
An Anytime Planning Agent For Computer

Game Worlds

Nick Hawes

School of Computer Science, The University of Birmingham, United Kingdom
nah@cs.bham.ac.uk

http://www.cs.bham.ac.uk/~nah

Abstract. Computer game worlds are dynamic and operate in real-
time. Any agent in such a world must utilize techniques that can deal
with these environmental factors. Additionally, to advance past the cur-
rent state-of-the-art, computer game agents must display intelligent goal-
orientated behaviour. Traditional planners, whilst ful�lling the need to
generate intelligent, goal-orientated behaviour, fail dramatically when
placed under the demands of a computer game environment. This pa-
per introduces A-UMCP, an anytime hierarchical task network planner,
as a feasible approach to planning in a computer game environment. It
is a planner that can produce intelligent agent behaviour whilst being

exible with regard to the time used to produce plans.

1 Introduction

As the standard of interactive entertainment (and computer and video games
in particular) advances, the need for intelligent autonomous non-player char-
acters is growing. The reasons for this need have been discussed in numerous
other places (e.g. [17]). There are a number of projects that are currently ex-
ploring approaches for designing and building intelligent agents for interactive
entertainment. These include the Excalibur project (e.g. [11]) and the Soarbot
project (e.g. [9]). This document will introduce an approach to developing in-
telligent agents for computer games that is based in part on the ongoing work
of the Cognition and A�ect group1. There are two main points of interest in
this approach, the �rst is the agent architecture, and the second is the anytime
planner used as the core of the agent's behaviour generation facilities. The rest
of this document will start by introducing some ideas about agent architectures,
and will then go on to discuss some of the issues involved with using a plan-
ner based on an anytime algorithm as part of an agent architecture. This will
be followed by a description of some of the more important sub-systems of an
implemented agent that uses an anytime planner to generate future behaviour.
Finally, some thoughts on the bene�ts (for both game agents and developers) of
using an anytime planner will be presented.

1 See http://www.cs.bham.ac.uk/~axs/coga�.html for a collection of papers and re-
sources.



2 An Agent For Real-Time Intelligent Behaviour

Figure 1 represents the CogA� architecture schema for intelligent agents [16].
It represents a superset of a wide class of possible architectures that could be
designed to support an intelligent agent. One possible subset (i.e. a selection
and instantiation of grid sections) of this represents agents that will be able
to perform intelligently in real-time, game-like environments. It is the ultimate
aim of the research presented here to develop such an agent. Although this
will mean deciding on one particular architecture instance, this will not be the
de�nitive agent architecture for real-time behaviour in game-like worlds. It is
more likely that there will be a group of features that will be necessary in most
examples of such agents, with additional features being added depending on
the speci�c demands of the particular game world. Two components that will
certainly be necessary in any agent intended to achieve a variety of goals in a
dynamic environment are a deliberative system and a reactive system.

Central
Processing

Perception Action

Meta-management
(reflective processes)

(newest)

Deliberative reasoning
("what if" mechanisms)

(older)

Reactive mechanisms
(oldest)

Fig. 1. The CogA� Architecture Schema

The functionality of a deliberative system can range from using simple a�ec-
tive states, such as those demonstrated by the A-Agents in [15], to something
more complex such as anticipation [8]. This must be complemented by the nec-
essary reactive mechanisms to keep the agent up to date with the current world
state, extricate the agent from dangerous situations that may occur suddenly,
and to perform actions that require feedback-based control (e.g. targeting a
moving object).

A principle component of most deliberative layers will be something that can
reason explicitly about future actions and states. Such a component can be used
by an agent to generate behaviour which will allow it to achieve non-trivial goals



in its environment (such as a capturing a 
ag, or accessing a restricted area). Tra-
ditional planners ful�ll the role of generating future behaviour, but do not lend
themselves well to the kind of interactivity required for successful performance
in an architecture for an agent situated in a dynamic, complex environment.
To deal with such problems, an anytime planner (a planner implemented as an
anytime algorithm [3]) has been developed to act as the deliberative behaviour
generation method for agents in computer game worlds. The remainder of this
paper will present the reasoning behind this approach, some of the issues involved
in developing A-UMCP (the Anytime Universal Method Composition Planner2)
and �nally some interesting features from the agent that uses it.

3 An Anytime Planner For Agent Behaviour

As mentioned in the previous section, an anytime planner is intended to form the
core of the game agent's deliberative layer. As such, it will work in combination
with other deliberative modules (belief maintenance, goal generation etc.) to
generate the majority of the agent's goal-directed behaviour.

A planner is a desirable part of the agent's deliberative layer for a number
of reasons. Planning allows an agent to choose eÆcient orderings of possible
actions, and to work within resource bounds (e.g. produce a plan that only uses
a certain amount of fuel). By having an explicit representation of its future
actions (as opposed to an implicit one encoded in reactive rules), other parts of
the agent can query the representation with regard to what is expected to occur
in the future (e.g. if the agent is aware that the current plan will take it into a
dangerous situation it could increase the amount of processing time devoted to
its senses). Also, if plans are successful they can be stored for future reuse (or
modi�cation for similar situations).

Unfortunately, traditional planning systems have a number of drawbacks that
are particularly relevant in the �eld of interactive entertainment 3. Because plan-
ning su�ers from a combinatorial explosion, it can be a slow, processing intensive
problem. In domains which require the agent to formulate behaviour quickly (e.g.
the majority of `action' games) and/or systems with only a limited availability
of processing time for AI, a traditional planner could prove more of a hindrance
than an advantage for an agent that used one regularly. If the planner could be
made to operate as an anytime algorithm [3], it would be possible to lessen the
impact that a planner would have on the resources available to an agent [5]. It is
important to note that using an anytime planner will not provide solutions to all
of the problems planning faces in a dynamic environment. For instance, the fact
that the world can change during a planning process is not explicitly handled
by an anytime planner. It would be the responsibility of the agent architecture
to ensure that this did not e�ect the agent's overall behaviour. For example, the

2 A-UMCP is an anytime extension of the UMCP hierarchical task network planner
[4].

3 See [13] for a full summary of the weaknesses of traditional planners



agent could interrupt the planning process in advance of predictable changes to
the world, or it could invoke a separate plan repair mechanism.

An anytime algorithm is a type of algorithm that can be interrupted at any
time and will immediately return a usable result. A constraint on this behaviour
is that the quality of the result returned must never diminish as processing time
increases. An anytime planner is a planner that behaves in this manner. The two
main issues that must be addressed when developing an anytime planner are;
what happens after an interruption occurs, and how can the quality of partial
results be measured? The full requirements for a functioning anytime algorithm
are laid out in [19], and a more detailed description of how they can be applied
to planning can be found in [6].

3.1 Interrupting A Planner

Because planners typically work in discrete cycles, actually halting one is a trivial
problem. The real problem is what agent behaviour will be generated from the
result that is returned. If a forward-chaining total-order planner is interrupted it
will return a plan that would take the agent from its start state, to an arbitrary
end point in the search space. There would be no guarantee that this end point
would be any closer to the agent's goal. If you were to interrupt a backward-
chaining total-order planner, you would be left with a plan that would take an
agent from an arbitrary point in the search space to the goal state, and there
would be no guarantee that the agent could reach the start point of the plan
fragment. If a partial order planner was interrupted the result would be a series
of discontinuous plan fragments with no guarantee that the agent could pass
successfully between them. Any of these results would be unhelpful to an agent
requiring a functional plan.

One possible way of producing a correct, functional plan from an anytime
planner is to start with a complete plan, then iteratively modify it (by local
search through plan space) to �t the current goal. This is the approach demon-
strated by the Excalibur project in [10]. This provides a usable answer after an
interruption because a complete plan is available at the end of each iteration
(although the plan may not fully satisfy the agent's goals). Another approach to
planning that can provide a complete plan at the end of each cycle of its oper-
ation is hierarchical task network (HTN) planning [14]. An HTN planner works
by reducing an abstract representation of an action into less abstract parts, and
then those parts into parts that are less abstract again. This continues until
the plan is totally composed of primitive tasks. Primitive tasks are the atomic
tasks that the agent can execute in the world (e.g. turn, walk, pick-up or more
abstract actions like move-to or follow). After each reduction, a plan produced
by an HTN planner can be viewed as a complete solution to the goal at the cur-
rent level(s) of abstraction. This means that if the agent can execute the plan at
whatever levels of abstraction it is described at, it can achieve its goal. It is this
approach of interrupting an HTN planner that has been chosen for this research.
The Universal Method Composition Planner (UMCP) [4] has been used as the



basis of the implementation, and the anytime version of this has been named
A(nytime)-UMCP.

3.2 Executing Plans Produced by an Anytime Planner

A necessary companion of an anytime algorithm is a method of interpreting
the results of an interrupted process. In some cases this may not be necessary
as the results may already be in an executable form. In this case, because our
algorithm is based on an HTN planner, it is critical that an agent is able to
execute a plan that is described at various levels of abstraction. How this can be
done is subject that requires further research. One possible method that would
allow the agent to generate the necessary behaviour is to equip the agent with a
reactive implementation of any abstract method that could possibly appear in
a plan. These implementations could be based on the reduction schema used by
the planner to work out which abstract methods reduce into which less abstract
ones. Unfortunately this approach appears super
uous when an agent already
has a planner and a set of `necessary' reactions. If the agent had a large number
of abstract methods then this approach could lead to a storage and indexing
problem. An additional problem is that an abstract method may have more
than one possible reduction, and hence a single reactive implementation may
not be applicable every time a particular abstract method needs to be executed.
To overcome this, simple checks could be introduced to ensure the correct action
is being used, or the most widely applicable action could be used (if one exists).
A second possibility would be to employ a learning mechanism to generate a
mapping between abstract actions and their executable forms based on how
the agent achieves goals from complete plans. Case based reasoning would be
particularly useful for this.

At this point it is important to note that it is crucial to minimise the amount
of processing that an agent must do to interpret an abstract plan. This is neces-
sary because when an agent has interrupted its anytime planner, it is assuming
that it must execute the result immediately. If much additional processing is
required, the agent might as well have left the planning process to continue, and
obtained a better result. If the planner had some knowledge about the process
of interpretation then it could use this to help formulate its estimates regarding
plan utility and execution time.

Any method of interpreting abstract plans has an inherent problem that the
more abstract the plan to be interpreted, the more likely it is that part of it
will be executed di�erently than if the action had been fully reduced (this fact
is used as the basis of a search heuristic presented in Section 4). An example
of this which is likely to occur is overlooking a chance to order steps in such a
way that prevents an agent from duplicating actions. For example, this could
happen in some plans in the Blocks World. If two separate actions require a
condition to be true (e.g. Clear(A)), then this action will be added to the plan
twice. It is only at a later stage that this duplication is dealt with (this is
done in UMCP by using a `do nothing' action for one of them). If the planner
is interrupted before the duplication has been removed, or even before the two



actions requiring the condition have been produced from more abstract methods,
then the agent may waste resources by attempting an action twice when it should
only be required once. This is a problem from the agent's point of view (due to
wasted resources), and is demonstrative of the relationship between processing
time and plan quality.

4 An Anytime Heuristic

A key part of implementing an anytime algorithm for any application is devel-
oping a suitable quality measure for the partially complete solutions that the
algorithm must work with. In this case, it is necessary to develop a quality
measure for partial HTN plans. Because the plans are to be interpreted by a
system that will be more likely to make mistakes if the plan is more abstract,
the quality measure developed for the A-UMCP planner is based on a heuristic
estimate of `abstractness' (a less abstract plan is a better plan). To implement
this, the heuristic used in the HSP planner [2] has been modi�ed. Originally the
heuristic was used to estimate the cost of achieving a goal in a state-based plan-
ning problem. For use in an anytime HTN planner it has been adapted to allow
its application to the problem of estimating the cost of reducing an abstract
method to a set of primitives. The rationale for using this originally state-based
method is that usually the ultimate aim of reducing an abstract method is to
introduce a particular atom into the current state4. The atomic goal of the ab-
stract method, taken with the current state and the primitive HTN operators,
form a state-based planning problem. If we apply the HSP heuristic to this prob-
lem, the resulting value represents the amount of action needed to achieve the
atomic goal (i.e. how abstract that goal is). This value is directly related to the
cost of reducing the associated abstract method into a set of primitives. The
resulting heuristic is used to calculate the cost of individual plan steps (the ab-
stract methods), with the total plan cost being based on the sum of its step
costs. An empirical study con�rms that estimating cost in this manner is valid.
Figure 2 demonstrates the comparison between the heuristic cost and the actual
cost (measured in CPU cycles) of reducing an abstract task into a collection of
primitives for some examples from the Blocks World (although the demonstrated
trend is domain independent). It shows that as the actual level of abstraction
increases (represented by the CPU time taken to reduce an abstract method) the
heuristic estimate of '`abstractness" also increases. The fact that the heuristic
sometimes attributes di�erent heuristic values to methods that have similar real
values (e.g. the adjacent bars with heuristic costs of 2 and 3) can be attributed
to the simplifying assumption made during the calculation of the heuristic (the
HSP heuristic behaves in the same way).

The results of the heuristic calculations are used in a weighted A* search
[12](Chapter 3.2) to guide the A-UMCP planner to reduce the abstractness of
the current solution as quickly as possible (as in these terms, less abstraction
corresponds to a higher quality plan). After each search cycle, the best partial

4 In UMCP this atom is used as the name for the actual abstract method.



Fig. 2. Comparison Between Estimated Heuristic Cost and Actual Cost (measured in
POP11 CPU Time)

solution (abstract plan) encountered so far is stored as the result to be returned
if an interruption occurs. This makes the anytime planning process appear to
the agent as monotonic with respect to time. The agent will never receive a
plan of lower quality than the current result as processing time increases (even
though the planner may produce them). Such monotonic behaviour is one of the
required properties of an anytime algorithm. Requiring this monotonicity allows
the agent to safely make the trade-o� between processing time and plan quality,
because it knows that the plan quality can never decrease.

5 Agent Construction

An agent has been implemented to test the eÆcacy of the planner in a game
environment. The following sections will discuss the technology used to develop
the agent, and the internal structure and features required by an agent to support
an anytime planner.

5.1 Agent Technology

The implemented agent is a bot for the �rst person shooter Unreal Tournament.
The interface to the game is provided by the Gamebots interface [7]. The in-
terface provides sensory data from the game engine in the form of strings, and
accepts action commands for bots in the same form. Within Unreal Tournament,



the game being played is Capture The Flag. This was chosen because it has ad-
ditional complexity compared with the other available Unreal Tournament game
types. As such, it provides a more stringent test for the planner than the other
game types would. One dimension of this complexity that is not catered for by
the current implementation is the co-operative behaviour required to play as a
member of a team. To successfully deal with this, both the agent and the planner
would have to be modi�ed to enable explicit co-operation.

5.2 Architecture and Internal Mechanisms

A rough overview of the architecture used for the anytime planning agent can be
seen in Figure 3. From this, two interesting modules can be identi�ed for further
discussion; the interrupt management mechanism and the plan interpreter.

Sensing

Plan
Interpreter

Goal
Generator

Belief
Management

Interrupt
Management

Anytime 
Planner

Primitive
Executor

Sense Process Act

R
ea

ct
iv

e
D

el
ib

er
at

iv
e

Fig. 3. Architecture of the anytime planning agent

The interrupt management mechanism is used by the agent to redirect its
resources under certain conditions. Such conditions occur when the agent is
planning for, or executing a plan for, a goal that is no longer desirable. To



facilitate arbitration between possible courses of action (i.e. deciding what is
currently \desirable"), all goals are assigned a measure of importance [1](Section
3.2.2.1). For each goal this represents how important it is for the agent to achieve
it relative to all other goals. The importance measures can be reassigned during
a game if the agent's priorities change5.

In more detail the conditions that trigger an interrupt are;

{ Criticality based interrupts:
� An interrupt is triggered if the agent is planning for a goal, and the
goal generator proposes a new goal that is more critical than the current
planning goal.

� An interrupt is triggered if the agent is executing a plan for a goal, and
the goal generator proposes a new goal that is more critical than the
current goal.

{ Goal speci�c interrupts:
� Each goal proposed can have speci�c interrupt conditions (e.g. the goal
to retrieve the agent's team's 
ag is interrupted if the 
ag is retrieved
by another agent). An interrupt is triggered if these conditions occur.

� Each goal proposed can have speci�c time-based interrupt conditions
(e.g. if the time required to plan and execute an action to intercept an
agent stealing the agent's 
ag is longer than the predicted time that
agent takes to score a point with the 
ag). An interrupt is triggered if
these time-based conditions occur.

Depending on the cause of the interrupt and the agent's current state, an
interrupt can have one of three possible e�ects. Firstly, the current action (plan-
ning or execution) can simply be halted, causing all information on the current
task to be discarded. Secondly, the current action can be suspended, whilst an-
other goal is pursued. This type of interrupt causes the storage of information
necessary for an agent to continue planning or executing a plan in the future.
The �nal type of interrupt can only happen during the planning process, and
causes planning to be halted and the resulting (potentially abstract) plan to be
executed.

This leads on to the second interesting component of the architecture pictured
in Figure 3, the plan interpreter (a necessary part of the anytime planner as
described previously). Currently this module is implemented in the simplistic
�rst way described in Section 3.2. The input to the component is an arbitrarily
abstract task network produced by the A-UMCP planner. The output is an
interpretation of this network in terms of primitives that are executable by the
agent. The interpretation is done by �rst using all the information available (task
orderings and constraints) to generate an ordering for the plan steps. These
steps are then translated into primitives using information derived from the
A-UMCP reduction schema. Where multiple reductions are possible, the most
widely applicable option is chosen (this usually results in redundant steps in the
�nal plan).
5 Altering the importance assignments can be used to produce agents with di�erent
playing styles.



5.3 Necessary Knowledge

From the previous descriptions of agent components, it is evident that the agent
must maintain knowledge about certain aspects of its internal processing and
the external world in order to support anytime planning. Types of knowledge
required include:

{ Criticality Measures: The agent must know, or know a way of calculating,
how critical each possible goal is to it.

{ Interrupt Conditions: The agent must know general, or goal-speci�c con-
ditions which can trigger planning and execution interrupts.

{ Timing Knowledge: The agent must be aware of how long it may take
to plan for and execute particular goals. It may also be necessary to be
aware of how long it takes for its opponents or teammates to perform certain
observable tasks, and how long is left in the current game.

{ Performance Pro�le: A performance pro�le represents knowledge about
the quality of the plans produced by the planner within particular time
periods [3]. This information about the potential quality of plans will prove
useful when making decisions about when to carry out interrupts.

Most agents that are based around an anytime planner will require some of
these types of knowledge in order to make optimal use of their anytime abilities.

6 Empirical Observations

The A-UMCP planner has been completed, and has been integrated into the
agent described above. Preliminary results look promising, with the implemented
agent demonstrating behaviours required to succeed in a dynamic and real-time
environment. A key behaviour available to the agent is using the anytime nature
of the planner to take advantage of variable lengths of time available for planning.
When doing this, it is apparent that longer processing time allows the agent to
create better, more detailed plans (not just plans that never decrease in quality,
as was stated as a requirement for an anytime algorithm). The agent can also
reuse previously constructed plans (both solutions and abstract results), and
can continue planning from points in previously suspended planning processes.
These abilities provide the agent with the 
exibility necessary to deal with the
fast-paced, dynamic world of a computer game. The implemented method of
interpreting plans provides a basic method of understanding abstract plans, but
due to its static nature occasionally produces bad primitive interpretations when
the current state varies from the agent's default assumptions. This may not be
entirely the interpretation method's fault as such failures often come after early
interruptions to the planning process, leaving the interpretation method with a
great deal of guesswork to do. This guesswork could be assisted by learning in a
future implementation.

One criticism that could currently be levelled at the implementation is that
it is not suÆciently complex to truly test the planner. The Unreal Tournament



domain was chosen because it provided an easily accessible real-time game as
a testbed. Unfortunately, because the requirements for success in Unreal Tour-
nament favour physical qualities (e.g. reaction times and aiming ability) over
cerebral ones (e.g. producing plans that are better than your opponents), the
in
uence of the planner is considerably diminished. In Unreal Tournament a suc-
cessful plan usually means doing something which isn't stupid, whilst a failed
plan will result in behaviour that is stupid. A better test for an anytime plan-
ning agent would be a games domain where the utility gained from planning
varied along a more gradual scale, rather than in such a discrete dichotomy.
Such variation would provide more meaningful results for the evaluation of the
planner, as variations in planning time would result in a wider range of possi-
ble plan qualities, and therefore a wider (and more interesting?) range of agent
behaviour.

7 The Bene�ts Provided by using an Anytime Planner

7.1 The Bene�ts to a Game Developer

Equipping a game agent with an anytime planner will provide a number of
advantages from both the agent's and the agent developer's point of view. From
the developer's point of view, the main advantages are evident in the way the
AI code can be processed. Having a process that can be safely interrupted (and
resumed) allows planning to be easily scheduled or spread across the available
processing time. This could be achieved, for example, through the use of an
AI process manager [18]. Secondly, by being able to specify a 
exible bound
on planning time (by forcing an interruption to occur after a certain amount
of time), it becomes less complex to implement dynamic level-of-detail AI. For
distant or relatively insigni�cant agents, an early interruption of an anytime
planner will result in an abstract plan that will (depending on how the agent
interprets it) guide the agent to achieve the goal in a basic (possibly clumsy
and ineÆcient) way, after minimal processing. For agents that are signi�cant
to the player's experience (either due to being closer or because their actions
will have a greater impact on the course of the game) an anytime planner can
be run for a lot longer, resulting in more detailed and hence more eÆcient (or
interesting, believable, faster etc.) behaviour as the plan is executed. Another
advantage gained by the developer using an anytime planner is an agent that
displays `believable' weaknesses. Humans do not always form correct optimal
plans when under pressure (when playing computer games or at other times),
so competing against an agent that did would enforce the feeling of interacting
with something arti�cial (although a 'perfect' style of play would be useful for
certain game characters e.g. robots or super-beings). An agent executing plans
returned from an interrupted anytime planner would almost certainly not display
optimal behaviour, and could possibly fail to achieve its goals altogether. Based
on this, an upper bound on planning time could be used to characterize certain
styles of gameplay and game-agent behaviour. From considered and cautious (a



high upper bound, therefore more planning time) to gung-ho and carefree (a low
upper bound, therefore less planning time).

7.2 The Bene�ts to a Game Agent

From an agent's point of view, the bene�ts gained by using an anytime planner
(as opposed to a traditional planner) can be grouped into two categories; optimal
use of time, and immediate reactions to environmental change. The time-based
bene�ts stem from the fact that there is always a limit on the amount of process-
ing an agent can perform. This limit is imposed by either software (in the case
of game agents with a scheduled amount of processing time) or (and ultimately
in all cases) hardware (in the case of robots or human agents). The better use an
agent can make of the processing time available to it, the better it can perform.
An anytime planner helps an agent do this because of its interruptibility. The
simplest of cases may see an agent deciding that it no longer needs to plan for
whatever goal it was previously pursuing, and halting the planning process (a
function available in principle to all planners). An example of a more advanced
use of an anytime planner would be the agent monitoring the progress of the
planner (perhaps via a performance pro�le [3]) and then examining the utility
it expects to receive from achieving the goal. If the utility of achieving the goal
is decreasing with time (e.g. in a game of capture the 
ag, the utility of scoring
points may decrease with time if a team is considerably behind the opposition)
the agent may judge that the continued increase in the plan's quality does not
warrant the continued decrease in the goal's utility. If this is the case then it
can interrupt the planner and execute the resulting plan. This behaviour would
not only save processing time, but it would also prevent any unnecessary loss in
goal utility.

In a dynamic environment the agent's (short to mid-term) goals may be quite

uid, and waiting for a traditional planner to return a plan may result in oppor-
tunities passing the agent by or current planning goals becoming undesirable.
If an agent can anticipate how long it will be until such environmental changes
occur, and has some idea about how long it will take to execute a plan, it can
interrupt the planner in advance of the changes and take action. This is really
a more severe case of maximizing the use of processing time, where instead of a
gradual decrease of a goal's utility, there is a sudden one when the environment
changes.

8 Conclusion and Future Work

The conclusion to draw from this work is that an anytime planner will be a useful
tool for both an agent in a dynamic world, and games developers implementing
such agents. It is an approach to planning that allows judgements to be made
about how processing time can be used e�ectively. The fact that the algorithm
is interruptible and a cost measure is available for partial solutions means that
the agent can interact with the planner, monitoring its progress and can achieve



trade-o�s between time spent planning and the expected utility of executing the
resulting plan. Future research needs to investigate how abstract and partially
complete plans from a hierarchical task network planner can be cheaply and
accurately interpreted by an agent. An approach suggested in this paper (rule-
based interpretation) may be practical but is in
exible and fallible in situations
that vary signi�cantly from the norm.

9 Acknowledgements

This research is funded by sponsorship from Sony Computer Entertainment Eu-
rope. Also, this research has been supported by Aaron Sloman in the form of
advice, critical assessment and supervision.

References

1. L. P. Beaudoin. Goal Processing In Autonomous Agents. PhD thesis, School of
Computer Science, The University of Birmingham, 1994.

2. B. Bonet and H. Ge�ner. Planning as heuristic search. Arti�cial Intelligence:

Special Issue on Heuristic Search, 129:5{33, 2001.
3. T. Dean and M. Boddy. An analysis of time-dependant planning. In Proceedings

of The Seventh National Conference on Arti�cial Intelligence, pages 49{54, 1988.
4. K. Erol. Hierarchical Task Network Planning: Formalization, Analysis, and Im-

plementation. PhD thesis, Department of Computer Science, The University of
Maryland, 1995.

5. N. Hawes. Real-time goal-orientated behaviour for computer game agents. In
Game-On 2000, 1st International Conference on Intelligent Games and Simulation,
pages 71{75, 2000.

6. N. Hawes. Anytime planning for agent behaviour. In Proceedings of the Twelth

Workshop of the UK Planning and Scheduling Special Interest Group, pages 157{
166, 2001.

7. G. A. Kaminka, M. M. Veloso, S. Scha�er, C. Sollitto, R. Adobbati, A. N. Marshall,
A. Scholer, and S. Tejada. Gamebots: A 
exible test bed for multiagent team
research. Communications of the ACM, 45(1):43{45, 2002.

8. J. E. Laird. It knows what you're going to do: Adding anticipation to a quakebot.
In Papers from the 2000 AAAI Spring Symposium on Arti�cial Intelligence and

Computer Games, pages 41{50, 2000.
9. J. E. Laird and J. C. Duchi. Creating human-like synthetic characters with multiple

skill levels: A case study using the soar quakebot. In Papers from the 2001 AAAI

Spring Symposium on Arti�cial Intelligence and Computer Games, pages 54{58,
2001.

10. A. Nareyek. Using global constraints for local search. Constraint Programming

and Large Scale Discrete Optimization, 57:9{28, 2001.
11. A. Nareyek. Intelligent agents for computer games. In Computers and Games,

Second International Conference, CG 2000, pages 414{422, 2002.
12. J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, 1984.
13. M. E. Pollack and J. F. Horty. There's more to life than making plans. AI Magazine,

20(4):71{83, 1999.



14. E. D. Sacerdoti. The nonlinear nature of plans. In J. Allen, J. Hendler, and A. Tate,
editors, Readings in Planning, pages 162{170. Morgan Kaufmann, 1990.

15. M. Scheutz and B. Logan. A�ective vs. deliberative agent control. In Proceedings

of the AISB'01 Symposium on Emotion, Cognition and A�ective Computing, pages
39{48, 2001.

16. A. Sloman. Varieties of a�ect and the coga� architecture schema. In Proceedings of
the AISB'01 Symposium on Emotion, Cognition and A�ective Computing, pages
1{10, 2001.

17. M. van Lent, J. Laird, J. Buckland, J. Hartford, S. Houchard, K. Steinkraus, and
R. Tedrake. Intelligent agents in computer games. In Proceedings of The National

Conference on Arti�cial Intelligence, pages 929{930, 1999.
18. I. Wright and J. Marshall. Egocentric ai processing for computer entertainment:

A real-time process manager for games. In Game-On 2000, 1st International Con-

ference on Intelligent Games and Simulation, pages 42{46, 2000.
19. S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine,

17(3):73{83, 1996.


