
Nov 1994 1 Playing God (Sim_agent)

Playing God: A toolkit for building agents

Aaron Sloman1

 OBJECTIVES
An experimental toolkit designed to support exploration of
design options for one or more objects interacting in discrete
time under the control of a “scheduler” which ensures that each
object is “run” in each time-slice.
The objects may exist totally within a single simulated “world
running in one process, or they may communicate with other
software packages or with real machines, via sensors or motor
control signals.
REQUIREMENTS
Each object or agent may have two kinds of behaviour:
• External behaviour

which is detectable by or which affects other objects or agents, e.g.
movement and communication.

• Internal behaviour
involving (possibly resource-limited) mechanisms for changing
internal state, e.g. beliefs, motives, goals, plans, etc.

• No ontological commitment
i.e. many different kinds of objects should be supported.

• Rich internal architectures within agents
e.g. multiple interacting rule-based systems, neural nets and other
trainable sub-mechanisms

• Use of classes and inheritance
e.g. it should be easy to override defaults by defining subclasses

• Rapid prototyping should be supported.
• Control of speed of different objects or agent components.
The SIM_AGENT library is implemented in Pop-11, using the
OBJECTCLASS and POPRULEBASE libraries. Graphics to be
added later.
1. With Luc Beaudoin, Ian Wright, Riccardo Poli, Glyn Humphreys, and other
members of the Cognition and Affect project at the University of Birmingham

Nov 1994 2 Playing God (Sim_agent)

Types of objects
Objects may be active or passive, simple or complex

Compound objects
Are composed of many other objects, e.g. a forest (composed of
paths, trees, etc.), a town (composed of roads, houses, parks,
people, vehicles, etc.) a house (composed of rooms, doors, etc.)
a family (composed of various people), etc.
The sub-objects of a compound object are managed directly by
the scheduler. (Non-compound objects may be complex.)

Passive objects
E.g. walls, ditches, ladders, roads). Most will have no interesting
internal behaviour. Exceptions are things like decay of charge in
a battery, or interactions of parts of a compound object.
It may be useful in some cases to give a road, or a road-
segment information about all of the objects travelling on it, e.g.
in a traffic simulation).

Active objects
Can initiate processes, e.g. volcanoes, people, traffic lights.
Some objects become active under the control of others, e.g.
cars, tanks, spears, drills.
Agents
Are active objects that generate their own motives and act on
them, after suitable planning etc. The package uses the
mechanisms of Poprulebase for internal processes. This is a
forward-chaining production system interpreter, with special
features to allow:
• interacting sub-systems,
• invocation of other mechanisms (e.g. neural or procedural),
• resource control.

Nov 1994 3 Playing God (Sim_agent)

An example agent architecture

perception actions

perception actions

THE ENVIRONMENT

META-MANAGEMENT
processes

Feedback

TOWARDS AN ARCHITECTURE FOR

RESOURCE-LIMITED
(REFLECTIVE)
MANAGEMENT
PROCESSES

Variable threshold
attention filter

Attentive

Pre-attentive

Reflexes (some learnt)

Motive
activation

AN INTELLIGENT AGENT

Automatic processes

NOTE:
arrows rep-
resent infor-
mation flow,
triggering
proceesses

Nov 1994 4 Playing God (Sim_agent)

Some processes involving motivators
The following are among the internal behaviours to be modelled:
• Motivator generation and (re-)activation.
• Mechanisms to suppress or ‘filter’ motivators:

to protect resource-limited management processes.
• Management of motivators

• Assessing motivators.
e.g. importance,benefits,side-effects,likelihood of satisfaction,
cost of satisfaction,urgency.

• Deciding:
whether to adopt the motivator, i.e. form an intention.

• Scheduling:
when or under which conditions to execute a motivator.

• Expansion:
decidinghow to execute a motivator (planning).

• Predicting effects. (Helps with planning and assessment)
• Assigning an “intensity” measure.
• Detecting conflicts between motivators.
• Detecting mutual support between motivators.
• Setting thresholds for the management interrupt filter.
• Termination of motivators.

E.g. explicitly terminate on satisfaction, decay, abort.
• Meta-management:

I.e. processes that (recursively) control management or meta-
management processes (e.g. deciding which to do when).

• Execution of plans,
with or without high level management.

• Learning:
improving or extending performance

• Extending the architecture:
developing new abilities, or new “cognitive reflexes”.

• Global switches or modulators:
e.g. mood changes, arousal changes, speed or style of processing.

Nov 1994 5 Playing God (Sim_agent)

The scheduler
The “top level” procedure sim_scheduler, manages the whole
process in a succession of time-slices. It is run by a command of
the form:

sim_scheduler(<objects>, <lim>)

where <objects> is a list of all the objects, and <lim> is an integer
specifying the number of time-slices for which the process should
run, or false if the process should run forever.
The objects should all be instances of the top level class sim_agent
so that methods appropriate to that class can be applied to them to
make them run, or to perform their actions.
Users can define sub-classes for which more specific versions of
the methods are defined, and these will automatically over-ride the
generic methods.
In each time-slice the scheduler has two runs through the list of
objects.
• First it allows each object to sense the state of the world and, if

appropriate, receive communications from other agents, and to do as
much internal processing as it is entitled to. This may include preparing
external actions and communications

• Next the scheduler transfers the messages from sources to targets, and
runs the external action routines corresponding to each object that has
actions pending.

This makes behaviour (generally) independent of the order of
objects in the list. (Note the counter-examples).
When “running” individual objects the scheduler uses methods
defined for the top level object class (sim_agent). If users define
more specific methods for sub-classes they are automatically
invoked, without altering the source for sim_scheduler. (Thanks to
Objectclass)
(This is one of the main benefits of object oriented programming.)

Nov 1994 6 Playing God (Sim_agent)

Running an agent’s internal processes
This is the default method

define :method sim_run_agent(object:sim_agent, objects);
;;; More specialised versions of this method may be defined for
;;; sub-classes of sim_agent

< setup sensory input buffers by running sensors>
< add information from sensory input buffers and message

input buffers to the internal database>

repeat sim_speed(object) times

< get the rulesets associated with the object. Each ruleset
is a set of rules that can be used by prb_run.>

for ruleset in rulesets do
;;; use POPRULEBASE mechanism on each ruleset
prb_run(ruleset,sim_data(object), sim_ruleset_limit(ruleset))

endfor;

endrepeat;

< clear input message buffer and clear sensory input buffers >

< prepare output actions and messages to go out, and
remove them from the internal database>

 < run user-definable tracing procedures >
enddefine;

Note the mechanisms for controlling relative speeds.
I.e. sim_speed(object), and sim_ruleset_limit(ruleset)

Nov 1994 7 Playing God (Sim_agent)

Agent mechanisms based on POPRULEBASE
It’s up to the user to decide on agent architectures and
mechanisms. But there is special support for the following:
• Each agent type has a collection of rulesets. The rules operate on one or

more databases internal to the agents.
• Rules can switch between databases, push them onto a stack, restore

them, etc.
• The rulesets may change over time, as may the individual rules within a

ruleset.
• If more sophisticated reasoning or logical deduction procedures are

required it is possible to invoke prolog, or some sort of theorem prover.
• If other ‘sub-symbolic’ mechanisms are required, they can be invoked

by appropriate rules, e.g. using FILTER conditions (described later).
• Each ruleset corresponds to a “context” in the processing of an agent

that uses the ruleset. E.g. a context may be analysing incoming
messages, or analysing sensory data, or deciding which goals to adopt,
or planning, or executing goals, or constructing messages to transmit.
The facility in Poprulebase to switch between rulesets or between
databases permits rapid switching between these contexts.

• Parallelism between rulesets within an agent can be implemented by
limiting the number of cycles allocated to each ruleset, and repeatedly
running all the rulesets. This can be achieved by associating different
cycle limits with different rulesets via the property sim_ruleset_limit.
(Later it may be desirable to make this agent and ruleset specific rather
than simply ruleset specific.)

• Internal parallelism can also be achieved by breaking an object into a
collection of sub-objects all handled directly by the scheduler.

• Agents can be given different relative speeds of execution by giving
them different values for their “sim_speed” slot. This determines the
number of times their internal rulesets are all run in each time-slice.
Individual rulesets can also be given different relative “speeds”.

All the above work during the first pass of the scheduler

Nov 1994 8 Playing God (Sim_agent)

Running the ‘external’ actions

On the second pass through the list of objects, the following is done
by the scheduler:

for object in sim_objects do
<run user-definable procedure sim_agent_action_trace>

<Transmit messages from the object to the message input
buffers of their intended targets>

<Perform pending actions in the object’s action output buffer>

<clear the object’s output message lists and action lists>
endfor;

As with the internal actions these processes use methods, which
default to those defined for the top-level class but can be
overridden by methods for sub-classes

NOTE 1:
It might be preferable to subsume message sending under the
general category of external actions and message interpretation
under the general category of interpretation of sensory input.

But handling messages separately simplifies tracing and debugging
of communications between agents.

NOTE 2:
It is up to the user to handle things like relative external speeds of
objects. (A changeable global multiplier might be useful.)

NOTE 3:
Instead of the two-pass mechanism random reordering of the list of
agents might be used to achieve “fairness”.

Nov 1994 9 Playing God (Sim_agent)

 The representation of time
• The scheduler gives each object a chance to “run” in each time-slice.
• What it means for an object to run is defined via methods. Some of the

methods perform the internal actions for the object, some perform the
sensory detection, and some perform the external actions.

• The package does not use real time or even cpu time as a basis for
interrupting processing, so user software must ensure that no agent or
object takes control and keeps it forever.

• This allows users the facility to simulate the speeding up of processing
in a particular subset of agents by allowing them to do more in each
time-slice. Similarly faster physical motion would be represented by
larger physical changes in each time-slice (possibly controlled by a
global multiplier, to simplify changing relative internal and exteral
speeds.).

• Specifying relative speeds is entirely up to the user, and can be
determined by class of object, by ruleset, etc.

• The package will not be suitable for simulations involving continuous
change, unless this can be represented to an adequate degree of
approximation by a succession of small discrete changes.

• It has been designed to support flexible design and exploratory
development through rapid prototyping, rather than optimal speed or
space efficiency.

NOTE: we do not base time-slicing on cpu-time because the cpu
time measure is meaningless relative to the aims of typical
simulations. E.g. some processes may be relatively slow because
of features of the implementation. (E.g. simulating a neurla net.)
Thus users will have to ensure that on each run the rules actually
terminate. Up to a point this is handled by the last argument to
prb_run.

Nov 1994 10 Playing God (Sim_agent)

Some features of Poprulebase
Some unusual features have been added to the condition-action
rules, in consultation with Riccardo Poli, implementing and
extending ideas from Brayshaw and Poli 1994.
SPECIAL CONDITIONS:
Boolean filter conditions: [FILTER BFP C1 C2 ... Cn]
The BFP (boolean filter procedure) will be applied to a veclist
(vector or list) of n items derived from the n conditions and the
whole condition will succeed or fail depending on whether the result
returned by BFP is non-false.

Vector filter conditions: [FILTER VFP -> var C1 C2 ... Cn]
The VFP (vector filter procedure) is applied to a veclist VL of n
items derived from the n conditions and should output either
FALSE, in which case the condition fails, or another veclist, the of
length m, where m need not be the same as n. The list will be
transferred via the variable var to the corresponding action.
The VFP or BFP used in filter conditions may be trainable.
SPECIAL ACTIONS:
These are controlled by veclists produced by FILTER conditions.
The SELECT action type: [SELECT ?var A1 A2 ... An]
var should have a veclist of length n as value, derived from a vector
filter procedure in one of the conditions of the rule. The non-false
elements of the list will be used to select the corresponding actions
to be performed.

The MAP action type: [MAP ?var MP A1 A2 ... An]
var should have as value a veclist derived from a vector filter
procedure in one of the FILTER conditions of the rule. The mapping
procedure MP will be applied to the value of var and the list of
actions A1 ... An, and the rule_instance containing them.
See the Brayshaw and Poli paper for more detailed discussion.

Nov 1994 11 Playing God (Sim_agent)

Using the SIM_AGENT package
Users must be prepared to do the following.
• Define the ontology, i.e. classes of objects and agents required, making

all of them subclasses of sim_agent.
• Define the sensor methods and sim_do_action methods for the classes.

This includes defining internal formats for sensory information and
action specifications.

• Define the sim_send_message method for the classes. This includes
deciding on the formats for different kinds of messages and the
protocols for sending and receiving messages. (E.g. some may require
an acknowledgement some not, some may be requests, some orders,
some answers to questions, some questions, and so on.)

• Define the (Poprulebase) rulesets for internal processing by the
different classes of agents, and the rules for each ruleset. This involves
defining the formats for the different kinds of information to be used in
the internal databases, e.g. sensor information, beliefs about the
environment, motivator structures, plan structures, management
information, etc.

• Specify the initial databases for each type of agent.
• Specify which collection of rulesets should be used by each type of

agent, and in what order, and the relative processing speeds associated
with each ruleset.

• Create all the required initial instances of the agent classes and put
them into a list to be given to sim_scheduler.

• Create any other data-structures required, and the procedures to access
and update them (e.g. a map of the world).

• Define any required object-specific tracing methods, e.g. graphical
tracing methods. (Some default tracing methods may be provided)

Libraries:
Collections of re-usable libraries corresponding to particular
ontologies and applications will be developed over time, and
shared between users. Simulation of physical movement and
graphical projection might be done by a re-usable library class.

Nov 1994 12 Playing God (Sim_agent)

Example: representing motivator structure
Designers of autonomous agents need to think about the permitted
forms of motivators and motivator mechanisms.
Motivators (desires, inclinations, goals, etc.) produced by pre-
attentive or attentive processes will often include the following
components, though they may have other specific features also.
Some of these will vary over time.
(1) Semantic content: a proposition,P, denoting a possible state of affairs,

which may be true or false
(2) A motivational attitude toP, e.g. “make true”, “keep true”, “make

false”, etc.
(3) A rationale, if the motivator arose from explicit reasoning.
(4) An indication of the current belief aboutP’s status, e.g. true, false,

nearly true, probable, unlikely etc.
(5) An “importance value” (e.g. “neutral”, “low”, “medium”, “high”,

“unknown”), importance may beintrinsic, or based on assessment of
consequences of (doing and not doing).

(6) An “urgency descriptor” (possibly a time/cost function)
(7) A heuristically computed “insistence value”, determining interrupt

capabilities. Should correspond loosely to estimated importance and
urgency.

(8) Intensity -- which influences likelihood of (continuing) being acted on,
as against other motivators.

(9) Possibly a plan or set of plans for achieving the motivator
(10)A commitment status (e.g. “adopted”, “rejected”, “undecided”)
(11)A dynamic state (e.g. “being considered”, “consideration deferred

till...”, “nearing completion”, etc.)
(12)Management information, e.g. the state of current relevant

management and meta-management processes.
In most animals motivators are probably simpler (and in current
robots).
There may be individual differences among humans too.
Exploring “design space” will show what is possible.

Nov 1994 13 Playing God (Sim_agent)

The nursemaid (minder) scenario
This is one of the domains to which these ideas are being applied:
the task of the nursemaid is to keep babies alive.

This domain is discussed at length in Luc Beaudoin’s PhD thesis,
1994.

o o

o

o

o
o

o

o

o

o

o

o
o

o

The nursery.

KEY

Recharge point

Wall

Ditch

o

H

H

Hand
o Baby

(The nursemaid’s current visual field could be any room)

