
 Cognitive Science Research Papers: No 13. (Sussex University, 1981)

 (Slightly shorter version appeared in Proceedings Cognitive Science Conference 1981)

 Slightly re-formatted 23 Feb 2019

SKILLS, LEARNING AND PARALLELISM
Aaron Sloman,

Cognitive Studies Programme,
University of Sussex,

Now School of Computer Science, University of Birmingham
http://www.cs.bham.ac.uk/~axs/

The distinction between compiled and interpreted programs plays an important role in computer

science and may be essential for understanding intelligent systems. For instance programs in a

high-level language tend to have a much clearer structure than the machine code compiled

equivalent, and are therefore more easily synthesised, debugged and modified. Interpreted

languages make it unnecessary to have both representations. Further, if the interpreter is itself an

interpreted program it can be modified during the course of execution, for instance to enhance the

semantics of the language it is interpreting, and different interpreters may be used with the same

program, for different purposes: e.g. an interpreter running the program in ’careful mode’ would

make use of comments ignored by an interpreter running the program at maximum speed

(Sussman 1975). (The possibility of changing interpreters vitiates many of the arguments in Fodor

(1975) which assume that all programs are compiled into a low level machine code, whose

interpreter never changes).

People who learn about the compiled/interpreted distinction frequently re-invent the idea that the

development of skills in human beings may be a process in which programs are first synthesised in

an interpreted language, then later translated into a compiled form. The latter is thought to explain

many features of skilled performance, for instance, the speed, the difficulty of monitoring individual

steps, the difficulty of interrupting, starting or resuming execution at arbitrary desired locations, the

difficulty of modifying a skill, the fact that performance is often unconscious after the skill has been

developed, and so on. On this model, the old jokes about centipedes being unable to walk, or birds

to fly, if they think about how they do it, might be related to the impossibility of using the original

interpreter after a program has been compiled into a lower level language.

Despite the attractions of this theory I suspect that a different model is required. In chapter 8 of

Sloman (1978) I drew attention to familiar facts about children counting which suggest that instead

of using a single program interleaving the production of a new numeral and pointing at a new

object, they run two processes in parallel, using a third process to monitor them and keep them in

step, or abort them if they get too far out of step. If children used a single serial program, repeating

the steps

 SAY NEXT NUMBER; POINT AT NEXT OBJECT;

within some kind of loop, then it would be impossible to get out of step. But they do, and sometimes

spontaneously correct themselves. Adults performing some tasks requiring two sequences of

actions to be synchronised, for instance playing a musical instrument with two hands, may

experience similar problems.

1

http://www.cs.bham.ac.uk/~axs/

The ability to run a program in parallel with others, using a third process to achieve synchronisation

could be a powerful source of new skills. For instance, it would not be necessary to write a new

program interleaving the steps of two old ones, as is required in conventional programming

languages. Provided both programs are initially represented in a form which permits

synchronisation with messages from other processes, it becomes possible to synthesise a new skill

simply by running the two old programs in step. It may be necessary to develop new perceptual

skills to check that all is going well, but that would be required in any case for developing and

monitoring a single serial program integrating the two skills.

Similarly, instead of re-writing a program to cope with different stopping conditions, the same

program could be executed and interrupted by different external monitors: for instance counting all

the buttons, counting out buttons till there’s one for each button-hole, counting out five buttons.

Further, instead of building in error checks, which would have to be different for different uses of a

skill (running out of buttons is only an error if you are trying to count out N buttons, and there aren’t

enough), different monitors for different error conditions could be used for different tasks, while

essentially the same basic programs are employed.

If programs are to be run in parallel this can be done either by time-sharing a single processor, or

by using a network of processors which can work in parallel. In principle the two are equivalent,

though time sharing one processor raises many difficulties if each of the separate processes has its

own requirements concerning speed of execution, synchronisation etc. Further, there is plenty of

evidence that human and animal brains consist of many units which can do things in parallel. It is

therefore most likely that if processes do run in parallel as suggested above, then they probably run

on different processors, and are not simply time-shared.

This immediately suggests the possibility that different processors may have different

computational resources. For instance they may vary in speed, or memory capacity. More

importantly, they may vary in the extent to which they have the capability to run programs or the

extent to which they have access to mechanisms required for synthesising procedures, monitoring

them, debugging them, interrupting and restarting them, relating execution steps to goals and

percepts, and so on.

Thus there might be some processors with all the facilities required for developing and testing

programs, and other processors capable only of running the programs. As suggested above, the

former processors might make use of comments concerning the purposes of different program

steps, which are ignored by the latter (Sussman 1975). If after being fully developed and tested,

programs produced by the former are shipped out to the latter processors for execution, then this

could produce the kinds of phenomena mentioned above which suggest to many people that

compilation has occurred. Our model, however, does not require a major change of representation,

such as occurs during compilation, merely a change to a different interpreter.

The more intelligent processor might develop the general structure of a skill or ability, perhaps

leaving some of the fine tuning, adjustment of parameters and thresholds, etc., to be done at lower

levels while the program is run by a different machine. The latter process would be what happens

when an already learnt skill is improved with practice. (I don’t pretend to be saying anything about

how the fine-tuning, etc. is achieved.)

2

A theory along these lines could explain how many skills (e.g. musical performance) might be

learnt by first learning various subskills which are subsequently put together. The synchronisation

of two old skills might involve the development of a new third skill, which will run in parallel with

them. (Try opening and shutting your mouth and your fist repeatedly in time. Then try doing it out of

phase.) More complex skills might involve an extended hierarchy of sub-processes some of which

control others. Some sort of synchronisation between largely independent processes is in any case

required for co-ordinating visual perception with movement of limbs.

There are different ways in which synchronisation might be achieved. The difficulty of playing a

piano piece where the left and right hand use different beats, suggests that sometimes the

co-ordination of two or more low-level machines requires synchronisation signals linked to suitable

points in the programs. Synchronisation could make use of global timing signals, shared between

all processes. Alternatively, different groups of processes might use their own synchronisation

signals. (The former would limit the number of different tasks requiring different rhythmic patterns

which could be performed in parallel.) Further, some kinds of synchronisation might use a sort of

variable representation of speed (like a throttle), as is suggested by the co-ordination of complex

dance movements or the hand and foot movements needed to drive a car.

It is possible that other things besides timing can be co-ordinated. For instance in playing music

with two hands, phrasing, stress and volume can be co-ordinated, and the same piece may be

played with different superimposed ’expression’, suggesting that there is a supervisory program

which controls the way the sub-programs are executed. So besides timing, it seems that at least

amplitudes and smoothness of execution can be externally controlled.

If complex actions involve many different processes running in parallel, then interrupting and

re-organising the processes may be a very complex matter. Such disturbances seem to play a role

in some emotional states, for instance when you lose your balance, or are startled by a face seen

suddenly at a window (Sloman 1981).

There are at least two different ways in which a program might be "shipped out" to a lower level

process after being synthesised by a "central" processor. The whole program might be copied into

the memory of the new processor. Alternatively, there might be common access to some memory,

with new processors being told to get their instructions from the very same data-structure built by

the program-synthesiser. The former might be more suitable where there is no shortage of

processors or memory space, or where there is a shortage of rapid access communication paths.

The latter might be appropriate where processors have to be re-used for different purposes, and

where subsequent modifications to the program, achieved by the higher-level machine, should be

immediately available to the lower levels.

There are many problems and gaps in this theory sketch, including unknown trade-offs. Is there

only one program-synthesising machine, or are there several, allowing more than one new skill to

be learnt at a time? (E.g. learning a new poem at the same time as learning a new scale on the

piano? Learning the words of a song at the same time as learning the tune?) Is there a very large

number of processors available for executing programs in parallel, or only a small number (e.g.

seven plus or minus two?) The former would allow arbitrarily complex hierarchically organised skills

to be developed, subject possibly only to the constraint that a single global synchronising ’beat’ is

to be shared between them all. How deep can the parallel process hierarchies get? To what extent

is horizontal communication across the hierarchies possible? What happens if the central

processor and a low-level processor both attempt to run the same program? (Breathing seems to

3

be an example where this might occur, since it is controlled intelligently in speaking, singing, etc. in

addition to being an ’automatic’ process.)

Perhaps the running is always done by a lower-level processor, but sometimes under the control of

the more intelligent program synthesiser? How are the primitive instructions routed from processors

to still lower level processors, e.g. to muscles? If programs are physically copied into the lower

level processors, then can processors be re-used during the process of development and

debugging a skill? Is there some sort of garbage collection of processors? Similar questions arise

about the space required for the alternative system where different processors access the same

program stored in the same location. Can storage space for instructions be re-used? How are new

processors and new storage space allocated? Do the different processors share limited resources

of some kind, e.g. memory or ’fuel’, or are they truly independent? Does this hierarchical parallel

organisation of "motor" skills also play a role in other abilities, e.g. perception, language

understanding, problem-solving?

It is consistent with the model sketched here that many of the lower levels in the human brain use

computational resources of types which first evolved in much less intelligent organisms? How did

the newer, more sophisticated mechanisms evolve?

What are the implications of all this for our understanding of consciousness? Perhaps if there is a

hierarchy of machines, what we are conscious of is restricted to information stores accessible by

the highest level system(s). Information and processes occurring in the lower level machines will

not be the only things which are not accessible to conscious processing. Information which is in

principle accessible will not always be accessed when needed, for a whole variety of reasons,

including inadequate indexing, deliberate suppression, etc. It may also be the case that what is

accessible and accessed for the purposes of certain sorts of processing may not be recognisable

and describable in explicit reports because the system lacks appropriate concepts and descriptive

resources, just as we may sometimes not be able to discriminate and describe what is before our

eyes until after we have trained in new sorts of expertise.

This is a short list of questions I cannot now answer. I don’t claim to have offered a theory. At best

it is a research program which may produce explanatory theories one day.

References

J.A. Fodor, The Language of Thought, Harvester Press, 1975.

A. Sloman, The Computer Revolution in Philosophy: Philosophy Science and

Models of Mind, Harvester Press and Humanities Press, 1978.

http://www.cs.bham.ac.uk/research/projects/cogaff/crp/

http://www.cs.bham.ac.uk/research/projects/cogaff/crp/crp.pdf

A. Sloman and M. Croucher, ’Why robots will have emotions’, IJCAI 1981.

http://www.cs.bham.ac.uk/research/cogaff/81-95.html#36

A. Sloman and M. Croucher, ’You don’t need a soft skin to have a warm heart:

towards a computational analysis of motives and emotions’.

Cognitive Studies Research Papers No CSRP 004, Sussex University, 1981.

http://www.cs.bham.ac.uk/research/projects/cogaff/81-95.html#55

G.J. Sussman, A Computational Model of Skill Acquisition, American

Elsevier, 1981.

http://dspace.mit.edu/handle/1721.1/6894

4

http://www.cs.bham.ac.uk/research/projects/cogaff/crp/
http://www.cs.bham.ac.uk/research/projects/cogaff/crp/crp.pdf
http://www.cs.bham.ac.uk/research/cogaff/81-95.html#36
http://www.cs.bham.ac.uk/research/projects/cogaff/81-95.html#55
http://dspace.mit.edu/handle/1721.1/6894

	
	
	 SKILLS, LEARNING AND PARALLELISM Aaron Sloman, Cognitive Studies Programme, University of Sussex, Now School of Computer Science, University of Birmingham http://www.cs.bham.ac.uk/~axs/

