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Abstract

In this paper we outline a researctstratgy for analysingthe propertiesof differentagentarchitecturesin particular
the cognitive andaffective states/processdisey cansupport.We demonstratehis architecture-basesearctstratey,
which effectively views cognitive andaffective statesasarchitecture-dependemtjth anexampleof a simulatedmulti-
agentervironment,whereagentswith differentarchitecturedave to competefor survival. We shav that agentswith
“affective” and“deliberative” capabilitiesdo bestin differentkinds of environmentsandbriefly discusgheimplications
of combiningaffective anddeliberatve capabilitiedn asinglearchitecture We arguethatsuchexplorationsof thetrade-
offs of alternatve architecturesvill help us understandhe role of affective processe# agentcontrolandreasoning,
andmayleadto importantnew insightsin the attemptto understandhaturalintelligenceandevolutionarytrajectories.

1 Introduction

Deliberatvemechanismandprocesseguchasplanning,
searchingreasoningetc.) have beena majorfocusof re-
searchactiitieseversincethebeginningof artificial intel-
ligence. More recently affective stateshave becomean-
otherareaof attentiongspeciallyin thedesignof artificial
“believable” agentqSimon,1967;SlomanandCroucher,
1981;Damasio1994;Reilly, 1996;Picard,1997;Hatano
et al., 2000). However, the interactionof affective and
deliberatve processesn biological agentsand the pos-
sibilities of integratingaffective anddeliberatve compo-
nentsin control systemsof artificial agents(syntheticor
robotic) are not yet well understood.This is partly due
to the compleity of the subjectmatter but alsopartly to
complicationdroughtaboutby anoverwhelmingnumber
of different definitionsand conceptsof affective states.
We believe that the definitionalmorasscan be separated
from substantie scientific and technicalquestionsby a
stratgyy which involves exploring a variety of informa-
tion processingarchitecturegor varioussortsof agents.
Theideais to useagentarchitectureso (1) studyfamilies
of conceptsupportedy eachtypeof architectureand(2)
explore the functionaldesigntradeofs betweendifferent
architecture$n variouscontexts.
Understandinghecompleinterplayof cognitionand
affect requiresa close analysisof the propertiesof dif-
ferentinformationprocessin@rchitecturesndthe states

andprocessethey cansupport.We arepursuingvarious
suchanalyseswithin the context of the “Cognition and
Affectproject”atthe Universityof Birmingham(Sloman,
2000). In this paper* we focuson onecurrenttrackof the
Cognition and Affect project, which studiesthe interac-
tion of “affective” and“deliberative” behaioursin agent
control.

2 Kindsof Architectures

We canview anagentasconsistingof threemaincompo-
nents(e.g.,RussellandNorvig (1995)):

¢ theagentprogramimplementsamappingfrom per
ceptsto actions(thisis sometimegalledthe action
selectiorfunctionor actioncomposition).

¢ theagentstateincludesall theinternalrepresenta-
tions on which the agentprogramoperates. This
mayincluderepresentationsf theagents environ-
mentandgoals,the plansit hasfor achieving those
goals,which partsof the plan have beenexecuted
andsoon.

¢ theagentarchitecture, a (possiblyvirtual) machine
that makes the perceptsfrom the agents sensors
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availableto the agentprogram runsthe agentpro-
gram,updatesheagentstate andexecutegheprim-
itive action(s)choserby the agentprogram.

Our main concernis with the agentarchitecture.The ar

chitecturedefinesthe atomicoperationf the agentpro-
gram,andimplicitly defineshecomponentsf theagent.
For example,load andstore operationsn a corventional
CPU imply somesort of memory otherwisethe opera-
tionswould nothave theeffectthey aresupposedo: call-

ing load afterstore would notreturnthe savedvalue. The
architecturealsodeterminesvhich operationapperau-
tomaticallywithout the agentprogramhaving to do ary-

thing, e.g..incrementingheprogramcountelin acorven-
tional CPU or productionfiring andconflict resolutionin

arule-basedystem.

In practice, the distinction betweenagentprogram,
stateandarchitecturas oftena matterof interpretatioror
corvenience.ln animplementedagenttherearea whole
hierarchyof virtual machines:the agentprogramis ex-
pressedn termsof the primitive operationgprovided by
the architecturethe architecturds usuallyimplemented
in termsof a programmindanguagewhichin turnis im-
plementedusing the instructionset of a particular CPU
(or anothervirtual machinesuchasthe JVM). Likewise
some“agent programs”togetherwith their architecture
can implementa new, higherlevel architecture(virtual
machine).In whatfollows, “agentarchitecture’usedwith-
out qualificationmeansthe mostabstractarchitectureor
the highestlevel virtual machine.

The primitive operationssupportedby the architec-
ture, togetherwith the things that happenautomatically
determinewhat kind of architectureit is, for example,
whetheranarchitecturds reactive or deliberatve. In this
papemwe will focusonthreekindsof agent(andhenceon
threekinds of architecture)reactve, affective anddelib-
eratve.

2.1 Reactive Architectures

A reactivearchitecturds onein which perceptdirectly

trigger actions. The selectionof which action(s)to per

form is determinedby the agentprogram. When more
thanoneactionis potentiallyappropriatén agivensitua-
tion, theagentprogrammustchoosevhich of thepossibly
conflicting actionsto perform. Actions which do notin-

terferecanbe executedin parallel(within the limitations
of theunderlyingarchitecturee.g.,thenumberof degrees
of freedom).Howeverif thesetof possibleactionscannot
be executedin parallel, eitherbecausef the limitations
of thearchitectureor becausehe actionsarelogically in-

consistenttheagentmusteitherselecthe mostappropri-
ate subsetof the actionsto performor synthesisea new

action by combiningthe candidateactionsinto a single
compositeactione.g., simultaneouslymoving towardsa
goalwhile avoiding an obstacle—thebstacleavoidance
modifiesthe motion towardsthe goal, by deflectingthe
patharoundthe obstacle.

Reactve architecturesnay make useof simplerepre-
sentationf the stateof the world and/orthe agent,but
theserepresentationdo not explicitly encodegoals,hy-
potheticalstatesof theworld or sequencesf possibleac-
tions. We may ascribeintentional statessuchasbeliefs
anddesireso a reactve agent,but the agentarchitecture
containsno explicit representationf thesestates Rather
suchstatessupeneneon the architecture.In suchcases
we canview theagentasanintentionalsystemthatis, we
ascribeto it the beliefsandgoalsit oughtto have, given
whatwe know of its ervironment,sensorsand (putative)
desiresDennett(1996). For example,anagentwhich has
an‘avoid obstaclesbehaiour, canbe saidto have agoal
of ‘avoiding collisions’, even thoughthis goal is not ex-
plicitly representeth theagent?

Reactve architecturesireoftenimplementedn dedi-
cated parallelhardwareusingmary simplecomponents.
Thelimited amountof processingecessaryor a percept
or setof perceptgo triggeranaction,theuseof dedicated
parallelhardwareandthelack of complex representations
meansghat reactve systemsypically respondquickly to
changesn the ervironment. Indeedthe absencef com-
plex internal representationsften mandateghe use of
tight sensorimotofeedbackoopswith frequentsampling
of theervironment.

2.2 Affective Architectures

An affectivearchitecturas onein whichthereareexplicit
representationsf affective control statessuchas prefer
ences,desiresor emotions. Suchstatesare directly en-
codedwithin the agents state,e.g., in a connectionist
unit, real-valuedvariable etc. ratherthan being super
venienton the architectureasin the caseof a reactve
agent. Note that this doesnot meanthat all intentional
statesare explicitly representedn an affective architec-
ture,for example,beliefsandgoalsmaybe superenient.
Nor doesit meanthatall affective statesaredirectly rep-
resentedn the architecturepnly thatsomeare. The fact
thatsomeaffective statesareexplicitly representedithin
thearchitectureanddo not merelysupereneonit means
that the architectureo monitor the achiezementor non-
achievementbf suchstatesandallowsthemto take arole
in learning,deliberation the modificationof reactive be-
haviours, etc.3

2Dennettcallsthis approactadoptingtheintentionalstance”.

SNote thatwhile supereningaffective statescanhave the samebe-
havioural potentialasexplicitly implementedffective statestheircoun-
terfactual potential with respectto architectureextensionsis not the
same:take two agentswith “identical behaioural capacities”wherein
thefirst anaffective statessuperenes andin the secondhe samestate
is partof thearchitecturegandtrivially superenestoo). Thenthereare
extensionsof the latterthatcanmale useof the state whereaghereno
extensionsof the former that could male useof the superenientstate
unlessthe “add” mechanismso monitorthis superenientstate,which
would effectively amountto changingthe architectureo make this su-
penenientstate“explicit”.



2.3 Dedliberative Architectures

A delibemtive architecturén onein which thereis some
consideratiorof alternatve coursesof action beforean
actionis taken.

A deliberatve architectureis onein which at least
someof the statesare counterfictualin the senseof re-
ferring to hypotheticalpastor future statesor asyet un-
executedactions(or sequence®f suchactions)and in
whichatleastsomeof thebasicoperation®f thearchitec-
ture produce/read/writsuchcounterfictualstates. Such
statesncludegoals(description®f stateto beachieved),
plans(sequencesf unexecutedactions),statesdescrib-
ing the imaginedconsequencesf performingan action
in the currentstateor somehypotheticalstate partial so-
lutionsgeneratediuringplanningor problemsolving,the
hypotheticalstatesof the agents beliefs generatedur-
ing belief revision and mary others. We further require
that suchstatesshouldbeinfluentialin the productionof
actions,in the counterfictualsensethat, hadthe (coun-
terfactual)statenotbeengeneratedtheagentwould have
choseradifferentactionto execute.

Note that this definition implies no commitmentsas
to whetherthe statesandoperationsrefine grainede.g.,
dealingwith partialplansor alternative solutionsandtheir
generatiorandcomparisonpr whetherthe statesandop-
erationsare‘coarsegrained’,e.g.,asingle‘plan’ operator
which takesa goal and a descriptionof the currentstate
andreturnsa planwith the restof the fine-grainedstates
andoperatorsburied in the implementatiorof the archi-
tectureandinvisible to the agentprogramandthe agent
state. Both caseshave at leastone counterfctualstate
andoneoperatorthattakesa non-counterdctualstateand
returnsa counterbctualstate.

Torepresentounterictualstatesadeliberatve agent
requiresrepresentationwith compositionakemanticsin
thesensehatthemeaningof therepresentationis afunc-
tion of themeaning®f theirparts.It alsoimpliesareusable
working memoryfor the constructiorand comparisorof
hypotheticalstatesand somemeansof deriving the con-
sequencesf actionsperformedn thesestates At its sim-
plest,this might be memorief theconsequences per
forming the actionin similar statesn the past. The useof
acommonworking memorylimits thenumberof alterna-
tive coursesof actionthat canbe consideredn parallel,
andhencethe degreeof parallelismpossiblewithin a de-
liberative architecture.

All otherthings being equal,a deliberatie architec-
ture must be slower and require more resourceghan a
reactve architecturavhich encodes solutionto ary spe-
cific goal solvable by the deliberatve architecture since
the generatiorof alternatvesmusttake time. However a
deliberatve architectureawill typically be morespaceeffi-
cientthananequialentreactvearchitecturegventhough
it will oftenrequiremorespacehanareactve solutionto
ary givenprobleminstance sinceit cansolwve a classof
problemsin a fixed amountof spacewhereasa reactve

architecturaequiresspaceproportionalto the numberof
problems.

We canview thisasanexampleof thestandardpace-
time tradeof, thoughin this casethereis alsothe time
requiredto codeor evolve all the reactive solutions. For
example,to understandenglish sentences reactive ar-
chitectureneedso encodethe meaningof every possible
input sentenceseparatelywhereasa deliberatve system
simply needsa grammarand a parser The problemfor
thereactive approachs thatthereis an unboundechum-
ber of possiblesentencegand choosingthe potentially
relevantonesmight not be possibleaheadf time).

Notethatat a givenlevel of abstractiona component
of an architecturecannotbe both reactive and delibera-
tive, sincedeliberationpresupposesepresentationata-
pabilitieswhich by definitionaremissingfrom areactive
architecture. However, a given componentcan be both
affective anddeliberatve,aswe shallsee.

3 Affective and Deliberative Agent
Control

In mary casesthegeneratie potentialof deliberatve ca-
pabilitiesopenaup realmsthatareinaccessibléo reactive
agentgunlesshey havevastmemorieswith pre-computed
strateyies for all possibleeventualities),justifying their
additionalcomputationaktost. However, thereare cases
wherethe same(if not better)resultscanbeachievedus-
ing reactive systemsaugmentedy simpleaffective states.
Suchtrade-ofs are not always obvious, and carefuland
detailedexplorationsin designspacenaybeneededn or-
derto find gooddesigngo meetparticularrequirements.

In thefollowing we comparg1) addingdifferenttypes
of deliberatie extensionsto a reactive architecturewith
(2) adding somesimple statesrecordingcurrentneeds,
alongwith behaviourstriggeredby thosestatesvhichmod-
ify the agents reactve behaiours. Option (2) canbe
looselydescribedsaddingprimitive “affective” (or “emo-
tional”) states.In a numberof experimentswe demon-
stratethatbothapproachesanhave a powerful influence
on an agents ability to survive in dangerousnulti-agent
ervironmentscontainingdifferentkinds of agentspbsta-
cles,food sourcesandthelike.

In thefollowing, we focusontwo mainkindsof agents,
the“affectiveagents’(A-agentsand“deliberatve agents”
(D-agents) A-agentshavereactvemechanismaugmented
by simple“affective states” whereasD-agentshave rep-
resentationadndplanningabilitiesin additionto thesame
reactive mechanisms.

3.1 TheSmWorld Environment

Theexperimentsvereconductedn a simpleartificial en-
vironmentimplementedisingthe SimAgent toolkit*. The
simulation can run eitherin “display mode” or “batch

4Seehttp://www.cs.bham.ac.uk/research/simagent/



mode”. Displaymodeprovidesagraphicalrepresentation
of thesimulationandallows userinteraction;batchmode
dispensewvith thedisplaybut allowsthecollectionof sta-
tistical informationduringthe runs. The displaymodeis
intendedo aid in the designof evolutionaryexperiments,
which canthenberun muchfasterin batchmode.

The simulatedervironment(the “world”) consistsof
arectangulasurfaceof fixedsize(usuallyaround600 by
600 units) populatedwith variouskinds of objects:

e staticobstacleqdisplayedasrectangle®f varying
size,usuallyaround10 by 10)

e moving obstacleqdisplayedasrectanglef vary-
ing size moving at particularspeedin a particular
directionwithout ever changingt)

e enepgy sources—"“foodtems” (displayedassmall
circlesthat pop up at randomlocationswithin the
world andstaytherefor a pre-determinegeriodof
time, after which they disappeaunlessconsumed
by agents)

e variouskinds of agentgdisplayedascircleswith a
smallsquareon the circumferenceandatext string
indicatingthe directionthe agentis headingin and
its type, respectiely)

Theervironments continuousn thesenseahattheagents’
positionsare real-valued (ratherthan being confinedto
a grid). Agentscanmove in ary direction (from O to
359dgyreeswhere0 means'east”),andconsumesnegy
proportionalto the speedat which they move. However,
evenwhenstationary agentswill still consumea certain
amountof enegy pertimestep.Agentswhich run out of
enegy “die” andareremovedfrom the simulation. They
arealsoremovedif they runinto obstacle®r otheragents
(in the latter caseall agentsnvolvedin the collision will
be removed). In the ervironmentsstudied,agentstypi-
cally die of hungeror asaresultof collisionswithin 1000
timestepstherebyobviating the needto limit their life-
time explicitly.

All agentsareequippedvith threekindsof exterocep-
tive sensors:sonar smell andtouch. In addition, some
agentshave a vision sensorwhich allows themto gather
informationaboutthe sizeandpositionof objectswithin
theirvisualfield.

Sonaris usedto detectobstaclesand other agents,
smellto detectfood, andtouchto detectimpendingcolli-
sions.For sonarandsmell,gradientvectorsarecomputed
pointingin thedirectionof obstaclesandfood within the
respectie sensorange. Thesevectorscanthenbe com-
binedin variouswaysandmappedntotheeffectorspace,
yielding a directionin which to move to avoid obstacles
and/ormove closertowardsfood.

The touchsensolis connectedo a global alarmsys-
tem,which triggersareflex to move away from whatever
the agenttouches(unlessit is food, which will be con-
sumed).Thesemovementswill beinitiatedautomatically

andthe agentcannotcontrol them. They arealsosome-
whaterraticandwill slightly reorienttheagent.

In additionto thethreeexteroceptvesensorsall agents
alsohavetwo proprioceptvesensorsywhichmeasureheir
enegy-levelandtheirorientationyespectiely (somehave
anadditionalorientationsensowhich keepgrackof their
heading).

Theagentsalsohave anumberof effectors:they have
motorsfor locomotion (forward and backward), motors
for turning (left andright in degrees)and a mechanism
for consumingfood. Agentsneedto sit on top of a food
sourcen orderto beableto consumeét. Consumingood
takestime proportionalto the enegy storedin the food
sourceandthe maximumamountof enegy anagentcan
extractin atimestep.

After a certainnumberof simulationcycles, agents
reachmaturity and can reproduceaseually. The num-
ber of offspring produceddepend®n the enegy level of
the“parent”, andtheoffspringarecreatedn theimmedi-
atevicinity of theparent(temporarilyincreasinghelocal
competitionfor resourcesand increasingthe likelihood
of collisions). The enegy necessaryo createeachnew
agentis subtractedrom the parent.

Before a run of the simulation, which can typically
take anywherefrom 10,000to 1,000,000simulationup-
date steps,variousparameterof the ervironmentmust
be specifiedjncluding:

e thesizeof theworld
¢ thenumberandsizesof stationaryobstacles,

e thenumbersizes speedanddirectionsof moving
obstacles,

¢ the numberof enegy sourcestogetherwith their
enegy capacitiesfrequeng of appearancendlife
time
For agentsat the leastthe following parametersieedto
beset:

¢ the respectie sensorrangesfor sonar smell, and
touch

e themaximumfood intake pertime step

e theprocreatiorageandthe enegy expenditurefor
eachoffspring

e the maximumspeedof movementandthe enegy
expenditurefor it

¢ the different concurrentlyactve modulesmaking
up the agents cognitive systemandtheir speedof
executionrelative to a simulationupdatestep

Usually, agentspbstaclesandfood areplacedat ran-
dom locationsin the ervironmentto be ableto “average
out” possibleadvantagesiueto theirlocationoveralarge
numberof trials. However, it is also possibleto fix lo-
cationsin advance,e.qg.,to study how differentkinds of
agentswvould farein the samesituation.



3.2 TheAgents...

While differentkinds of agentsmay have differentshort
termgoalsat ary giventime (e.g.,gettingaroundan ob-
stacleor avoiding a predator),commonto all of themis
the implicit goal of survival and procreationj.e., to get
(enough)food and avoid gettingkilled (i.e., run into/get
runoverby anobstacle/otheagent)to beabletolivelong
enoughto have offspring.

In the following we will considervarious different
kinds of agentswhich differ solely with respecto their
architecture:

1. reactve agentgR-agents)
. (simple)affective agent§A-agents)

2

3. pseudo-deliberate agentdPD-agents)
4. (adwanceddeliberatve agentgD-agents)
5

. combinedaffective and pseudo-deliberate agents
(PC-agents)

6. combinedaffectiveand(advanceddeliberatveagents

(C-agents)

Thesereflecttwo differentkinds of extensionsof a ba-
sic reactve architecture:(1) the additionof primitive af-
fective statesand (2) the addition of primitive and ad-
vanceddeliberatve capabilities.Eachagenthasthereac-
tive mechanism®f R-agents.A-agentsextend R-agents
by simpleaffective statessuchas“hunger”, “fear”, “per-
sistence”,‘caution”, etc. (still locatedwithin thereactve
layer). PD-agentsxtend R-agentsy a simple planning
andplanexecutionmechanisn{i.e., by arudimentaryde-
liberative layer), whereasD-agentsare genuinedeliber
ative agentswith complex representationand planning
capacitieqasexplainedbelow). The combinedPC-and
C- agentsintegratethe capabilitiesof PD- and A-agents
andD- andA-agentsrespectiely.

Thereactve layer of R-agentgwhich is commonto
all other agentsas well), is basedon augmentedinite
statemachineswhich run in paralleland caninfluence
eachother(relatedto thestyleof Brooks’subsumptiorar-
chitecture e.g.,see(Brooks,1986)). Thefinite statema-
chinesprocessensoinformationandproducebehaioural
responsesisinga schema-baseapproachin SimAgent
thesefinite statemachinesarerealizedasrule systems).
Thereactive behaiourstake sensoinformationandcom-
pute a sensorvectorfield for eachsensor(i.e., the sim-
ulatedequivalentsof a sonaranda smell sensor)which
arethencombinedandtransformednto theagents motor
space(e.g.,seeArkin (1989)). Thetransformatiorfunc-
tion mappingsensonto motorspaces givenby 6S + v F'
(where'S’ and'F’ arethesonarandfood vectorfieldsand
§ and~ therespectie gainvalues)®.

SNotethatthisformulaleavesoutmary details suchasthemappings
for the“touch” sensaorfor easeof presentation.

A-agentdiffer from R-agentsn thatthey possessin-
ner” stateswhich can influencethe way in which sen-
soryvectorfieldsarecombined:thesestatesalterthegain
valuesof the perceptualschemasdn the transformation
functionmappingsensoryto motorspacege.g.,seeArkin
(1998)). Thusthevery samesensorydatacangetmapped
onto differentmotor commandsdependingon the affec-
tive state. For example, a primitive “fear” state could
modify the gainvalueof the obstaclevectorandthusthe
degreeto whichtheagentwill berepelledby obstaclesan
agentwhichis less‘afraid”, will havealowergainvalues
thanan agentwhich is very afraid, resultingin different
locomotionbehaiour in affective agents. In our exper
iments, we usedA-agentswith a single “hunger” state,
which modifiesthe gain value of the “food” vector: if
hungeris low, the gainvaluefor hungeris slightly nega-
tiveandtheagentgendto move awayfrom food (possibly
correspondingo thefeelingof beingrepelledby food one
hasif onehaseatentoo much).

PD-agentspn the otherhand, possessn additional
primitive deliberatve layer, which allows themto pro-
ducea “detour plan” whentheir pathto food is blocked
(by an obstacle predatoy or ary otheragent). The plan
is a sequencef motor commandswhich overridethose
given by the reactive mechanisms.To be more precise,
a PD-agentusesexplicit representationsf the food and
obstaclevectorsto computeatrajectoryto thefood which
avoids the obstacles.Oncea decisionhasbeenreached,
PD-agentsstartmoving to pointson the trajectory sup-
pressinghe influencefrom the food schemaon the over-
all combinedehaiour completelyuntil planexecutionis
completed.An “alarm” systeminterruptsplan execution
if a PD-agentomestoo closeto anobstacleandtriggers
replanningjn which casethe agentwill attemptto make
amoreextensie detour Oncethe executionof a planis
finished,the agentusesits reactive mechanisms$o move
towardsfood, which shouldnow notbeobstructedunless
theworld haschangede.g.,the obstaclevasnot static).

D-agentsextend PD agentsin variousways. First,
they have a vision sensorwhich they useto spotobsta-
clesandfood (PD-agentspn the otherhand,needto “ex-
tract” obstacleandfood locationsfrom the force vectors
of therespectie vectorfield, which is only possibleto a
very roughdegree). Secondthey areableto remember
thelocationof obstaclesandfood they have encountered
relative to their currentposition(i.e., in anagent-centric
polarcoordinatesystem)® They have mechanismso up-
datetheir internal representationsf food and obstacles
whenthey move so asto adjustthe relative anglesand
distancesaccordingto their movements.They alsopos-
sessa cohereng mechanismyhich deletesa memorized
itemif it doesnotagreewith whatis beingperceved(e.g.,
if theagentexpectsafooditemto bein aparticularloca-

6In the currentimplementatioragentsnever “forget” arything they
have committedto memory but it is possibleto associata “decay”-rate
to itemsin memoryto simulate“forgetting”, sothataftera certaintime
theitemwill beerasedrom memory



tion in visualfield, but no food item canbe foundin this
areatheagentwill erasgheitemfrom memory).

Third, D-agentshave a simpleroute planningmech-
anismwhich allows themto find a routeto the nearest
food item, avoiding obstaclesThe planneris givena list
of obstaclesandfood itemsknown to the agent,andre-
turnsaplanto the nearesteachabldooditem.” Theplan
is alist of headingsanddistancesandis executedby the
underlyingmotorbehaioursof theagent.

Planningis triggeredby the alarm mechanisnin re-
sponseo animminentcollision with an obstacle.A col-
lision is consideredo be “imminent” if the obstacleis
within a predefinedimminent collision range” and the
agentis facing the obstacle(within +/— 60 degreesof
the currentheading).Theimminentcollision rangeis rel-
atively large, andit possiblefor the agentto getwell in-
sidethe collision region beforeactuallycolliding with or
evennoticing the obstacle.For example,if the agenten-
tersthe collision region from the “side” (notdirectly fac-
ing the obstacle)andthenturnstowardsthe obstaclethe
alarmwill be triggered. As a result, the plannerhasto
be capableof producingplanswhichtake the agentout of
thecollision regionwithoutre-triggeringthealarmmech-
anism.This is anexampleof theissueghatarisein inte-
gratingthe continuouq(i.e., real-valued),gradient-based,
relatively imprecisereactive behaioursof theagentwith
the discreterepresentationsedby the planner

Theplannerusesa discretemodelof the environment
with relatively large plan steps,giving a coarsegrained
grid representatiorentredon the agent. Plansare con-
structedto the nearestgrid point to the goal, at which
point the reactve behaiours of the agenttake over to
guideit to thefood item. Thereareeightoperatoravhich
allow theagentto reachtheeightadjacengrid cellsfrom
the currentcell. Operatorsaredisallovedif theresulting
plan stepwould take the agentoutsidethe ervironment
or outsidea “planning region” which constrainghe dis-
tanceto thefarthespointontheplanto benogreatethan
amultiple of the distancefrom the startpoint to the goal.
In practice we have foundaplanningregionwith aradius
of 2.5 timesthedistanceo the goalto be sufficient.

Theplanneris basednasimplifiedversionof the A%
algorithm Pearl(1982). AX is a variantof A* in which
the cost of the solutionreturnedis guaranteedo be no
greaterthanl + ex thecostof the optimumsolution. A*
is agoodchoicefor arouteplanningagentasall we need
aregood (ratherthan optimal) plans. The costof a plan
is the distancethe agenthasto travel to reachthe goal,
with a penaltyfor routeswhich passthroughthe collision
region aroundan obstacle Thereis a very steepcostgra-
dientin the vicinity of obstacleswhich meansthat the

"Somefood itemsaretoo closeto anobstacleto bereachabléy the
agenthoweverthereactve behaioursusedby theall agentswill persist
in trying to reachthefood. In suchcaseghe plannercanbe usefulboth
in finding a routeto a reachabldood item, andin moving the D-agent
out of the local minimum representedy the unreachabldood item,
into anareawherethe food itemsare (hopefully) reachablevia reactve
behaiours.

first stepof any planwhichstartsin acollision regionwill
be away from the obstacle.This re-orientsthe agent,so
thatit is no longerfacing the obstacleand preventsthe
alarmmechanisnbeingtriggeredagainonthenext cycle.
PC-andC-agentscombinethe capabilitiesof A- and
PD-agentsand A- and D-agentsrespectiely. PC-agents
combinethe simpleaffective stateof A-agentswith prim-
itive deliberationof PD-agents. C-agentscombinethe
simpleaffective stateof A-agentswith themoreadvanced
representationanddeliberatve capabilitiesof D-agents.

3.3 ... and Their Resultant Behaviours

As onewould expect, the differencesdn the architecture
give rise to differentbehaiiour of the agents: R-agents
arealwaysinterestedn food andgo for whichever food
sourceis nearesto them(often manoeuvringhemseles
into fatal situations).They canbe describedas“greedy”.
Similarly, PD-agentsare also always interestedn food,
yet they attemptto navigatearoundobstaclesandpreda-
tors usingtheir (limited) planningcapacitythoughcon-
stantly driven by their “greed”. Although their deliber
ative abilities make good useof all locally available in-
formation, this can have the consequencéhat the agent
endsup too far from food andstanesin situationswhere
it would have beenbetterto do nothingfor a shortperiod
of time. By thenthe obstructingobstaclesand predators
might nolongerbeblockingthedirectrouteto food. PD-
agentqlik e R-agentsonstantlymove closeto dangeiin
theirattemptdo getto food, andcanthereforedie for food
whichthey do notyetreally need.

A-agents,on the other hand, are only interestedin
food whentheir enegy levelsarelow (i.e., they arenot
constantly‘greedy”, andseekfood only when“hungry”).
Whenthey are “hungry”, they behae like R-agentsin
thatthey chasedown everyfood sourceavailableto them.
However, their route aroundobstacless dependenbn
their “hungerlevel” whenthey arelesshungry the re-
pulsive effect of an obstaclewill have a greatereffect on
their route. Otherwisethey tendto avoid food andthus
competitionfor it, whichreducegshelik elihoodof getting
killed becauseof colliding with other competingagents
or predators.

Finally, PC-agentspehae like PD-agentsas far as
theirmaneuersareconcernedbut like A-agentswith re-
spectto food in thatthey will not navigatetowardsfood
if they arenot hungry

Finally, D- and C-agentsare similar to PD- and PC-
agentgespectiely in their overall behaiour, exceptthat
theirplanningmechanisnis superiorandoftenleadshem
to foodin avery efficientway.

4 Experiments

We have conductedvariousexperimentsto comparethe
performancef thedifferentkindsof agents Beforebeing
ableto compareadvantagesanddisadantagef agents



in multi-agentenvironmentswith differentkindsof agents,
it is necessaryo checkwhetherary givenagentkind can
survive asa groupin anervironmentonits own. Thisre-
sult canbetakento beayard-stickagainstwhich onecan
measuretheir performancein ervironmentswherethey
have to competewith otherkinds of agents.For the fol-
lowing experimentswe fix the “food rate” at 0.25, i.e.,
new food will appearon every forth environmentalup-
dateon average.Furthermorewe fix the procreatiorage
for all agentsat 250 updates.

4.1 Preliminary Experiments

The preliminary experiments wheregroupsof 5 agents
of one kind were placedin the ervironmentat random
locations,shav that eachof the testedagentkinds can
survive in thelong runin variouskinds of ernvironments,
from ernvironmentswith no obstaclego very “dangerous”
ervironmentswith mary obstacles.

Tablel showvsfor R-, A-, PD-,andPC-agentshe av-
erage(u) humberof surviving agentsof that kind taken
over 10 differentrunsof the simulation,eachfor 10000
ervironmentalupdatesfor a given ervironment (where
“(n,k)-env” is intendedto indicate that n static and k
moving obstaclesvere placedat randomin the erviron-
ment).In addition,thestandardieviation (¢) andthecon-
fidenceinterval for o = 0.05 (Con)aregiventoo.

Giventhateachagentkind cansurvive onits own (al-
thoughwith differentsuccess)we arenow interestedn
comparingthe performanceof variousA-, PD- and D-
agentsin “mixed environments”(i.e., ervironmentsthat
containmorethan one agentkind). The first setof ex-
perimentds concernedvith the performancef A-agents
ascomparedo R-, PD-, or PC-agentsOnly if A-agents
prove superiorin awide-rangeof ervironmentsis it nec-
essaryto comparethemwith more complex deliberatve
agentglikethe D- or C-agents).

42 Series1l: Affective vs. Primitive Delib-
erative Control

Surprisingly we foundthat A-agentsreliably outperform
not only R-agentsput alsoPD- and PC-agentsn all the
ervironmentsconsidere@bove (thefoodrateis again0.25)
if n agentsof eachkind competingagainsteachotherfor
n = 3,5,8 (seeTable2, Table3, andTable4)®.

Theaboveexperimentshaow thatregardles®f theini-
tial distribution, the numberof agentdn the ervironment
andthe numberof moving andstaticobstacleswe getthe
following “ranking” (from bestto worst):

1. A-agents

8The rationalefor choosingthesenumbersis that with more than
8 agents,the ervironmentis too crovded and, on average,the same
numberof agentsof eachkind will die in collisions,thusreducingthe
overall numbervery quickly. Having fewer than 3 agentsdistortsthe
statisticsastheresultsarevery sensitve to theinitial (random)positions
of theagents.

2. PC-agents
3. R-agents
4. PD-agents

This ranking canbe shovn independentlyby experi-
mentsin which only 2 kinds of agentsareplacedin dif-
ferentervironmentsinitially. We have donetheseexper
imentsfor all six combinationsn all sevenernvironments
and obsened the sameresults: A-agentsoutperformall
other agents,PC-agentoutperformR- and PD-agents,
andfinally R-agentdeatPD-agents.

The reasonwhy PD-agentsperform worse than R-
agentgs thatthey almostneverwin a“duel” for food with
R-agentsastheir deliberatve mechanisnmdoesnot dis-
tinguish betweenobstaclesand agents,hencethey even
male detourplansif competingfor a food sourcewith
an R-agent. In sucha case,they R-agentwill get the
food while the PD-agenfattemptgo get “around” the R-
agent. PD-agentghat can discriminatebetweenobsta-
clesand otheragentsperformaswell asR-agents.lt is
alsoworth pointing out that PD-agentaisuallydie out of
hunger whereaR-agentanoreoftendie becausef col-
lisions(in particularin crowdedenvironments).

It is not surprisingthatPC-agentperformbetterthan
R-agentsParticularlyin lesscrondedenvironmentsPC-
agentscanmake useof their affective statesn the same
way asA-agentsastheir deliberatve mechanismslo not
get activated all that often. Hence,we find that there
is a good chancethat somePC-agentswill survive. In
morecrowdedervironmentshowever, thisadvantagedis-
appearsindthedisadwantage®f deliberatie detourplans
outweighsthe advantageof avoiding competitionusing
the affective hungerstate.Whenthe PC-agentget“hun-
gry” enoughto seekfood in anervironmentwith lots of
obstaclesandotheragentstheir primitive deliberatve ca-
pabilitiesarefrequentlytriggeredby proximity to obsta-
cles or other agents. The resulting “detour plans” can
sometimedeadthemfartherandfartheraway from food
resultingin stanation.

In addition,theexperimentshaw that20,20and30,30-
ervironmentseento bethe oneswhereotheragentkinds
standthe bestchanceagainstA-agents. This is because
theseervironmentsarecrovdedenoughto make it more
difficult for A-agentgo getfood,while still nottoocrowvded
for the otheragentsto mainly die becauseof collisions
(ashappensn 40,40and50,50ernvironments;the latter
alreadybecome<hallengingfor A-agentsaswell).

If thefoodrateis varied,thenwe find thathigherfood
rates(e.g.,a food rateof 0.5) do not changethe picture,
ratherthey shav even more clearly the ability of affec-
tive agentgo coexist in large groups.On the otherhand,
lower food rates(in therange0.125-0.25make survival
in crowdedervironmentsmpossible astherearesimply
too mary obstaclesobstructingthe pathsto food. With
theselow food ratesthe advantageof A-agentsover R-
agentsslowly disappearsswaiting for hungerto grow



Tablel: Theaveragenumberof surviving agentsn ann,k-ervironmentwhenstartedwith 5 agentof only onekind.

R-agents A-agents PD-agents PC-agents
Env I | o | Con N | o | Con " | o | Con N | o | Con
0,0 1460| 280 | 1.73 || 19.20| 2.74| 1.70 || 16.70| 3.09 | 1.92 || 18.00| 3.62 | 2.24
55 13.20| 4.78 | 2.96 || 17.20| 3.05| 1.89 || 13.60| 2.07 | 1.28 || 16.30| 2.58 | 1.60
10,10|| 11.90| 3.81| 2.36 || 17.20| 3.77 | 2.33 || 12.80| 3.85| 2.39 | 16.10| 1.79| 1.11
20,20 || 11.60| 3.47 | 2.15|| 15.40| 3.95| 2.45| 8.00 | 3.89| 2.41 || 14.80| 4.64 | 2.87
30,30 7.50 | 4.43| 2.75|| 13.00| 3.56 | 2.21 | 4.30 | 437 | 2.71 || 10.50| 3.44 | 2.13
40,40 || 2.90 | 357 | 2.21 || 10.40| 357 | 221 | 0.60 | 1.90 | 1.18 || 7.70 | 4.88 | 3.02
50,50 || 0.20 | 0.63| 0.39|| 8.00 | 3.56| 2.21| 0.00 | 0.00| 0.00 || 1.00 | 1.94 | 1.20

Table2: Theaveragenumberof surviving agentsn ann,k-ernvironmentwhenstartedwith 3 agentof eachkind.
R-agents A-agents PD-agents PC-agents
Env p | o [ Con p | o [Con| p | o [Con][ p [ o [Con
0,0 1.10| 3.48| 2.16 || 14.40| 5.87| 3.64 || 0.00 | 0.00 | 0.00 || 1.40| 2.37 | 1.47
5,5 1.70 | 3.95| 245 1440| 540 | 3.35| 0.00| 0.00| 0.00 || 1.40| 3.27 | 2.03
10,10 || 0.00| 0.00 | 0.00 || 16.00| 2.18 | 1.35 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
20,20|| 0.00 | 0.00| 0.00 || 14.80| 4.18 | 259 | 0.00| 0.00| 0.00 0.60| 1.90| 1.18
30,30| 1.00| 3.16| 1.96| 10.90| 7.88 | 4.88 | 0.00| 0.00 | 0.00 || 3.10| 6.74 | 4.18
40,40 0.00 | 0.00 | 0.00 || 11.30| 3.09| 1.92 | 0.00| 0.00 | 0.00 | 0.00| 0.00| 0.00
50,50 || 0.00 | 0.00 | 0.00 | 4.92 | 5.32| 3.30| 0.00| 0.00 | 0.00|f 0.00| 0.00| 0.00

before moving towards food is not a good stratey (if
missingout on onefood sourcecouldbefatal).

4.3 Series2: Affectivevs. Advanced Delib-
erative Control

Given the superiorperformanceof A-agents(even with

different food rates),we were particularly interestedin

comparingthemto advanceddeliberatve agents.D- and
C-agentdhave muchmoreprocessingpowerin additionto

anothervery powerful visual sensoryorgan,soit is clear
thatthesetwo kindsarenotonaparwith A-agents.How-

ever, if thegoalis to discoverthe limits of affective con-
trol, it seemsonly fair to employ more powerful mecha-
nismsto testthe waters.

The setupfor the following experimentsis identical
to thepreviousones exceptthatin the secondseriesonly
static obstacleswvere used. The reasonfor this restric-
tion is that D-agentsdo not have a trackingmechanism
for moving obstaclesand hencewould wrongly classify
moving obstaclegs“static”, verymuchto theirdisadwan-
tage?

Wefoundthat,dependingntheernvironment A-agents
still do well in competitionwith D-agents. In erviron-

9In a secondgroupof experimentswe addedan additionalpercep-
tual mechanisnto D- and C-agentswhich allows themto distinguish
betweenstatic and moving obstaclesso that only static obstaclesare
enteredin the agents’'map. As expected,D- and C-agentsdid worse
thanmostotheragentsin n,n-ervironments,sincemary of their plans
are basedon wrong assumptiongboutthe environment,andhencedo
not improve their ability to getto food. We are currentlyworking on
an extensionof the D-agentsthatcan—toa limited extent—trackmoving
obstacles.

mentswith very few staticobstaclegup to 10), D-agents
rarely plan, as their alarm mechanisnis only triggered
by obstaclesnot other agents. In theseernvironments,
therefore,D-agentsbehae like R-agents.And sinceA-

agentsbeatR-agentsin suchervironments,it doesnot

comeasa surprisethat they beatD-agents. In environ-

mentswith a large numberof obstaclesthe compound
obstaclevectorsusedby the A-agentshecomeuninforma-
tive,andA-agentanustnegotiatetheirway aroundobsta-
clesby trial anderror, increasingthe distancethey have

to travel to food andthelik elihoodof collisions. In these
situationsthe D-agents ability to planroutesaroundob-

staclesthat lead them directly to food paysoff (seethe
first two columnsof Table5).

ThecomparisorbetweerA- andC-agentss evenmore
interestingandproducedsomeresultsthatwe did not ex-
pect. Prima facie it seemghat C-agentshouldhave an
adwantageoverbothA-agentsandD-agentssincethey in-
heritthe capabilitiesof both. However, behaioural prop-
ertiesof partsof anagentarchitecturedo notsimply “add
up”: while C-agenthave aboutthe sameperformanceas
A-agentsfor ervironmentswith very few obstaclegup to
10), in medium-obstaclervironments(over 10 andless
than40) they performworsethanboth A-agentsand D-
agentgwhichbeatA-agentdn thesesrvironments).Only
in more crowded ervironments(over 40), do C-agents
perform betterthan A-agents. The reasondor this un-
expected'weakness’of C-agentarequiteinteresting.

In low-obstacleervironmentsthe affective control of
C-agentss in commandnostof thetime anddeliberatve
controlis rarely used(hencetheir similar performanceo
A-agentsin theseernvironments). In high-obstacleervi-



Table3: Theaveragenumberof surviving agentsn ann,k-ernvironmentwhenstartedwith 5 agentof eachkind.

R-agents A-agents PD-agents PC-agents
Env I | o | Con I | o | Con " | o | Con u | o | Con
0,0 0.00 | 0.00 | 0.00 || 12.30| 7.32 | 454 | 0.00 | 0.00 | 0.00 || 5.30 | 7.63 | 4.73
55 0.00 | 0.00 | 0.00 || 14.70| 7.06 | 4.37 | 0.00 | 0.00 | 0.00 || 2.50 | 5.76 | 3.57
10,10|| 0.00 | 0.00 | 0.00 | 14.40| 5.66 | 4.42 || 0.00 | 0.00 | 0.00 || 5.66 | 3.51 | 2.74
20,20 || 0.00 | 0.00 | 0.00 || 15.40| 6.19| 3.83 | 0.00| 0.00 | 0.00 || 2.10| 5.13| 3.18
30,30 0.20 | 1.10 | 0.68 || 10.63| 559 | 3.47 | 0.27 | 1.46 | 0.91 || 0.77 | 2.43| 1.51
40,40 || 0.00 | 0.00 | 0.00 || 11.20| 6.03 | 3.74 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
50,50 || 0.00 | 0.00 | 0.00| 7.60 | 5.23| 3.24 | 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00

Table4: Theaveragenumberof surviving agentsn ann,k-ernvironmentwhenstartedwith 8 agentf eachkind.

R-agents A-agents PD-agents PC-agents
Env p | o [ Con p | o [Con| p | o [Con][ p [ o [Con
0,0 0.70| 1.64| 1.01 || 14.00| 7.16 | 4.44 || 0.00 | 0.00 | 0.00 || 3.00 | 6.13 | 3.80
5,5 0.00 | 0.00 | 0.00 || 16.00| 3.29 | 2.04 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
10,10 0.00| 0.00| 0.00| 14.60| 299 | 1.85| 0.00| 0.00 | 0.00 || 0.50 | 1.58 | 0.98
20,20|| 0.20| 0.63 | 0.39 || 1560 | 2.22 | 1.38 | 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
30,30| 0.30 | 0.95| 0.59| 13.60| 5.10 | 3.16 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
40,40 0.00 | 0.00 | 0.00 || 8.40 | 6.60| 4.09| 0.00| 0.00| 0.00| 1.30| 2.75| 1.70
50,50 || 0.00 | 0.00 | 0.00 | 9.00 | 5.89 | 3.65| 0.00| 0.00 | 0.00( 0.30| 0.95| 0.59

ronmentsthe alarmis triggeredvery often, henceplan-
ning is active mostof thetime anda C-agentusesits de-
liberatve mechanisnto move towardsfood ratherthan
its reactve “scentfollowing”, which is lessefficient-the
performanceof the C-agenthereis similar to that of the
D-agent.

However, in medium-obstaclenvironmentsthe af-
fective anddeliberative control do not complementach
other, but rather‘compete”with eachotherin suchaway
thatthe resultantbehaiour is of no advantageto the C-
agent. As with A-agents,whenthe enepy level is high,
theinfluenceof the affective hungerstatekeepsthe agent
from approachingood aggressiely. As the agents en-
ergy levelfalls, it will eventuallymovetowardsfood. How-
everin C-agentsthe“small detour’imposedby the plan-
ning systemin orderto move the agentsafelyaroundob-
staclesis lessefficient than the straightforvard reactve
control of A-agents,which follow smell gradients(like
D-agents,C-agentsare requiredto stay further thanthe
imminent collision rangefrom the obstacle ratherthan
justnothit it aswith A-agents).In mediumobstaclesrvi-
ronments A-agentshave few alarms/collisionssincethe
sonarvectorsgive relatively goodinformationaboutthe
locationof obstaclesn unclutterecervironments Only if
anA-agents“desire”for foodis very strong,canthevec-
tor gradientdeadthe agenttoo closeto obstaclesthereby
triggeringthe alarm. Otherwise the A-agentwill beable
to manoeuvr@aroundobstaclesvithoutbumpinginto them,
with theresultthatthey arefastethanC-agentsin medium
obstacleenvironments,the D-agentscompensatéor the
excessve cautionof their plansby aggressiely seeking
food, ratherthanwaiting until they arehungry This early

startmakesup for the“small detour”’imposedby follow-
ing the plan, to the extentthatthey outperformA-agents
(andhenceC-agents)n theseervironments.

Theseaesultsshav thattheintegrationof controlmech-
anismswhich areadvantageou differentervironments
canleadto new weaknessesvhich are difficult to pre-
dict from the behaioural descriptionsof the individual
mechanisms.And while suchextensionswhich canbe
viewedas"specializationsfrom anevolutionarypoint of
view, might leadto betteradaptedndividuals for some
ervironments,it can “backfire” and reducethe individ-
ual’s fithessfor others. Hence,evolutionarytrajectories
thatleadto suchintegrationof differentmechanismsvill
have to take placein specialervironments.

5 Discussion

Our experimentalstudieshave showvn thatthe succes®f
theagentsasmeasuredby their ability to survive depends
on variouservironmentalparameters.ln someerviron-
ments, A-agentsare more likely to survive for a given
time periodthan D-agents while in otherervironments
the D-agentsare morelikely to survive. We canclearly
seethat the affective stateshat guide A-agentsare pow-
erful controlmechanismsyhich allow largegroupsof A-
agentdo coexist in certainervironments(asthey reduce
the competitionfor food). Theadvantage®f suchmech-
anisms,however, are outweighedby the disadwantageof
not beingableto navigateefficiently aroundobstaclesn
crowdedervironments.
Wearecurrentlyinvestigatinglifferentaffective states,



Table5: Theaveragenumberof surviving agentsn ann,0-environmentwhenstartedwith 5 A-agentsand5 D-agentsand

5 A-agentsand5-C agentsrespectiely, for afood rateof 0.125

A-agents D-agents A-agents C-agents
Env " | o | Con| p | o | Con N | o | Con I | o | Con
0,0 || 13.00| 2.31| 1.43| 3.80| 5.29| 0.00| 10.30| 6.48 | 4.02| 7.20 | 4.96 | 3.08
50 || 12.30| 7.89| 489 | 5.00| 6.45| 4.00| 590 | 7.62| 4.72 | 11.40| 9.70 | 6.01
100 9.90 | 7.29 | 452 | 6.10 | 6.97 | 432 || 890 | 7.23| 4.48| 8.00 | 6.67 | 4.13
20,0| 6.20 | 7.22 | 4.48| 8.20| 6.92 | 429 || 9.80 | 432| 2.67| 2.70 | 4.37| 2.71
30,0| 450 | 5.08| 3.15| 7.20| 6.36 | 3.94 || 940 | 593 | 3.67| 3.40 | 4.25| 2.63
40,0|| 3.20 | 5.16| 3.20| 6.40| 481 | 298| 3.30 | 435| 296 | 6.70 | 5.72 | 3.54
50,0 || 0.50 | 1.58 | 0.98 | 8.10 | 5.47 | 3.39 || 3.60 | 4.74| 2.94| 3.60 | 4.06 | 2.52
60,0 0.70 | 221 | 1.37| 3.20| 4.32 | 2.67 || 1.20 | 257 | 1.59 | 3.20 | 3.74 | 2.32
70,0 || 0.00 | 0.00| 0.00| 1.20| 2.57| 1.59 || 0.00 | 0.00| 0.00 | 1.10 | 2.02| 1.25
80,0 || 0.00 | 0.00O| 0.00| 0.70| 1.64 | 1.01 || 0.00 | 0.00| 0.00 | 0.40 | 0.84| 0.52

suchasa “higher order” affective statethat measureshe
frequeng of alarmtriggeringswithin a giventime inter-

val andallows agentdgo “retreat” from whatthis mecha-
nism implicitly assumego be a “dangerousarea. Fur-

thermore,A-agentswith the ability to distinguishwhat
causegheir alarmmechanisirio be activatedcould have

two suchstatespnefor “competitionamongagents” and
one for “areacrowdedwith obstacles”. Preliminaryex-

perimentshowever, showv thatwhile theremightbesome
adwantagefor such extendedA-agentsover regular A-

agents,this advantagedoesnot outweighthat of being
able to produce“safe routesto food” asin the caseof

the D- or C-agents.

Sothequestiorremainswvhethermplanning(suchasre-
alisedin D-agents)andthusdeliberatve control,doesin-
deedmark a significantevolutionary improvementover
mere“affective” control in morethana few specialen-
vironments. Obviously, more experimentsare neededo
confirmsucha conjecture.

We believe thatthe above theoreticalandexperimen-
tal studiesarea viable strateyy to reachanunderstanding
of the role that affective processeglay in deliberation.
In particular we arecorvincedthatit will be relevantto
understandingvolutionary trajectoriesfrom reactive to
deliberatve organisms.
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