisms and other mechanisms disrupt the meta-management layer, leading to loss of
control of attention.
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More detailed analysis based on this schema can lead to a richer, more fine-grained
classification of types of emotions and other affective states, including desires, preferences,
likes, dislikes, attitudes, and moods. Different types of emotions, all depending on the
ability of one part of the system to detect a need to interrupt, re-direct or modulate
another part, can be distinguished by distinguishing different sources of alarm triggers,
and different components in which the alarms can cause disruption of some kind, as well
as different time-scales of operation, and whether there are secondary effects, such as the
meta-management system being disturbed by noticing a disturbance in another part of the
system, or even in itself as described in the case of human anger in (Sloman, 1982). These
processes can also be related to mechanisms that activate and maintain or deactivate
motivations and moods.

It is worth noting that emotions as we construe them do not require a special
‘emotion mechanism’ within the architecture, as proposed by many researchers. Rather
the three types of emotions occur as the result of the operation of and interactions
between mechanisms whose primary functions are not best described as being ‘to produce
emotions’.

Organisms with only a subset of the architectural layers will not be capable of having
the variety of emotions and other states that are possible according to the CogAff schema.
Obviously if insects lack a deliberative layer they will not be able to have emotions (such as
regret!) that require ‘what if’ representational capabilities, as most humans can. If human
infants lack deliberative mechanisms they too will be unable to have mental states that
depend on them. Various kinds of disorders may also be related to different parts of the
architecture. Barkley (1997) discusses meta-management architectural features relevant
to disorders of attention, though without using our terminology.

The generic CogAff framework allows many variations in conforming architectures,
including both simpler, insect-like architectures, and more complex additional mechanisms
required for more sophisticated deliberative and meta-management processes. In (Sloman,
2001a) and other papers listed in the references, we outline such an elaborated instance,
the H-CogAff architecture, illustrated sketchily in figure 5. There is much to be said about
the additional components required for all of this to work, but space constraints rule that
out here. 10

7.2 CogAff and vision

Another application of these ideas concerns theories of perceptual processing, including
vision. For instance, if these ideas are correct, then Marr’s (1982) specification of the
functions of vision where he describes the ‘quintessential fact of human vision – that it
tells about shape and space and spatial arrangement’, leaves out important types of visual
processing, including the perception of various kinds of affordances, as argued in Gibson

10 At present there is no complete implementation of H-CogAff and not even a complete
specification. However partial implementations of aspects of the architecture can be found in
PhD theses by Luc Beaudoin, Ian Wright, Steve Allen, Catriona Kennedy, and Nick Hawes,
available here http://www.cs.bham.ac.uk/research/cogaff/phd-theses.html There is also work
in progress by Dean Petters using aspects of H-CogAff in a model of aspects of attachment in
infants.
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Fig. 5. The H-CogAff Architecture

(1986); Sloman (1989).

7.3 CogAff layers and evolution

Although the layers and columns of the CogAff schema need not correspond to
anatomically distinct components of an organism, it is consistent with such differentiation.
Furthermore, the fact that the layers in a particular organism evolved at different
times might make such differentiation likely. It follows that if, as we conjecture, sensory
inputs in humans and some other animals are processed concurrently at different levels
of abstraction, with information from the different levels transmitted concurrently to
different parts of the architecture, which use the information for different tasks, then we
can easily explain empirical results that have led some scientists to postulate different
perceptual pathways (e.g., Goodale and Milner (1992)), though we would predict more
diverse pathways than empirical evidence suggests so far. Likewise if the ability to be
aware of and to report visual processing depends on the meta-management layer getting
information about intermediate structures in the visual system, then we easily explain
the possibility of blindsight Weiskrantz (1997) in a system where some connections to
meta-management are damaged while some visual processes remain intact for instance in
reactive mechanisms.

By analysing possible changes within the different levels and different links between
the levels, we can identify many different possible kinds of adaptation, learning and
development, inspiring both new empirical research and new kinds of designs for self-
modifying architectures.
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8 Case-study: Applying CogAff to Clarion

In section 6.4, we explained how the architectural ideas of Albus, Brooks, Shallice
and others can be located within the CogAff schema, at least as regards their high
level structure. Here it may be instructive to apply the schema to yet another cognitive
architecture, Clarion (Sun, 2002). While the sophistication of Clarion prevents us from
doing full justice to it here, attempting to relate some of its major features to CogAff is
instructive, at the very least in making clear where CogAff should be extended or modified.

The main feature of Clarion is that it is specified as operating on two levels, one
reactive, mainly using subsymbolic neural mechanisms, and one using explicit symbolic
mechanisms. Each level is further divided into two kinds of functionality, namely ‘action-
centred’, i.e. procedural, vs ‘non-action-centred’, i.e. declarative. There are further
functional subdivisions between short term and long term stores, goal stacks and other
mechanisms. Although such distinctions are not part of the top level CogAff framework,
it is to be expected that many instances of CogAff would include such distinctions, as the
H-CogAff architecture does. In particular, insofar as the deliberative layer is defined in
terms of the ability to construct structurally varied descriptions of hypothetical processes
or situations, in formulating plans, predictions, explanations or hypotheses, it must include
both generic long-term information and also a re-usable short term workspace in which the
long-term memory is applied to the current problem. So at first sight Clarion is a special
case of CogAff. It is in some ways a simpler instance than H-CogAff because it excludes
some of the features of H-CogAff (including multi-window perception and action), and in
some ways more sophisticated because it specifies elaborate learning mechanisms.

One important difference is that Clarion’s bottom level is restricted to neural
mechanisms (using back-propagation) whereas the CogAff schema allows both neural and
non-neural reactive mechanisms, for instance implemented as forward-chaining condition-
action rules, like Nilsson’s ‘teleo-reactive’ systems (Nilsson, 1994). As far as H-CogAff is
concerned, we leave open whether there are many kinds of reactive mechanisms, including
reactive rule-sets, or whether they are restricted to neural, distributed representations.
(There is no evidence that animal brains use back-propagation, a major feature of Clarion’s
neural mechanisms.)

8.1 Multi-level perception and action in H-Cogaff and Clarion

Input into Clarion is conceptualised as ordered pairs of dimensions and values, which
corresponds to something like arrays of sensor values. While this may formally allow for
multi-layer perception (section 6.3), it does not guarantee it.

Clarion explicitly allows for both primitive actions and complex structures composed of
such primitives in the top layer. Moreover, some parts of Clarion such as the motivational
sub-system may have both high level structured input and low level sensory input.
Furthermore, although most cognitive architectures include processes that modify their
own working memory and goal structure, Clarion goes further and explicitly conceptualizes
these as actions (albeit ‘internal’ ones, as distinct from normal, ‘external’ actions). Clarion
is capable of multi-level actions, but does not, as far as we can tell, include multi-level
(‘multi-window’) perception. To that extent it is like an Omega architecture on the input
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side, but not on the output side.

An architecture as sophisticated as Clarion may require a separate CogAff-style analysis
of each of the major components of the architecture. For example, Clarion’s action-centred
subsystem might have low-level input and multi-level output, but other subsystems of
Clarion may be different.

8.2 Meta-cognition and meta-semantics

The discussion of such matters raises another point: Current diagrams of the CogAff
schema can be misleading when talking about ‘higher’ or ‘lower’ levels of representation
or processing. The single vertical dimension can indicate, depending on context, one of
three different notions of ‘higher’ vs ‘lower’. The vertical shift between layers one and two
indicate a move from processes that are merely reactive to processes that are (reactive but
also) deliberative. The vertical shift from layer two to layer three indicates a different shift,
from non-meta to meta-management processes. The vertical dimension in the parts of the
diagram depicting input and output may indicate either of the previous two distinctions,
or a more general notion of ‘abstractness’, as was assumed in our earlier discussion of
multi-level perception and action. Finally, the vertical dimension is sometimes taken
to indicate phylogenetic order, with layers on the bottom being older. Of course these
different interpretations of the vertical dimension are related, since, for example, in nature
reactive mechanisms evolved first and are found in all organisms, whereas meta-semantic
mechanisms seem relatively new and relatively rare.

Concerning meta-management, it can be difficult to locate architectures such as Clarion
with respect to this distinction. There is a feature of meta-management that we believe
often gets lost in discussions of reflection (e.g., Norman et al. (2003) Minsky et al. (2004)),
namely meta-semanticity, introduced in section 1.2 The representations employed by
reactive and deliberative mechanisms have semantic content, but the semantic content
is typically about objects, relationships and processes in the physical environment, or
in the body. The evolution of meta-management required the development of forms of
representation that refer to things that have semantic content as such, that refer to
those contents themselves, and that refer to the processes and relationships involving
said semantic entities. For example, describing a planning process, or the current state
of a perceptual system, or construing some physical behaviour as execution of a plan, all
require meta-semantic capability. (Compare our earlier discussion of second- and third-
order ontologies in section 1.2.)

It seems to us that much published work which makes reference to a ‘reflective’
architectural layer does not do justice to the notion of meta-semantic capability either
because the importance of such a capability for certain kinds of reflection is not
appreciated, or the required increase in representational power required for such is
underestimated. For example, a distinction can be made between (merely) extensional
and (both extensional and) intensional self-reference. In case of purely extensional self-
reference, one uses the same referential means one uses for referring to things other than
oneself, but in a way which happens to achieve self-reference. This occurs when Joe Bloggs
uses the name ‘Joe Bloggs’, or when a process like ‘Top’ in Unix, which happens to have
ID 23 say, displays the properties of all running processes, including those of process
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23. 11 Extensional self-reference is easily achieved in artificial systems, but, we maintain,
is inadequate for modelling sophisticated forms of meta-management. For that, intensional
self-reference is required: Representing oneself as a representational thing, which in turn
requires the application of (some subset of) the concepts of semantics, truth, satisfaction,
meaning, etc. 12 As far as we can tell, meta-cognition in Clarion (setting goals, focus of
attention, choosing learning rules, etc.) only involves extensional self-reference; however,
adding intensional self-reference would not be incompatible with anything currently in
the architecture.

8.3 Motivation and affect

The very name of the CogAff schema makes it clear that accommodating architectural
differences concerning motivation, emotion and other varieties of affect is one of its
principal intended uses.

While CogAff in many respects attempts to be a neutral framework within which to
compare different models and theories, it nevertheless builds in some assumptions which
we take to be conceptually, rather than empirically, necessary. For example, we take it
that a system is in one motivational or affective state rather than another primarily
because of the role that that state plays in mediating between the way the organism takes
the world to be and the organism’s actions. Thus, an affective or motivational state is a
holistic property of a system, not localizable to the state of a ‘motivational module’ or
‘affective subsystem’. This is why we did not include an ‘emotion box’ in either the CogAff
schema or the H-CogAff architecture: The aspects of an organism which are responsible
for it being in one affective state (e.g. a particular mood or emotional state) rather than
another are not, in general, distinct from the total state of the reactive, deliberative
and meta-management systems, their control structures, their interactions, etc. In that
sense many affective states are ‘emergent’ properties of interactions between mechanisms.
However, that does not preclude particular affective states (e.g. having a goal, or desire,
or preference) being based on some explicit structure, which may have been produced by
a mechanism whose function is to produce such structures, like the ‘motivator generators’
in Beaudoin and Sloman (1993).

That said, what is to be made of architectures like Clarion, which do include a
motivational module? Nothing in what we have just said prohibits, a priori, the existence
of an organism which has such a module, in the sense that the organism is built so
that when, say, the GET-FOOD drive is activated in the module, the necessary systemic
changes which constitute being in the affective state of desiring food are thereby brought
about. Indeed we would expect such motivational mechanisms to be required both in

11 Even these examples, however, are not quite right, as they at least involve implicit notions
of what a person or a process is. Extensionally self-referential representations typically succeed
in self-reference without employing any conception that they are representational. So a better
analogy would be a Joe Bloggs referring to ‘thing number 286’, where Joe Bloggs happens to be
thing number 286.
12 We do not claim to be the first to make this observation! McCarthy, for example, has been
aware of this problem for many years (e.g., McCarthy, 1979), partly because he realised very
early on that meta-semantic competence is hard to accommodate within first-order logic.
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organisms and in robots. But it is important to make some observations:

• Such an arrangement is not the general case, but is a highly constrained architectural
configuration (roughly equivalent to Fodor’s Representational Theory of Mind) which
no one at present really knows how to implement, if it can indeed be implemented.
However, Clarion does not in general presuppose any such theory: it allows for important
sub-states to be distributed.

• Even if localized manifestation of, say, some motivational states (e.g. explicit drives) is
possible, such localization might not be possible for affective, emotional or motivational
states in general.

• Independently of whether or not all affective state types can be possibly localized in such
a way, it seems likely that there will always be a ‘surround’ of non-localized affective
states which complement or even enable the motivational module.

• The module discussed thus far, which involves the manifestation of affective states,
should be distinguished from a superficially similar kind of module which represents
affective states to the organism, enabling it to reason about such states. For example,
an organism might have the capacity to predict that if it desires something and is
prevented from getting that thing, it will be unhappy, perhaps violent. If it also desired
not to be violent toward its conspecifics, it might isolate itself if it thought a denial of
a particular desire was imminent. Thus, explicit representation of one’s motivational
and emotional states, and even such things as moods, can be useful even if deliberation
concerning these states does not allow one directly to control them. 13 Of course, that
such modules are conceptually distinct does not prevent the possibility, at least in
theory, that these modules might be realized in the same hardware. In fact, it would
seem that the primary reason for an organism to evolve the former kind of affective
representation would be for it to serve as a means of controlling its affective states in
the light of deliberation.

Finally, we take it to be an important feature of Clarion that it is not restricted to using
a goal stack (last in first out). Goal stacks can be terribly inflexible, and is in part what
led the CogAff group (especially Luc Beaudoin) to introduce instead the more general
notion of meta-management. Like Clarion, Cogaff requires no commitment to goal stacks,
though they could be used where appropriate. Developed taxonomies of the deliberative
and meta-management layers should include this distinction.

8.4 Varieties of memory, representation and learning

The mention of Clarion’s working memory, above, raises the fairly obvious point that
the CogAff schema as it stands does not capture all of the information processing features
in which one might be interested, such as distinctions between working, episodic and
semantic memory (Clarion includes all three) and how they are related to the other
aspects of the architecture.

Central to Clarion is the inclusion of both explicit and implicit, as well as both
procedural and declarative, representations – the CogAff schema as it stands does

13 For some evolutionary experiments showing the advantage of such explicit states in very simple
organisms, see Scheutz (2001, 2002).
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not distinguish between such representational types. One might be tempted to equate
procedural (or implicit) reasoning with the CogAff reactive layer, and declarative (or
explicit) reasoning with the CogAff deliberative layer, but this would be a mistake. For
example, explicit representations may be used in purely reactive processing (although
full-fledged deliberation requires explicit representation).

Another aspect of Clarion which requires an extension of the CogAff schema in order to
be accommodated explicitly, involves the variety and positioning of learning algorithms
(Q-learning, backpropagation, etc.) in the architecture. Furthermore, in order to allow
for the existence of an architecture which is capable of doing what we are attempting to
do (and trying to get others to do) – overcome ontological blindness – any taxonomy
of learning methods for cognitive architectures should include ontology revision and
extension, as discussed in section 2. In some cases this will require the development of
new forms of representation and new mechanisms for manipulating them, as in learning,
mathematics, music, programming, and the formal sciences. The extent to which such
processes would be manifested in, or distinct from, other learning mechanisms is as yet
unknown. We suspect that investigating all the kinds of learning that can occur within the
CogAff sub-categories, and all the kinds of changes of causal relationships that can occur
in such an architecture, will lead to new, much richer, taxonomies of types of learning and
development.

While we not only accept but strongly endorse the point that much detail needs to be
added to the schema, nevertheless the coarse distinctions that the CogAff schema already
provides form a good place to start in taxonomizing the space of biologically-inspired
information processing architectures — until someone provides a better framework.

9 Exploring design space

As we gain a deeper understanding of the space of possible architectures (design space)
we can raise an ever-growing collection of questions for empirical research, and also more
sensibly select designs for specific sorts of biologically-inspired robots. This task is enriched
by relating it to the study of different types of niches, and the relationships between designs
and niches of different sorts, helping us to understand how biological evolution works, and
possibly helping us design better artificial evolution mechanisms Zaera et al. (1996).

Many people have pointed out discrepancies between extravagant claims for AI in
the 1960s to 1980s and the actual achievements. There are several different sorts of
explanations, including excruciatingly slow CPUs and tiny memories. More interestingly,
ontological blindness of researchers in AI and Cognitive science led to over-simplified views
of of the problems to be solved; for instance, assuming that biological visual systems have
the sole or main function of producing geometrical descriptions of the environment, and
failing to notice that the variety of concurrent interacting processes involved in natural
intelligence, rules out the simple sense-think-act cycles of many AI systems.

In particular, inadequate software architectures were used: e.g., programs generally did
not have any self-understanding. So although a programmer looking at program traces
could detect searches stuck in loops, wasteful repetition, poor selection between options
to explore first, and could notice opportunities for improving choice of representations,
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algorithms or repairing knowledge gaps, the programs could not do this to themselves.
One of the few exceptions was the HACKER program reported in (Sussman, 1975). Even
though it was not completely implemented, many of the issues were analysed by Sussman,
and important aspects of meta-management are to be found both in his suggestion that
‘critics’ could monitor plan-formation processes by looking for instances of previously
learnt bug-patterns, and also in HACKER’s ability to record abstract features of processes
of ‘careful mode’ plan execution, used for diagnosis of errors. But it is only recently that
attention has been focused on architectures supporting a full range of interactions between
concurrent processes.

It is widely believed that an emotional subsystem (whatever that might mean) is
required to remove the deficits in earlier AI systems Damasio (1994); Picard (1997).
An alternative diagnosis is that human-like intelligence based on self-awareness and
self-criticism requires a meta-management (reflective) layer Minsky (1987); Beaudoin
(1994) in the architecture, operating concurrently with other components. Damage to
frontal lobes in humans can interfere both with meta-management capabilities, leading to
reduced intelligence, and with certain types of emotional reactions. The combined effects
of one kind of damage have been misinterpreted by Damasio and others as implying that
emotions are required for intelligence, as opposed to being a product of other things that
are required for intelligence, as explained in Sloman (1998, 2001a). This is analogous to
arguing that because damage to a car’s battery will stop the horn working, and will also
stop the car from starting, it follows that a working horn is required for the car to start.

The importance of a more sophisticated architectural approach is beginning to be
widely acknowledged — e.g. it plays a significant role in the recent DARPA initiative
on cognitive systems, in the USA. 14 However, it would be a mistake to assume that the
problem is solved, for we still have very little understanding of how to build powerful self-
monitoring capabilities, or human multi-level perception and action systems, and we don’t
have good explanations for meta-semantic capabilities. We also still need to understand
possible evolutionary and developmental trajectories in which architectures change.

Experiments illustrating the evolutionary impact of simple changes within the space
defined by our framework are reported in Scheutz and Sloman (2001). There is much
more exploration to be done of this sort and we have developed tools to help with the
task (Sloman and Logan, 1999).

9.1 Using the CogAff framework to guide research

For decades AI has suffered from swings of fashion in which people have felt they have to
propose and defend a particular type of architecture as ‘right’ and others as ‘wrong’. This
should be replaced by research that systematically compares design or modelling options,
including hybrid combinations, in order to understand the trade-offs. The CogAff schema
can be used to provide a framework that promotes research:

(1) asking questions about an organism: which of the sub-components and which of the
links between components does it have, and what difference would it make if the

14 See http://www.darpa.mil/body/NewsItems/pdf/iptorelease.pdf and
http://www.darpa.mil/ipto/
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architecture were different in various ways?
(2) asking similar questions about the ontologies and forms of representations used by

different organisms, e.g. what are the affordances they can detect, and how can they
use them?

(3) considering alternative designs for artificial systems, and investigating the pros and
cons of including or omitting some of the sub-mechanisms or links between sub-
mechanisms;

(4) illuminating evolutionary investigations by enabling us to identify and analyse
possible evolutionary trajectories in design space and in niche space Sloman (2000a);
Scheutz and Sloman (2001).

(5) challenging and extending the CogAff framework by noticing when useful proposed
architectures do not fit the framework. E.g. both Clarion and the H-CogAff
architecture require kinds of complexity not directly suggested by the CogAff grid.

It is common in AI to argue that a particular sort of architecture is a good one and
then to try to build instances in order to demonstrate its merits. However, this may be
of limited value if it is not clear what the space of possible architectures is and what
the trade-offs are between the different designs within that space. So even if a particular
architecture supports some capability or produces some desired robot behaviour we may
be left in the dark as to whether a different architecture might have explained more or
produced a more useful or interesting robot.

Likewise performing evolutionary computation experiments to develop a good design
to solve some problem will not increase our understanding of why one design works
and another does not, unless we have a good ontology for describing designs and their
relationships to various niches.

An explicitly comparative framework encourages a more analytical approach, even if it is
not strictly necessary for finding good solutions to engineering problems. (Cf. discovering
useful drugs for treating diseases, without understanding how the diseases or the drugs
work.)

Comparative analysis of different designs also helps us understand how different
architectures may produce the same behaviours, forcing us to develop more sophisticated
criteria for evaluating scientific models of organisms than visible behavioural similarities.

10 Uncovering problems by designing solutions

Of course we are not proposing sitting in our armchairs and designing then
implementing systems: any engineer knows that you only understand the problem to
be solved after you have designed and tested (including interacting with) a variety of
prototype solutions. The same applies to understanding what needs to be explained in
the case of natural information-processing systems. Often it is only when you discover
surprising things a model does and does not do that you understand what its task
specification should have been.

For example, a prototype may work as expected on a variety of planned test cases, then
produce bizarre behaviour when a new test is attempted. Sometimes understanding this
requires the researcher’s ontology to be extended – for instance noticing that environments
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can differ in ways that were not previously noticed but are significant for the organism
being modelled. An example could be discovering that the same perceptual information
is interpreted differently in different contexts by the original organism but not by the
prototype robot, pointing to the need for the robot to recognize and use information
about such contexts. For instance, a robot car-driver will somehow have to acquire the
ability to perceive intentions and plans of other drivers.

Another case is finding systems that work well when they can solve a problem but
work very badly otherwise, for instance continuing to search blindly because they have
not noticed that a strategy cannot succeed – like many AI systems and also the patient
Eliot in Damasio (1994). That observation might draw attention to a previously unnoticed
requirement for managing internal processing, as happened in research on symbolic AI
problem-solving systems. Learning from partly unsuccessful prototypes has fuelled growth
in concepts used by AI researchers over the last 50 years, including a switch from emphasis
on representations and algorithms to emphasis on architectures – e.g. Sussman (1975);
Albus (1981); Brooks (1986); Minsky (1987); Laird et al. (1987); Beaudoin (1994); Nilsson
(1998).

11 Asking questions about an information-processing system

Understanding an information-processing system requires us not only to find out how
it behaves in various environments and how it is internally made up from physical
components, but also to ask some questions about abstract features of its functionality.
For example, if the architecture includes a deliberative layer we can ask what sorts
of representational formalisms and mechanisms enable it to represent unperceived
possibilities, and whether it uses one formalism for all contexts or different formalisms for
different kinds of task. Can it describe relationships between hypothetical possibilities.
Can it learn to invent new types of formalisms? To what extent does it require formalisms
with varying structures and compositional semantics?

Similar questions can be asked about reactive systems or sub-systems, even though not
everyone is happy to use the term ‘representation’ in that context. They may prefer to
ask: What kinds of system states and processes can store information used by the system?
How can those states vary (e.g. do they vary like vectors in a fixed dimensional vector
space, or can they vary in structure and complexity like sentences or tree structures?).
How is the information therein extended, compared, retrieved, and used, and for what
functions? 15

As said before, such questions refer to types of information and manipulative
mechanisms that exist within virtual machines. So investigating them can be extremely
difficult, since in general they cannot be observed using conventional scientific methods,

15 As in Sloman (1995, 1996b) we treat all these as questions about types of representations,
their syntax, their semantics and their pragmatics, even if the representations are implemented
in neural nets, chemical concentrations, patterns of wave activity, etc. Some theorists prefer to
use ‘representation’ in a narrow way requiring a particular type of syntax (e.g. using phrase
structure grammars) and semantics (e.g. with propositional content). This restriction seems
pointless given the variety of types of information processing that would thereby be omitted.
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either in externally observable behaviour nor in the physical or physiological processes in
brains.

An example is the question: How do animals with deliberative capabilities represent
collections of possibilities inherent in a situation? Modal logics can be used to represent
possibilities and impossibilities, but it is not obvious that animal minds use such
formalisms Sloman (1996a). Likewise if a perceptual system detects affordances, we can
ask whether this is implemented purely at the reactive level by triggering appropriate
behavioural responses (as in insects and many other animals), or whether affordances
are somehow described in a deliberative sub-system that can consider whether to make
use of them and if so which ones, and how. A system with both layers might use both
mechanisms in parallel, as Clarion does.

If there is a meta-management layer that includes meta-semantic self-monitoring and
self-evaluation capabilities we can ask what sorts of categorisation of internal states are
used, whether the evaluations are innate or learned, and, if learned, how much influence
the surrounding culture has (e.g. whether individuals can feel guilt or shame, as opposed
to merely regretting what they have done.)

In summary: our general approach, and the CogAff schema in particular, leads to a
wide range of new empirical and theoretical research questions.

12 Extending our design ontology

There may be some benefit to the community studying biologically-inspired robots if
we generalise some of the currently used ontology, as has often happened in the history of
science when new commonalities are discovered. E.g. the label ‘energy’ was extended to
entirely new phenomena such as chemical energy and mass energy, allowing a more general
interpretation of the principle of conservation of energy, and the idea of ‘feedback’ was
extended from mechanical controllers to electrical, chemical, biological and socio-economic
processes.

Likewise instead of describing some systems as using representations and others as
having changeable states that can store useful information, we can describe both as
using representations, and then discuss the similarities and differences between the
different types of representation and representation-manipulating mechanisms. We can
then usefully extend the interpretation of questions like these:

• What kinds of syntax are used (what information structures and syntactic
transformations)?

• What kinds of semantics are used (which ontologies, hypotheses, questions,
explanations, beliefs, intentions, plans)?

• For what pragmatic functions is the information used (goals, desires, puzzles, strategies,
preferences, values, triggering new states, etc.)?

Of course, not all these questions are relevant to all organisms. Since these phenomena
are all very abstract, exploring them is not like perceiving physical behaviour, but requires
us to develop appropriate meta-ontologies and new modes of investigation. But that
is not unusual in science: similar developments were required before biologists could
study abstractions like ‘function’, ‘adaptation’, ‘metabolism’, ‘niche’, ‘gene’ and ‘extended
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phenotype’. Moreover the history of physics also includes major advances towards more
abstract ontologies referring to entities that are remote from what is readily observed
and measured. E.g. Pauli postulated the existence of neutrinos in 1930, but ‘detection’ of
neutrinos did not occur until about 25 years later, and even then required very elaborate
inference procedures.

12.1 Enriching our conceptual frameworks

Our grasp of categories required for information processing in natural systems is still
very limited, compared with the ontologies we have developed for designing and talking
about artificial systems. In studying most animals we are probably in the situation of
someone trying to understand what a computer is doing who has never studied operating
systems, compilers, programming techniques, networking, word processors, data-bases,
expert systems, etc.

A physicist or electronic engineer who knows nothing about these things may be able to
investigate many of the physical and electronic properties of the computer, without ever
dreaming that he is leaving anything out. Likewise it is possible for brain scientists to
investigate in great detail physiological pathways, patterns of neural and chemical activity,
and their correlations with external events, and never dream that the investigation leaves
out many important questions about the virtual machines involved, such as what ontology
the organism uses in acquiring information about its environment, or what forms of syntax
are used in storing and manipulating information of various kinds.

The ontology used by an organism will not be made visible by studying physical
processes in its brain. Opening up the brain of an expert computer scientist will not
teach you about compilers and schedulers. So in addition to the general possibility of
ontological blindness: we may be ontologically blind to some aspect of the ontology used
by an organism – second order ontological blindness.

Neither are the information-processing capabilities visible in the externally observable
behaviour or input-output mappings displayed by machines or animals — except to those
who have developed appropriate theories to guide their observations and interpretations.
We therefore need ways of thinking about and investigating aspects of biological systems
(organisms, species, ecosystems) that are not necessarily observable to us today, but may
be crucial for understanding how they work. (We also need to teach these ways of thinking
to more students.)

Understanding such (currently) ‘invisible’ aspects of processes in organisms may be a
requirement for realistic simulations or models, especially when we are starting from
inherently different physical implementations, such as computers and digital circuits
instead of brains and neurones, or electro-mechanical devices instead of muscles and
bones. People who do not address the questions regarding the important abstractions
may therefore build simulations which very superficially model biological systems without
realising that there are important phenomena to which they are ontologically blind and
which they have not modelled.

In some cases, attempting to get desired results by trying to replicate physical
structures using artificial components may fail, like early attempts to replicate bird flight;
whereas replication at a higher level of abstraction may be more successful — as happened
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in the history of achieving artificial flight (Armer, 1962, p 334)

13 Summary and conclusion

The ability of organisms (whether seagulls or scientists) to perceive and reason about
the world obviously means that we can and should allow for this possibility when thinking
about how to design biologically-inspired robots. What is not so clear is what precisely the
perception and reasoning capabilities of particular types of animal are, and that includes
what forms of representation they use. Up to a point this can be investigated by performing
standard engineering requirements analysis in order to work out how to replicate or model
observed capabilities. Unfortunately for researchers, information-processing systems not
only produce easily observable physical actions, but also have states such as perception,
reasoning, learning, desires, and emotions, with aspects that are difficult or impossible
to observe using the methods of the physical sciences or even our evolutionarily-honed
abilities to see mental states of others. Thus an observation-based approach to biologically
inspired robots may miss important phenomena.

The abstraction of a virtual information-processing machine, itself understandable on
various layers of abstraction, seems to be required to explain many biological behaviours.
In particular some biologically-inspired robots should include not just reactive but
also deliberative and meta-management layers, not for only the obvious reason that
mathematicians do these things and they are biological entities, but also because merely
reactive architectures seem to be unable to explain capabilities of many vertebrates, for
instance the behaviour of a crow in bending a piece of wire to make a hook to fish a
bucket of food out of a tall tube. 16 Animals that not only introspect but also report
their introspections (not necessarily accurate or complete introspections) are likely to be
using something like the CogAff meta-management layer (unless, like a parrot repeating
what it hears, their reports are faked). Since not many animals can report introspections,
evidence for meta-management will have to be very indirect.

A desire for theoretical parsimony, or unfounded worries concerning scientific
respectability of speculation about processes which are unobservable or difficult to observe,
may help to preserve ontological blindness, by causing some researchers to adopt a
methodology that permits only low-level physical phenomena (i.e. phenomena describable
using the language of the physical sciences) to play a role in explanations and designs.
This ‘narrow’ viewpoint rules out using our draft schema for possible architectures and
broadening it to encompass all the forms that biological cognition might take, so that we
can investigate architectures with a more open mind. This should be a useful counter to
some recent restrictive influences, such as the ideas presented in (Brooks, 1986) leading
to so-called ‘Nouveau AI’.

We have tried to show how the CogAff framework accommodates many architectures

16 Reported in August 2002, in several newspapers, news web sites and journals, e.g. here:
http://news.nationalgeographic.com/news/2002/08/0808 020808 crow.html The process could
not be purely reactive unless something in the crow’s evolutionary or individual history produced
either genetic or learnt hook-making reactions. There does not appear to have been any such
evolutionary history or prior training of the individual crow.
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proposed so far, including subsumption, varieties of contention-scheduling, and other
‘Omega’ architectures, Barkley’s ‘executive functions’, aspects of Clarion, and others.
Even if the precise schema we have proposed proves insufficiently general, there
will still be a need for something like it as a unifying framework for AI, theoretical
psychology and neuroscience. A demanding test for the ideas in this paper could come
out of attempts to build a child-like robot with a great deal of the visual capability, the
physical manipulative capability, the linguistic capability, the ability to use and to provide
explanations, and the capability to learn and develop, of an ‘idealised’ young human child.
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