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Abstract

In this paper, we outline a researchstrategy for analysingthe propertiesof differentagentarchitectures,in particular
thecognitive andaffective states/processesthey cansupport.We demonstratethis architecture-basedresearchstrategy,
which effectively views cognitive andaffective statesasarchitecture-dependent,with anexampleof a simulatedmulti-
agentenvironment,whereagentswith differentarchitectureshave to competefor survival. We show that agentswith
“affective” and“deliberative” capabilitiesdobestin differentkindsof environmentsandbriefly discusstheimplications
of combiningaffectiveanddeliberativecapabilitiesin asinglearchitecture.Wearguethatsuchexplorationsof thetrade-
offs of alternative architectureswill help us understandthe role of affective processesin agentcontrol andreasoning,
andmayleadto importantnew insightsin theattemptto understandnaturalintelligenceandevolutionarytrajectories.

1 Introduction

Deliberativemechanismsandprocesses(suchasplanning,
searching,reasoning,etc.)havebeena majorfocusof re-
searchactivitieseversincethebeginningof artificial intel-
ligence. More recently, affective stateshave becomean-
otherareaof attention,especiallyin thedesignof artificial
“believable”agents(Simon,1967;SlomanandCroucher,
1981;Damasio,1994;Reilly, 1996;Picard,1997;Hatano
et al., 2000). However, the interactionof affective and
deliberative processesin biological agentsand the pos-
sibilities of integratingaffective anddeliberative compo-
nentsin control systemsof artificial agents(syntheticor
robotic) arenot yet well understood.This is partly due
to thecomplexity of thesubjectmatter, but alsopartly to
complicationsbroughtaboutby anoverwhelmingnumber
of different definitionsand conceptsof affective states.
We believe that the definitionalmorasscanbe separated
from substantive scientific and technicalquestionsby a
strategy which involvesexploring a variety of informa-
tion processingarchitecturesfor varioussortsof agents.
Theideais to useagentarchitecturesto (1) studyfamilies
of conceptssupportedby eachtypeof architectureand(2)
explore the functionaldesigntradeoffs betweendifferent
architecturesin variouscontexts.

Understandingthecomplex interplayof cognitionand
affect requiresa closeanalysisof the propertiesof dif-
ferentinformationprocessingarchitecturesandthestates

andprocessesthey cansupport.We arepursuingvarious
suchanalyseswithin the context of the “Cognition and
Affectproject”at theUniversityof Birmingham(Sloman,
2000).In thispaper,1 wefocusononecurrenttrackof the
CognitionandAffect project,which studiesthe interac-
tion of “affective” and“deliberative” behavioursin agent
control.

2 Kinds of Architectures

We canview anagentasconsistingof threemaincompo-
nents(e.g.,RussellandNorvig (1995)):

� theagentprogramimplementsamappingfrom per-
ceptsto actions(this is sometimescalledtheaction
selectionfunctionor actioncomposition).

� theagentstateincludesall the internalrepresenta-
tions on which the agentprogramoperates.This
mayincluderepresentationsof theagent’senviron-
mentandgoals,theplansit hasfor achieving those
goals,which partsof the plan have beenexecuted
andsoon.

� theagentarchitecture, a (possiblyvirtual) machine
that makes the perceptsfrom the agent’s sensors

1Presentedat Symposiumon Emotion, Cognition, and Affective
Computingat theAISB’01 Convention,21st- 24thMarch2001



availableto theagentprogram,runstheagentpro-
gram,updatestheagentstate,andexecutestheprim-
itiveaction(s)chosenby theagentprogram.

Our mainconcernis with theagentarchitecture.Thear-
chitecturedefinestheatomicoperationsof theagentpro-
gram,andimplicitly definesthecomponentsof theagent.
For example,load andstore operationsin a conventional
CPU imply somesort of memory, otherwisethe opera-
tionswouldnothavetheeffect they aresupposedto: call-
ing load afterstorewouldnot returnthesavedvalue.The
architecturealsodetermineswhichoperationshappenau-
tomaticallywithout theagentprogramhaving to do any-
thing,e.g.,incrementingtheprogramcounterin aconven-
tional CPUor productionfiring andconflict resolutionin
a rule-basedsystem.

In practice, the distinction betweenagentprogram,
stateandarchitectureis oftenamatterof interpretationor
convenience.In an implementedagenttherearea whole
hierarchyof virtual machines:the agentprogramis ex-
pressedin termsof the primitive operationsprovidedby
the architecture;the architectureis usuallyimplemented
in termsof aprogramminglanguage,which in turn is im-
plementedusing the instructionset of a particularCPU
(or anothervirtual machinesuchasthe JVM). Likewise
some“agent programs”togetherwith their architecture
can implementa new, higher-level architecture(virtual
machine).In whatfollows,“agentarchitecture”usedwith-
out qualificationmeansthe mostabstractarchitectureor
thehighestlevel virtual machine.

The primitive operationssupportedby the architec-
ture, togetherwith the thingsthat happenautomatically,
determinewhat kind of architectureit is, for example,
whetheranarchitectureis reactiveor deliberative. In this
paperwewill focusonthreekindsof agent(andhenceon
threekindsof architecture):reactive,affective anddelib-
erative.

2.1 Reactive Architectures

A reactivearchitectureis onein which perceptsdirectly
trigger actions. The selectionof which action(s)to per-
form is determinedby the agentprogram. When more
thanoneactionis potentiallyappropriatein agivensitua-
tion, theagentprogrammustchoosewhichof thepossibly
conflicting actionsto perform. Actions which do not in-
terferecanbeexecutedin parallel(within the limitations
of theunderlyingarchitecture,e.g.,thenumberof degrees
of freedom).Howeverif thesetof possibleactionscannot
be executedin parallel,eitherbecauseof the limitations
of thearchitectureor becausetheactionsarelogically in-
consistent,theagentmusteitherselectthemostappropri-
atesubsetof the actionsto performor synthesisea new
action by combiningthe candidateactionsinto a single
compositeactione.g.,simultaneouslymoving towardsa
goalwhile avoiding anobstacle—theobstacleavoidance
modifiesthe motion towardsthe goal, by deflectingthe
patharoundtheobstacle.

Reactivearchitecturesmaymakeuseof simplerepre-
sentationsof the stateof the world and/orthe agent,but
theserepresentationsdo not explicitly encodegoals,hy-
potheticalstatesof theworld or sequencesof possibleac-
tions. We may ascribeintentionalstatessuchasbeliefs
anddesiresto a reactive agent,but theagentarchitecture
containsno explicit representationof thesestates.Rather
suchstatessuperveneon the architecture.In suchcases
wecanview theagentasanintentionalsystem, thatis, we
ascribeto it the beliefsandgoalsit ought to have, given
whatwe know of its environment,sensorsand(putative)
desiresDennett(1996).For example,anagentwhich has
an‘avoid obstacles’behaviour, canbesaidto havea goal
of ‘avoiding collisions’, even thoughthis goal is not ex-
plicitly representedin theagent.2

Reactivearchitecturesareoftenimplementedin dedi-
cated,parallelhardwareusingmany simplecomponents.
Thelimited amountof processingnecessaryfor apercept
or setof perceptsto triggeranaction,theuseof dedicated
parallelhardwareandthelackof complex representations
meansthat reactive systemstypically respondquickly to
changesin theenvironment. Indeedtheabsenceof com-
plex internal representationsoften mandatesthe useof
tight sensorimotorfeedbackloopswith frequentsampling
of theenvironment.

2.2 Affective Architectures

An affectivearchitectureis onein which thereareexplicit
representationsof affective control statessuchasprefer-
ences,desiresor emotions. Suchstatesaredirectly en-
codedwithin the agent’s state,e.g., in a connectionist
unit, real-valuedvariableetc. rather than being super-
venienton the architectureas in the caseof a reactive
agent. Note that this doesnot meanthat all intentional
statesareexplicitly representedin an affective architec-
ture,for example,beliefsandgoalsmaybesupervenient.
Nor doesit meanthatall affective statesaredirectly rep-
resentedin thearchitecture,only thatsomeare. Thefact
thatsomeaffectivestatesareexplicitly representedwithin
thearchitectureanddo not merelysuperveneon it means
that the architectureto monitor the achievementor non-
achievementof suchstates,andallowsthemto takearole
in learning,deliberation,themodificationof reactive be-
haviours,etc..3

2Dennettcallsthis approach“adoptingtheintentionalstance”.
3Notethatwhile superveningaffective statescanhave thesamebe-

haviouralpotentialasexplicitly implementedaffectivestates,theircoun-
terfactual potential with respectto architectureextensionsis not the
same:take two agentswith “identical behavioural capacities”,wherein
thefirst anaffective statessupervenes,andin thesecondthesamestate
is partof thearchitectures(andtrivially supervenestoo). Thenthereare
extensionsof thelatter thatcanmake useof thestate,whereasthereno
extensionsof the former that couldmake useof the supervenientstate
unlessthe“add” mechanismsto monitor this supervenientstate,which
would effectively amountto changingthearchitectureto make this su-
pervenientstate“explicit”.



2.3 Deliberative Architectures

A deliberativearchitecturein onein which thereis some
considerationof alternative coursesof action beforean
actionis taken.

A deliberative architectureis one in which at least
someof the statesarecounterfactualin the senseof re-
ferring to hypotheticalpastor future statesor asyet un-
executedactions(or sequencesof suchactions)and in
whichatleastsomeof thebasicoperationsof thearchitec-
ture produce/read/writesuchcounterfactualstates.Such
statesincludegoals(descriptionsof statesto beachieved),
plans(sequencesof unexecutedactions),statesdescrib-
ing the imaginedconsequencesof performingan action
in thecurrentstateor somehypotheticalstate,partialso-
lutionsgeneratedduringplanningor problemsolving,the
hypotheticalstatesof the agent’s beliefs generateddur-
ing belief revision andmany others. We further require
thatsuchstatesshouldbeinfluential in theproductionof
actions,in the counterfactualsensethat, had the (coun-
terfactual)statenotbeengenerated,theagentwouldhave
chosenadifferentactionto execute.

Note that this definition implies no commitmentsas
to whetherthestatesandoperationsarefinegrained,e.g.,
dealingwith partialplansor alternativesolutionsandtheir
generationandcomparison,or whetherthestatesandop-
erationsare‘coarsegrained’,e.g.,asingle‘plan’ operator
which takesa goal anda descriptionof the currentstate
andreturnsa planwith the restof thefine-grainedstates
andoperatorsburied in the implementationof the archi-
tectureandinvisible to the agentprogramandthe agent
state. Both caseshave at leastone counterfactualstate
andoneoperatorthattakesanon-counterfactualstateand
returnsacounterfactualstate.

To representcounterfactualstates,adeliberativeagent
requiresrepresentationswith compositionalsemantics,in
thesensethatthemeaningof therepresentationsis afunc-
tionof themeaningsof theirparts.It alsoimpliesareusable
working memoryfor theconstructionandcomparisonof
hypotheticalstatesandsomemeansof deriving the con-
sequencesof actionsperformedin thesestates.At its sim-
plest,thismightbememoriesof theconsequencesof per-
forming theactionin similarstatesin thepast.Theuseof
acommonworkingmemorylimits thenumberof alterna-
tive coursesof actionthat canbe consideredin parallel,
andhencethedegreeof parallelismpossiblewithin a de-
liberativearchitecture.

All other thingsbeingequal,a deliberative architec-
ture must be slower and requiremore resourcesthan a
reactivearchitecturewhichencodesasolutionto any spe-
cific goal solvableby the deliberative architecture,since
thegenerationof alternativesmusttake time. However a
deliberativearchitecturewill typically bemorespaceeffi-
cientthananequivalentreactivearchitecture,eventhough
it will oftenrequiremorespacethanareactivesolutionto
any givenprobleminstance,sinceit cansolve a classof
problemsin a fixedamountof space,whereasa reactive

architecturerequiresspaceproportionalto thenumberof
problems.

Wecanview thisasanexampleof thestandardspace-
time tradeoff, thoughin this casethereis also the time
requiredto codeor evolve all the reactive solutions.For
example,to understandEnglishsentencesa reactive ar-
chitectureneedsto encodethemeaningof every possible
input sentenceseparately, whereasa deliberative system
simply needsa grammaranda parser. The problemfor
thereactive approachis that thereis anunboundednum-
ber of possiblesentences(and choosingthe potentially
relevantonesmight not bepossibleaheadof time).

Notethatat a givenlevel of abstraction,a component
of an architecturecannotbe both reactive anddelibera-
tive, sincedeliberationpresupposesrepresentationalca-
pabilitieswhich by definitionaremissingfrom a reactive
architecture. However, a given componentcan be both
affectiveanddeliberative,asweshallsee.

3 Affective and Deliberative Agent
Control

In many cases,thegenerativepotentialof deliberativeca-
pabilitiesopensuprealmsthatareinaccessibleto reactive
agents(unlessthey havevastmemorieswith pre-computed
strategies for all possibleeventualities),justifying their
additionalcomputationalcost. However, therearecases
wherethesame(if not better)resultscanbeachievedus-
ing reactivesystemsaugmentedby simpleaffectivestates.
Suchtrade-offs arenot alwaysobvious, andcarefuland
detailedexplorationsin designspacemaybeneededin or-
derto find gooddesignsto meetparticularrequirements.

In thefollowingwecompare(1)addingdifferenttypes
of deliberative extensionsto a reactive architecturewith
(2) addingsomesimple statesrecordingcurrentneeds,
alongwith behaviourstriggeredby thosestateswhichmod-
ify the agent’s reactive behaviours. Option (2) can be
looselydescribedasaddingprimitive“affective” (or “emo-
tional”) states.In a numberof experiments,we demon-
stratethatbothapproachescanhavea powerful influence
on anagent’s ability to survive in dangerousmulti-agent
environmentscontainingdifferentkindsof agents,obsta-
cles,foodsources,andthelike.

In thefollowing,wefocusontwo mainkindsof agents,
the“affectiveagents”(A-agents)and“deliberativeagents”
(D-agents).A-agentshavereactivemechanismsaugmented
by simple“affective states”,whereasD-agentshave rep-
resentationalandplanningabilitiesin additionto thesame
reactivemechanisms.

3.1 The SimWorld Environment

Theexperimentswereconductedin asimpleartificial en-
vironmentimplementedusingtheSimAgent toolkit4. The
simulation can run either in “display mode” or “batch

4Seehttp://www.cs.bham.ac.uk/research/simagent/



mode”.Displaymodeprovidesagraphicalrepresentation
of thesimulationandallowsuserinteraction;batchmode
dispenseswith thedisplaybut allowsthecollectionof sta-
tistical informationduringtheruns. Thedisplaymodeis
intendedto aid in thedesignof evolutionaryexperiments,
which canthenberunmuchfasterin batchmode.

The simulatedenvironment(the “world”) consistsof
a rectangularsurfaceof fixedsize(usuallyaround600by
600units)populatedwith variouskindsof objects:

� staticobstacles(displayedasrectanglesof varying
size,usuallyaround10by 10)

� moving obstacles(displayedasrectanglesof vary-
ing sizemoving at particularspeedin a particular
directionwithouteverchangingit)

� energy sources—“fooditems” (displayedassmall
circlesthat pop up at randomlocationswithin the
world andstaytherefor apre-determinedperiodof
time, after which they disappearunlessconsumed
by agents)

� variouskindsof agents(displayedascircleswith a
smallsquareon thecircumferenceanda text string
indicatingthedirectiontheagentis headingin and
its type,respectively)

Theenvironmentis continuousin thesensethattheagents’
positionsare real-valued(rather than being confinedto
a grid). Agentscan move in any direction (from 0 to
359degrees,where0 means“east”),andconsumeenergy
proportionalto the speedat which they move. However,
evenwhenstationary, agentswill still consumea certain
amountof energy per timestep.Agentswhich run out of
energy “die” andareremovedfrom thesimulation.They
arealsoremovedif they run into obstaclesor otheragents
(in the lattercaseall agentsinvolvedin thecollision will
be removed). In the environmentsstudied,agentstypi-
cally dieof hungeror asaresultof collisionswithin 1000
timesteps,therebyobviating the needto limit their life-
time explicitly.

All agentsareequippedwith threekindsof exterocep-
tive sensors:sonar, smell and touch. In addition,some
agentshave a vision sensor, which allows themto gather
informationaboutthesizeandpositionof objectswithin
their visualfield.

Sonaris usedto detectobstaclesand other agents,
smellto detectfood,andtouchto detectimpendingcolli-
sions.For sonarandsmell,gradientvectorsarecomputed
pointing in thedirectionof obstaclesandfood within the
respective sensorrange.Thesevectorscanthenbecom-
binedin variouswaysandmappedontotheeffectorspace,
yielding a directionin which to move to avoid obstacles
and/ormoveclosertowardsfood.

The touchsensoris connectedto a globalalarmsys-
tem,which triggersa reflex to moveaway from whatever
the agenttouches(unlessit is food, which will be con-
sumed).Thesemovementswill beinitiatedautomatically

andthe agentcannotcontrol them. They arealsosome-
whaterraticandwill slightly reorienttheagent.

In additionto thethreeexteroceptivesensors,all agents
alsohavetwoproprioceptivesensors,whichmeasuretheir
energy-levelandtheirorientation,respectively (somehave
anadditionalorientationsensorwhichkeepstrackof their
heading).

Theagentsalsohaveanumberof effectors:they have
motorsfor locomotion(forward andbackward), motors
for turning (left and right in degrees)anda mechanism
for consumingfood. Agentsneedto sit on top of a food
sourcein orderto beableto consumeit. Consumingfood
takes time proportionalto the energy storedin the food
sourceandthemaximumamountof energy anagentcan
extractin a timestep.

After a certainnumberof simulationcycles, agents
reachmaturity and can reproduceasexually. The num-
berof offspringproduceddependson theenergy level of
the“parent”,andtheoffspringarecreatedin theimmedi-
atevicinity of theparent(temporarilyincreasingthelocal
competitionfor resourcesand increasingthe likelihood
of collisions). The energy necessaryto createeachnew
agentis subtractedfrom theparent.

Before a run of the simulation,which can typically
take anywherefrom 10,000to 1,000,000simulationup-
datesteps,variousparametersof the environmentmust
bespecified,including:

� thesizeof theworld

� thenumberandsizesof stationaryobstacles,

� thenumber, sizes,speedsanddirectionsof moving
obstacles,

� the numberof energy sourcestogetherwith their
energycapacities,frequency of appearance,andlife
time

For agentsat the leastthe following parametersneedto
beset:

� the respective sensorrangesfor sonar, smell, and
touch

� themaximumfood intakepertimestep

� theprocreationageandtheenergy expenditurefor
eachoffspring

� the maximumspeedof movementand the energy
expenditurefor it

� the different concurrentlyactive modulesmaking
up the agent’s cognitive systemandtheir speedof
executionrelative to asimulationupdatestep

Usually, agents,obstaclesandfood areplacedat ran-
dom locationsin the environmentto be ableto “average
out” possibleadvantagesdueto their locationoveralarge
numberof trials. However, it is also possibleto fix lo-
cationsin advance,e.g., to studyhow differentkinds of
agentswould farein thesamesituation.



3.2 The Agents ...

While differentkinds of agentsmay have differentshort
termgoalsat any giventime (e.g.,gettingaroundanob-
stacleor avoiding a predator),commonto all of themis
the implicit goal of survival andprocreation,i.e., to get
(enough)food andavoid gettingkilled (i.e., run into/get
runoverby anobstacle/otheragent)to beableto livelong
enoughto haveoffspring.

In the following we will considervarious different
kinds of agents,which differ solely with respectto their
architecture:

1. reactiveagents(R-agents)

2. (simple)affectiveagents(A-agents)

3. pseudo-deliberativeagents(PD-agents)

4. (advanced)deliberativeagents(D-agents)

5. combinedaffective andpseudo-deliberativeagents
(PC-agents)

6. combinedaffectiveand(advanced)deliberativeagents
(C-agents)

Thesereflect two differentkinds of extensionsof a ba-
sic reactive architecture:(1) theadditionof primitive af-
fective statesand (2) the addition of primitive and ad-
vanceddeliberativecapabilities.Eachagenthasthereac-
tive mechanismsof R-agents.A-agentsextendR-agents
by simpleaffective statessuchas“hunger”, “fear”, “per-
sistence”,“caution”, etc. (still locatedwithin thereactive
layer). PD-agentsextendR-agentsby a simpleplanning
andplanexecutionmechanism(i.e.,by arudimentaryde-
liberative layer), whereasD-agentsaregenuinedeliber-
ative agentswith complex representationalandplanning
capacities(asexplainedbelow). The combinedPC- and
C- agentsintegratethe capabilitiesof PD- andA-agents
andD- andA-agents,respectively.

The reactive layer of R-agents(which is commonto
all other agentsas well), is basedon augmentedfinite
statemachines,which run in parallel and can influence
eachother(relatedto thestyleof Brooks’subsumptionar-
chitecture,e.g.,see(Brooks,1986)). Thefinite statema-
chinesprocesssensorinformationandproducebehavioural
responsesusinga schema-basedapproach(in SimAgent
thesefinite statemachinesarerealizedasrule systems).
Thereactivebehaviourstakesensorinformationandcom-
putea sensorvectorfield for eachsensor(i.e., the sim-
ulatedequivalentsof a sonaranda smell sensor),which
arethencombinedandtransformedinto theagent’smotor
space(e.g.,seeArkin (1989)). Thetransformationfunc-
tion mappingsensoryto motorspaceis givenby ���	��
�
(where‘S’ and‘F’ arethesonarandfoodvectorfieldsand
� and 
 therespectivegainvalues).5.

5Notethatthisformulaleavesoutmany details,suchasthemappings
for the“touch” sensor, for easeof presentation.

A-agentsdiffer from R-agentsin thatthey possess“in-
ner” stateswhich can influencethe way in which sen-
soryvectorfieldsarecombined:thesestatesalterthegain
valuesof the perceptualschemasin the transformation
functionmappingsensoryto motorspace(e.g.,seeArkin
(1998)).Thustheverysamesensorydatacangetmapped
onto differentmotor commandsdependingon the affec-
tive state. For example, a primitive “fear” statecould
modify thegainvalueof theobstaclevectorandthusthe
degreeto whichtheagentwill berepelledby obstacles:an
agent,whichis less“afraid”, will havealowergainvalues
thanan agentwhich is very afraid, resultingin different
locomotionbehaviour in affective agents. In our exper-
iments,we usedA-agentswith a single “hunger” state,
which modifies the gain value of the “food” vector: if
hungeris low, thegainvaluefor hungeris slightly nega-
tiveandtheagentstendto moveawayfrom food(possibly
correspondingto thefeelingof beingrepelledby foodone
hasif onehaseatentoo much).

PD-agents,on the otherhand,possessan additional
primitive deliberative layer, which allows them to pro-
ducea “detour plan” whentheir pathto food is blocked
(by an obstacle,predator, or any otheragent). The plan
is a sequenceof motorcommands,which overridethose
given by the reactive mechanisms.To be moreprecise,
a PD-agentusesexplicit representationsof the food and
obstaclevectorsto computeatrajectoryto thefoodwhich
avoids the obstacles.Oncea decisionhasbeenreached,
PD-agentsstartmoving to pointson the trajectory, sup-
pressingtheinfluencefrom thefood schemaon theover-
all combinedbehaviour completelyuntil planexecutionis
completed.An “alarm” systeminterruptsplanexecution
if a PD-agentcomestoo closeto anobstacleandtriggers
replanning,in which casetheagentwill attemptto make
a moreextensive detour. Oncetheexecutionof a plan is
finished,theagentusesits reactive mechanismsto move
towardsfood,whichshouldnow notbeobstructed,unless
theworld haschanged(e.g.,theobstaclewasnot static).

D-agentsextend PD agentsin variousways. First,
they have a vision sensor, which they useto spotobsta-
clesandfood (PD-agents,on theotherhand,needto “ex-
tract” obstacleandfood locationsfrom the forcevectors
of therespective vectorfield, which is only possibleto a
very roughdegree). Second,they areable to remember
the locationof obstaclesandfood they have encountered
relative to their currentposition(i.e., in an agent-centric
polarcoordinatesystem).6 They have mechanismsto up-
datetheir internal representationsof food andobstacles
when they move so as to adjust the relative anglesand
distancesaccordingto their movements.They alsopos-
sessa coherency mechanism,which deletesa memorized
itemif it doesnotagreewith whatisbeingperceived(e.g.,
if theagentexpectsa food item to bein a particularloca-

6In thecurrentimplementationagentsnever “forget” anything they
havecommittedto memory, but it is possibleto associatea“decay”-rate
to itemsin memoryto simulate“forgetting”, sothataftera certaintime
theitem will beerasedfrom memory.



tion in visualfield, but no food item canbefoundin this
area,theagentwill erasetheitem from memory).

Third, D-agentshave a simplerouteplanningmech-
anismwhich allows them to find a route to the nearest
food item,avoiding obstacles.Theplanneris givena list
of obstaclesandfood itemsknown to the agent,andre-
turnsaplanto thenearestreachablefood item.7 Theplan
is a list of headingsanddistancesandis executedby the
underlyingmotorbehavioursof theagent.

Planningis triggeredby the alarmmechanismin re-
sponseto animminentcollision with anobstacle.A col-
lision is consideredto be “imminent” if the obstacleis
within a predefined“imminent collision range” and the
agentis facing the obstacle(within ����� 60 degreesof
thecurrentheading).Theimminentcollision rangeis rel-
atively large,andit possiblefor the agentto get well in-
sidethecollision region beforeactuallycolliding with or
evennoticing theobstacle.For example,if theagenten-
tersthecollision region from the“side” (not directly fac-
ing theobstacle)andthenturnstowardstheobstacle,the
alarmwill be triggered. As a result, the plannerhasto
becapableof producingplanswhich taketheagentoutof
thecollisionregionwithout re-triggeringthealarmmech-
anism.This is anexampleof theissuesthatarisein inte-
gratingthecontinuous(i.e., real-valued),gradient-based,
relatively imprecisereactivebehavioursof theagentwith
thediscreterepresentationusedby theplanner.

Theplannerusesa discretemodelof theenvironment
with relatively large plan steps,giving a coarsegrained
grid representationcentredon the agent. Plansarecon-
structedto the nearestgrid point to the goal, at which
point the reactive behaviours of the agenttake over to
guideit to thefood item. Thereareeightoperatorswhich
allow theagentto reachtheeightadjacentgrid cellsfrom
thecurrentcell. Operatorsaredisallowedif theresulting
plan stepwould take the agentoutsidethe environment
or outsidea “planning region” which constrainsthe dis-
tanceto thefarthestpointontheplanto benogreaterthan
a multiple of thedistancefrom thestartpoint to thegoal.
In practice,wehavefoundaplanningregionwith aradius
of ��� � timesthedistanceto thegoalto besufficient.

Theplanneris basedonasimplifiedversionof the ����
algorithmPearl(1982). ���� is a variantof ��� in which
the cost of the solution returnedis guaranteedto be no
greaterthan ������� thecostof theoptimumsolution. ����
is a goodchoicefor a routeplanningagentasall weneed
aregood(ratherthanoptimal) plans. The costof a plan
is the distancethe agenthasto travel to reachthe goal,
with apenaltyfor routeswhichpassthroughthecollision
region aroundanobstacle.Thereis a verysteepcostgra-
dient in the vicinity of obstacles,which meansthat the

7Somefood itemsaretoocloseto anobstacleto bereachableby the
agent,however thereactive behavioursusedby theall agentswill persist
in trying to reachthefood. In suchcasestheplannercanbeusefulboth
in finding a routeto a reachablefood item, andin moving theD-agent
out of the local minimum representedby the unreachablefood item,
into anareawherethefood itemsare(hopefully)reachablevia reactive
behaviours.

first stepof any planwhichstartsin acollisionregionwill
be away from the obstacle.This re-orientsthe agent,so
that it is no longer facing the obstacleandpreventsthe
alarmmechanismbeingtriggeredagainonthenext cycle.

PC-andC-agentscombinethecapabilitiesof A- and
PD-agentsandA- andD-agentsrespectively. PC-agents
combinethesimpleaffectivestateof A-agentswith prim-
itive deliberationof PD-agents. C-agentscombinethe
simpleaffectivestateof A-agentswith themoreadvanced
representationalanddeliberativecapabilitiesof D-agents.

3.3 ... and Their Resultant Behaviours

As onewould expect,the differencesin the architecture
give rise to different behaviour of the agents:R-agents
arealwaysinterestedin food andgo for whichever food
sourceis nearestto them(oftenmanoeuvringthemselves
into fatalsituations).They canbedescribedas“greedy”.
Similarly, PD-agentsarealsoalways interestedin food,
yet they attemptto navigatearoundobstaclesandpreda-
tors using their (limited) planningcapacitythoughcon-
stantly driven by their “greed”. Although their deliber-
ative abilities make gooduseof all locally available in-
formation, this canhave the consequencethat the agent
endsup too far from food andstarvesin situationswhere
it would havebeenbetterto do nothingfor a shortperiod
of time. By thentheobstructingobstaclesandpredators
might no longerbeblockingthedirectrouteto food. PD-
agents(likeR-agents)constantlymovecloseto dangerin
theirattemptsto getto food,andcanthereforediefor food
which they do not yet really need.

A-agents,on the other hand, are only interestedin
food whentheir energy levels are low (i.e., they arenot
constantly“greedy”,andseekfoodonly when“hungry”).
When they are “hungry”, they behave like R-agentsin
thatthey chasedown everyfoodsourceavailableto them.
However, their route aroundobstaclesis dependenton
their “hunger level”: whenthey are lesshungry, the re-
pulsive effect of anobstaclewill have a greatereffect on
their route. Otherwisethey tendto avoid food andthus
competitionfor it, whichreducesthelikelihoodof getting
killed becauseof colliding with othercompetingagents
or predators.

Finally, PC-agents,behave like PD-agentsas far as
theirmaneuversareconcerned,but likeA-agentswith re-
spectto food in that they will not navigatetowardsfood
if they arenot hungry.

Finally, D- andC-agentsaresimilar to PD- andPC-
agentsrespectively in their overall behaviour, exceptthat
theirplanningmechanismis superiorandoftenleadsthem
to food in avery efficientway.

4 Experiments

We have conductedvariousexperimentsto comparethe
performanceof thedifferentkindsof agents.Beforebeing
ableto compareadvantagesanddisadvantagesof agents



in multi-agentenvironmentswith differentkindsof agents,
it is necessaryto checkwhetherany givenagentkind can
surviveasa groupin anenvironmenton its own. This re-
sult canbetakento bea yard-stickagainstwhich onecan
measuretheir performancein environmentswherethey
have to competewith otherkindsof agents.For the fol-
lowing experiments,we fix the “food rate” at 0.25, i.e.,
new food will appearon every forth environmentalup-
dateon average.Furthermore,we fix theprocreationage
for all agentsat250updates.

4.1 Preliminary Experiments

The preliminaryexperiments,wheregroupsof 5 agents
of one kind were placedin the environmentat random
locations,show that eachof the testedagentkinds can
survive in the long run in variouskindsof environments,
from environmentswith noobstaclesto very“dangerous”
environmentswith many obstacles.

Table1 shows for R-, A-, PD-,andPC-agentstheav-
erage(  ) numberof surviving agentsof that kind taken
over 10 differentrunsof the simulation,eachfor 10000
environmentalupdatesfor a given environment (where
“( ! , " )-env” is intendedto indicate that ! static and "
moving obstacleswereplacedat randomin the environ-
ment).In addition,thestandarddeviation( # ) andthecon-
fidenceinterval for $&%(')� '�� (Con)aregiventoo.

Giventhateachagentkind cansurviveon its own (al-
thoughwith differentsuccess),we arenow interestedin
comparingthe performanceof variousA-, PD- and D-
agentsin “mixed environments”(i.e., environmentsthat
containmore thanoneagentkind). The first setof ex-
perimentsis concernedwith theperformanceof A-agents
ascomparedto R-, PD-, or PC-agents.Only if A-agents
prove superiorin a wide-rangeof environmentsis it nec-
essaryto comparethemwith morecomplex deliberative
agents(like theD- or C-agents).

4.2 Series 1: Affective vs. Primitive Delib-
erative Control

Surprisingly, we foundthatA-agentsreliably outperform
not only R-agents,but alsoPD- andPC-agentsin all the
environmentsconsideredabove(thefoodrateisagain0.25)
if ! agentsof eachkind competingagainsteachotherfor
!*%,+�-.��-0/ (seeTable2, Table3, andTable4)8.

Theaboveexperimentsshow thatregardlessof theini-
tial distribution, thenumberof agentsin theenvironment
andthenumberof moving andstaticobstacles,wegetthe
following “ranking” (from bestto worst):

1. A-agents
8The rationalefor choosingthesenumbersis that with more than

8 agents,the environment is too crowded and, on average,the same
numberof agentsof eachkind will die in collisions,thusreducingthe
overall numbervery quickly. Having fewer than3 agentsdistortsthe
statisticsastheresultsareverysensitive to theinitial (random)positions
of theagents.

2. PC-agents

3. R-agents

4. PD-agents

This rankingcanbe shown independentlyby experi-
mentsin which only 2 kindsof agentsareplacedin dif-
ferentenvironmentsinitially. We have donetheseexper-
imentsfor all six combinationsin all sevenenvironments
andobserved the sameresults: A-agentsoutperformall
other agents,PC-agentsoutperformR- and PD-agents,
andfinally R-agentsbeatPD-agents.

The reasonwhy PD-agentsperform worse than R-
agentsis thatthey almostneverwin a“duel” for foodwith
R-agents,as their deliberative mechanismdoesnot dis-
tinguish betweenobstaclesandagents,hencethey even
make detourplansif competingfor a food sourcewith
an R-agent. In such a case,they R-agentwill get the
food while thePD-agentattemptsto get “around” theR-
agent. PD-agentsthat can discriminatebetweenobsta-
clesandotheragentsperformaswell asR-agents.It is
alsoworth pointingout thatPD-agentsusuallydie out of
hunger, whereasR-agentsmoreoftendie becauseof col-
lisions(in particularin crowdedenvironments).

It is not surprisingthatPC-agentsperformbetterthan
R-agents.Particularlyin lesscrowdedenvironments,PC-
agentscanmake useof their affective statesin the same
wayasA-agents,astheir deliberativemechanismsdo not
get activatedall that often. Hence,we find that there
is a good chancethat somePC-agentswill survive. In
morecrowdedenvironments,however, thisadvantagedis-
appearsandthedisadvantagesof deliberativedetourplans
outweighsthe advantageof avoiding competitionusing
theaffectivehungerstate.WhenthePC-agentsget“hun-
gry” enoughto seekfood in anenvironmentwith lots of
obstaclesandotheragents,theirprimitivedeliberativeca-
pabilitiesarefrequentlytriggeredby proximity to obsta-
cles or other agents. The resulting“detour plans” can
sometimesleadthemfartherandfartheraway from food
resultingin starvation.

In addition,theexperimentsshow that20,20and30,30-
environmentseemto betheoneswhereotheragentkinds
standthe bestchanceagainstA-agents. This is because
theseenvironmentsarecrowdedenoughto make it more
difficult for A-agentstogetfood,whilestill nottoocrowded
for the other agentsto mainly die becauseof collisions
(ashappensin 40,40and50,50environments;the latter
alreadybecomeschallengingfor A-agentsaswell).

If thefoodrateis varied,thenwefind thathigherfood
rates(e.g.,a food rateof 0.5) do not changethe picture,
ratherthey show even moreclearly the ability of affec-
tive agentsto coexist in largegroups.On theotherhand,
lower food rates(in therange0.125–0.25)make survival
in crowdedenvironmentsimpossible,astherearesimply
too many obstaclesobstructingthe pathsto food. With
theselow food ratesthe advantageof A-agentsover R-
agentsslowly disappearsaswaiting for hungerto grow



Table1: Theaveragenumberof surviving agentsin an ! , " -environmentwhenstartedwith 5 agentsof only onekind.
R-agents A-agents PD-agents PC-agents

Env 1 2 Con 1 2 Con 1 2 Con 1 2 Con

0,0 14.60 2.80 1.73 19.20 2.74 1.70 16.70 3.09 1.92 18.00 3.62 2.24
5,5 13.20 4.78 2.96 17.20 3.05 1.89 13.60 2.07 1.28 16.30 2.58 1.60

10,10 11.90 3.81 2.36 17.20 3.77 2.33 12.80 3.85 2.39 16.10 1.79 1.11
20,20 11.60 3.47 2.15 15.40 3.95 2.45 8.00 3.89 2.41 14.80 4.64 2.87
30,30 7.50 4.43 2.75 13.00 3.56 2.21 4.30 4.37 2.71 10.50 3.44 2.13
40,40 2.90 3.57 2.21 10.40 3.57 2.21 0.60 1.90 1.18 7.70 4.88 3.02
50,50 0.20 0.63 0.39 8.00 3.56 2.21 0.00 0.00 0.00 1.00 1.94 1.20

Table2: Theaveragenumberof surviving agentsin an ! , " -environmentwhenstartedwith 3 agentsof eachkind.
R-agents A-agents PD-agents PC-agents

Env 1 2 Con 1 2 Con 1 2 Con 1 2 Con

0,0 1.10 3.48 2.16 14.40 5.87 3.64 0.00 0.00 0.00 1.40 2.37 1.47
5,5 1.70 3.95 2.45 14.40 5.40 3.35 0.00 0.00 0.00 1.40 3.27 2.03

10,10 0.00 0.00 0.00 16.00 2.18 1.35 0.00 0.00 0.00 0.00 0.00 0.00
20,20 0.00 0.00 0.00 14.80 4.18 2.59 0.00 0.00 0.00 0.60 1.90 1.18
30,30 1.00 3.16 1.96 10.90 7.88 4.88 0.00 0.00 0.00 3.10 6.74 4.18
40,40 0.00 0.00 0.00 11.30 3.09 1.92 0.00 0.00 0.00 0.00 0.00 0.00
50,50 0.00 0.00 0.00 4.92 5.32 3.30 0.00 0.00 0.00 0.00 0.00 0.00

before moving towards food is not a good strategy (if
missingouton onefoodsourcecouldbefatal).

4.3 Series 2: Affective vs. Advanced Delib-
erative Control

Given the superiorperformanceof A-agents(even with
different food rates),we were particularly interestedin
comparingthemto advanceddeliberative agents.D- and
C-agentshavemuchmoreprocessingpowerin additionto
anothervery powerful visualsensoryorgan,so it is clear
thatthesetwo kindsarenotonaparwith A-agents.How-
ever, if thegoal is to discover the limits of affective con-
trol, it seemsonly fair to employ morepowerful mecha-
nismsto testthewaters.

The setupfor the following experimentsis identical
to thepreviousones,exceptthatin thesecondseriesonly
static obstacleswere used. The reasonfor this restric-
tion is that D-agentsdo not have a trackingmechanism
for moving obstacles,andhencewould wrongly classify
moving obstaclesas“static”, verymuchto theirdisadvan-
tage.9

Wefoundthat,dependingontheenvironment,A-agents
still do well in competitionwith D-agents. In environ-

9In a secondgroupof experiments,we addedanadditionalpercep-
tual mechanismto D- andC-agentswhich allows themto distinguish
betweenstaticandmoving obstacles,so that only static obstaclesare
enteredin the agents’map. As expected,D- andC-agentsdid worse
thanmostotheragentsin 3 , 3 -environments,sincemany of their plans
arebasedon wrongassumptionsaboutthe environment,andhencedo
not improve their ability to get to food. We arecurrentlyworking on
anextensionof theD-agentsthatcan–toa limited extent–trackmoving
obstacles.

mentswith very few staticobstacles(up to 10),D-agents
rarely plan, as their alarm mechanismis only triggered
by obstacles,not other agents. In theseenvironments,
therefore,D-agentsbehave like R-agents.And sinceA-
agentsbeatR-agentsin suchenvironments,it doesnot
comeasa surprisethat they beatD-agents. In environ-
mentswith a large numberof obstacles,the compound
obstaclevectorsusedby theA-agentsbecomeuninforma-
tive,andA-agentsmustnegotiatetheirwayaroundobsta-
clesby trial anderror, increasingthe distancethey have
to travel to food andthelikelihoodof collisions. In these
situations,theD-agent’sability to planroutesaroundob-
staclesthat lead themdirectly to food paysoff (seethe
first two columnsof Table5).

ThecomparisonbetweenA- andC-agentsisevenmore
interesting,andproducedsomeresultsthatwedid notex-
pect. Prima facie it seemsthat C-agentsshouldhave an
advantageoverbothA-agentsandD-agents,sincethey in-
herit thecapabilitiesof both.However, behaviouralprop-
ertiesof partsof anagentarchitecturedonotsimply “add
up”: while C-agentshave aboutthesameperformanceas
A-agentsfor environmentswith very few obstacles(up to
10), in medium-obstacleenvironments(over 10 andless
than40) they performworsethanboth A-agentsandD-
agents(whichbeatA-agentsin theseenvironments).Only
in more crowded environments(over 40), do C-agents
perform betterthan A-agents. The reasonsfor this un-
expected“weakness”of C-agentsarequiteinteresting.

In low-obstacleenvironmentstheaffective controlof
C-agentsis in commandmostof thetimeanddeliberative
control is rarelyused(hencetheir similar performanceto
A-agentsin theseenvironments). In high-obstacleenvi-



Table3: Theaveragenumberof surviving agentsin an ! , " -environmentwhenstartedwith 5 agentsof eachkind.
R-agents A-agents PD-agents PC-agents

Env 1 2 Con 1 2 Con 1 2 Con 1 2 Con

0,0 0.00 0.00 0.00 12.30 7.32 4.54 0.00 0.00 0.00 5.30 7.63 4.73
5,5 0.00 0.00 0.00 14.70 7.06 4.37 0.00 0.00 0.00 2.50 5.76 3.57

10,10 0.00 0.00 0.00 14.40 5.66 4.42 0.00 0.00 0.00 5.66 3.51 2.74
20,20 0.00 0.00 0.00 15.40 6.19 3.83 0.00 0.00 0.00 2.10 5.13 3.18
30,30 0.20 1.10 0.68 10.63 5.59 3.47 0.27 1.46 0.91 0.77 2.43 1.51
40,40 0.00 0.00 0.00 11.20 6.03 3.74 0.00 0.00 0.00 0.00 0.00 0.00
50,50 0.00 0.00 0.00 7.60 5.23 3.24 0.00 0.00 0.00 0.00 0.00 0.00

Table4: Theaveragenumberof surviving agentsin an ! , " -environmentwhenstartedwith 8 agentsof eachkind.
R-agents A-agents PD-agents PC-agents

Env 1 2 Con 1 2 Con 1 2 Con 1 2 Con

0,0 0.70 1.64 1.01 14.00 7.16 4.44 0.00 0.00 0.00 3.00 6.13 3.80
5,5 0.00 0.00 0.00 16.00 3.29 2.04 0.00 0.00 0.00 0.00 0.00 0.00

10,10 0.00 0.00 0.00 14.60 2.99 1.85 0.00 0.00 0.00 0.50 1.58 0.98
20,20 0.20 0.63 0.39 15.60 2.22 1.38 0.00 0.00 0.00 0.00 0.00 0.00
30,30 0.30 0.95 0.59 13.60 5.10 3.16 0.00 0.00 0.00 0.00 0.00 0.00
40,40 0.00 0.00 0.00 8.40 6.60 4.09 0.00 0.00 0.00 1.30 2.75 1.70
50,50 0.00 0.00 0.00 9.00 5.89 3.65 0.00 0.00 0.00 0.30 0.95 0.59

ronmentsthe alarm is triggeredvery often, henceplan-
ning is active mostof thetime anda C-agentusesits de-
liberative mechanismto move towardsfood ratherthan
its reactive “scentfollowing”, which is lessefficient–the
performanceof the C-agenthereis similar to thatof the
D-agent.

However, in medium-obstacleenvironmentsthe af-
fective anddeliberative control do not complementeach
other, but rather“compete”with eachotherin suchaway
that the resultantbehaviour is of no advantageto the C-
agent. As with A-agents,whenthe energy level is high,
theinfluenceof theaffectivehungerstatekeepstheagent
from approachingfood aggressively. As the agent’s en-
ergy level falls,it will eventuallymovetowardsfood. How-
ever in C-agents,the“small detour”imposedby theplan-
ning systemin orderto move theagentsafelyaroundob-
staclesis lessefficient than the straightforward reactive
control of A-agents,which follow smell gradients(like
D-agents,C-agentsare requiredto stay further than the
imminent collision rangefrom the obstacle,ratherthan
justnothit it aswith A-agents).In mediumobstacleenvi-
ronments,A-agentshave few alarms/collisions,sincethe
sonarvectorsgive relatively goodinformationaboutthe
locationof obstaclesin unclutteredenvironments.Only if
anA-agent’s“desire” for food is verystrong,canthevec-
tor gradientsleadtheagenttoocloseto obstacles,thereby
triggeringthealarm.Otherwise,theA-agentwill beable
to manoeuvrearoundobstacleswithoutbumpinginto them,
with theresultthatthey arefasterthanC-agents.In medium
obstacleenvironments,the D-agentscompensatefor the
excessive cautionof their plansby aggressively seeking
food,ratherthanwaitinguntil they arehungry. Thisearly

startmakesup for the“small detour”imposedby follow-
ing theplan, to theextent that they outperformA-agents
(andhenceC-agents)in theseenvironments.

Theseresultsshow thattheintegrationof controlmech-
anismswhichareadvantageousin differentenvironments
can lead to new weaknesseswhich are difficult to pre-
dict from the behavioural descriptionsof the individual
mechanisms.And while suchextensions,which canbe
viewedas“specializations”from anevolutionarypointof
view, might lead to betteradaptedindividuals for some
environments,it can “backfire” and reducethe individ-
ual’s fitnessfor others. Hence,evolutionary trajectories
thatleadto suchintegrationof differentmechanismswill
have to takeplacein specialenvironments.

5 Discussion

Our experimentalstudieshave shown that thesuccessof
theagentsasmeasuredby theirability to survivedepends
on variousenvironmentalparameters.In someenviron-
ments,A-agentsare more likely to survive for a given
time period thanD-agents,while in otherenvironments
the D-agentsaremorelikely to survive. We canclearly
seethat theaffective statesthatguideA-agentsarepow-
erful controlmechanisms,whichallow largegroupsof A-
agentsto coexist in certainenvironments(asthey reduce
thecompetitionfor food). Theadvantagesof suchmech-
anisms,however, areoutweighedby the disadvantageof
not beingableto navigateefficiently aroundobstaclesin
crowdedenvironments.

Wearecurrentlyinvestigatingdifferentaffectivestates,



Table5: Theaveragenumberof surviving agentsin an ! , ' -environmentwhenstartedwith 5 A-agentsand5 D-agents,and
5 A-agentsand5-Cagents,respectively, for a food rateof 0.125

A-agents D-agents A-agents C-agents
Env 1 2 Con 1 2 Con 1 2 Con 1 2 Con

0,0 13.00 2.31 1.43 3.80 5.29 0.00 10.30 6.48 4.02 7.20 4.96 3.08
5,0 12.30 7.89 4.89 5.00 6.45 4.00 5.90 7.62 4.72 11.40 9.70 6.01
10,0 9.90 7.29 4.52 6.10 6.97 4.32 8.90 7.23 4.48 8.00 6.67 4.13
20,0 6.20 7.22 4.48 8.20 6.92 4.29 9.80 4.32 2.67 2.70 4.37 2.71
30,0 4.50 5.08 3.15 7.20 6.36 3.94 9.40 5.93 3.67 3.40 4.25 2.63
40,0 3.20 5.16 3.20 6.40 4.81 2.98 3.30 4.35 2.96 6.70 5.72 3.54
50,0 0.50 1.58 0.98 8.10 5.47 3.39 3.60 4.74 2.94 3.60 4.06 2.52
60,0 0.70 2.21 1.37 3.20 4.32 2.67 1.20 2.57 1.59 3.20 3.74 2.32
70,0 0.00 0.00 0.00 1.20 2.57 1.59 0.00 0.00 0.00 1.10 2.02 1.25
80,0 0.00 0.00 0.00 0.70 1.64 1.01 0.00 0.00 0.00 0.40 0.84 0.52

suchasa “higher order” affective statethatmeasuresthe
frequency of alarmtriggeringswithin a giventime inter-
val andallows agentsto “retreat” from what this mecha-
nism implicitly assumesto be a “dangerous”area. Fur-
thermore,A-agentswith the ability to distinguishwhat
causestheir alarmmechanismto beactivatedcouldhave
two suchstates,onefor “competitionamongagents”,and
one for “areacrowdedwith obstacles”.Preliminaryex-
periments,however, show thatwhile theremightbesome
advantagefor such extendedA-agentsover regular A-
agents,this advantagedoesnot outweighthat of being
able to produce“safe routesto food” as in the caseof
theD- or C-agents.

Sothequestionremainswhetherplanning(suchasre-
alisedin D-agents),andthusdeliberativecontrol,doesin-
deedmark a significantevolutionary improvementover
mere“affective” control in more thana few specialen-
vironments.Obviously, moreexperimentsareneededto
confirmsucha conjecture.

We believe that theabove theoreticalandexperimen-
tal studiesarea viablestrategy to reachanunderstanding
of the role that affective processesplay in deliberation.
In particular, we areconvincedthat it will be relevant to
understandingevolutionary trajectoriesfrom reactive to
deliberativeorganisms.
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