
STEPS TOWARD ARTIFICIAL INTELLIGENCE

Marvin Minsky

Dept. of Mathematics, MIT

Research Lab. of Electronics, MIT.

Member, IRE

Received by the IRE, October 24, 1960. The author's work

summarized here—which was done at the MIT Lincoln

Laboratory, a center for research operated by MIT at Lexington,

Mass., with the joint Support of the U. S. Army, Navy, and Air

Force under Air Force Contract AF 19(604)-5200; and at the Res.

Lab. of Electronics, MIT, Cambridge, Mass., which is supported

in part by the U. S. Army Signal Corps, the Air Force Office of

Scientific Research, and the ONR—is based on earlier work done

by the author as a Junior Fellow of the Society of Fellows,

Harvard University.

The work toward attaining "artificial intelligence'' is the center of

considerable computer research, design, and application. The

field is in its starting transient, characterized by many varied and

independent efforts. Marvin Minsky has been requested to draw

this work together into a coherent summary, supplement it with

appropriate explanatory or theoretical noncomputer information,

and introduce his assessment of the state of the art. This paper

emphasizes the class of activities in which a general-purpose

computer, complete with a library of basic programs, is further

programmed to perform operations leading to ever higher-level

information processing functions such as learning and problem

solving. This informative article will be of real interest to both

1 of 85 06/11/16 15:48

the general Proceedings reader and the computer specialist. --

The Guest Editor.

Summary: The problems of heuristic programming—of making

computers solve really difficult problems—are divided into five

main areas: Search, Pattern-Recognition, Learning, Planning, and

Induction. Wherever appropriate, the discussion is supported by

extensive citation of the literature and by descriptions of a few of

the most successful heuristic (problem-solving) programs

constructed to date.

The adjective "heuristic," as used here and widely in the

literature, means related to improving problem-solving

performance; as a noun it is also used in regard to any method or

trick used to improve the efficiency of a problem-solving system.

A "heuristic program," to be considered successful, must work

well on a variety of problems, and may often be excused if it fails

on some. We often find it worthwhile to introduce a heuristic

method, which happens to cause occasional failures, if there is an

over-all improvement in performance. But imperfect methods are

not necessarily heuristic, nor vice versa. Hence "heuristic" should

not be regarded as opposite to "foolproof"; this has caused some

confusion in the literature.

INTRODUCTION

A VISITOR to our planet might be puzzled about the role of

computers in our technology. On the one hand, he would read

and hear all about wonderful "mechanical brains" baffling their

2 of 85 06/11/16 15:48

creators with prodigious intellectual performance. And he (or it)

would be warned that these machines must be restrained, lest

they overwhelm us by might, persuasion, or even by the

revelation of truths too terrible to be borne. On the other hand,

our visitor would find the machines being denounced on all sides

for their slavish obedience, unimaginative literal interpretations,

and incapacity for innovation or initiative; in short, for their

inhuman dullness.

Our visitor might remain puzzled if he set out to find, and judge

for himself, these monsters. For he would find only a few

machines mostly general-purpose computers), programmed for

the moment to behave according to some specification) doing

things that might claim any real intellectual status. Some would

be proving mathematical theorems of rather undistinguished

character. A few machines might be playing certain games,

occasionally defeating their designers. Some might be

distinguishing between hand-printed letters. Is this enough to

justify so much interest, let alone deep concern? I believe that it

is; that we are on the threshold of an era that will be strongly

influenced, and quite possibly dominated, by intelligent problem-

solving machines. But our purpose is not to guess about what the

future may bring; it is only to try to describe and explain what

seem now to be our first steps toward the construction of

"artificial intelligence."

Along with the development of general-purpose computers, the

past few years have seen an increase in effort toward the

discovery and mechanization of problem-solving processes.

Quite a number of papers have appeared describing theories or

3 of 85 06/11/16 15:48

actual computer programs concerned with game-playing,

theorem-proving, pattern-recognition, and other domains which

would seem to require some intelligence. The literature does not

include any general discussion of the outstanding problems of

this field.

In this article, an attempt will be made to separate out, analyze,

and find the relations between some of these problems. Analysis

will be supported with enough examples from the literature to

serve the introductory function of a review article, but there

remains much relevant work not described here. This paper is

highly compressed, and therefore, cannot begin to discuss all

these matters in the available space.

There is, of course, no generally accepted theory of

"intelligence"; the analysis is our own and may be controversial.

We regret that we cannot give full personal acknowledgments

here—suffice it to say that we have discussed these matters with

almost every one of the cited authors.

It is convenient to divide the problems into five main areas:

Search, Pattern-Recognition Learning, Planning, and Induction

these comprise the main divisions of the paper. Let us summarize

the entire argument very briefly:

A computer can do, in a sense, only what it is told to do. But even

when we do not know exactly how to solve a certain problem, we

may program a machine to Search through some large space of

solution attempts. Unfortunately, when we write a

straightforward program for such a search, we usually find the

4 of 85 06/11/16 15:48

resulting process to be enormously inefficient. With Pattern-

Recognition techniques, efficiency can be greatly improved by

restricting the machine to use its methods only on the kind of

attempts for which they are appropriate. And with Learning,

efficiency is further improved by directing Search in accord with

earlier experiences. By actually analyzing the situation, using

what we call Planning methods, the machine may obtain a

fundamental improvement by replacing the originally given

Search by a much smaller, more appropriate exploration. Finally,

in the section on Induction, we consider some rather more global

concepts of how one might obtain intelligent machine behavior.

I. THE PROBLEM OF SEARCH

Summary—If, for a given problem, we have a means for

checking a proposed solution, then we can solve the problem by

testing all possible answers. But this always takes much too long

to be of practical interest. Any device that can reduce this search

may be of value. If we can detect relative improvement, then

“hill-climbing” (Section l-B) may be feasible, but its use requires

some structural knowledge of the search space. And unless this

structure meets certain conditions, hill-climbing may do more

harm than good.

Note 1: The adjective "heuristic," as used here and widely in the

literature, means related to improving problem-solving

performance; as a noun it is also used in regard to any method or

trick used to improve the efficiency of a problem-solving system.

A "heuristic program," to be considered successful, must work

well on a variety of problems, and may often be excused if it fails

on some. We often find it worthwhile to introduce a heuristic

method, which happens to cause occasional failures, if there is an

over-all improvement in performance. But imperfect methods are

5 of 85 06/11/16 15:48

not necessarily heuristic, nor vice versa. Hence "heuristic"

should not be regarded as opposite to "foolproof"; this has

caused some confusion in the literature.

When we talk of problem solving in what follows, we will

usually suppose that all the problems to be solved are initially

well-defined. [1] By this we mean that with each problem we are

given some systematic way to decide when a proposed solution is

acceptable. Most of the experimental work discussed here is

concerned with such well-defined problems as are met in theorem

proving or in games with precise rules for play and scoring.

In one sense, all such problems are trivial. For if there exists a

solution to such a problem, that solution can be found eventually

by any blind exhaustive process which searches through all

possibilities. And it is usually not difficult to mechanize or

program such a search.

But for any problem worthy of the name, the search through all

possibilities will be too inefficient for practical use. And on the

other hand, systems like chess, or nontrivial parts of mathematics,

are too complicated for complete analysis. Without complete

analysis, there must always remain some core of search, or “trial

and error.” So we need to find techniques through which the

results of incomplete analysis can be used to make the search

more efficient. The necessity for this is simply overwhelming. A

search of all the paths through the game of checkers involves

some 10**40 move choices [2]—in chess, some 10**120 [3]. If

we organized all the particles in our galaxy into some kind of

parallel computer operating at the frequency of hard cosmic rays,

6 of 85 06/11/16 15:48

the latter computation would still take impossibly long; we

cannot expect improvements in “hardware” alone to solve all our

problems. Certainly, we must use whatever we know in advance

to guide the trial generator. And we must also be able to make

use of results obtained along the way.

Notes: McCarthy [1] has discussed the enumeration problem

from a recursive-function-theory point of view. This incomplete

but suggestive paper proposes, among other things, that "the

enumeration of partial recursive functions should give an early

place to compositions of functions that have already appeared.” I

regard this as an important notion, especially in the light of

Shannon's results [4] on two-terminal switching circuits—that

the "average" n-variable switching function requires about 2**n

contacts. This disaster does not usually strike when we construct

"interesting" large machines, presumably because they are based

on composition of functions already found useful. In [5] and

especially in [6] Ashby has an excellent discussion of the search

problem. (However, I am not convinced of the usefulness of his

notion of "ultrastability," which seems to be little more than the

property of a machine to search until something stops it.

A. Relative Improvement, Hill-Climbing, and Heuristic

Connections

A problem can hardly come to interest us if we have no

background of information about it. We usually have some basis,

however flimsy, for detecting improvement; some trials will be

judged more successful than others. Suppose, for example, that

we have a comparator which selects as the better, one from any

pair of trial outcomes. Now the comparator cannot, alone, serve

7 of 85 06/11/16 15:48

to make a problem well-defined. No goal is defined. But if the

comparator-defined relation between trials is “transitive” (i.e., if

A dominates B and B dominates C implies that A dominates C),

then we can at least define “progress,” and ask our machine,

given a time limit, to do the best it can.

But it is essential to observe that a comparator by itself, however

shrewd, cannot alone give any improvement over exhaustive

search. The comparator gives us information about partial

success, to be sure. But we need also some way of using this

information to direct the pattern of search in promising

directions; to select new trial points which are in some sense

“like,” or “similar to,” or “in the same direction as” those which

have given the best previous results. To do this we need some

additional structure on the search space. This structure need not

bear much resemblance to the ordinary spatial notion of direction,

or that of distance, but it must somehow tie together points which

are heuristically related.

We will call such a structure a heuristic connection. We

introduce this term for informal use only—which is why our

definition is itself so informal. But we need it. Many publications

have been marred by the misuse, for this purpose, of precise

mathematical terms, e.g., metric and topological. The term

“connection,” with its variety of dictionary meanings, seems just

the word to designate a relation without commitment as to the

exact nature of the relation. An important and simple kind of

heuristic connection is that defined when a space has coordinates

(or parameters) and there is also defined a numerical “success

function” E which is a reasonably smooth function of the

8 of 85 06/11/16 15:48

coordinates. Here we can use local optimization or hill-climbing

methods.

B. Hill-Climbing

Suppose that we are given a black-box machine with inputs x

1

, . .

. x

n

 and an output E(x

1

, … x

n

). We wish to maximize E by

adjusting the input values. But we are not given any

mathematical description of the function E; hence, we cannot use

differentiation or related methods. The obvious approach is to

explore locally about a point, finding the direction of steepest

ascent. One moves a certain distance in that direction and repeats

the process until improvement ceases. If the hill is smooth, this

may be done, approximately, by estimating the gradient

component dE/dx

i

 separately for each coordinate. There are more

sophisticated approaches—one may use noise added to each

variable, and correlate the output with each input (see

below)—but this is the general idea. It is a fundamental

technique, and we see it always in the background of far more

complex systems. Heuristically, its great virtue is this: the

sampling effort (for determining the direction of the gradient)

grows, in a sense, only linearly with the number of parameters.

So if we can solve, by such a method, a certain kind of problem

involving many parameters, then the addition of more parameters

of the same kind ought not to cause an inordinate increase in

difficulty. We are particularly interested in problem-solving

methods that can be so extended to more problems that are

difficult. Alas, most interesting systems, which involve

combinational operations usually, grow exponentially more

difficult as we add variables.

9 of 85 06/11/16 15:48

Multiple simultaneous optimizers search for a (local) maximum

value of some function E (x

1

, … x

n

) of several parameters.

Each unit U

i

 independently "jitters" its parameter x, perhaps

randomly, by adding a variation d

i

(t) to a current mean value

m

i

. The changes in the quantities x

i

 and E are correlated, and

the result is used to slowly change m

i

. The filters are to remove

DC components. This technique, a form of coherent detection,

usually has an advantage over methods dealing separately and

sequentially with each parameter. Cf. the discussion of

"informative feedback" in Wiener [11], p133ff. A great variety

of hill-climbing systems have been studied under the names of

“adaptive” or “self-optimizing” servomechanisms.

C. Troubles with Hill-Climbing

Obviously, the gradient-following hill-climber would be trapped

if it should reach a local peak which is not a true or satisfactory

optimum. It must then be forced to try larger steps or changes. It

is often supposed that this false-peak problem is the chief

obstacle to machine learning by this method. This certainly can

be troublesome. But for really difficult problems, it seems to us

that usually the more fundamental problem lies in finding any

significant peak at all. Unfortunately the known E functions for

10 of 85 06/11/16 15:48

difficult problems often exhibit what we have called [7] the

“Mesa Phenomenon” in which a small change in a parameter

usually leads to either no change in performance or to a large

change in performance. The space is thus composed primarily of

flat regions or “mesas.” Any tendency of the trial generator to

make small steps then results in much aimless wandering without

compensating information gains. A profitable search in such a

space requires steps so large that hill-climbing is essentially ruled

out. The problem-solver must find other methods; hill-climbing

might still be feasible with a different heuristic connection.

Certainly, in human intellectual behavior we rarely solve a tricky

problem by a steady climb toward success. I doubt that any one

simple mechanism, e.g., hill-climbing, will provide the means to

build an efficient and general problem-solving machine.

Probably, an intelligent machine will require a variety of different

mechanisms. These will be arranged in hierarchies, and in even

more complex, perhaps recursive structures. And perhaps what

amounts to straightforward hill-climbing on one level may

sometimes appear (on a lower level) as the sudden jumps of

“insight.”

II. THE PROBLEM OF PATTERN RECOGNITION

Summary—In order not to try all possibilities, a resourceful

machine must classify problem situations into categories

associated with the domains of effectiveness of the machine's

different methods. These pattern-recognition methods must

extract the heuristically significant features of the objects in

question. The simplest methods simply match the objects

11 of 85 06/11/16 15:48

against standards or prototypes. More powerful “property-list”

methods subject each object to a sequence of tests, each

detecting some property of heuristic importance. These

properties have to be invariant under commonly encountered

forms of distortion. Two important problems arise

here—inventing new useful properties, and combining many

properties to form a recognition system. For complex problems,

such methods will have to be augmented by facilities for

subdividing complex objects and describing the complex

relations between their parts.

Any powerful heuristic program is bound to contain a variety of

different methods and techniques. At each step of the problem-

solving process, the machine will have to decide what aspect of

the problem to work on, and then which method to use. A choice

must be made, for we usually cannot afford to try all the

possibilities.

In order to deal with a goal or a problem, that is, to choose an

appropriate method, we have to recognize what kind of thing it is.

Thus, the need to choose among actions compels us to provide

the machine with classification techniques, or means of evolving

them. It is of overwhelming importance for the machine to have

classification techniques, which are realistic. But “realistic- can

be defined only with respect to the environments to be

encountered by the machine, and with respect to the methods

available to it. Distinctions which cannot be exploited are not

worth recognizing. And methods are usually worthless without

classification schemes that can help decide when they are

applicable.

12 of 85 06/11/16 15:48

A. Teleological Requirements of Classification

The useful classifications are those which match the goals and

methods of the machine. The objects grouped together in the

classifications should have something of heuristic value in

common; they should be “similar” in a useful sense; they should

depend on relevant or essential features. We should not be

surprised, then, to find ourselves using inverse or teleological

expressions to define the classes. We really do want to have a

grip on “the class of objects which can be transformed into a

result of form Y,” that is, the class of objects which will satisfy

some goal. One should be wary of the familiar injunction against

using teleological language in science. While it is true `that

talking of goals in some contexts may dispose us towards certain

kinds of animistic explanations, this need not be a bad thing in

the field of problem-solving; it is hard to see how one can solve

problems without thoughts of purposes. The real difficulty with

teleological definitions is technical, not philosophical, and arises

when they have to be used and not just mentioned. One obviously

cannot afford to use for classification a method that actually

requires waiting for some remote outcome, if one needs the

classification precisely for deciding whether to try out that

method. So, in practice, the ideal teleological definitions often

have to be replaced by practical approximations, usually with

some risk of error; that is, the definitions have to be made

heuristically effective, or economically usable. This is of great

importance. (We can think of “heuristic effectiveness” as

contrasted to the ordinary mathematical notion of “effectiveness”

which distinguishes those definitions which can be realized at all

by machine, regardless of efficiency.)

13 of 85 06/11/16 15:48

B. Patterns and Descriptions

It is usually necessary to have ways of assigning names to

symbolic expressions—to the defined classes. The structure of

the names will have a crucial influence on the mental world of

the machine, for it determines what kinds of things can be

conveniently thought about. There are a variety of ways to assign

names. The simplest schemes use what we will call conventional

(or proper) names; here, arbitrary symbols are assigned to

classes. But we will also want to use complex descriptions or

computed names; these are constructed for classes by processes

that depend on the class definitions. To be useful, these should

reflect some of the structure of the things they designate,

abstracted in a manner relevant to the problem area. The notion

of description merges smoothly into the more complex notion of

model; as we think of it, a model is a sort of active description. It

is a thing whose form reflects some of the structure of the thing

represented, but which also has some of the character of a

working machine.

In Section III, we will consider “learning” systems. The behavior

of those systems can be made to change in reasonable ways

depending on what happened to them in the past. But by

themselves, the simple learning systems are useful only in

recurrent situations; they cannot cope with any significant

novelty. Nontrivial performance is obtained only when learning

systems are supplemented with classification or pattern-

recognition methods of some inductive ability. For the variety of

objects encountered in a nontrivial search is so enormous that we

14 of 85 06/11/16 15:48

cannot depend on recurrence, and the mere accumulation of

records of past experience can have only limited value. Pattern-

Recognition, by providing a heuristic connection which links the

old to the new, can make learning broadly useful.

What is a “pattern”? We often use this term to mean a set of

objects which can in some (useful) way be treated alike. For each

problem area we must ask, “What patterns would be useful for a

machine working on such problems?”

The problems of visual pattern-recognition' have received much

attention in recent years and most of our examples are from this

area.

C. Prototype-Derived Patterns

The problem of reading printed characters is a clear- cut instance

of a situation in which the classification is based ultimately on a

fixed set of “prototypes”—e.g., the dies from which the type font

was made. The individual marks on the printed page may show

the results of many distortions. Some distortions are rather

systematic—such as changes in size, position, and orientation.

Other distortions have the nature of noise: blurring, grain, low

contrast, etc.

If the noise is not too severe, we may be able to manage the

identification by what we call a normalization and template-

matching process. We first remove the differences related to size

and position—that is, we normalize the input figure. One may do

this, for example, by constructing a similar figure inscribed in a

15 of 85 06/11/16 15:48

certain fixed triangle (see below) or one may transform the figure

to obtain a certain fixed center of gravity and a unit second

central moment.

A simple normalization technique. If an object is expanded

uniformly, without rotation, until it touches all three sides of a

triangle, the resulting figure will be unique, so that pattern

recognition can proceed without concern about relative size

and position.

There is an additional problem with rotational equivalence where

it is not easy to avoid all ambiguities. One does not want to

equate “6” and “9”. For that matter, one does not want to equate

(0, o), or (X, x) or the 0's in x

o

 and x

o

—

so that there may be

context-dependency involved. Once normalized, the unknown

figure can be compared with templates for the prototypes and, by

means of some measure of matching, choose the best fitting

template. Each “matching criterion” will be sensitive to particular

forms of noise and distortion, and so will each normalization

procedure. The inscribing or boxing method may be sensitive to

small specks, while the moment method will be especially

sensitive to smearing, at least for thin-line figures, etc. The

choice of a matching criterion must depend on the kinds of noise

and transformations commonly encountered. Still, for many

problems we may get acceptable results by using straightforward

correlation methods.

When the class of equivalence transformations is very large, e.g.,

16 of 85 06/11/16 15:48

when local stretching and distortion are present, there will be

difficulty in finding a uniform normalization method. Instead,

one may have to consider a process of adjusting locally for best

fit to the template. (While measuring the matching, one could

“jitter” the figure locally; if an improvement were found the

process could be repeated using a slightly different change, etc.)

There is usually no practical possibility of applying to the figure

all of the admissible transformations. And to recognize the

topological equivalence of pairs such as those below is likely

beyond any practical kind of iterative local-improvement or

hill-climbing matching procedure. (Such recognitions can be

mechanized, though, by methods which follow lines, detect

vertices, and build up a description in the form, say, of a vertex-

connection table.)

The figures A, A' and B, B' are topologically equivalent pairs.

Lengths have been distorted in an arbitrary manner, but the

connectivity relations between corresponding points have been

preserved. In Sherman (8] and Haller [391 we find computer

programs which can deal with such equivalences.

The template-matching scheme, with its normalization and direct

comparison and matching criterion, is just too limited in

conception to be of much use in problems that are more difficult.

If the transformation set is large, normalization, or “fitting,” may

be impractical, especially if there is no adequate heuristic

connection on the space of transformations. Furthermore, for

each defined pattern, the system has to be presented with a

prototype. But if one has in mind an abstract class, one may

17 of 85 06/11/16 15:48

simply be unable to represent its essential features with one or a

very few concrete examples. How could one represent with a

single prototype the class of figures, which have an even number

of disconnected parts? Clearly, the template system has

negligible descriptive power. The property-list system frees us

from some of these limitations.

D. Property Lists and “Characters”

We define a property to be a two-valued function, which divides

figures into two classes; a figure is said to have or not have the

property according to whether the function's value is 1 or 0.

Given a number N of distinction properties, we could define as

many as 2**n subclasses by their set intersections and, hence, as

many as 2**2**n patterns by combining the properties with

ANDs and ORs. Thus, if we have three properties, rectilinear,

connected, and cyclic, there are eight subclasses and 256 patterns

defined by their intersections

The eight regions represent all the possible configurations of

values of the three properties "rectilinear," "connected,"

"containing a loop." Each region contains a representative

figure, and its associated binary "Character" sequence.

If the given properties are placed in a fixed order then we can

represent any of these elementary regions by a vector, or string of

digits. The vector so assigned to each figure will be called the

18 of 85 06/11/16 15:48

Character of that figure (with respect to the sequence of

properties in question). (In [9] we use the term characteristic for

a property without restriction to 2 values.) Thus a square has the

Character (1, 1, 1) and a circle the Character (0, 1, 1) for the

given sequence of properties.

For many problems, one can use such Characters as names for

categories and as primitive elements with which to define an

adequate set of patterns. Characters are more than conventional

names. They are instead very rudimentary forms of description

(having the form of the simplest symbolic expression—the list)

whose structure provides some information about the designated

classes. This is a step, albeit a small one, beyond the template

method; the Characters are not simple instances of the patterns,

and the properties may themselves be very abstract. Finding a

good set of properties is the major concern of many heuristic

programs.

E. Invariant Properties

One of the prime requirements of a good property is that it be

invariant under the commonly encountered equivalence

transformations. Thus for visual Pattern-Recognition we would

usually want the object identification to be independent of

uniform changes in size and position. In their pioneering paper

1947 Pitts and McCulloch [10] describe a general technique for

forming invariant properties from noninvariant ones, assuming

that the transformation space has a certain (group) structure.

The idea behind their mathematical argument is this: suppose that

19 of 85 06/11/16 15:48

we have a function P of figures, and suppose that for a given

figure F we define [F] = {F1, F2 . . .} to be the set of all figures

equivalent to F under the given set of transformations; further,

define P [F] to be the set {P (F1), P (F2), . . .} of values of P on

those figures. Finally, define P* [F] to be AVERAGE (P [F]).

Then we have a new property P* whose values are independent

of the selection of F from an equivalence class defined by the

transformations. We have to be sure that when different

representatives are chosen from a class the collection [F] will

always be the same in each case. In the case of continuous

transformation spaces, there will have to be a measure or the

equivalent associated with the set [F] with respect to which the

operation AVERAGE is defined, say, as an integration. In the

case studied in [10] the transformation space is a group with a

uniquely defined Haar measure: the set [F] can be computed

without repetitions by scanning through the application of all the

transforms T to the given figure so that the invariant property can

be defined by their integration over that measure. The result is

invariant of which figure is chosen because the integration is over

a (compact) group.

This method is proposed as a neurophysiological model for pitch-

invariant hearing and size-invariant visual recognition

(supplemented with visual centering mechanisms). This model is

discussed also on p160 of Wiener [11].) Practical application is

probably limited to one-dimensional groups and analog scanning

devices.

In most recent work, this problem is avoided by using properties

already invariant under these transformations. Thus, a property

20 of 85 06/11/16 15:48

might count the number of connected components in a picture

—which is invariant of size and position. Or a property may

count the number of vertical lines in a picture—which is invariant

of size and position (but not rotation).

F. Generating Properties

The problem of generating useful properties has been discussed

by Selfridge [12]; we shall summarize his approach. The machine

is given, at the start, a few basic transformations A

1,

...An, each

of which transforms, in some significant way, each figure into

another figure. A1 might, for example, remove all points not on a

boundary of a solid region; A

2

 might leave only vertex points;

A

3

 might fill up hollow regions, etc.

An arbitrary sequence of picture transformations, followed by a

numerical-valued function, can be used as a property function

for pictures. A1 removes all points which are not at the edge of

a solid region. A2 leaves only vertex points at which an arc

suddenly changes direction. The function C simply counts the

number of points remaining in the picture.

Each sequence A

i1

, A

i2

 , . . . of such operations forms a new

transformation, so that there is available an infinite variety. We

provide the machine also with one or more “terminal" operations

that convert a picture into a number, so that any sequence of the

elementary transformations, followed by a terminal operation,

21 of 85 06/11/16 15:48

defines a property. (Dineen [13] and Kirsch [] describe how such

processes were programmed in a digital computer.) We can start

with a few short sequences, perhaps chosen randomly. Selfridge

describes how the machine might learn new useful properties.

"We now feed the machine A's and 0's telling the machine each

time which letter it is. Beside each sequence under the two

letters, the machine builds up distribution functions from the

results of applying the sequences to the image. Now, since the

sequences were chosen completely randomly, it may well be

that most of the sequences have very flat distribution functions;

that is, they [provide] no information, and the sequences are

therefore [by definition] not significant. Let it discard these and

pick some others. Sooner or later, however, some sequences

will prove significant; that is, their distribution functions will

peak up somewhere. What the machine does now is to build up

new sequences like the significant ones. This is the important

point. If it merely chose sequences at random, it might take a

very long while indeed to find the best sequences. But with

some successful sequences, or partly successful ones, to guide

it, we hope that the process will be much quicker. The crucial

question remains: How do we build up sequences “like” other

sequences, but not identical? As of now we think we shall

merely build sequences from the transition frequencies of the

significant sequences. We shall build up a matrix of transition

frequencies from the significant ones, and use them as

transition probabilities with which to choose new sequences.

"We do not claim that this method is necessarily a very good

way of choosing sequences—only that it should do better than

not using at all the knowledge of what kinds of sequences have

worked. It has seemed to us that this is the crucial point of

learning." See p. 93 of [12].

22 of 85 06/11/16 15:48

It would indeed be remarkable if this failed to yield properties

more useful than would be obtained from completely random

sequence selection. The generating problem is discussed further

in Minsky [14]. Newell, Shaw, and Simon [15] describe more

deliberate, less statistical, techniques that might be used to

discover sets of properties appropriate to a given problem area.

One may think of the Selfridge proposal as a system that uses a

finite-state language to describe its properties. Solomonoff [18

and [55] proposes some techniques for discovering common

features of a set of expressions, e.g., of the descriptions of those

properties of already established utility; the methods can then be

applied to generate new properties with the same common

features. I consider the lines of attack in [12], [15], [18] and [55],

although still incomplete, to be of the greatest importance.

G. Combining Properties

One cannot expect easily to find a small set of properties that will

be just right for a problem area. It is usually much easier to find a

large set of properties each of which provides a little useful

information. Then one is faced with the problem of finding a way

to combine them to make the desired distinctions. The simplest

method is to define, for each class, a prototypical "characteristic

vector" (a particular sequence of property values) and then to use

some matching procedure, e.g., counting the numbers of

agreements and disagreements, to compare an unknown with

these chosen prototypes.

The linear weighting scheme described just below is a slight

23 of 85 06/11/16 15:48

generalization on this. Such methods treat the properties as more

or less independent evidence for and against propositions; more

general procedures (about which we have yet little practical

information) must account also for nonlinear relations between

properties, i.e., must contain weighting terms for joint subsets of

property values.

I. “Bayes nets” for combining independent properties:

We consider a single experiment in which an object is placed in

front of a property-list machine. Each property E; will have a

value, 0 or 1. Suppose that there has been defined some set of

object classes Fj, and that we want to use the outcome of this

experiment to decide in which of these classes the object belongs.

Assume that the situation is probabilistic, and that we know the

probability p

ij

 that, if the object is in class

Fj

then the i-th

property E

i

will have value 1. Assume further that these

properties are independent; that is, even given F

j

, knowledge of

the value of E

i

 tells us nothing more about the value of a different

E

k

 in the same experiment. (This is a strong condition—see

below.) Let f

j

 be the absolute probability that an object is in class

F

i

. Finally, for this experiment define V to be the particular set of

is for which the E

i

's are 1. Then this V represents the Character of

the object! From the definition of conditional probability, we

have

Pr(F

i

,V) = Pr(V)Pr (Fj|V) = Pr(Fj)Pr(V|Fj)

24 of 85 06/11/16 15:48

Given the Character V, we want to guess which Fj has occurred

(with the least chance of being wrong—the so-called maximum

likelihood estimate); that is, for which j is Pr(F

j

) the largest.

Since in the above Pr(V) does not depend on j, we have only to

calculate for which j is Pr(V)Pr(Fj|V) = Pr(Fj)Pr(V|Fj) the

largest. Hence, by our independence hypothesis, we have to

maximize

f

j

Pp

ij

P

qij

 = fjPpij/qijPqij,

.

where the first product is over V and the second, over its

complement. These “maximum likelihood” decisions can be

made (Fig. 6) by a simple network device. [7]

"Net” model for maximum-likelihood decisions based on linear

weightings of property values. The input data are examined by

each "property filter” E

i

. Each of these has 0 and 1 output

channels, one of which is excited by each input. These outputs

are weighted by the corresponding p

ij

's, as shown in the text.

The resulting signals are multiplied in the F

j

 units, each of

25 of 85 06/11/16 15:48

which collects evidence for a particular figure class. (We could

have used here log(p

ij

), and added.) The final decision is made

by the topmost unit D, who merely chooses that F

j

 with the

largest score. Note that the logarithm of the coefficient p

ij

/q

ij

in the second expression of (1) can be construed as the “weight

of the evidence” of E

i

 in favor of F

j

. (See also [21] and [22].)

Note: At the cost of an additional network layer, we may also

account for the possible cost g

jk

 that would be incurred if we

were to assign to F

k

 a figure really in class F

j

. In this case, the

minimum cost decision is given by the k for which

S

i

gjkfjPpijPqij.

These nets resemble the general schematic diagrams proposed in

the “Pandemonium” model of [Selfridge 19, Fig. 3.] It is

proposed there that some intellectual processes might be carried

out by a hierarchy of simultaneously functioning submachines

called 'demons'. Each unit is set to detect certain patterns in the

activity of others, and the output of each unit announces the

degree of confidence of that unit that it sees what it is looking for.

Our E

i

 units are Selfridge's "data demons.” Our units F

j

 are his

“cognitive demons”; each collects, from the abstracted data,

evidence for a specific proposition. The topmost “decision

demon” D responds to that one in the multitude below it whose

shriek is the loudest. (See also the report in [20].)

It is quite easy to add to this “Bayes network model” a

mechanism, which will enable it to learn the optimal connection

weightings. Imagine that, after each event, the machine is told

which F has occurred; we could implement this by sending back

26 of 85 06/11/16 15:48

a signal along the connections leading to that F unit. Suppose that

the connection or for p

ij

or q

ij

 contains a two-terminal device (or

“synapse”) which stores a number w

ij

. Whenever the joint event

(Fj, E

i

 = 1) occurs, we modify w

ij

 by replacing it by (w

ij

 +1)q,

where q is a factor slightly less than unity. And when the joint

event (Fj, Ei = 0) occurs, we decrement w

ij

 by replacing it with

(w

ij

) q. It is not difficult to show that the expected values of the

w

ij

 's will become proportional to the p

ij

 's [and, in fact, approach

p

ij

 [q/(1-q]. Hence, the machine tends to learn the optimal

weighting on the basis of experience. (One must put in a similar

mechanism for estimating the fj 's.) The variance of the

normalized weight approaches [(1-q)/(1 +q)] p

ij

q

ij

; Thus a small

value for q means rapid learning but is associated with a large

variance, hence, with low reliability. Choosing q close to unity

means slow, but reliable, learning. q is really a sort of memory

decay constant, and its choice must be determined by the noise

and stability of the environment much noise requires long

averaging times, while a changing environment requires fast

adaptation. The two requirements are, of course, incompatible

and the decision has to be based on an economic compromise.

(See also [7] and [21])

G. Using random nets for Bayes decisions:

The nets of Fig. 6 are very orderly in structure. Is all this

structure necessary? Certainly if there were a great many

properties, each of which provided very little marginal

information, some of them would not be missed. Then one might

expect good results with a mere sampling of all the possible

27 of 85 06/11/16 15:48

connection paths w~~. And one might thus, in this special

situation, use a random connection net. The two-layer nets here

resemble those of the “perceptron” proposal of Rosenblatt [22]. I

n the latter, there is an additional level of connections coming

directly from randomly selected points of a “retina.” Here the

properties, the devices which abstract the visual input data, are

simple functions which add some inputs, subtract others, and

detect whether the result exceeds a threshold. Equation (1), we

think, illustrates what is of value in this scheme. It does seem

clear that such nets can handle a maximum-likelihood type of

analysis of the output of the property functions. But these nets,

with their simple, randomly generated, connections can probably

never achieve recognition of such patterns as “the class of figures

having two separated parts,” and they cannot even achieve the

effect of template recognition without size and position

normalization (unless sample figures have been presented

previously in essentially all sizes and positions). For the chances

are extremely small of finding, by random methods, enough

properties usefully correlated with patterns appreciably more

abstract than are those of the prototype-derived kind. And these

networks can really only separate out (by weighting) information

in the individual input properties; they cannot extract further

information present in nonadditive form. The “perceptron” class

of machines has facilities neither for obtaining better-than-chance

properties nor for assembling better-than-additive combinations

of those it gets from random construction.10

For recognizing normalized printed or hand-printed characters,

single-point properties do surprisingly well [23]; this amounts to

just “averaging” many samples. Bledsoe and Browning [24]

28 of 85 06/11/16 15:48

claim good results with point-pair properties. Roberts [25]

describes a series of experiments in this general area. Doyle [26]

without normalization but with quite sophisticated properties

obtains excellent results; his properties are already substantially

size- and position-invariant. A general review of Doyle's work

and other pattern-recognition experiments will be found in

Selfridge and Neisser [20].

For the complex discrimination, e.g., between one and two

connected objects, the property problem is very serious,

especially for long wiggly objects such as are handled by Kirsch

[27]. Here some kind of recursive processing is required and

combinations of simple properties would almost certainly fail

even with large nets and long training.

We should not leave the discussion of decision net models

without noting their important limitations. The hypothesis that

the p

i

s represent independent events is a very strong condition

indeed. Without this hypothesis we could still construct

maximum- likelihood nets, but we would need an additional layer

of cells to represent all of the joint events V; that is, we would

need to know all the Pr (Fj|V). This gives a general (but trivial)

solution, but requires 2**n cells for n properties, which is

completely impractical for large systems. What is required is a

system which computes some sampling of all the joint

conditional probabilities, and uses these to estimate others when

needed. The work of Uttley [28], [29], bears on this problem, but

his proposed and experimental devices do not yet clearly show

how to avoid exponential growth. See also Roberts [25], Papert

[21], and Hawkins [22]. We can find nothing resembling this type

of analysis in Rosenblatt [22].

29 of 85 06/11/16 15:48

H. Articulation and Attention—Limitations of the Property-List

Method

[Note: I substantially revised this section in December 2000, to

clarify and simplify the notations.] Because of its fixed size, the

property-list scheme is limited in the complexities of the relations

it can describe. If a machine can recognize a chair and a table, it

surely should be able to tell us that "there is a chair and a table."

To an extent, we can invent properties in which some such

relationships are embedded, but no formula of fixed form can

represent arbitrary complex relationships. Thus, we might want to

describe the leftmost figure below as,

"A rectangle (1) contains two subfigures disposed horizontally.

The part on the left is a rectangle (2) that contains two

subfigures disposed vertically, the upper part of which is a

circle (3) and the lower a triangle (4). The part on the right . . .

etc."

Such a description entails an ability to separate or "segment" the

scene into parts. (Note that in this example, the articulation is

essentially recursive; the figure is first divided into two parts;

then each part is described using the same machinery.) We can

formalize this kind of description in an expression language

whose fundamental grammatical form is a function R(L) where F

names a relation and L is an ordered list of the objects or

30 of 85 06/11/16 15:48

subfigures which bear that relation to one another. We obtain the

required flexibility by allowing the members of the list L to

contain not only the names of "elementary" figures but also

"expressions that describe subfigures. Then the leftmost scene

above may be described by the expression

IN(box(-->(IN (box (ABOVE(cir, triangle))), IN(cir(ABOVE

(-->(cir, cir), cir))))))),

where "IN (x, y)" means 'y is inside x,'-->(x y)" means 'X is to the

left of Y,' and "ABOVE (x, y)" means 'x is above y.' This

description may be regarded as an expression in a simple "list-

structure" language. Newell, Shaw and Simon have developed

powerful computer techniques for manipulating symbolic

expressions in such languages for purposes of heuristic

programming. (See the remarks at the end of Section IV. If some

of the members of a list are lists, they must be surrounded by

exterior parentheses, and this accounts for the accumulation of

parentheses.

This description language may be regarded as a simple kind of

"list-structure" language. Newell, Shaw and Simon have

developed powerful computer techniques for manipulating

symbolic expressions in such languages for purposes of heuristic

programming. See the remarks at the end of Section IV. By

introducing notation for the relations 'inside of', 'to the left of',

and 'above', we construct a symbolic description. Such

descriptions can be formed and manipulated by machines.

By abstracting out the complex relation between the parts of the

figure, we can re-use the same formula to describe all three of the

31 of 85 06/11/16 15:48

figures above, by using the same "more abstract" expression for

all of them:

F(A, B, C, D, E, F, G, H) = IN(A, (-->(IN(B, (ABOVE (C, D))),

IN(E, (ABOVE (-->(F, G, H))))))),

in which each particular geometric figure is replaced by one of

the new variables. Thus, the left-hand figure can be represented

by

F(box, box, cir, tri, cir, cir, cir, cir),

and the other two scenes can be represented by the same F with

different substitutions for its variables. It is up to the programmer

to decide at just what level of complexity a part of a picture

should be considered "primitive". This will depend on what the

description is to be used for. We could further divide the

drawings into vertices, lines, and arcs. Obviously, for some

applications the relations would need more metrical information,

e.g., specification of lengths or angles.

The important thing about such "articular" descriptions is that

they can be obtained by repeated application of a fixed set of

pattern-recognition techniques. Thus we can obtain arbitrarily

complex descriptions from a fixed complexity classification-

mechanism. The new element required in the mechanism (beside

the capacity to manipulate the list-structures) is the ability to

articulate—to "attend fully" to a selected part of the picture and

bring all one's resources to bear on that part. In efficient problem-

solving programs, w e will not usually complete such a

description in a single operation. Instead, the depth or detail of

32 of 85 06/11/16 15:48

description will be under the control of other processes. These

will reach deeper, or look more carefully, only when they have

to, e.g., when the presently available description is inadequate for

a current goal. The author, together with L. Hodes, is working on

pattern-recognition schemes using articular descriptions. By

manipulating the formal descriptions, we can deal with

overlapping and incomplete figures, and several other problems

of the “Gestalt” type.

It seems likely that as machines are turned toward more difficult

problem areas, passive classification systems will become less

adequate, and we may have to turn toward schemes which are

based more on internally-generated hypotheses, perhaps “error-

controlled” along the lines proposed by MacKay [89].

Space requires us to terminate this discussion of pattern-

recognition and description. Among the important works not

reviewed here should be mentioned those of Bomba [33] and

Grimsdale, et al. [34], which involve elements of description,

Unger [35] and Holland [36] for parallel processing schemes,

Hebb [31] who is concerned with physiological description

models, and the work of the Gestalt psychologists, notably

Kohler [38] who have certainly raised, if not solved, a number of

important questions. Sherman [8], Haller [39] and others have

completed programs using line-tracing operations for topological

classification. The papers of Selfridge [12], [43], have been a

major influence on work in this general area.

See also Kirsch, et al. [21], for discussion of a number of

interesting computer image-processing techniques, and see Minot

33 of 85 06/11/16 15:48

[40] and Stevens [41] for reviews of the reading machine and

related problems. One should also examine some biological

work, e.g., Tinbergen [42] to see instances in which some

discriminations which seem, at first glance very complicated are

explained on the basis of a few apparently simple properties

arranged in simple decision trees.

III. LEARNING SYSTEMS

Summary—In order to solve a new problem, one should first try

using methods similar to those that have worked on similar

problems. To implement this “basic learning heuristic” one must

generalize on past experience, and one way to do this is to use

success-reinforced decision models. These learning systems are

shown to be averaging devices. Using devices that also learn

which events are associated with reinforcement, i.e., reward, we

can build more autonomous “secondary reinforcement” systems.

In applying such methods to complex problems, one encounters a

serious difficulty—in distributing credit for success of a complex

strategy among the many decisions that were involved. This

problem can be managed by arranging for local reinforcement of

partial goals within a hierarchy, and by grading the training

sequence of problems to parallel a process of maturation of the

machine's resources.

In order to solve a new problem one uses what might be called

the basic learning heuristic first try using methods similar to

those which have worked, in the past, on similar problems. We

want our machines, too, to benefit from their past experience.

Since we cannot expect new situations to be precisely the same as

34 of 85 06/11/16 15:48

old ones, any useful learning will have to involve generalization

techniques. There are too many notions associated with

`learning” to justify defining the term precisely. But we may be

sure that any useful learning system will have to -use records of

the past as evidence for more general propositions; it must thus

entail some commitment or other about “inductive inference.”

(See Section V-B.) Perhaps the simplest way of generalizing

about a set of entities is through constructing a new one which is

an “ideal,” or rather, a typical member of that set; the usual way

to do this is to smooth away variation by some sort of averaging

technique. And indeed we find that most of the simple learning

devices do incorporate some averaging technique--often that of

averaging some sort of product, thus obtaining a sort of

correlation. We shall discuss this family of devices here, and

some more abstract schemes in Section V.

A. Reinforcement

A reinforcement process is one in which some aspects of the

behavior of a system are caused to become more (or less)

prominent in the future as a consequence of the application of a

“reinforcement operator” Z. This operator is required to affect

only those aspects of behavior for which instances have actually

occurred recently.

The analogy is with “reward” or “extinction” (not punishment) in

animal behavior. The important thing about this kind of process

is that it is “operant” (a term of Skinner [44]) the reinforcement

operator does not initiate behavior, but merely selects that which

the Trainer likes from that which has occurred. Such a system

35 of 85 06/11/16 15:48

must then contain a device M which generates a variety of

behavior (say, in interacting with some environment) and a

Trainer who makes critical judgments in applying the available

reinforcement operators. (See Fig. 8.)

Let us consider a very simple "operant reinforcement" model.

In response to a stimulus from the environment, the machine

makes one of several possible responses. It remembers what

decisions were made in choosing this response. Shortly

thereafter, the Trainer sends to the machine positive or negative

reinforcement (reward) signal; this increases or decreases the

tendency to make the same decisions in the future. Note that the

Trainer need not know how to solve problems, but only how to

detect success or failure, or relative improvement; his function is

selective. The Trainer might be connected to observe the actual

stimulus + response activity or, in a more interesting kind of

system, some function of the state of the environment.

Suppose that on each presentation of a stimulus S an animal has

to make a choice, e.g., to turn left or right, and that its probability

of turning right, at the n-th trial, is p

n

. Suppose that we want it to

turn right. Whenever it does this, we might “reward” it by

applying the operator Z+:

36 of 85 06/11/16 15:48

P

n+1

 = Z+(p

n

) = q p

n

 + (1-q) 0 < q < 1

which moves p a fraction (1-q) of the way towards unity.

(Properly, the reinforcement functions should depend both on the

p's and on the previous reaction. Reward should decrease p if our

animal has just turned to the left. The notation in the literature is

somewhat confusing in this regard.) If we dislike what it does we

apply negative reinforcement,

moving p the same fraction of the way toward 0. Some theory of

such "linear" learning operators, generalized to several stimuli

and responses, will be found in Bush and Mosteller [45]. We can

show that the learning result is an average weighted by an

exponentially‑decaying time factor: Let Z

n

 be ±1 according to

whether the n-th event is rewarded or extinguished and replace

p

n

 by c

n

-2p

n

-1 so that -1<c

n

<1, as for a correlation coefficient.

Then (with c

0

 = 0) we obtain by induction

and since

we can write this as.

 (1)

If the term Z

i

is regarded as a product of (i) how the creature

responded and (ii) which kind of reinforcement was given, then

c

n

 is a kind of correlation function (with the decay weighting) of

the joint behavior of these quantities. The ordinary, uniformly-

37 of 85 06/11/16 15:48

weighted average has the same general form but with

time‑dependent q:

 (2)

In (1) we have again the situation described in Section II-G-1; a

small value of q gives fast learning, and the possibility of quick

adaptation to a changing environment. A near-unity value of q

gives slow learning, but also smoothes away uncertainties due to

noise. As noted in Section II-G-1, the response distribution

comes to approximate the probabilities of rewards of the

alternative responses. The importance of this phenomenon has, I

think, been overrated; it is certainly not an especially rational

strategy. One reasonable alternative is that of computing the

numbers p

ij

as indicated, but actually playing at each trial the

“most likely” choice. Except in the presence of a hostile

opponent, there is usually no reason to play a “mixed” strategy.

The question of just how often one should play a strategy

different from the estimated optimum, in order to gain

information, is an underlying problem in many fields. See, e.g.,

[85].

Samuel's coefficient-optimizing program [2] [see Section III-C,

1)], uses an ingenious compromise between the exponential and

the uniform averaging methods. The value of N in (2) above

begins at 16 and so remains until n= 16, then N is 32 until n=32,

and so on until n = 256. Thereafter N remains fixed at 256. This

nicely prevents violent fluctuations in ~n at the start, approaches

the uniform weighting for a while, and finally approaches the

exponentially-weighted correlation, all in a manner that requires

38 of 85 06/11/16 15:48

very little computation effort. Samuel's program is at present the

outstanding example of a game-playing program that matches

average human ability, and its success (in real time) is attributed

to a wealth of such elegancies, both in heuristics and in

programming.

The problem of extinction or “unlearning” is especially critical

for complex, hierarchical, learning. For, once a generalization

about the past has been made, one is likely to build upon it. Thus,

one may come to select certain properties as important and begin

to use them in the characterization of experience, perhaps storing

one's memories in terms of them. If later, it is discovered that

some other properties would serve better, then one must face the

problem of translating, or abandoning, the records based 011 the

older system. This may be a very high price to pay. One does not

easily give up an old way of looking at things, if the better one

demands much effort and experience to be useful. Thus the

training sequences on which our machines will spend their

infancies, so to speak, must be chosen very shrewdly to insure

that early abstractions will provide a good foundation for later

difficult problems.

Incidentally, in spite of the space given here for their exposition,

I am not convinced that such “incremental” or “statistical”

learning schemes should play a central role in our models. They

will certainly continue to appear as components of our programs

but, I think, mainly by default. The more intelligent one is, the

more often he should be able to learn from an experience

something rather definite; e.g., to reject or accept a hypothesis, or

to change a goal. (The obvious exception is that of a truly

39 of 85 06/11/16 15:48

statistical environment in which averaging is inescapable. But the

heart of problem solving is always, we think, the combinatorial

part that gives rise to searches, and we should usually be able to

regard the complexities caused by “noise” as mere annoyances,

however irritating they may be.) In this connection, we can refer

to the discussion of memory in Miller, Galanter and Pribram [46].

This seems to be the first major work in Psychology to show the

influence of work in the artificial intelligence area, and its

programme is generally quite sophisticated.

B. Secondary Reinforcement and Expectation Models

The simple reinforcement system is limited by its dependence on

the Trainer. If the Trainer can detect only the solution of a

problem, then we may encounter “mesa” phenomena, which will

limit performance on difficult problems. (See Section I-C.) One

way to escape this is to have the machine learn to generalize on

what the Trainer does. Then, in difficult problems, it may be able

to give itself partial reinforcements along the way, e.g., upon the

solution of relevant subproblems. This machine has some such

ability:

An additional device U gives the machine of Fig. 8 the ability

to learn which signals from the environment have been

associated with reinforcement. The primary reinforcement

signals S are routed through U. By a Pavlovian conditioning

process (not described here), external signals come to produce

40 of 85 06/11/16 15:48

reinforcement signals like those that have frequently succeeded

them in the past. Such signals might be abstract, e.g., verbal

encouragement. If the "secondary reinforcement” signals are

allowed, in turn, to acquire further external associations

(through, e.g., a channel Z

U

 as shown) the machine might

come to be able to handle chains of subproblems. But

something must be done to stabilize the system against the

positive symbolic feedback loop formed by the path Z

U

. The

profound difficulty presented by this stabilization problem may

be reflected in the fact that, in lower animals, it is very difficult

to demonstrate such chaining effects.

The new unit U is a device that learns which external stimuli are

strongly correlated with the various reinforcement signals, and

responds to such stimuli by reproducing the corresponding

reinforcement signals. (The device U is not itself a reinforcement

learning device; it is more like a “Pavlovian” conditioning

device, treating the Z signals as “unconditioned” stimuli and the

S signals as moves and replies. We might also limit the number

of conditioned stimuli.) The heuristic idea is that any signal from

the environment that in the past has been well-correlated with

(say) positive reinforcement is likely to be an indication that

something good has just happened. If the training on early

problems was such that this is realistic, then the system

eventually should be able to detach itself from the Trainer, and

become autonomous. If we further permit “chaining” of the

“secondary reinforcers,” e.g., by admitting the connection shown

as a dotted line, the scheme becomes quite powerful, in principle.

There are obvious pitfalls in admitting such a degree of

autonomy; the values of the system may drift to a non-adaptive

condition.

41 of 85 06/11/16 15:48

C: Prediction and Expectation

The evaluation unit U is supposed to acquire an ability to tell

whether a situation is good or bad. This evaluation could be

applied to imaginary situations as well as to real ones. If we

could estimate the consequences of a proposed action (without its

actual execution), we could use U to evaluate the (estimated)

resulting situation. This could help in reducing the effort in

search, and we would have in effect a machine with some ability

to look ahead, or plan. In order to do this we need an additional

device P which, given the descriptions of a situation and an

action, will predict a description of the likely result. (We will

discuss schemes for doing this in Section IV-C.) The device P

might be constructed along the lines of a reinforcement learning

device. In such a system, the required reinforcement signals

would have a very attractive character. For the machine must

reinforce P positively when the actual outcome resembles that

which was predicted accurate expectations are rewarded. If we

could further add a premium to reinforcement of those

predictions which have a novel aspect, we might expect to

discern behavior motivated by a sort of curiosity. In the

reinforcement of mechanisms for confirmed novel expectations

(or new explanations), we may find the key to simulation of

intellectual motivation. See the discussion of Bernstein [48] and

the more extensive discussion in the very suggestive paper of

Newell, Shaw, and Simon [49]; one should not overlook the

pioneering paper of Newell [50] and Samuel's discussion of the

minimaxing process in [2].

Samuel's Program for Checkers

42 of 85 06/11/16 15:48

In Samuel's “generalization learning” program for the game of

checkers [2] we find a novel heuristic technique which could be

regarded as a simple example of the “expectation reinforcement”

notion. Let us review very briefly the situation in playing

two-person board games of this kind. As noted by Shannon [3]

such games are in principle finite, and a best strategy can be

found by following out all possible continuations—if he goes

there I can go there, or there, etc.—and then “backing-up” or

“minimaxing” from the terminal positions, won, lost, or drawn.

But in practice, the full exploration of the resulting colossal

“move-tree” is out of the question. No doubt, some exploration

will always be necessary for such games. But the tree must be

pruned. We might simply put a limit on depth of

exploration—the number of moves and replies. We might also

limit the number of alternatives explored from each

position—this requires some heuristics for selection of "plausible

moves." Now, if the backing-up technique is still to be used (with

the incomplete move-tree) one has to substitute for the absolute

“win, lose, or draw” criterion some other “static” way of

evaluating nonterminal positions. [Note: In some problems the

backing-up process can be handled in closed analytic form so that

one may be able to use such methods as Bellman's “Dynamic

Programming” [51]. Freimer [52] gives some examples for which

limited “look-ahead” doesn't work.]

43 of 85 06/11/16 15:48

"Backing-up" the static evaluations of proposed moves in a

game-tree. From the vertex at the left, representing the present

position in a board game radiate three branches representing the

player's proposed moves. Each of these might be countered by a

variety of opponent moves, and so on. According to some

program, a finite tree is generated. Then the worth to the player

of each terminal board position is estimated. (See text) If the

opponent has the same values, he will choose to minimize the

score while the player will always try to maximize. The heavy

lines show how this minimaxing process backs up until a choice

is determined for the present position.

The full tree for chess has the order of 10120 branches—beyond

the reach of any man or computer. There is a fundamental

heuristic exchange) between the effectiveness of the evaluation

function and the extent of the tree. A very weak evaluation (e.g.

one that just compares the player's values of pieces) would yield

a devastating game if the machine could explore all continuations

out to, say 20 levels. But only 6 levels, roughly within range of

our presently largest computers, would probably not give a

brilliant game; less exhaustive strategies perhaps along the lines

of [49] would be more profitable.

44 of 85 06/11/16 15:48

Perhaps the simplest scheme is to use a weighted sum of some

selected set of “property” functions of the positions mobility,

advancement, center control, and the like. This is done in

Samuel's program, and in most of its predecessors. Associated

with this is a multiple-simultaneous-optimizer method for

discovering a good coefficient assignment (using the correlation

technique noted in Section III-A). But the source of

reinforcement signals in [2] is novel. One cannot afford to play

out one or more entire games for each single learning step.

Samuel measures instead for each move the difference between

what the evaluation function yields directly of a position and

what it predicts on the basis of an extensive continuation

exploration, i.e., backing-up. The sign of this error, "Delta,"" is

used for reinforcement; thus the system may learn something at

each move.

Note: It should be noted that [2] describes also a rather

successful checker-playing program based on recording and

retrieving information about positions encountered in the past,

a less abstract way of exploiting past experience. Samuel's

work is notable in the variety of experiments that were

performed with and without various heuristics. This gives an

unusual opportunity to really find out how different heuristic

methods compare. More workers should choose (other things

being equal) problems for which such variations are

practicable. See p. 108 of [50].

D. The Credit-Assignment Problem for Learning Systems

In playing a complex game such as chess or checkers, or in

writing a computer program, one has a definite success

45 of 85 06/11/16 15:48

criterion—the game is won or lost. But in the course of play, each

ultimate success (or failure) is associated with a vast number of

internal decisions. If the run is successful, how can we assign

credit for the success among the multitude of decisions? As

Newell noted,

"It is extremely doubtful whether there is enough information in

"win, lose or draw", when referred to the whole play of the

game to permit any learning at all over available time scales....

For learning to take place, each play of the game must yield

much more information. This is . . . achieved by breaking the

problem into components. The unit of success is the goal. If a

goal is achieved its subgoals are reinforced. If not, they are

inhibited. (Actually, what is reinforced is the transformation

rule that provided the subgoal.) … . This also is true of the

other kinds of structure: every tactic that is created provides

information about the success or failure of tactic search rules;

every opponent's action provides information about success or

failure of likelihood inferences; and so on. The amount of

information relevant to learning increases directly with the

number of mechanisms in the chess-playing machine.

We are in complete agreement with Newell on this approach to

the problem. [See also Samuel's discussion (p. 22 of [2]) on

assigning credit for a change in "Delta."]

It is my impression that many workers in the area of "self-

organizing"" systems and "random neural nets"' do not feel the

urgency of this problem. Suppose that one million decisions are

involved in a complex task (such as winning a chess game).

Could we assign to each decision element one-millionth of the

46 of 85 06/11/16 15:48

credit for the completed task? In certain special situations we can

do just this—e.g., in the machines of [22], [25] and [92], etc.,

where the connections being reinforced are to a sufficient degree

independent. But the problem-solving ability is correspondingly

weak.

For more complex problems, with decisions in hierarchies (rather

than summed on the same level) and with increments small

enough to assure probable convergence, the running times would

become fantastic. For complex problems, we will have to define

"success'" in some rich local sense. Some of the difficulty may be

evaded by using carefully graded "training sequences"" as

described in the following section.

Friedberg's Program-Writing Program: An important example

of comparative failure in this credit-assignment matter is

provided by the program of Friedberg [53], [54] to solve

program-writing problems. The problem here is to write

programs for a (simulated) very simple digital computer. A

simple problem is assigned, e.g., "compute the AND of two bits

in storage and put the result in an assigned location. "" A

generating device produces a random (64-instruction) program.

The program is run and its success or failure is noted. The

success information is used to reinforce individual instructions

(in fixed locations) so that each success tends to increase the

chance that the instructions of successful programs will appear in

later trials. (We lack space for details of how this is done.) Thus

the program tries to find "good" instructions, more or less

independently, for each location in program memory. The

machine did learn to solve some extremely simple problems. But

47 of 85 06/11/16 15:48

it took of the order of 1000 times longer than pure chance would

expect. In part I of [54], this failure is discussed and attributed in

part to what we called (Section I-C) the "Mesa phenomenon." In

changing just one instruction at a time, the machine had not taken

large enough steps in its search through program space.

The second paper goes on to discuss a sequence of modifications

in the program generator and its reinforcement operators. With

these, and with some "priming" (starting the machine off on the

right track with some useful instructions), the system came to be

only a little worse than chance. The authors of [54] conclude that

with these improvements "the generally superior performance of

those machines with a success-number reinforcement mechanism

over those without does serve to indicate that such a mechanism

can provide a basis for constructing a learning machine." I

disagree with this conclusion. It seems to me that each of the

"improvements" can be interpreted as serving only to increase the

step size of the search, that is, the randomness of the mechanism;

this helps to avoid the "mesa" phenomenon and thus approach

chance behavior. But it certainly does not show that the "learning

mechanism" is working--one would want at least to see some

better-than-chance results before arguing this point. The trouble,

it seems, is with credit-assignment. The credit for a working

program can only be assigned to functional groups of

instructions, e.g., subroutines, and as these operate in hierarchies,

we should not expect individual instruction reinforcement to

work well. (See the introduction to [53] for a thoughtful

discussion of the plausibility of the scheme.) It seems surprising

that it was not recognized in [54] that the doubts raised earlier

were probably justified. In the last section of [54], we see some

48 of 85 06/11/16 15:48

real success obtained by breaking the problem into parts and

solving them sequentially. This successful demonstration using

division into subproblems does not use any reinforcement

mechanism at all. Some experiments of similar nature are

reported in [94].

It is my conviction that no scheme for learning, or for pattern-

recognition, can have very- general utility unless there are

provisions for recursive, or at least hierarchical use of previous

results. We cannot expect at learning, system- to come to handle

very hard problems without preparing it with a reasonably graded

sequence of problems of growing difficulty. The first problem

must be one that can be solved in reasonable time with the initial

resources. The next must be capable of solution in reasonable

time by using reasonably simple and accessible combinations of

methods developed in the first, and so on. The only alternatives

to this use of an adequate "training sequence" are 1) advanced

resources, given initially, or 2) the fantastic exploratory processes

found perhaps only in the history of organic evolution.

[Note: It should, however, be possible to construct learning

mechanisms which can select for themselves reasonably good

training sequences from an always complex environment, by

pre-arranging a relatively slow development or "maturation" of

tile system's facilities. 'This might be done by pre-arranging

that the sequence of goals attempted by, the primary trainer

match reasonably well, at each stage, the complexity of

performance mechanically available to the pattern-recognition

and other parts of the system. One might be able to do much of

this by simply limiting the depth of hierarchical activity,

perhaps only later permitting limited recursive activity.]

49 of 85 06/11/16 15:48

And even there, if we accept the general view of Darlington [56]

who emphasizes the heuristic aspects of genetic systems, we must

have developed early in, e.g., the phenomena of meiosis and

crossing-over, quite highly specialized mechanisms providing for

the segregation of groupings related to solutions of subproblems.

Recently, much effort has been devoted to the construction of

training sequences about programming "teaching machines."

Naturally, the psychological literature abounds with theories of

how complex behavior is built up from simpler. In our own area,

perhaps the work of Solomonoff [55], while overly cryptic,

shows the most thorough consideration of this dependency, on

training sequences.

IV. PROBLEM-SOLVING AND PLANNING

Summary—The solution, by machine, of very complex problems

will require a variety of administration facilities. During the

course of solving a problem, one becomes involved with a large

assembly of interrelated subproblems. From these, at each

stage, a very few must be chosen for investigation. This decision

must be based on 1) estimates of relative difficulties and 2)

estimates of centrality of the different candidates for attention.

Following subproblem selection (for which several heuristic

methods are proposed), one must choose methods appropriate

to the selected problems. But for very difficult problems, even

these step-by-step heuristics for reducing search will fail, and

the machine must have resources for analyzing the problem

structure in the large-in short, for "planning." We discuss a

variety of schemes for planning, including the use of models-

analogous, semantic, and abstract. Certain abstract models

50 of 85 06/11/16 15:48

which I call "Character Algebras" can be constructed by the

machine itself, on the basis of experience or analysis. For

concreteness, the discussion begins with a description of a

simple but significant system (LT) which encounters some of

these problems.

A. The "Logic Theory" Program of Newell, Shaw and Simon

It is not surprising that the testing grounds for early work on

mechanical problem solving have usually been areas of

mathematics, or games, in which the rules are learned with

absolute clarity. The "Logic 'Theory," machine of [57] and [58],

called "LT", was a first attempt to prove theorems in logic, by

frankly heuristic methods. Although the program was not by

human standards a brilliant success (and did not surpass its

designers), it stands as a landmark both in heuristic programming

and in the development of modern automatic programming.

The problem domain here is that of discovering Proofs in the

Russell-Whitehead system for the Propositional Calculus. That

system is given as a set of (five) axioms and (three) rules of

inference; the latter specify how certain transformations can be

applied to produce new theorems from old theorems and axioms.

The LT program is centered on the idea of "working backwards"

to find am proof. Given a theorem T to be proved, LT searches

among the axioms and previously established theorems for one

from which T can be deduced by a single application of one of

three simple "Methods" (which embody the given rules of

inference). If one is found, the problem is solved. Or the search

might fail completely. But finally, the search may yield one or

51 of 85 06/11/16 15:48

more "problems" which are usually propositions from which T

many be deduced directly. If one of these can, in turn, be proved

a theorem the main problem will be solved. (The situation is

actually slightly more complex.) Each such subproblem is

adjoined to the "subproblem list" (after a limited preliminary

attempt) and LT works around to it later. The full power of LT,

such as it is, can be applied to each subproblem, for LT can use

itself as a subroutine in a recursive fashion.

'The heuristic technique of working backwards yields something

of a teleological process, and LT is a forerunner of more complex

systems which construct hierarchies of goals and subgoals. Even

so, the basic administrative structure of the program is no more

than a nested set of searches through lists in memory. We shall

first outline this structure and then mention a few heuristics that

were used in attempts to improve performance

1. Take the next problem from problem list.

---------(If list is empty, EXIT with failure.)

2. Choose the next of the three basic Methods.

--------- (If no more methods, go to 1.)

3. Choose the next of the list of axioms and previous theorems.

--------- (If no more, go to 2.)

--------- Apply current Method to selected axiom or theorem.

--------- If problem is solved, EXIT with complete proof.

--------- If no result, go to 3.

--------- If new subproblem arises, go to 4.

4) Try the special (substitution) Method on the subproblem.

--------- If problem is solved, EXIT with complete proof.

--------- If not, append subproblem to problem list and go to 3.

Among the heuristics that were studied were 1) a similarity test to

52 of 85 06/11/16 15:48

reduce the work in step 4 (which includes another search through

the theorem list), 2) a simplicity test to select apparently easier

problems from the problem list, and 3) a strong nonprovability

test to remove from the problem list expressions which are

probably false and hence not provable. In a series of experiments

"learning" was used to find which earlier theorems had been most

useful and should be given priority in step 3. We cannot review

the effects of these changes in detail. Of interest was the balance

between the extra cost for administration of certain heuristics and

the resultant search reductions; this balance was quite delicate in

some cases when computer memory became saturated. The

system seemed to be quite sensitive to the training sequence--the

order in which problems were given. And some heuristics that

gave no significant overall improvement did nevertheless affect

the class of solvable problems. Curiously enough, the general

efficiency of LT was not greatly improved by any or all of these

devices. But all this practical experience is reflected in the design

of the much more sophisticated "GPS" system described briefly

in Section IV-D, 2).

Hao Wang [59] has criticized the LT project on the grounds that

there exist, as he and others have shown, mechanized proof

methods which, for the particular run of problems considered, use

far less machine effort than does LT and which have the

advantage that they will ultimately find a proof for any provable

proposition. (LT does not have this exhaustive "decision

procedure" character and can fail ever to find proofs for some

theorems.) The authors of [58], perhaps unaware of the existence

of even moderately efficient exhaustive methods, supported their

arguments by comparison with a particularly inefficient

53 of 85 06/11/16 15:48

exhaustive procedure. Nevertheless, I feel that some of Wang's

criticisms are misdirected. He does not seem to recognize that the

authors of LT are not so much interested in proving these

theorems as they are in the general problem of solving difficult

problems. The combinatorial system of Russell and Whitehead

(with which LT deals) is far less simple and elegant than the

system used by Wang. (Note, e.g., the emphasis in [49] and [60].

Wang's procedure [59] too, works backwards, and can be

regarded as a generalization of the method of "falsification" for

deciding truth-functional tautology. In [93] and its unpublished

sequel, Wang introduces more powerful methods for solving

harder problems.]

Wang's problems, while logically equivalent, are formally much

simpler. His methods do not include any facilities for using

previous results (hence they are sure to degrade rapidly at a

certain level of problem complexity), while LT is fundamentally

oriented around this problem. Finally, because of the very

effectiveness of Wang's method on the particular set of theorems

in question, he simply did not have to face the fundamental

heuristic problem of when to decide to give up on a line of attack.

Thus, the formidable performance of his program [59] perhaps

diverted his attention from heuristic problems that must again

spring up when real mathematics is ultimately encountered.

This is not meant as a rejection of the importance of Wang's work

and discussion. He and others working on 'mechanical

mathematics' have discovered that there are proof procedures

which are much more efficient than has been suspected. Such

work will unquestionably help inn constructing intelligent

machines, and these procedures will certainly be preferred, when

54 of 85 06/11/16 15:48

available, to "unreliable heuristic methods." Wang, Davis and

Putnam, and several others are now pushing these new techniques

into the far more challenging domain of theorem proving in the

predicate calculus (for which exhaustive decision procedures are

no longer available). We have no space to discuss this area, [See

[61] and [93]] but it seems clear that a program to solve real

mathematical problems will have to combine the mathematical

sophistication of Wang with the heuristic sophistication of

Newell, Shaw and Simon.

All these efforts are directed toward the reduction of search

effort. In that sense, they are all heuristic programs. Since

practically no one still uses "heuristic" in a sense opposed to

"algorithmic, serious workers might do well to avoid pointless

argument on this score. The real problem is to find methods

that significantly delay the apparently inevitable exponential

growth of search trees.

B. Heuristics for Subproblem Selection

In designing a problem-solving system, the programmer often

comes equipped with a set of more or less distinct

"Methods'"—his real task is to find an efficient way for the

program to decide where and when the different methods are to

be used.

Methods, which do not dispose of a problem, may still transform

it to create new problems or subproblems. Hence, during the

course of solving one problem we may become involved with a

large assembly of interrelated subproblems. A "parallel"

computer yet to be conceived, might work on many at a time. But

even the parallel machine must have procedures to allocate its

55 of 85 06/11/16 15:48

resources because it cannot simultaneously apply all its methods

to all the problems. We shall divide this administrative problem

into two parts: the selection of those subproblem(s) which seem

most critical, attractive, or otherwise immediate, and, in the next

section, the choice of which method to apply to the selected

problem.

In the basic program for LT (Section IV-.X), subproblem

selection is very simple. New problems are examined briefly and

(if not solved at once) are placed at the end of the (linear)

problem list. The main program proceeds along this list (step 1),

attacking the problems in the order of their generation; more

powerful systems will have to be more judicious (both in

generation and in selection of problems) for only thus can

excessive branching be restrained. [Note that the simple scheme

of LT has the property that each generated problem will

eventually get attention, even if several are created in a step 3. If

one were to turn full attention to each problem, as generated, one

might never return to alternate branches.] In more complex

systems we can expect to consider for each subproblem, at least

these two aspects: 1) its apparent "centrality-"—how will its

solution promote the main goal, and 2) its apparent

"difficulty"—how much effort is it liable too consume. We need

heuristic methods to estimate each of these quantities and further,

to select accordingly one of the problems and allocate to it some

reasonable quantity of effort. [One will want to see if the

considered problem is the same as one already considered or very

similar. See the discussion in [62]. This problem might be

handled more generally by simply remembering the (Characters

of) problems that have been attacked, and checking new ones

56 of 85 06/11/16 15:48

against this memory, e.g., by methods of [31], looking more

closely if there seems to be a match.] Little enough is known

about these matters, and so it is not entirely for lack of space that

the following remarks are somewhat cryptic.

Imagine that the problems and their relations are arranged to form

some kind of directed-graph structure [14], [57], and [62]. The

main problem is to establish a "valid" path between two initially

distinguished nodes. Generation of new problems is represented

by the addition of new, not-yet-valid paths, or by the insertion of

new nodes in old paths. Associate with each connection,

quantities describing its current validity state (solved, plausible,

doubtful, etc.) and its current estimated difficulty.

Global Methods: The most general problem-selection methods

are "global"—at each step, they look over the entire structure.

There is one such simple scheme that works well on at least one

rather degenerate interpretation of our problem graph. This is

based on an electrical analogy suggested to us by a machine

designed by C. E. Shannon to play a variant of the game

marketed as "Hex" but known among mathematicians as "Nash".

(In [63], Shannon describes a variety of interesting game-playing

and learning machines.) The initial board position can be

represented as a certain network of resistors.

57 of 85 06/11/16 15:48

This game is played on a network of equal resistors. One player's

goal is to construct a short-circuit path between two given

boundaries; the opponent tries to open the circuit between them.

Each move consists of shorting (or opening), irreversibly, one of

the remaining resistors. Shannon's machine applies a potential

between the boundaries and selects that resistor which carries the

largest current. Very roughly speaking, this resistor is likely to be

most critical because changing it will have the largest effect on

the resistance of the net and, hence, in the goal direction of

shorting (or opening) the circuit. And although this argument is

not perfect, nor is this a perfect model of the real combinatorial

situation, the machine does play extremely well. For example, if

the machine begins by opening resistor 1, the opponent might

counter by shorting resistor 4 (which now has the largest current).

The remaining move-pairs (if both players use that strategy)

—

would be (5,8) (9,13) (6,3) (12, 10)—or (12, 2)—and the

machine wins. This strategy can make unsound moves in certain

situations, but no one seems to have been able to force this during

a game. [Note: after writing this, I did find such a strategy, that

defeats large-board versions of this machine.]

The use of such a global method for problem-selection requires

that the available "difficulty estimates" for related subproblems

be arranged to combine in roughly the manner of resistance

values. Also, we could regard this machine as using an "analog

models for "planning." (See Section IV-D.) [A variety of

combinatorial methods will be matched against the network-

analogy opponent in a program being completed by R. Silver at

the MIT Lincoln Laboratory.]

58 of 85 06/11/16 15:48

Local and Hereditary Methods

The prospect of having to study at each step the whole problem

structure is discouraging, especially since the structure usually

changes only slightly after each attempt. One naturally looks for

methods which merely update or modify a small fragment of the

stored record. A variety of compromises lie between the extremes

of the "first-come-first-served" problem-list method and the full

global-survey methods, techniques. Perhaps the most attractive of

these are what we will call Inheritance methods —essentially

recursive devices.

In an Inheritance method, the effort assigned to a subproblem is

determined only by its immediate ancestry; at the time each

problem is created, it is assigned a certain total quantity Q of time

or effort. When a problem is later split into subproblems, such

quantities are assigned to them by some local process which

depends only on their relative merits and on what remains of Q.

Thus the centrality problem is managed implicitly. Such schemes

are quite easy to program, especially with the new programming

systems such as IPL [64] and LISP [32], which are themselves

based on certain hereditary or recursive operations. Special cases

of the inheritance method arise when one can get along with a

simple all-or-none Q— e.g., a "stop condition.'' This yields the

exploratory method called "back-tracking" by Solomon Golumb

[65]. The decoding procedure of Jack Wozencraft [66] is another

important variety of Inheritance method.

In the complex exploration process proposed for chess by

Newell, Shaw, and Simon [49], we have a form of Inheritance

59 of 85 06/11/16 15:48

method with a non-numerical stop-condition. Here, the

subproblems inherit sets of goals to be achieved. This teleological

control has to be administered by all additional goal-selection

system and is further complicated by a global (but reasonably

simple) stop rule of the backing-up variety [Section III-C]. (Note:

we are identifying here the move-tree-limitation problem with

that of problem-selection.) Although extensive experimental

results are not yet available, we feel that the scheme of [49]

deserves careful study by anyone planning serious work in this

area. It shows only the beginning of the complexity sure to come

in our development of intelligent machines. Some further

discussion of this question may be found in Slagle [67].

C. "Character-Method" Machines

Once a problem is selected, we must decide which method to try

first. This depends on our ability to classify or characterize

problems. We first compute the Character of our problem (by

using some pattern recognition technique) and then consult a

"Character: -Method" table or other device which is supposed to

tell us which method(s) are most effective on problems of that

Character. This information might be built up from experience,

given initially by the programmer, deduced from "advice" [70],

or obtained as the solution to some other problem, as suggested in

the GPS proposal [68]. In any case, this part of the machine's

behavior, regarded from the outside, can be treated as a sort of

stimulus-response, or "table look-up," activity.

If the Characters (or descriptions) have too wide a variety of

values, there will be a serious problem of filling a Character-

Method table. One might then have to reduce the detail of

60 of 85 06/11/16 15:48

information, e.g., by using only a few important properties. Thus

the Differences of GPS [see Section IV-D, 2)] describe no more

than is necessary to define a single goal, and a priority scheme

selects just one of these to characterize the situation. Gelernter

and Rochester [62] suggest using a property-weighting scheme, a

special case of the "Bayes net" described in Section II-G.

D. Planning

Ordinarily one can solve a complicated problem only by dividing

it into a number of parts, each of which can be attacked by a

smaller search (or be further divided). A successful division will

reduce the search time not by a mere fraction, but by a fractional

exponent. In a graph with 10 branches descending from each

node, a 20-step search might involve 10

20

 trials, which is out of

the question, while the insertion of just four lemmas or sequential

subgoals might reduce the search to only 5*10

4

trials, which is

within reason for machine exploration. Thus, it will be worth a

relatively enormous effort to find such "islands" in the solution of

complex problems. See section 10 of [6]. Note that even if one

encountered, say, 10

6

 failures of such procedures before success,

one would still have gained a factor of perhaps 10

10

in overall

trial reduction! Thus practically any ability at all to "plan," or

"analyze," a problem will be profitable, if the problem is difficult.

It is safe to say that all simple, unitary, notions of how to build an

intelligent machine will fail, rather sharply, for some modest

level of problem difficulty. Only schemes which actively pursue

an analysis toward obtaining a set of sequential goals can be

expected to extend smoothly into increasingly complex problem

61 of 85 06/11/16 15:48

domains.

Perhaps the most straightforward concept of planning is that of

using a simplified model of the problem situation. Suppose that

there is available, for a given problem, some other problem of

"essentially the same character" but with less detail and

complexity. Then we could proceed first to solve the simpler

problem. Suppose, also, that this is done using a second set of

methods, which are also simpler, but in some correspondence

with those for the original. The solution to the simpler problem

can then be used as a "plan" for the harder one. Perhaps each step

will have to be expanded in detail. But the multiple searches will

add, not multiply, in the total search time. The situation would be

ideal if the model were, mathematically, a homomorphism of the

original. But even without such perfection, the model solution

should be a valuable guide. In mathematics, one's proof

procedures usually run along these lines: one first assumes, e.g.,

that integrals and limits always converge, in the planning stage.

Once the outline is completed, ill this simple-minded model of

mathematics, then one goes back to try to "make rigorous" the

steps of the proof, i.e., to replace them by chains of argument

using genuine rules of inference. And even if the plan fails, it

may be possible to patch it by replacing just a few of its steps.

Another aid to planning' is the semantic, as opposed to the

homomorphic, model [14], [9]. Here we may have an

interpretation of the current problem within another system, not

necessarily simpler, but with which we are more familiar and for

which we know methods that are more powerful. Thus, in

connection with a plan for the proof of a theorem, we will want to

62 of 85 06/11/16 15:48

know whether the proposed lemmas, or islands in the proof, are

actually true. If not, the plan will surely fail. We can often easily

tell if a proposition is true by looking at an interpretation. Thus

the truth of a proposition from plane geometry can be supposed,

at least with great reliability, by actual measurement of a few

constructed drawings (or the analytic geometry equivalent). The

geometry machine of Gelernter and Rochester [62], [69] uses

such a semantic model with excellent results; it follows closely

the lines proposed in [14].

The "Character-Algebra" Model: Planning with the aid of a

model is of the greatest value in reducing search. Can w e

construct machines that find their own models? I believe the

following will provide a general, straightforward way to

construct certain kinds of useful abstract models. The critical

requirement is that we be able to compile a "Character-Method

Matrix" (in addition to the simple Character-Method table in

Section IV-C. The CM matrix is an array of entries, which

predict with some reliability what, will happen when methods are

applied to problems. Both of the matrix dimensions are indexed

by problem Characters; if there is a method which usually

transforms problems of character C, into problems of character C

j

then let the matrix entry C

ij

 be the name of that method (or a list

of such methods). If there is no such method, the corresponding

entry is null.

Now suppose that there is no entry for C

ij

—meaning that we

have no direct way to transform a problem of type C

i

 into one of

type Cj. Multiply the matrix by itself. If the new matrix has a

non-null (i, j) entry then there must be a sequence of two methods

63 of 85 06/11/16 15:48

which effects the desired transformation. If that fails, we may try

higher powers. Note that [if we put unity for the (i, i) terms] we

can reach the 2**2**n matrix power with just n multiplications.

We don't need to define the symbolic multiplication operation;

one may instead use arithmetic entries putting unity for any

non-null entry and zero for any null entry in the original matrix.

This yields a simple connection, or flow diagram, matrix, and its

nth power tells us something about its set of paths of length 2**n.

See, e.g., [88]. (Once a non-null entry is discovered, there exist

efficient ways to find the corresponding sequences of methods.

The problem is just that of finding paths through a maze, and the

method of Moore [71] would be quite efficient. Almost any

problem can be converted into a problem of finding a chain

between two terminal expressions in some formal system.) If the

Characters are taken to be abstract representations of the problem

expressions, this "Character-Algebra'' model can be as abstract as

are the available pattern-recognition facilities. See [14] and [9].

The critical problem in using the Character-Algebra model for

planning is, of course, the prediction-reliability of the matrix

entries. One cannot expect the Character of a result to be strictly

determined by the Character of the original and the method used.

And the reliability of the predictions will, in any case, deteriorate

rapidly as the matrix power is raised. But, as we have noted, any

plan at all is so much better than none that the system should do

very much better than exhaustive search, even with quite poor

prediction quality.

This matrix formulation is obviously only a special case of the

character planning idea. More generally, one will have

64 of 85 06/11/16 15:48

descriptions, rather than fixed characters, and one must then have

more general methods to calculate from a description what is

likely to happen when a method is applied.

Characters and Differences: In the GPS (General Problem

Solver) proposal of Newell, Shaw, and Simon [68], [15], we find

a slightly different framework: they use a notion of Difference

between two problems (or expressions) where we speak of the

Character of a single problem. These views are equivalent if we

take our problems to be links or connections between

expressions. But this notion of Difference (as the Character of a

pair) does lend itself more smoothly to teleological reasoning.

For what is the goal defined by a problem but to reduce the

"difference" between the present state and the desired state? The

underlying structure of GPS is precisely what we have called a

"Character-Method Ma-chine" in which each kind of Difference

is associated in a table with one or more methods which are

known to "reduce" that Difference. Since the characterization

here depends always on 1) the current problem expression and 2)

the desired end result, it is reasonable to think, as its authors

suggest, of GPS as using "means- end" analysis.

To illustrate the use of Differences, we shall review an example

[15]. The problem, in elementary propositional calculus, is to

prove that from S and (not P implies Q) we can deduce (Q or P)

and S. The program looks at both at these expressions with a

recursive matching process which branches out from the main

connectives. The first Difference it encounters is that S occurs on

different sides of the main connective "and". It therefore looks in

the Difference-Method table under the heading ''change position."

65 of 85 06/11/16 15:48

It discovers there a method which uses the theorem (A and B)

=(B and A) which is obviously useful for removing, or

"reducing," differences of position. GPS applies this method,

obtaining (not P implies Q) and S. Then GPS asks what is the

Difference between this new expression and the goal. This time

the matching procedure gets down into the connectives inside the

left-hand members and finds a Difference between the

connectives "implies" and "or". It now looks in the C-M table

under the heading "Change Connective" and discovers an

appropriate method using not A implies B = A or B. It applies this

method, obtaining (P or Q) and S. In the final cycle, the

difference-evaluating procedure discovers the need for a "change

position" inside the left member' and applies a method using (A

or B) = (B or A). This completes the solution of the problem.

Compare this with the "matching,' process described in [57]. The

notions of "Character," "Character-Algebra," etc., originate in

[14] but seem useful in describing parts of the "GPS', system of

[57] and [151. Reference [15] contains much additional material

we cannot survey here. Essentially, GPS is to be self-applied to

the problem of discovering sets of Differences appropriate for

given problem areas. This notion of "bootstrapping"—that is,

applying a problem-solving system to the task of improving some

of its own methods—is old and famil1ar, but in [15] we find

perhaps the first specific proposal about how such an advance

might be realized.

Evidently, the success of this "means-end" analysis in reducing

general search will depend on the degree of specificity that can

be written into the Difference-Method table—basically the same

66 of 85 06/11/16 15:48

requirement for an effective Character-Algebra.

It may be possible to plan using Differences, as well. Imagine a

"Difference-Algebra" in which the predictions have the form D =

D

1

D

2

. One must construct accordingly a difference-factorization

algebra for discovering longer chains D=D

1

D

2 . . .

D

n

 and

corresponding method plans. We should note that one cannot

expect to use such planning methods with such primitive

Differences as in [15]. These cannot form good Character

Algebras because (unless their expressions have many levels of

descriptive detail) their matrix powers will swiftly become

degenerate. This degeneracy will ultimately limit the capacity of

any formal planning device.

One may think of the general planning heuristic as embodied in a

recursive process of the following form.

Suppose we have a problem P:

Form a plan for problem P.

----Select first (next) step of the plan.

------- (If no more steps, exit with "success.")

----Try the suggested method(s):

---------Success: return to try next step in the plan.

---------Failure: return to form new plan, or perhaps change

current plan to avoid this step.

----Problem judged too difficult: Apply this entire procedure to

the 'sub-' problem of the current step.

Observe that such a program schema is essentially recursive; it

uses itself as a subroutine (explicitly, in the last step) in such a

67 of 85 06/11/16 15:48

way that its current state has to be stored, and restored when it

returns control to itself. [This violates, for example, the

restrictions on "DO loops" in programming systems such as

FORTRAN. Convenient techniques for programming such

processes were developed by Newell, Shaw, and Simon [64]; the

program state-variables are stored in "pushdown lists" and both

the program and the data are stored in the form of "list-

structures." Gelernter [69] extended FORTRAN to manage some

of this. McCarthy has extended these notions in LISP [32] to

permit explicit recursive definitions of programs in a language

based on recursive functions of symbolic expressions. In LISP,

the management of program-state variables is fully automatic.

See also Orchard-Hays' article in this issue.]

In chapters 12 and 13 of [46], Miller, Galanter, and Pribram

discuss possible analogies between human problem solving and

some heuristic planning schemes. It seems certain that, for at

least a few years, there will be a close association between

theories of human behavior and attempts to increase the

intellectual capacities of machines. But, in the long run, we must

be prepared to discover profitable lines of heuristic programming

which do not deliberately imitate human characteristics.

Limitations of space preclude detailed discussion here of theories

of self-organizing neural nets, and other models based on brain

analogies. Several of these are described or cited in [C] and [D].

This omission is not too serious, I feel, in connection with the

subject of heuristic programming, because the motivation and

methods of the two areas seem so different. Up to the present

time, at least, research on neural-net models has been concerned

68 of 85 06/11/16 15:48

mainly with the attempt to show that certain rather simple

heuristic processes e.g., reinforcement learning, or property-list

pattern-recognition, can be realized or evolved by collections of

simple elements without very highly organized interconnections.

Work on heuristic programming is characterized quite differently

by the search for new, more powerful heuristics for solving very

complex problems, and by very little concern for what hardware

(neuronal or otherwise) would minimally suffice for its

realization. In short, the work on "nets" is concerned with how

far one can get with a small initial endowment; the work on

"artificial intelligence', is concerned with using all we know to

build the most powerful systems that we can. It is my expectation

that, in problem-solving power, the (allegedly brain-like)

minimal-structure systems will never threaten to compete with

their more deliberately designed contemporaries, nevertheless,

their study should prove profitable in the development of

component elements and subsystems to be used in the

construction of the more systematically conceived machines.

V. INDUCTION AND MODELS

A. Intelligence

In all of this discussion we have not come to grips with anything

we can isolate as "intelligence." We have discussed only

heuristics, shortcuts, and classification techniques. Is there

something missing? I am confident that sooner or later we will be

able to assemble programs of great problem-solving ability from

complex combinations of heuristic devices-multiple optimizers,

pattern-recognition tricks, planning algebras, recursive

69 of 85 06/11/16 15:48

administration procedures, and the like. In no one of these will

we find the seat of intelligence. Should we ask what intelligence

"really is"? My own view is that this is more of an esthetic

question, or one of sense of dignity, than a technical matter! To

me "intelligence" seems to denote little more than the complex of

performances which we happen to respect, but do not understand.

So it is, usually, with the question of "depth" in mathematics.

Once the proof of a theorem is really understood, its content

seems to become trivial. (Still, there may remain a sense of

wonder about how the proof was discovered.)

Programmers, too, know that there is never any "heart" in a

program. There are high-level routines in each program, but all

they do is dictate that "if such-and-such, then transfer to

such-and-such a subroutine." And when we look at the low-level

subroutines, which "actually do the work," we find senseless

loops and sequences of trivial operations, merely carrying out the

dictates of their superiors. The intelligence in such a system

seems to be as intangible as becomes the meaning of a single

common word when it is thoughtfully pronounced over and over

again.

But we should not let our inability to discern a locus of

intelligence lead us to conclude that programmed computers

therefore cannot think. For it may be so with man, as with

machine, that, when we understand finally the structure and

program, the feeling of mystery (and self-approbation) will

weaken. See [14] and [9]. We find similar views concerning

"creativity" in [60]. The view expressed by Rosenbloom [73] that

minds (or brains) can transcend machines is based, apparently, on

70 of 85 06/11/16 15:48

an erroneous interpretation of the meaning of the "unsolvability

theorems" of Godel.

On problems of volition we are in general agreement with

McCulloch [75] that our freedom of will "presumably means no

more than that we can distinguish between what we intend [i.e.,

our plan], and some intervention in our action." See also MacKay

([76] and its references); we are, however, unconvinced by his

eulogization of "analogue" devices. Concerning the "mind-brain"

problem, one should consider the arguments of Craik [77], Hayek

[78] and Pask [79]. Among the active leaders in modern heuristic

programming, perhaps only Samuel [91] has taken a strong

position against the idea of machines thinking. His argument,

based on the fact that reliable computers do only that which they

are instructed to do, has a basic flaw; it does not follow that the

programmer therefore has full knowledge (and therefore full

responsibility and credit for) what will ensue. For certainly the

programmer may set up an evolutionary system whose limitations

are for him unclear and possibly incomprehensible. No better

does the mathematician know all the consequences of a proposed

set of axioms. Surely a machine has to be in order to perform.

But we cannot assign all the credit to its programmer if the

operation of a system comes to reveal structures not recognizable

or anticipated by the programmer. While we have not yet seen

much in the way of intelligent activity in machines, Samuel's

arguments in [91] (circular in presuming that machines do not

have minds) do not assure us against this. Turing [72] gives a

very knowledgeable discussion of such matters.

B. Inductive Inference

71 of 85 06/11/16 15:48

Let us pose now for our machines, a variety of problems more

challenging than any ordinary game or mathematical puzzle.

Suppose that we want a ma chine which, when embedded for a

time in a complex environment or "universe," will essay to

produce a description of that world-to discover its regularities or

laws of nature. We might ask it to predict what will happen next.

We might ask it to predict what would be the likely consequences

of a certain action or experiment. Or we might ask it to formulate

the laws governing some class of events. In any case, our task is

to equip our machine with inductive ability-with methods, which

it can use to construct general statements about events beyond its

recorded experience. Now, there can be no system for inductive

inference that will work well in all possible universes. But given

a universe, or an ensemble of universes, and a criterion of

success, this (epistemological) problem for machines becomes

technical rather than philosophical. There is quite a literature

concerning this subject, but we shall discuss only one approach

which currently seems to us the most promising; this is what we

might call the "grammatical induction" schemes of Solomonoff

[55], [16], [17], based partly on work of Chomsky and Miller

[80], [81].

We will take language to mean the set of expressions formed

from some given set of primitive symbols or expressions, by the

repeated application of some given set of rules; the primitive

expressions plus the rules is the grammar of the language. Most

induction problems can be framed as problems in the discovery of

grammars. Suppose, for instance, that a machine's prior

experience is summarized by a large collection of statements,

72 of 85 06/11/16 15:48

some labeled "good" and some 'bad" by some critical device.

How could we generate selectively more good statements? The

trick is to find some relatively simple (formal) language in which

the good statements are grammatical, and in which the bad ones

are not. Given such a language, we can use it to generate more

statements, and presumably these will tend to be more like the

good ones. The heuristic argument is that if we can find a

relatively simple way to separate the two sets, the discovered rule

is likely to be useful beyond the immediate experience. If the

extension fails to be consistent with new data, one might be able

to make small changes in the rules and, generally, one may be

able to use many ordinary problem-solving methods for this task.

The problem of finding an efficient grammar is much the same as

that of finding efficient encodings, or programs, for machines; in

each case, one needs to discover the important regularities in the

data, and exploit the regularities by making shrewd

abbreviations. The possible importance of Solomonoff's work

[18] is that it may point the way toward systematic mathematical

ways to explore this discovery problem. He considers the class of

all programs (for a given general-purpose computer) which will

produce a certain given output (the body of data in question).

Most such programs, if allowed to continue, will add to that body

of data. By properly weighting these programs, perhaps by

length, we can obtain corresponding weights for the different

possible continuations, and thus a basis for prediction. If this

prediction is to be of any interest, it will be necessary to show

some independence of the given computer; it is not yet clear

precisely what form such a result will take.

73 of 85 06/11/16 15:48

C. Models of Oneself

If a creature can answer a question about a hypothetical

experiment, without actually performing that experiment, then

the answer must have been obtained from some submachine

inside the creature. The output of that submachine (representing a

correct answer) as well as the input (representing the question)

must be coded descriptions of the corresponding external events

or event classes. Seen through this pair of encoding and decoding

channels, the internal submachine acts like the environment, and

so it has the character of a "model." The inductive inference

problem may then be regarded as the problem of constructing

such a model.

To the extent that the creature's actions affect the environment,

this internal model of the world will need to include some

representation of the creature itself. If one asks the creature "why

did you decide to do such and such" (or if it asks this of itself),

any answer must come from the internal model. Thus the

evidence of introspection itself is liable to be based ultimately on

the processes used in constructing one's image of one's self.

Speculation on the form of such a model leads to the amusing

prediction that intelligent machines may be reluctant to believe

that they are just machines. The argument is this: our own

self-models have a substantially "dual" character; there is a part

concerned with the physical or mechanical environment (that is,

with the behavior of inanimate objects)—and there is a part

concerned with social and psychological matters. It is precisely

because we have not yet developed a satisfactory mechanical

theory of mental activity that we have to keep these areas apart.

74 of 85 06/11/16 15:48

We could not give up this division even if we wished to—until

we find a unified model to replace it.

Now, when we ask such a creature what sort of being it is, it

cannot simply answer "directly." It must inspect its model(s).

And it must answer by saying that it seems to be a dual

thing-which appears to have two parts-a "mind" and a "body."

Thus, even the robot, unless equipped with a satisfactory theory

of artificial intelligence, would have to maintain a dualistic

opinion on this matter.

There is a certain problem of infinite regression in the notion of a

machine having a good model of itself: of course, the nested

models must lose detail and finally vanish. But the argument,

e.g., of Hayek (See 8.69 and 8.79 of [78]) —that we cannot "fully

comprehend the unitary order" (of our own minds)— ignores the

power of recursive description. In particular, it overlooks

Turing's demonstration that (with sufficient external writing

space) a "general-purpose" machine can answer any question

about a description of itself that any larger machine could

answer.

CONCLUSION

In attempting to combine a survey of work on "artificial

intelligence" with a summary of our own views, we could not

mention every relevant project and publication. Some important

omissions are in the area of 'brain models"; the early work of

Belmont Farley and Wesley Clark [92] (also Farley's paper in

[D], often unknowingly duplicated, and the work of Nathaniel

75 of 85 06/11/16 15:48

Rochester [82] and Peter Milner [D].) The work of Jerome

Lettvin, et al. [83] is related to the theories in [19]. We did not

touch at all on the problems of logic and language, and of

information retrieval, which must be faced when action is to be

based on the contents of large memories; see, e.g., John

McCarthy [701. We have not discussed the basic results in

mathematical logic that bear on the question of what can be done

by machines. There are entire literatures we have hardly even

sampled-the bold pioneering of Nicholas Rashevsky (c. 1929)

and his later co-workers [95]; Theories of Learning, e.g., Saul

Gorn [84]; Theory of Games, e.g., Martin Shubik [85]; and

Psychology, e.g., Jerome Bruner, et al. [861. And everyone

should know the work of George Polya [87] on how to solve

problems. We can hope only to have transmitted the flavor of

some of the more ambitious projects directly concerned with

getting machines to take over a larger portion of problem-solving

tasks.

One last remark: we have discussed here only work concerned

with more or less self-contained problem solving programs. But

as this is written, we are at last beginning to see vigorous activity

in the direction of constructing usable time-sharing or

multiprogramming computing systems. With these systems, it

will at last become economical to match human beings in real

time with really large machines. This means that we can work

toward programming what will be, in effect, "thinking aids." In

the years to come, we expect that these man-machine systems

will share, and perhaps for a time be dominant, in our advance

toward the development of "artificial intelligence."

76 of 85 06/11/16 15:48

BIBLIOGRAPHY

Work in this area seems to be currently prominent in the

following periodicals:

1) IBM J. Res. & Dev.

2) Information and Control.

3) Proc. EJCC and WJCC (Eastern and Western Joint Computer

Conferences.)

4) IRE National Convention Record.

5) J. Assoc. Comp. Mach. (JACM).

6) Trans. Assoc. Comp. Mach. TACM)

7) IRE Transactions on Information Theory

A more informative bibliography, by the present author should

appear shortly in the IRE Trans. on Human Factors in

Electronics. NOTE: That bibliography appeared in

Marvin Minsky, "A Selected Descriptor-Indexed Bibliography to

the Literature on Artificial Intelligence," IRE Transactions on

Human Factors in Electronics, HFE-2, March 1961, pp. 39-55.

Reprinted in Computers and Thought, Ed. E.A. Feigenbaum and

J. Feldman, pp. 453-524, McGraw-Hill, 1963.

Many citations below were published in these volumes:

[A] Proc. WJCC, March 1955.

[B] "Automata Studies," C. E. Shannon and J. McCarthy, Eds.

Princeton Univ. Press, Princeton, N. J., 1956.

[C] Proc. Symp. On Mechanization of Thought Processes, Her

Majesty's Stationery Office, London, 1959.

[D] "Self-Organizing Systems," M. T. Yovitts and S. Cameron,

77 of 85 06/11/16 15:48

Eds., Pergamon Press, New York, N. Y., 1960.

[E] Proc. Intl. Conf. on Information Processing, UNESCO

House, Paris, 1959

[F] Proc. EJCC, December 1959.

[G] Comm. ACM, vol. 3, April 1960. (Preprints of Conf. on

Symbol Manipulation Programs.)

[H] Fourth London Symp. on Information Theory, C. Cherry, Ed.

[J] Third London Symp. on Information Theory, C. Cherry, Ed.,

Academic Press, Inc., New York, N. Y., 1956.

[K] J.R. Newman, Ed., "The World of Mathematics," Simon and

Schuster, Inc., New York, N. Y., 1956.

[L] IRE Trans. On Information Theory, vol. IF-2, September

1956

[01] J. McCarthy, "The inversion of functions defined by Turing

machines," in [B].

[02] A. L. Samuel, "Some studies in machine learning using the

game of checkers," IBM J. Res. Dev., vol. 3, pp. 211-219, July

1959.

[03] C. E. Shannon, "Programming a digital computer for playing

chess, " in [K].

[04] C. E. Shannon, "Synthesis of two-terminal switching

networks," Bell Sys. Tech. J., vol. 28, pp. 59-98, 1949.

[05] W. R. Ashby, "Design for a Brain," John Wiley and Sons,

Inc. New York, N. Y., 1952.

[06] W. R. Ashby, '"Design for an intelligence amplifier," in [B].

[07] M. L. Minsky and O. G. Selfridge, "Learning in random

nets," in [H].

[08] H. Sherman, "A quasi-topological method for machine

recognition of line patterns, " in [E].

[09] M. L. Minsky, "Some aspects of heuristic programming and

78 of 85 06/11/16 15:48

artificial intelligence," in [C].

[10] W. Pitts and W. S. McCulloch, "How we know universals,"

Bull. Math. Biophys., vol. 9, pp. 127-147, 1947.

[11] N. Wiener, "Cybernetics," John Wiley and Sons, Inc., New

York, N. Y., 1948

[12] O. G. Selfridge, "Pattern recognition and modern

computers,"

[13] G. P. Dinneen, "Programming pattern recognition," in [A].

[14] M. L. Minsky, "Heuristic Aspects of the Artificial

Intelligence Problem," Lincoln Lab., M.I.T., Lexington, Mass.,

Group Rept. 34-55, ASTIA Doc. No. 236885, December 1956.

(M.I.T. Hayden Library No. H-58.)

[15] A. Newell, T. C. Shaw, and H. A. Simon, "A variety of

intelligent learning in a general problem solver," in [D].

[16] R. J. Solomonoff, "The Mechanization of Linguistic

Learning," Zator Co., Cambridge, Mass., Zator Tech. Bull. No.

125, Second Intl Congress on Cybernetics Namur, Belgium-

September 1958

[17] R. J. Solomonoff "A new method for discovering the

grammars of phrase structure languages," in [E].

[18] R. J. Solomonoff, "A Preliminary Report on a General

Theory of Inductive Inference," Zator Co., Cambridge, Mass.,

Zator Tech. Bull. V-131, February 1960.

[19] O. G. Selfridge, "Pandemonium: a paradigm for learning," in

[C]

[20] O. G. Selfridge and U Neisser, "Pattern recognition by

machine," Sci. Am, vol. 203, pp. 60-68, August 1960.

[21] A. L. Samuel, "Some studies in machine learning using the

game of checkers," IBM J. Res. Dev., vol. 3,pp. 211-219, July

1959.

79 of 85 06/11/16 15:48

[22] F. Rosenblatt, "The Perceptron" Cornell Aeronautical Lab.

Inc., Ithaca, N. Y. Rept. VG-1196, January 1958. See also the

article of Hawkins in this issue.

[23] W. H. Highleyman and L. A. Kamentsky, "Comments on a

character recognition method of Bledsoe and Browning"

(Correspondence), IRE Trans. On Electronic Computers, vol. I

EC-9, p. 263, June 1960.

[24] W. W. Bledsoe and I. Browning, "Pattern recognition and

reading by machine, in [F].

[25] L. G. Roberts, "Pattern recognition with an adaptive

network," IRE International Convention Record, 1960 pt. 2, p66

[26] W. Doyle, '"Recognition of Sloppy, Hand-Printed

Characters," Lincoln Lab., M.I.T., Lexington, Mass., Group Rept.

54-12, December 1959.

[27] R. A. Kirsch, C. Ray, L. Cahn, and G. H. Urban,

"Experiments in Processing Pictorial Information with a Digital

Computer," Proc. EJCC, pp. 221-229- December 1957.

[28] A. M. Uttley, "Conditional probability machines " and

"Temporal and spatial patterns in a conditional probability

machine,"

[29] A. M. Uttley, "Conditional probability computing in a

nervous system," in [C].

[30] C. N. Mooers, "Information retrieval on structured content,"

[31] C. E. Shannon, "Programming a digital computer for playing

chess," in [K].

[32] J. McCarthy, Recursive Functions of Symbolic

Expressions," in [G]

[33] J. S. Bomba, "Alpha-numeric character recognition using

local operations," in [F].

[34] R. L. Grimsdale, et al., "A system for the automatic

80 of 85 06/11/16 15:48

recognition of patterns," Proc. IEE, vol. 106, pt. B, March 1959.

[35] S. H. Unger, Pattern detection and recognition" PROC. IRE

vol. 47, pp. 1737-1752, October 1959

[36] J. H. Holland, "on iterative circuit computers constructed of

microelectronic components and systems," Proc. WJCC, pp.

[37] D. O. Hebb, "The Organization of Behavior," John Wiley

and Sons, Inc., New York N. Y., 1949

[38] W. Kohler, "Gestalt Psychology". M~ 279-1947.

[39] N. Haller, "Line Tracing for Character Recognition,"

M.S.E.E. thesis, M.I.T., Cambridge, Mass., 1959

[40] N. Minot, "Automatic Devices for Recognition of Visible

Two-dimensional Patterns: A Survey of the Field" U. S. Naval

Electronics Lab., San Diego, Calif., Tech. Memo. 364, June 25,

[41] M. E. Stevens, "A Survey of Automatic Reading

Techniques," NBS, U. S. Dept. of Commerce, Washington, D. C.,

Rept. 564L3, August 1957.

[42] N. Tinbergen, "The Study of Instinct," Oxford University

Press, New York, N. Y., 1951

[43] O. G. Selfridge, " Pattern recognition and learning" in [J]

[44] B. F. Skinner, "Science and Human Behavior," The

Macmillan Co., New York, N. Y., 1953.

[45] Robert R. Bush, Frederick Mosteller: A Mathematical

Model for Simple Learning. Ps. Rev., 58, 1951, 313-323.

[46] G. A. Miller, E. Galanter and K. H. Pribram, "Plans and the

Structure of Behavior," Henry Holt and Co., Inc., New York,

[47] M. L. Minsky, "Neural Nets and the Brain Model Problem "

Ph.D. dissertation, Princeton Univ., Princeton, N. J., 1954.

(University Microfilms, Ann Arbor.)

[48] A. Bernstein, et al., "A chess playing program for the IBM

704," WJCC, pp. 157-159, 1958

81 of 85 06/11/16 15:48

[49] A. Newell, J. C. Shaw, and H. A. Simon, "Chess-playing

programs and the problem of complexity," IBM J. Res. Dev. vol.

2, p. 320 ff., October 1958

[50] A. Newell, The chess machine," in [A].

[51] R. Bellman, "Dynamic Programming," Princeton University

Press, Princeton, N.J, 1957.

[52] M. Freimer, "Topics in Dynamic Programming 11," Lincoln

Lab., M.I.T., Lexington, Mass., Rept. 52-G-0020, April 1960.

(M.I.T. Hayden Library No. H-82). See especially sec. I-E.

[53] R. M. Friedberg, "A learning machine, part I," IBM J. Res.

Dev., vol. 2, pp. 2-13, January 1958.

[54] R. M. Friedberg, B. Dunham, and J. H. North, "A learning

ma- chine, part II," IBM J. Res. 6' Dev., vol. 3, pp. 282-287, July,

[55] R. J. Solomonoff, "An inductive inference machine," 1957

IRE National Convention Record, pt. 2, pp. 56—62

[56] C. D. Darlington, The Evolution of Genetics", Basic Books,

New York, N. Y, 1958.

[57] A. Newell and H. A. Simon, "The logic theory machine," in

[L]

[58] A. Newell, J. C. Shaw, and H. A. Simon, "Empirical

explorations of the logic theory machine, Proc. WJCC, pp.

218-230

[59] H. Wang, Toward mechanical mathematics," IBM J. Res.

Dev., vol. 4, pp. 2-22, January 1960.

[60] A. Newell, J. C. Shaw and, H. A. Simon, "Elements of a

theory of human problem solving," Psych. Rev. vol. 65, p. 151,

March,

[61] M. Davis and H. Putnam, "A computing procedure for

quantification theory," J. ACM, vol. 7 pp. 201-215, July 1960.

[62] H. Gelernter and N. Rochester, "Intelligent behavior in

82 of 85 06/11/16 15:48

problem-solving machines," IBM J. Res. & Dev., vol. 2, p. 336

ff. October 1958.

[63] C. E. Shannon, "Game-playing machines," J. Franklin Inst.

vol. 206, pp. 447-453, December 1955

[64] A. Newell and F. Tonge, "Introduction to IPL-V," Comm.

CM, vol. 3, April, 196x

[65] S. Golumb, "A mathematical theory of discrete

classification,"

[66] J. Wozencraft and M. Horstein, "Coding for two-way

channels, "

[67] J. Slagle, "A computer program for solving integration

problems in 'Freshman Calculus'," PhD. Thesis, 1961, M.I.T.,

Cambridge, Mass.

[68] A. Newell, J. C. Shaw, and H. A. Simon, "Report on a

general problem-solving program," in [E].

[69] H. L. Gelernter, "Realization of a geometry-proving

machine,'

[70] J. McCarthy, "Programs with common sense," in [C].

[71] E. F. Moore, "On the shortest path through a maze," Proc

Intl. Symp. on the Theory of Switching, Harvard Univ.

[72] A. M. Turing, "Can a machine think? " in [K]

[73] P. Rosenbloom, "Elements of Mathematical Logic," Dover

Publications, New York, N. Y., 1951

[74] H. Rogers, "Review of 'Godel's Proof' by Newman and

Nagel," Am. Math. Monthly, vol. 67, p. 98, January 1960.

[75] W. S. McCulloch, "Through the den of the metaphysician,"

Brit. J. Phil. Science, vol. 5, 1954.

[76] D. M. MacKay, "Operational aspects of intellect," in [C]

[77] K. J. W. Craik "The Nature of Explanation," Cambridge

Univ. Press, 1952. Preface dated 1943.

83 of 85 06/11/16 15:48

[78] F. A. Hayek, "The Sensory Order," Routledge and Kegan

Paul, London, 1952

[79] G. Pask, "Physical analogues to the growth of a concept," in

[C]

[80] A. N. Chomsky, "Syntactic Structures," Mouton, The Hague

[81] N. Chomsky and G. A. Miller, "Finite State languages",

Information and Control, v. I, pp. 91-112- May 1958

[82] N. Rochester, et al., "Tests on a cell assembly theory of the

action of the brain, using a large digital computer," in [L]

[83] J. Y. Lettvin, H. Maturana, W. S. McCulloch, and W. Pitts

"What the frog's eye tells the frog's brain," Proc. IRE, vol. 47 pp.

1940-1951- November 1959.

[84] S. Gorn, "On the mechanical simulation of learning and

habit- forming," Information and Control, vol. 2, pp. 226-259,

September 1959.

[85] M. Shubik, "Games, decisions and industrial organization,"

Management Science vol. 6, pp. 455-474- July 1960.

[86] J. S. Bruner, J. Goodnow, and G. Austin, "A Study of

Thinking," John Wiley and Sons, Inc., New York, N. Y., 1956.

[87] G. Polya, "How to Solve It," Princeton Univ. Press,

Princeton N. J., 1945. Also, "Induction and Analogy in

Mathematics," and "Patterns of Plausible Inference," 2 vols.

Princeton Univ. Press, Princeton, N. J., 1954.

[88] F. E. Hohn, S. Seshu, and D. D. Aufenkamp, "The theory of

nets," IRE Trans. on Electronic Computers, Vol. EC-6, pp.

154-161, September 1957.

[89] D. M. MacKay, "The epistemological problem for

automata,"

[90] I. J. Good, "Weight of evidence and false target

probabilities," in [H]

84 of 85 06/11/16 15:48

[91] A. Samuel, Letter to the Editor, Science, vol. 132, No. 3429,

September 16, 1960. (Incorrectly labeled vol. 131 on cover.)

[92] B. G. Farley and W. A. Clark, "Simulation of self-organizing

systems by digital computer," IRE Transactions on Information

Theory, pp. 76-84, September 1954.

[93] H. Wang, "Proving theorems by pattern recognition, I," in

[G].

[94] T. Kilburn, R. L. Grimsdale, and F. H. Sumner,

"Experiments in machine thinking and learning," in [E].

[95] N. Rashevsky, "Mathematical Biophysics," Dover

Publications, Inc., New York, N. Y., vol. 2, 1960

85 of 85 06/11/16 15:48

