ON LEARNING ABOUT NUMBERS
{Some problems and speculations.)

By Aaron Slomen, School of Social Sciences, University of Sussex.
Abstract

The aim of this paper 1s methodological and tutorial. It uses elementary
number competence to show how reflection on the fine structure of familiar
human abilities generates requirements exposing the inadequacy of initially
plausible explenations. We have to learn how to organise our common sense
knowledge and make it explicit, and we don't need experimental data so mach
as we need to extend our model-building know-how.

0000000000
Introduction

Work in A.I. needs to be informed by accurate analysis of real human
abilities if it is to avoid exaggerated claims, and excessive concern with
toy projects. The reflective method advocated here has much in common with
the approach of some linguists and with philosophical analysis of things we
all know, as practised by Frege, Ryle, Austin, Wittgenstein and others.
Philosophers' analyses are distorted by their preoccupation with old puzzles
and paradoxes, and by their failure to think about the problems of designing
symbol-manipulating (information processing) mechanisms. Psychologists,
with a few exceptions (e.g. Piaget, Wertheimer, Heider) miss out on the
analysis altogether, partly because they confuse it with introspection,
partly because they are driven by the myth that to be a scientist is to
collect new data, and partly because the technique is hard to learn and teach.

The analysis of elementary number competence, given below, is mixed up
with speculation about mechanisms. A metaphor now taken for granted, though
perhaps one day it will have to be abandoned, is that acquiring and using
knowledge requires a memory containing vast numbers of "locations" at which
symbols of some kind can be stored. They need not be spatial locations,
since points in any symbolic space will do, such as frequencies of radio
waves, or structures of molecules. So my remarks below about locations and
addresses which identify them make no assumptions about the medium used,
except that it provides enough locations at which symbols can be stored,
including symbols which identify locations in memory, i.e. "pointers". I
make no assumptions about the mechanisms making addressing possible except
that explicit addressing takes a negligible amount of time. It makes no
difference for present purposes whether the locations are brain cells,
molecules, frequencies of brain waves, or parts of some spiritual mechanism.
Physiology is irrelevant to many problems about the structures and functions
of mental mechanisms.

The main problem to be discussed here is: What is elementary number
competence and how is it possible? The first task is to make explicit our
common sense knowledge about what sorts of things are possible. (Not laws
of behaviour, but possibilities are what we first need to explain. There
are very few laws of human behaviour, but very many possibilities.) By
thinking about the mechanisms required to explain these possibilities we
begin to reveal the poverty of most philosophical and psychological theories
about the nature of mathematical concepts and knowledge: they hardly begin
to get to grips with the details we all kuow.

Number concepts aren't simple things you either get or don't get, but
complex extendable structures built up graduslly. Reflecting on even the

173

Sloman

simplest things we koow children can lesyn, shows thet children somshow
cope with gquite complex compubationsl probleme. Some of these problems ere
comton to many forms of learning, others psculisr to numbers and counting.
For any small subset of the problems, sny compelent programmer could suggest
several possible explanstory mecheniems, The dlfficulty lies in understend-
ing what sorts of mechanisms might not cnly solve a few specific problems,
but could form part of a larger mechanism expleining much more. There is 2
serious need to extend our knowledge of varieties of possible computetional
mechanisms.

The particular problems to be discussed here are concerned with
knowing mumber words, knowing action sequences (1like counting), and
enriching one's understanding of a previously learnt sequence. Many more
questions will be asked than answered.

Knowing number words

A child learns to recogmise sounds like "one", %two", "number" and
tcount". An untutored view is that repeated exposure causes the sound to be
stored, so that new occurrences can be recognised by matching. Immediately
all sorts of questions can be asked. In what form is the sound represented -
is it analysed into recognisable fragments, such as phonemes? How are
experiences selected as worth storing? How is a matching item found in the
vast store of memories when a word is recognised? Is an index used for
finding items, and if so how does a child know about index construction?

How is the matching between perceived and stored items done? Are variations
coped with by storing variant forms or by using a flexible matching
procedure or both? In the first case, how is the equivalence of stored
variants represented? Why is repeated hearing sometimes needed for learning -
is it because the child needs to experiment with different modes of analysis,
representation and matching, in order to find a good way of dealing with
variations? If so, how arethe experiments managed? Why is repetition some-
times not needed for learnming? When a new word is learnt how is new storage
space allocated? How is the ability to say the word represented? Is output
controlled by the same representation as recognition? How are different
output styles associated with the same item, such as English and French
number names, A.}:g.gs ggd Roman numerals? Does being able to count in
different languages/explicit storage of different sequences, or is the same
sequence used with a decision about output style at each step? Or can both
methods be used?

Using only 26 letters we can comstruct thousands of words. A
frequently used principle of computation is that if a small set of symbols
is available and quickly recognisable (e.g. because the set is small end
the matching simple), then a very much larger efficiently usable set of
symbols can be made available, each consisting of same combination of
symbols from the small set. By imposing an arbitrary order on the original
set of symbols, we can make processes of storing and retrieving large
numbers of the new symbols look like fast parallel searches, for instance
in the way we use alphabetical order to find a name in a directory without
exhaustive search. Alternatively, recognition of a complex item may take
the form of computing a description, using recognition of the components, as
in parsing a sntence or finding the average of a set of numbers (constructive
recognition). So perhaps analysis of words into syllables, phonemes, or
other sub-structures is used by children to facilitate storege and recogni-
tion of the thousands of words they learn. This attributes to toddlers
sophisticated but unconscious computational abilities (e.g. the construction
and use of indexes, decision trees, parsers). What do we know about
possible mechanisms?

174

Sloman

It is often suggested that some of the remarkable efficiency of human
memory could be explained by a content-addressable store, i.e. a large
collection of storage units each capable of comparing its contents with a
broadcast pattern, and shouting "Here it is™ to a central processor.
However, this leaves problems gbout explaining cur ability to cope with
items varying enormously in sise and complexity, such as letters, words,
phrases, sentences, poems, plays, the mumber sequence, etc., and our ability
to retrieve on the basis of elaborate inferences rether than simple matches:
e.g. tts the smallest three-digit number which rhymes with 'heaven' and
contains/repeated digit?". The central processor would need to be able to
transform questions into forms likely to produce responses fram relevant
storage units. This requires some kind of index or catalogue of the
contents of those units, which would make their content-addressability
redundant! Most of this paper is concerned with problems of indexing.

Associations between learnt items

Merely being able to tell whether an item has been met before is not
of much use. More must be known about it: such as how to produce it, in
what forms it may be experienced, that it is a word, that it belongs
to a certain syntactic class, that it has certain uses, that it is one of
a group of words with related meanings or uses (a semantic field), that
various objects and procedures are associated with it, and so on.
Associationist psychologists and empiricist philosophers are obviously
right in claiming that much knowledge depends on learnt associations. But
they have been so concerned with the external conditions for establishing
such associations that they have hardly begun to think about the problems
of how such knowledge might be represented, stored and manipulated so as to
be accessible, usable, and if necessary modifiable. (Explanations which
convince one's colleagues are sometimes seen to be inadequate only as a
result of attempting to design a mechanism actually able to do these things.)

Any one item may have to be associated with very many others. The
word "word" is somehow linked to thousands of instances, and the item
representing one's home town linked to very many facts known about that
town. Similarly, we expect children to pick up many facts about an
individual number, such as thet it is a number, that it is used in counting,
what its successor is, what its predecessor is, whether it is odd or even,
whether it is prime and if not then what its factors are, which pairs of
numbers add up to it, the result of adding or multiplying it with various
others, how to say it, how to write it, how to recognise it when said or
written in various styles, how to bypass coumting by recognising spatial
patterns corresponding to it, what it can be used for, how to count forwards
from it, how to count backwards from it, where it lies in relation to
various "landmarks™ in the number sequence, and so on. (See figure 1.) Why
should we expect children to pick up so many associstions? The process of
building up those associations is a long one and involves many mistakes
which get corrected. An explanatory theory must specify a mechanism which
is not merely able to hold the finished structure in an efficiently access-=
ible form, but is alsc capable of explaining how such structures can be
built up, how they are modified, how they are used, etc. I do not believe
educational psychologists have the foggiest notion of what such a mechanism
might be like. Yet gifted teachers have some intuitive grasp of how it
works.

Take the question "What's after three?". The problem is not merely
to find something associated with "three" and "after". Besides "four®,
"two" will be associated with them, and so may lots of pairs of numbers be,
e.g. pairs N and K for which it is known that X is K after three: five is

1735

Slomen

two after three. So getting to the reguired assocletion requires the
ability to anslyse the question (which may be amblgucus) and use the
analysis to control the search for relevant links in the store of associa-
tions. (E.g. in figure 1, find the node representing three then search for
a link from it labelled "successor®. Do children lesrn to translate the
original question intc this kind of intermal procedure? How?)

There are many ways in which associations can be stored, aud different
structures require different procedures for their use. A common method in
computing is to use "property-lists" or Passociation-lists", as in figure 2,
which shows a chain of links where each link contains two storage cells
treated as an association by the memory mechanism. A chain may be attached
to some item, e.g. to the conpept "numbers®, and related items sre "hung"
from the chain by means of pointers giving their addresses. As figure 3
shows, the items hung from the chain may themselves be associations,
corresponding to the labelled links of figure 1. Thus in the context of
the chain attached to "three®, there is an association between "predecessor®
and "two", whereas in a chain attached to "four? (not shown) there would be
an association between "predecessor" and "three". Associations ere relative
to context.

Stored structures are not enough. Procedures are required for
creating and finding associations in them. For instance, the following
procedure will generate a search down a chain starting at LINK, looking for
an association of type LABEL, in a structure like figure 3, and will return
the associated item as its result.

PROCEDURE FINDASSOC (LINK,LABEL);
WHILE (HD(HD(LINK)) # LABEL) REPEAT
(ASSIGN TL(LINK) TO LINK);
ENDRETURN(TL(HD(LDIK)));

So FINDASSOC(THREE, TYPE), yields a pointer to NUMBER as its result, in
figure 3. A more camplex procedure is required for adding a new associationg
it will have to get a free link (how?) and insert it at a suitable place in
the chain, with its HD pointing to the new association and its TL pointing
to the next link in the chain, if any. If children do anything like this to
store and use associations, then how do they build up such chains, and how
do they come to know the procedures for finding required associatiocns? Are
these inborn mechanisms? Clearly not all procedures for getting at stored
information are innate. For instance, children have to learn how to count
backwards or answer "What'!s before 'four'?" even though they may already
know the order of the numbers. More on this later.

Learning a sequence

In this paper I shall not consider the more advanced stage where a
child grasps a rule for generating indefinitely many number names, e.g.
using decimal notation. An earlier stage involves learning to recognise
not only isolated words, but also a sequence "one", "two", "three", etc.
This is common to many things children learn. Some learnt sequences are
made up of already meaningful parts which combine (how?) to form a new
meanin, whole, like "Mary had a little lamb...", whereas other sequences,
like the alphabet and numbers used in early counting games, are arbitrary,
when first learnt. Sequences with varying amounts of significant structure
include: the days of the week, the letters used to spell a word, the sounds
in a spoken word, the sequence of intervals in a song, the steps required
to assemble a toy, routes frequently travelled, recipes, and various games
and rituals. An adequate explanation of how the simple and arbitrary

176

Slomen

sequences are learnt, or stored or produced should also be part of an
explanation of ths ability to cope with more complex structures containing
simple sequences as parts, such as nursery rhymes which have many levels
of structure, and action procedures which, besides simple sequences, alsc
contain loops, conditional branches, sub-procedures, gaps to be filled by
decigicon-making at execution time, and other forms of organisation.

411 this points to the old idea (compere Miller, et al.) that human
abilities have much in common with computer programs. But further
reflection on familiar facts shows that programs in the most common program-
ming languages dontt provide a rich enough basis for turning this from a
thin metaphor into an explanatory theory. For instance, pecple can excute
unrelated actions in parallel. Moreover, they epparently don't require
their procedures to have built-in tests to ensure that conditions for their
operation contime to be satisfied, with explicit imstructions about what
to do otherwise, like instructions for dealing with the end of a list. 411
sorts of unpredictable things can halt a human action at sny stage (like
learning onets house is on fire) and a decision about what to do can be
taken when the interruption occurs, even if no explicit provision for such
a possibility is built into the plan or procedure being executed. These
points suggest that models of human competence will have to use mechanisms
similar to operating systems for mulii-programmed computers. For instance,
an operating system can run a program, then interrupt it when some event
occurs even if the program makes no provision for interruption. Similarly,
if something goes wrong with the running of the program, like an attempt to
go beyond the end of a list, the program breaks down, but the operating
system or interpreter which runs the program can decide what to so, e.g.
send a message to the programmer, so that there is not a total breskdown.
Of course, the operating system is just another program. So the point is
simply that to make the program metaphor fit human abilities, we must allow
not merely that one program can use another as a subroutine, but that some
programs can execute others and control their execution, in a parallel
rather than a hierarchic fashion. (These arguments are familiar to many
people in A.I.)

In counting objects, a child has to be able to generate different
action sequences in parallel, keeping them in phase. Thus the process of
saying number names, controlled by an internal structure, and the process
of pointing in turn at objects in some group, controlled by the external
structure, have to be kept in phase. 1In a suitable programming language
one could keep two processes in phase by means of a procedure something
like

PROCEDURE COEXECUTE (PROCESS1, PROCESS2, STOPPING-CONDITION);
START:

STEP(PROCESS1);

STEF(PROCESS?)3

IF NOT{STOPPING-CONDITION) THEN GOTO START;
END

Unfortunately, this is not an acceptable model in view of the familiar fact
that children (and adults doing things in parallel) sometimes get ocut of
phase when counting and (sometimes) stop and correct themselves. This
suggests that keeping the two sequences in phase is done by a third process
something like an operating system which starts the processes at specified
speeds, but monitors their perfermance and modifies the speeds if necessary,
interrupting and perhaps restarting if the sequences get out of phase, which
would be impossible with the procedure COEXECUTE. It is as if we could
write programs something like:

177

PROCEDURE RUKINPHASE(PROCESS1, FROCESS2):
DO IN PARALLEL (a) to (&):
(a) RUN PROCESS1;
(b) RUN PROCESSZ2;
(c) IF PROCESS1 AMD PROCESS2 BEGIN TO GET OUT OF PHASE THEW
MODIFY SPEED OF PROCESS! OR FRCCESS2 TO KEEP IN PHASE;
(d) IF PROCESST AND PROCESS2 GET OUT OF PHASE THEN RESTART THEN;
END

The computational facilities required for this kind of thing are much more
sophisticated than in COEXECUTE and are not provided in familiar prograrming
languages. (Monitoring interactions between asynchronous parallel processes
may be an important source of accidental discoveries (creativity) in
children and adults.)

Further, the child has to be able to apply different stopping condi-
tions for this complex parallel process, depending on what the task is. So
it should be possible for yet another process to run the procedure RUNINPHASE,
watching out for appropriate stopping conditions. For instance, when the
question is "How many buttons are there?" use "No more buttons" as main
stopping condition, whereas in response to a request "Give me five buttons",
use "Number five reached" as main stopping condition. I say main stopping
condition, because other conditions may force a halt, such as getting out
of phase or rumming out of numbers or (in the second case) running out of
buttons. How do children learn to apply the same process with different
stopping conditions for different purposes? How is the intended stopping
condition plugged into the process? This would be trivial for a programmer
using a high-level language in which a procedure (to test for the stopping
condition) can be given as a parameter to another procedure - but do
children have such facilities, or do they use mechanisms more like the
parallel processes with interrupt facilities described here? These parallel
mechanisms might also explain the ability to learn to watch out for new kinds
of errors. E. g. having learnt to count stairs where there is no possibility
of counting an item twice, learming to count buttons or dots requires
learning to monitor for repetition and omission. There are many ways this
could be organised.

If we consider what happens when a child learns to count beyond twenty,
we find that a different kind of co-ordination between two sequences is
required, namely the sequence "one, two, three ... nine" and the sequence
"twenty, thirty, ... ninety". Each time one gets round to "nine" in the
first sequence one has to find one's place in the second sequence so as to
locate the next item. A programmer would find this trivial, but how does a
child create this kind of interleaving in his mind? And why is there some-
times difficulty over keeping track of position in the second sequence
"... fifty eight, fifty nine, ... um .. er, thirty, thirty ome..."? C(Clearly
this is not a problem unique to children: we all have trouble at times with
this sort of book keeping. But how is it done when successful? And what
kind of mechanism could be successful sometimes yet unsuccessful at others?
My guess is that human fallibility has nothing to do with differences between
brains and computers as is often supposed, but is a direct consequence of the
sheer complexity and flexibility of human abilities and knowledge, so that
for example there are always toc many plausible but false trails to follow.
When computers are programmed to know so much they will be just as fallible,
and they'll have to improve themselves by the same painful and playful
processes we use.

We have noted a number of familiar aspects of counting and other
actions which suggest that compiled programs in commonly used programming

178

Sloman

lsnguages don't provide & good model for humen sbllities. A further point
to notice is that we not only execute our procedures or programs, we alsc
build them up in a piecemeal fashion (as in learning to count), modify them
W y seem inadequate, and examine them in order to anticipate their
effects without execution. We can decide that old procedures may be
relevant to new problems, we can select subsections for use in isolation
from the rest, and we may even learn tc run them backwards (like learning to
count backwards). This requires that besides having names and sets of
instructions, procedures need to be associated with specifications of what
they are for, the conditions under which they work, information about
likely side-effects, etc. The child must build up a catalo of his own
rescurces. Further, the instructions need to be stored in a %orm which is
accessible not only for execution but alsc for analysis and modificationm,
like inserting new steps, deleting old omnes, or perhaps modifying the order
of the steps. Such examination and editing cannot be done to programs as
they are usually stored.

List structures in which the order of instructions is represented by
labelled links rather than implicitly by position in memory would provide
a form of representation meeting some of these requirements (and are already
used in some programming languages). Thus, figure 2 can be thought of either
as a structure storing information about number names (an analogical
representation of their order), or else as a program for counting. The
distinction between data structures and programs has to be rejected in a
system which can treat program steps as objects which are related to one
another and can be changed. We explore some consequences of this using
counting as an example.

Learning to treat mumbers as objects with relationships

There are several ways in which understanding of a familiar action
sequence may be deficient, and may improve. One may know a sequence very
well, like a poem, telephone mumber, the spelling of a word, or the alphabet,
yet have trouble reciting it backwards. One may find it hard to start from
an arbitrary position in a sequence one knows well, like saying what comes
after "K" in the alphabet, or starting a piano piece in the middle. But
performance can improve. A child who counts well may be unable easily to
answer "What comes after five?". ILater, he may be able to answer that
question, but fail on "What comes before six?", "Does eight come earlier or
later than five?" and "Is three between five and eight?". He doesn't know
his way about the number sequence in his head, though he knows the sequence.
Further, he may understand the questions well enough to answer when the
numbers have been written down before him, or can be seen on a clock.

(There are problems about how this is learnt, but I'll not go into them.)
Later, the child may learn to answer such questions in his head, and even

to count backwards quickly from any position in the sequence he has memorised.
How? To say the child "internalises" his external actions is merely to label
the problem: moving back and forth along a chain of stored associations is
quite a differenmt matter from moving up and down staircases or moving one's
eye or finger back and forth along a row of objects.

There are at least two kinds of development of knowledge about a
stored structure (which may be a program), namely learning new procedures
for doing things with the structure, and extending the structure so as to
contain more explicit informatiom about itself. The former is perhaps the
more fundamental kind of development of understanding, while the latter is
concerned with increased facility. A very simple procedure enables a chain
like that in figure 2 to be used to generate a sequence of actions, for
example:

179

Sloman

PROCEDURE SEQUENCE (LINK); or PROCEDURE SEQUENCE (LIHK);
START: OUTPUT (HD(LINK));
OUTFIT(HD(LINK)}; SEQUENCE(TL{LINK)});
ASSIGH TL(LIEK) T0 LIHE; B

GOTO START;

E¥D

Going down the chein starting from & given link is thus easy, and a
procedure to find the successor of an item would use a similar principle.
But answering "What'!s before item X?¥ is more sophisticated; since on
getting to a particular location (e.g. the link whose HD points to X), one
does not find there any infermation sbout how one got there, so the last
item found must be stored temporarily. One method is illustrated in the
following procedure.

PROCEDURE PREDECESSCR (X,LINK);
LOCAL VARTABLE TEMP; ASSIGN "NONE®" TO TEMP;
START:
IF HD(LINK)=X THEN RETURN(TEMP)
ELSE ASSIGN HD(LINK) TO TEMP AND ASSIGN TL(LINK) TO LINK AND
GOTO START;
END

How could a child learn to create a procedure like this or the more elegant
versions a programmer would write? Does he start with something more
specialised then somehow design a general method which will work on
arbitrary chains? Perhaps it has something to do with manipulating rows of
objects and other sequences outside one's head, but to say this does not
give an explanation, since we don't know what mechanisms enable children to
cope with external sequences, and in any case, as elready remarked, chains
of associations have quite different properties. For a child to see the
analogy would require very powerful abilities to do abstract reasoning.
Maybe the child needs them anyway, in order to learn anything.

In any case, merely being able to invent procedures like PREDECESSOR
is not good enough. For some purposes, such as counting backwards quickly,
we want to be able to find the predecessor or successor of an item much
more quickly than by searching down the chain of links until the item is
found. If a child knew only the first four numbers, then he could memorise
them in both directions, building up the structure of figure l instead of
figure 2. Notice that this use of two chains increases the complexity of
tasks like "Say the numbers", or "What's after three?", since the right
chain has to be found, while reducing the complexity of tasks like "Say the
numbers backwards," and "What's before three?" However, when a longer
sequence had been learnt, this method would still leave the need to search
down one or other chain to find the number N in order to respond to "What's
after N?", "What's before N?", "Count fram N", "Count backwards from N",
'"Which numbers are between N and M?", etc., for there is only one route
into each chain, leading to the beginning of the chain. For instance, when
one has found the link labelled X (figure L) one knows how to get to the
stored representation of "three™, but it is not possible simply to start
from the representation of "three" to get to the links which pointto it in
the two chains. So we need to be able to associte with "three" itself
information about where it is in the sequence, what its predecessor is,
what its successor is, and so on.

A step in this direction is shown in figure 5, where each number name
is associated with a link which contains addresses of both the predecessor
and the successor, like the link marked V, associated with "two". The
information that the predecessor is found in the HD and the successor found

180

Sloman

in the TL would be implicit in procedures used for answering questions.
However, if one needed to asscciate mmch more information with each item,
and did not went to be committed to having the associations permenently in
a particuler order, then it would be necessary to lsbel them explicitly,
using structures like those in figure 1 and figure 3, accessed by a general
procedure like FIKDASSOC, defined previously.

To cut a long story short, the resit of explicitly storing lots of
discoveries sbout each number, might be something like figure 6, which is
highly redundant. The structure may look very complex, yet using it to
answer questions requires simpler procedures than using, say figure 2, for,
having found the link representing a number, one can then find information
associated with that mumber by simply following forward pointers from it,
e.g. using FINDASSOC, whereas in figure 2 or 5 finding the predecessor and
successor of a number requires using twe different procedures, and each
requires 2 search down a chain of all the mumbers to start with. O0f course,
a structure like figure 6 provides simple and speedy access at the cost of
using up mich more storage space. But in the human mind space does not
seem to be in short supply!

If an item in a structure like figure 6 has a very long chain of
associations, it might be preferable to replace the linear chain with a
local index to avoid long searches. This would require the procedure
FINDASSOC to be replaced by something more complex. Alternatively, one
could easily bring a link to the front of the chain each time the assoclation
hanging from it is used: this would ensure that most recently and most
frequently used information was found first, without the help of probabilis-
tic mechanisms.

Notice that in a structure like this, normal "part-whole" constraints
are violated: information about mumbers is part of information about
"three®, and vice versa. So by using pointers (addresses) we can allow
structures to share each other. In arich conceptual system circular defini-
tions will abound. If knowledge is non-hierarchic, as this suggests, then
perhaps cumilative educational procedures are quite misguided. Further, this
kind of structure does not need a separate index or catalogue specifying
where to look for associations involving known items, for it acts as an
index to itself, provided there are some ways of getting quickly from
outside the structure to key nodes, like the cells containing "three" and
"number®. (This might use an index, or content addressable store, or
indexing tricks analogous to hash coding, for speedy access.) The use of
structures built up from linked cells and pointers like this has a number
of additional interesting features, only a few of which can be mentioned
here. Items can be added, deleted, or rearranged merely by changing a few
addresses, without any need for advance reservation of large blocks of
memory or massive shuffling around of information, as would be required if
jtems were stored in blocks of adjacent locations. The same items can occur
in different orders in different structures which share information (see
figure I for a simple example). Moreover, the order can be changed in onme
sequence without affecting another which shares structure with it. For
instance, in figure L the addresses in links W, X, Y, and Z can be changed
so as to alter the order of numbers in chain labelled "reverse" without
altering the chain labelled “forward",

As we saw in connection with figure 2, when the rest of the mechanism
is taken for granted, a structure of the kind here discussed looks like s
program for generating beheviour, but when one locks intc problems of how
the structure gets assembled and modified, how parts are accessed, how
different stopping conditions are aspplied, etec.. then it looks more like a

i8l

Slomen

date structure used by other programs. If the dlstimotion betwsen programs
and data structures evaporates, then dontt scme A.I. slogans about
rocedural knowledge have ic be retracted, or st least clarified? (Compare
Hewitt 1971.).

Conclusion

Further simple-minded reflection on facls we all know reveals many
gaps in the kinds of mechanismz described bere. For instance, very little
has been said about the g_gocadm'es required for building, checking,
modifying, and using & structure e figure 6. Nothing has been said about
the problems of percepbtion snd conception comnected with the fact that
counting is not applied simply to bits of the world but bits of the world
individuated according to a concept (one family, five people, millions of
cells - but the same bit of the world counted in different ways). HNothing
has been said about recognition of numbers without explicit counting.
Nothing has been said about how the child discovers general and non-
contingent facts sbout counting, such as that the order in which objects
are counted does not matter, rearranging the objects does not matter, the
addition or removal of an object must change the result of counting, and so
on. (Philosophers'! discussions of such non-empirical learning are so vague
and abstract as to beg most of the questions.) I cannot explain these and
many more things that ewen primary school children learn. I don't believe
that anybody has even the beginnings of explanations: only new jargon for
labelling the phenomena.

I have offered all this only as a tiny semple of the kind of explora-
tion needed for developing our abilities to build theoreticel models worth
taking seriously. In ine process ocur concept of mechanism will be extended
and the superficiality of current problems, theories and experiments in
psychology and educational technology will become apparent.

Philosophers have much tc learn from this sort of exercise too,
concerning old debates about the nature of mind, the nature of concepts and
knowledge, varieties of inference, etc. Consider answers they have given to
the question "What are numbers?", namely: mumbers are non-physical mind-
independent entities (Platonists), numbers are perceivable properties of
groups of objects (Aristotle?), numbers are mental constructions whose
properties are found by performing mental experiments (Kant and Intuitionists),
numbers are sets of sets, definable in purely logical terms (Logicists),
numbers are meaningless symbols manipulated according to arbitrary rules
(Formalists), they are whatever satisfy Peano's axioms (Mathematicians) or
numbers are simply a motley of things which enter into a variety of "language"
games" played by different people (Wittgenstein). (These descriptions are
too brief for accuracy or clarity; for more detail consult books on philosophy
of mathematics, e.g. Kormer's.) Further wark will show that each of these
views is right in some ways, misleading in others, but that none of them
gets near an accuratzs description of all the rich structure in our number
concepts.

I believe the old nature-murture (heredity-enviromment) controversy
gets transformed by this sort of enquiry. The abilities required in order
tomke possible the kind of learning described here, for instance the
ability to construct and manipulate stored symbols, build complex networks,
use them to solve problems, analyse them to discover errors, medify them,
etc., - all these abilities are more camplex and impressive than what is
actually learnt about mmmbers! Where do these abilities come from? Could
they conceivably be learnt during infancy without presupposing equally power-
ful symbolic abilities to make the learning possible? Maybe the much

182

Sloman

discussed ability to learn the gremmar of netural langusges (cf. Chomeky) is
simply a special application of this more general ability? This question
carnot be discussed usefully in cur present ignorance about possible

learning mechanisms.

a question for educationalists. What would be the impact on
primary schools if intending teachers were exposed to these problems and

given same experience of
computer?

Acknowledgements

trying to build and use models like figure 6 on a

Some of these ideas were developed during tenure of a visiting fellow-
ship in the Department of Computational Logic, Edinburgh. I am grateful to
Bernard Meltzer and the Science Research Council for making this possible,
and to colleagues in Edinburgh and at Sussex University for helping to
remove the mysteries from computing. Alan Mackworth's criticisms of an
earlier draft led to several improvements.

Bibliography

Austin, J. L.

Chomsky, N.
Frege, G.

Hewitt, C.
Korner, S.

Lindsay, P. H. and
Norman, D. A.

Miller, G. A., Galanter,
Pribram, K. M.

Minsky, M.
Quillian, M. R.
Ryle, G.
Winston, F.

Wittgenstein, L.

'A plea for excuses', in his Philosophical Papers
Oxford University Press, 1961, also in
Philosophy of Action ed. by A. R. White, Oxford
University Press, 1968.

Aspects of the Theory of Syntax, chapter 1.
M.I.T. Press, 1965.

Philosophical Writings, translated by P. T. Geach
and M. Black. Blackwell

'Procedural embedding of knowledge in PLANNER',
in Proc. 2nd IJCAI, British Computer Society, 1971.

Philosophy of Mathematics, Hutchinson, 1960.

Human Information Processing, Academic Press 1972.
Chapters 10 and 11 give a useful introduction to
semantic networks.

E.
Plans and the Structure of Behaviour, Holt Rinehart
and Winston 1960.

'Form and Content in Computer Science!, part 3,
J.A.C.M. 1970.

'Semantic Memory! in Semantic Information Processing,
ed. by M. Minsky, M.I.T. Press, 1968.

The Concept of Mind, Hutchinson 1949.
also Penguin Books.

Learning Structural Descriptions from Examples
M.I.T. A.I. Lab. AT TR-321, 1970.

Philosophical Investigations, Blackwell, 1953.

?emarks on the Foundations of Mathematics, Blackwell,
956.

Slomen

s T v

S CEEEEEE S e £OUT
\@D———n——"% odd

SRS ——

The usz of chalins. Each lin% contains two cells, the first called HD the
second TL, conteining symbols which may be pointers to other locationms.
A cell points to a locatisn in memory by containing an address of that

COmBOn & (043) (3+0) {2+1) (3+42) {1+1+1)
ete

Figure 1.
- 1
numbers Y e £
——y qz:: " » >6f£. }

v
“one” PLwo" %three" fourt {ive"

o s e

"three" ———y

TSl

predecessorl, n‘t.ype i

two number

location.
S de.
. ete.
‘F\‘7
Sucessor Ty perity
four odd

Figure 3. (This shawv & translat:.on of figure 1 using list strictures.)

-

"one" " Lwoh "three" " four®
Figure 4. (The #bility to count backwards from four.)
AUnb=rs ponbers i o1) In ,} .J-—.—v? ete.

I
eLlc

i’ mo . (Qi fours |
L—.-—‘f-"‘ o

one nree '

e

Here, writing & synbol inside a

link mey be eddressed by me:

end tae 4D of the linr coatzins
Figirs §.

of the symbol,
a pointer back to the symbol.

link represents tae fect thot thet

263 JElnE’ an ;ﬂJE‘X,

2.7

184

Slomen

P_’Fﬁm&;zt%—?da
mﬂ @M—-—;ﬁ%&-—aa&c .

‘;":}-*M@&,t deneting 4

g’vs%tﬁ:::\‘tﬂ_-———mm_w prbe.

[Fumerais ig”’ {fetiere e e,

&__i__—)‘% rgg‘iﬂ B, 53%&-——% '3,\2:——'9 ’__-f—ow—x, ete,

~~~~~ vefeo.
% ’,%Eéiuﬁs_.»:w% <§—>§.Es-—» TR B> SR Bl
: ( m@ ERUATIIINRY UEEE Sl
. EELati®ne o el
edd even prime i
ini@m&tim ebeut zere and negativesz)"j ?__‘_, S
7Tt S iy e e 7 .
e S S S i S ey
‘?’f oy (parity 8  [pfe ww_'{; GIREE ] o
: d | lzedes T §
IR L |
T ebe |
Bis‘z%m&ll |
~ fn M
.
R S
[
i i
o e 7
il ﬁﬁgﬁu‘cmminﬂ’; {
! ehelb |
P | E
;‘,em:}"'r«:ﬁ"\.‘;‘“;{ 3 :‘:fg i S B !
tive d) Fastivdy [fEsioask Ty  BEETn  Fasterim
\ : f Aoetore ,
- [ »,
(141,042,240, 5-1,e%e. ) ‘Tw*“”f £,

j

TRy et

o

¥ ete.
ete Pigurs &,

This represents, with zany eversimplifieatisns and samissiens, seme ef the '
inferzaticn ahout the nusber sequence learnt by children. To save space and

impreve intelligibility, relatiens Seiween nurbers, nusber-names, and nusersls,
{e.go tve, "twe" and "2") have nst been represented, Deubly-boxed neder are ,
meant te be directly sddressibtle fresm cutside %he neiverk (cespere fimure 3). ,
The tws verticsel chsins en the left reprssent the ability te ssunt ferwards 5

er baskwards el speed, starting at any knewn number.




