
Contents

Evolution of Geometrical Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Aaron Sloman

1 Turing’s largely unnoticed observation . . . . . . . . . . . . . . . . . . . . . . . . 4
2 What is mathematics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Patterns of information and control . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Toddler theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Human engineering lags behind and jumps ahead of evolution . . . . 9

5.1 Kant on mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 The biological significance of biological philosophy of

mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Mixed messages from Frege . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.1 Different conceptions of mathematics . . . . . . . . . . . . . . . . . 15
7 The blind theorem-prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 Types of domain mastery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9 Mathematical mastery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10 What makes a domain mathematical? . . . . . . . . . . . . . . . . . . . . . . . . 21
11 Mathematical development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12 A domain of curves on a doughnut . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
13 Mathematisation of a domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
14 Domains in the physical environment . . . . . . . . . . . . . . . . . . . . . . . . . 30
15 Domains of view-changes and epistemic affordances . . . . . . . . . . . . 31
16 What’s the source of arithmetical truths? . . . . . . . . . . . . . . . . . . . . . . 33
17 Mathematical theory formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
18 Can we explain and replicate human geometric reasoning? . . . . . . . 37
19 The Side Stretch Theorem (SST) and area of a triangle . . . . . . . . . . 38
20 Implications for biological meta-cognition . . . . . . . . . . . . . . . . . . . . 42
21 Toward robot mathematicians discovering geometry . . . . . . . . . . . . 44
22 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
23 Preamble: evolution of information processing . . . . . . . . . . . . . . . . . 47
24 Pervasiveness of mathematical domains . . . . . . . . . . . . . . . . . . . . . . . 47
25 Evolution and finite brains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1



2 Contents

26 Evolving mathematicians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
27 Mathematical domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
28 What sorts of machines can be mathematicians? . . . . . . . . . . . . . . . . 47
29 A conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
30 Steps towards mathematical intelligence . . . . . . . . . . . . . . . . . . . . . . 47
31 Evolved and engineered solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
32 Non-human mathematical competences . . . . . . . . . . . . . . . . . . . . . . . 47
33 Domain of lines on a cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
34 Some discrete domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

(Table of contents for pre-publication version only.)

DRAFT: Revised February 16, 2014

NOTE TO COPY EDITORS
Please make NO changes unless you have first checked with me (by email to
a.sloman@cs.bham.ac.uk), including spelling and punctuation changes. If such
changes are made without prior consent I may withdraw this paper. I can’t spare
the time to search for and fix copy-editing mistakes – and in any case am not good
at finding them all.

For my reasons, please see: http://www.cs.bham.ac.uk/˜axs/publishing.html

http://www.cs.bham.ac.uk/~axs/publishing.html


Evolution of Geometrical Reasoning

Aaron Sloman

Invited contribution to: The Incomputable
Eds Mariya Soskova and S Barry Cooper
Previous title: “Incomputability of Geometrical Reasoning”

Abstract Revised 28 Dec 2013:
The Turing-inspired Meta-Morphogenesis project links ideas about the nature of
mathematics, as containing infinitely many domains of possible structures and
processes, with ideas about how evolution works: by (a) making mathematical
discoveries implicitly in solutions to biological design problems, then later (b)
providing new species with mechanisms for (implicitly) making such discoveries
themselves, then later (c) adding meta-cognitive mechanisms that allow individual
organisms to think about, and then later on discuss and share, what they have
learnt, or to have their learning enhanced by what others have learnt. There
are many intermediate steps, still mostly unknown. Philosophy of mathematics
normally focuses only on a few aspects of very late stages in the process,
whereas evolution and mathematical structures are deeply intertwined from the
earliest stages. Explaining how that is possible seems to require a combination
of Turing’s ideas about discrete computation and his ideas about chemistry-
based morphogenesis. The outcomes include competences produced by both
biological evolution and individual learning and development, that are important
for perceiving, understanding and using affordances in the environment (a point
made by James Gibson, though he focused on a narrow subset). I conjecture
that such competences were essential precursors to the mathematical discoveries
systematised in Euclidean geometry (a point Gibson did not notice, as far as I know).
A consequence is that normal humans are far more mathematically sophisticated
than they know or show, as are many other species. Some of the competences
have requirements that so far have not been met in AI models, and it is not
obvious how they could be implemented using current models of computation, even
though there are superficially similar achievements. Is there something about those
pre-Euclidean geometrical and topological reasoning competences that Turing-
equivalent machines cannot support, and if so could chemistry-based computation
do so? Or have we merely failed so far to devise appropriate computational
architectures, with the right mixture of spatial reasoning and meta-cognition?

Aaron Sloman
School of Computer Science, University of Birmingham, UK,
http://www.cs.bham.ac.uk/˜axs
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4 Aaron Sloman

1 Turing’s largely unnoticed observation

“In the nervous system chemical phenomena are at least as important as electrical.”
So wrote Alan Turing, in one of his most widely cited papers (Turing, 1950),
though the comment has largely gone unnoticed. In a paper published soon after
that, (Turing, 1952), he began to illustrate possible functions for chemical control
mechanisms in the formation of physical patterns and structures in organisms. I
suspect that if he had lived longer he would have developed theories about forms
of computation combining the resources of discrete and continuous mechanisms.
Chemical processes provide an enormous variety of mixtures of discrete and
continuous interaction. Perhaps such mixtures were essential for the evolution
of mathematical and proto-mathematical competences in living organisms. And
perhaps our future intelligent robots will need such mixtures. This paper presents
some of the groundwork for future research on such possibilities, focusing
mainly on the nature of mathematics and information-processing requirements
for the modes of discovery of mathematical truths by our ancestors and simpler
versions found in other animals and young children. The question whether Turing
machines provide an adequate basis for modelling and replicating animal and
human intelligence, and if not whether chemical information processing machines
would suffice, as suggested by the history of the “bootstrapping” of life and
mind by evolution, is raised but not answered. My arguments do not depend on
incompleteness theorems, only some peculiarities of geometrical reasoning, for
example in Euclid’s Elements. But the investigation depends in part on answering
the question “What is mathematics?”

2 What is mathematics?

Many answers have been offered, by philosophers and others. Wittgenstein wrote:
“For mathematics is after all an anthropological phenomenon” (Wittgenstein (1978)
Part VII section 33), and there seem to be many who agree with him. I shall try to
show that the implied claim that mathematics is a creation of human minds (either
as individuals or as members of a culture) is false, mainly because there are many
mathematical domains whose existence has nothing to do with the existence of
humans.1 There are different sorts of existence illustrated by electrons, New York,
the last day of my life, complex geometric shapes, shape-deformation trajectories,
prime numbers, infinite subsets of the natural numbers, infinite dimensional vector
spaces, proofs, conjectures, and logical contradictions, among many others. At most
three of those depend on the existence of humans, or mathematicians of any sort.

The dependence is mainly the other way round: the existence of mathematical
domains is required for thinkers to formulate conjectures, discover theorems, create
or modify proofs, and so on. For some that’s an uncontroversial claim. But I shall go

1 What “exists” means is a topic for another occasion.
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much further and try to show that long before humans existed biological evolution
(unwittingly) made use of mathematical domains that were (unwittingly) discovered
and used either by natural selection or by its products (e.g. individual organisms, or
groups of organisms). For example, homeostatic control mechanisms, found in all
organisms, used for many control functions, exemplify the mathematical structure
of a negative feedback loop (which admits many mathematically distinct variants),
evolved long before human engineers discovered their importance, and human
mathematicians studied their properties. While writing this paper I discovered that
Popper had expressed related ideas about biological organisms and evolutionary
processes as problem solvers (Popper, 1984) though he used different terminology
and made no mention of computer models of mathematical discovery and reasoning.

Later, discovery and use of various subsets of mathematics by individuals
(illustrated below) must have preceded the social activities leading to
explicit systematisation and published proofs of such mathematical discoveries,
spectacularly demonstrated in Euclid’s Elements, written over two millennia ago.
There was also much mathematical work done in other ancient cultures.2

There are some mathematical domains that are intrinsically related to human
activities, for example the domain of currency conversions between British pounds
and US dollars at different times. Such domains, however, are special cases of
more abstract domains of mappings between sets of numbers, whose existence has
nothing to do with humans. The same can be said of translational mappings between
sentences in human languages. The rest of this paper is about mathematical domains
whose existence does not depend on human activities, though their discovery and
use by humans does, of course. There must be infinitely many that have not yet
been discovered or used by humans, most of which never will be. Some of them
were used by evolution before humans existed.

3 Patterns of information and control

It is generally acknowledged that evolution and its products must use information
to control reproduction, including: information about physical forms of individual
organisms; information about physical structures underlying those forms (bones,
tendons, blood vessels, organs, etc.); information about initiation and control of
physical behaviours of whole organisms (exercising limbs, crawling, walking,
running, etc.); information about physical and chemical behaviours of internal
mechanisms (digestion, respiration, repair of damage, etc.); and information about
features of the environment with which individuals must interact (e.g. sensory
information used in young mammals to trigger and control sucking, very soon after
birth). In all those cases there are mathematical domains with biological instances.
In many cases there are different specialisations of the same domain, e.g. with

2 http://www.math.tamu.edu/˜dallen/history/euclid/euclid.html,
http://en.wikipedia.org/wiki/Chinese_mathematics,
http://en.wikipedia.org/wiki/Indian_mathematics

http://www.math.tamu.edu/~dallen/history/euclid/euclid.html
http://en.wikipedia.org/wiki/Chinese_mathematics
http://en.wikipedia.org/wiki/Indian_mathematics
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variations across individuals in the same and different species, and variations across
developmental processes of individuals, an example being patterns of control of
movements during changes of size, weight, shape, strength, and types of motion as
an individual develops. Evolution clearly “discovered” mechanisms that can adjust
themselves to accommodate such variations, mechanisms studied both in genetics
and in burgeoning research on epigenetic processes where genes, environment, and
developing structures interact.

What has not received so much attention in the past is the importance of
information about information, e.g. how to represent information, how to acquire
it, how to store it, how to derive new information from old, and now to use it in
a variety of processes including control of behaviour and control of information-
processing. These competences address a new class of domains, domains of
information structures, domains of processes of information manipulation, domains
of control processes, and many more. There are now many research communities
working on different subsets of biological information processing. But biological
evolution has to deal with all of them, and re-use of information about mathematical
commonalities is a requirement for avoiding an intractable explosion of problems to
be solved. The requirement to be able to re-use generic design information with
variation in details has long been understood by engineers, especially software
engineers, and played a major role in the development of programming languages
that support re-use, especially languages misleadingly labelled “object oriented”.3

In making use of biologically important mathematical domains, evolution
developed increasingly sophisticated forms of representation (i.e. structures for
encoding information), mechanisms for using information, and architectures for
combining information-processing mechanisms and functions within an organism.
Examples include sensing mechanisms, mechanisms for storing sensed information
for varying time-scales for varying purposes, mechanisms for comparing
information acquired at different times or different places (needed for feedback
control, for executing plans, for formulating and answering questions or testing
hypotheses), mechanisms for selecting between possible actions on the basis of
comparisons, and mechanisms for controlling the conversion of stored energy (e.g.
chemical energy) into other forms of energy (e.g. mechanical energy) in ways that
depend on current information structures (motives, beliefs, constraints, etc). See
Ganti (2003) for more details concerning such processes in the simplest organisms.

Biological information processing involves complex controlled interactions, as
opposed to passive storage. The ability of mud to record a footprint illustrates
very primitive passive information-processing, but the mud includes no mechanisms
that systematically relate a variety of information contents to a variety of needs,
goals, constraints, and learning processes. Mud has no needs or goals, nor such
mechanisms. So although the mud can be considered as a sort of limiting case (as a
circle is a limiting case of an ellipse), the processes are not rich and varied enough to
be describable as being related non-trivially to mathematical domains, unlike the use

3 See http://www.cs.bham.ac.uk/research/projects/poplog/teach/oop

http://www.cs.bham.ac.uk/research/projects/poplog/teach/oop
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of information by an insect, a plant or even a microbe that feeds, excretes, moves and
reproduces. (Contrast the uses of mud records by geologists and palaeontologists.)

The vast majority of such evolved organisms had no way of acquiring
information about what information-processing they were doing, how they were
doing it, what the alternatives were, etc. That required the development of meta-
cognitive sub-architectures capable of acquiring, transforming, interpreting, storing
and using information about information processing. For reasons discussed in
(Sloman and Chrisley, 2003; Sloman, 2010), it seems that discoveries made by
human engineers in the twentieth century concerning the use of virtual machines
as well as physical machinery were implicitly made millions of years earlier by
evolution, insofar as organisms began to evolve subsystems in which non-physical
processes, such as inference, were implemented in physical processes, and then
later on self-monitoring and self-modifying meta-cognitive mechanisms in new
virtual machines acquired the ability to observe and modify some of the processes
in pre-existing virtual machines, for instance noticing that a planning procedure
constantly produces plans that don’t work unless modified, which might enable the
planning procedure to be modified (as demonstrated in (Sussman, 1975) and other
AI experiments in the early 1970s).

The hypothesis of evolution of interacting virtual machines within organisms
was used in (Sloman, 2010), to explain (in outline) the existence of qualia, and
the partial introspectability of qualia, in ways that contradict many philosophical
and non-philosophical theories about consciousness, requirements for its existence,
and its evolution. For example, Sloman (2009a) demonstrates the possibility of
having visual qualia that are stored yet temporarily inaccessible, until an appropriate
probing question re-directs attention to the stored information.

These information processing mechanisms and architectures must have evolved
and been used long before any humans thought about them, and in some cases before
humans existed, e.g. information-processing mechanisms enabling now long extinct
carnivores to see, catch, dismember, and eat portions of their prey.

Although the mechanisms made use of properties of mathematical domains there
is no reason to believe that anyone or anything ever described or discussed such
domains before humans did – at least on this planet. There seem to be partly
analogous situations in pre-verbal humans discovering and using what can be called
“toddler theorems”4 about what is and is not possible in their world – for example:
many children seem to discover and understand the differences between grasps that
do, and grasps that do not, have painful effects when pushing drawers or doors
shut; and most sighted children discover and understand relationships between
availability of information and unobstructed line of sight, which they use in moving
themselves or other objects in order to gain information, and at a later stage in order
to make information accessible or inaccessible to others. This involves a domain of
types of visual information transfer, where the information travels in straight lines
between surfaces of objects and eyes of perceivers. For more on this see Section 24
and Figure 4.

4 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/
toddler-theorems.html

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
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4 Toddler theorems

In Sauvy and Sauvy (1974) games and exploratory activities are described in which
young children play with different sorts of objects and materials in the environment,
implicitly discovering their mathematical properties as well as making empirical
discoveries, e.g. that some materials are rigid some not, and that some non-rigid
objects are elastic, others not. A topic worth investigating, if it has not yet been
investigated, is whether any pre-verbal children are able to discover and understand
differences between contexts where pulling two ends of a string apart do and do not
produce a knot. Such competences may be developed and demonstrated in various
games and competitions.5 Two books by Piaget explore differences in abilities, in
children of a variety of ages, to reason about what is or is not possible and why
(Piaget, 1981, 1983).

Some of the discoveries made by children (and possibly some other animals)
go beyond empirically learnt generalisations, and include understanding why some
things must be the case and why others cannot be the case. If your fingers are curled
round the edge of a door you cannot push the door shut without causing fingers to be
compressed between door edge and door jamb. A child may discover that the effect
is inevitable unless the hand pushing the door is re-positioned, e.g. pushing with a
flat palm. Noticing the necessary connection allows the learner to avoid wasting time
trying minor variants of the curled grip, which might be a consequence of purely
empirical learning. Discovering the invariant (the necessary connection) requires
a meta-cognitive ability to reflect on what has been learnt and what it depends
on: which might be described as proto-mathematical a competence. At present, I
don’t think anyone knows what the mechanisms making such competences possible
are. (Compare discussion of “representational re-description” in Karmiloff-Smith
(1992).)

Getting beyond the “proto” stage requires being able to think about or talk about
differences between ways in which relationships between features of a situation
do or do not have invariant connections. This requires a sort of meta-semantic
competence: the ability to detect and use relationships between semantic contents.
Such a meta-semantic ability can be present and be used without any meta-cognitive
ability to detect, think about, talk about, the fact that it is used. That later meta-meta-
cognitive ability is required for detecting and correcting flaws in one’s reasoning,
which may develop in parallel with abilities to detect and comment on flaws in the
reasoning of other individuals. All of these processes seem to start, at least in some
children, before anyone attempts to teach them mathematics, though teaching done
well can build on and enrich the mechanisms. Only much later do most children
learn (usually at school) to think and talk about their mathematical thinking.

Unfortunately few teachers (or developmental psychologists, or parents) seem to
be aware of these processes. Moreover, the mechanisms are so complex, with so
many different possible developmental trajectories, that we must not expect any

5 http://www.pitara.com/activities/craft/online.asp?story=45 is an
example concerning making knots in an unusual way.

http://www.pitara.com/activities/craft/online.asp?story=45
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of the most interesting facts about human minds to take the form of universal
generalisations (“laws”), e.g. about what all children do, or about what happens at a
particular age, or about the order in which competences develop. Rather: the deepest
psychology is about the variability in what can occur and what sorts of generative
mechanisms make all those trajectories possible. The Meta-Morphogenesis project
includes the long term goal of relating these processes and mechanisms to earlier
stages in evolution and to the information-processing competences and mechanisms
of other species. This will help to fill the gaps in the theories about meta-
configured vs pre-configured competences sketched in Chappell and Sloman (2007),
and perhaps explain the different genetic contributions to achievements of great
mathematicians, poets, artists, scientists, musical performers, Olympic skiers and
sumo wrestlers.

For reasons discussed below, Artificial Intelligence is nowhere near this, despite
some spectacular successes. Perhaps one day intelligent robots will be able to
follow human-like developmental trajectories. At present even the most impressive
computer-based mathematical reasoners and the most widely used learning
mechanisms in AI systems, do not do what developing human mathematicians
do, namely extend their processing powers, driven in part by types of complexity
found in the environment, in part by what they have previously learnt, and in part
by needs that they may encounter later, as opposed to learning to get immediate
rewards or avoid immediate punishments. In particular all the powerful automated
theorem provers that I know of are designed to be tools for humans to use, rather
than products of a learning, developing machine with complex and changing needs
and goals getting to grips with a complex and changing environment, in which many
mathematical domains are instantiated, including geometric domains.

5 Human engineering lags behind and jumps ahead of evolution

Human engineers began to understand these information processing requirements
(still largely ignored by most philosophers) only in the 20th Century, millions
of years after the implicit discoveries made by evolution.6 These included
“discoveries” concerning new forms of self-monitoring, using meta-cognitive,
mechanisms, without which the need for proofs and the proofs themselves could
not have been discovered – and were not discovered by non-human animals (on
this planet). Unless we understand all this we shall not be able to build intelligent
machines (especially autonomous robots) with a wide range of human capabilities;
and research in neuroscience, developmental and other branches of psychology,
educational theory and philosophy, including philosophy of mind, language and
mathematics, will continue to miss key problems and possible explanations.

6 I am not using “information” in the sense of Shannon, but the old concept of “information”
understood much earlier by Jane Austen, for example, illustrated in http://www.cs.bham.
ac.uk/research/projects/cogaff/misc/austen-info.html

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/austen-info.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/austen-info.html
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5.1 Kant on mathematics

Immanuel Kant (1781) argued that mathematical knowledge, including knowledge
of geometry and arithmetic, is non-empirical, is synthetic (i.e. not only logical
consequences of definitions), and is about necessary truths. Gottlob Frege (1950)
agreed with Kant about geometry but claimed to have shown that arithmetical truths
are all analytic – they are all logical truths. There have been many refinements
of the debate since the time of Frege, but it seems to be widely believed that
Kant was shown to be wrong about arithmetic because Frege, Russell and others
demonstrated that arithmetic (or at least the decidable subset) is based only on logic
and definitions, and wrong about geometry, either because Euclidean geometry was
shown by Einstein to be empirical and false, or because geometrical knowledge
is only knowledge about which theorems follow from various sets of geometrical
axioms. (I have presented a very short summary of long and complicated story.)

However, I think there remains a core of truth in Kant’s ideas, especially in the
context of trying to explain how humans first made mathematical discoveries and
found ways of proving results so as to make empirical tests unnecessary, long before
anyone had developed formal logical theories or investigated axiomatic systems. If
the ideas presented here are correct then we should be able to create “baby” robots
that learn about their environment in something like the way humans and other
animals do, then discover new deep structures in their knowledge as only humans
seem able to do on this planet. I am sure that it must be possible to replicate those
processes, but it may be necessary to extend current forms of computation, perhaps
by using chemical information processing, as organisms do. The need for that seems
to have been anticipated by Turing in the extract from Turing (1950) at the beginning
of this paper. However, this is still a tentative conjecture supported by inconclusive
arguments, below.

I shall later offer reasons for thinking that all of these considerations provide
reasons for thinking that Kant was right about both arithmetic and geometry as being
mathematical domains in which synthetic necessary truths can be discovered using
non-empirical mechanisms. However, I shall first have to say more about the nature
of mathematics.

Many details of Kant’s thinking may need to be re-assessed, in the light of
recently understood requirements for information-processing mechanisms able to
support or replicate human mathematical competences. These topics are very deep
and complex, combining strands from several disciplines that are not normally
brought together, and there are many unsolved problems.
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5.2 The biological significance of biological philosophy of
mathematics

I am trying to assemble a collection of observations and hypotheses about evolution,
life, mind, and mathematics, that are conjectured to have great potential in
combination, though each may be considered flimsy and unclear on its own.

Whether this turns out to be a progressive or a degenerating research programme
(in the sense described by (Lakatos, 1980) and elaborated in (Sloman, 1978a, Chap
2)) remains to be seen.

I first tried to present and defend Kant’s ideas about mathematics in (Sloman,
1962) but at that time knew nothing about computation or artificial intelligence, and
the work suffered as a consequence (like much philosophical writing since then).
Nine years later, I began to learn about programming and AI but progress remained
very slow and piecemeal. Reading Turing (1952) in 2011 stimulated a revised
approach, within the Turing-inspired “Meta-Morphogenesis” project first proposed
in Sloman (2013b). This chapter focuses on a small part of one strand of that project,
concerned with the nature of mathematics, the variety of forms of mathematical
competence, and the evolution of such competences. But the implications go far
beyond the nature of mathematics.
Relocate
In particular, it seems that despite the spectacular power of Turing machinery and
the technology inspired by the theory of such machines, there may be something
missing, which Turing began to explore in (Turing, 1952) shortly before his tragic
death, although I do not know whether he made, or was about to make, the
connections with philosophy of mathematics sketched in this paper.

This work seems to be contradicting a thesis expressed by Philip Welch in
a Turing centenary lecture in 2012: “Anything that is humanly calculable is
computable by a Turing machine”, especially if “humanly calculable” includes
geometrical reasoning as found in Euclid’s Elements.

But before addressing that I would like to present some of Frege’s ideas.

6 Mixed messages from Frege

Gottlob Frege’s comment “There is nothing more objective than the laws of
arithmetic” (Frege, 1950, § 105), is more accurate than Wittgenstein’s suggestion,
though I’ll be disagreeing with some of his claims. Moreover, to arithmetic I would
add logic, topology, geometry, set theory, and many other mathematical domains.
I think Kant (1781) was right to claim that there are branches of mathematics,
including geometry, that are not reducible to logic and definitions. The truths of such
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mathematical domains could be described as non-analytic (i.e. synthetic), necessary
(non-contingent), and a priori (non-empirical).7

Frege argued that Kant was right about geometry but wrong in claiming that
arithmetical truths are synthetic – i.e. not reducible to Logic. He attempted to show
that all the concepts of arithmetic could be defined using only logical concepts
and constructs, and all the truths proved using only logic. Other philosophers and
mathematicians (e.g. Bertrand Russell some of the time) thought that geometry
could also be reduced to logic, e.g. if every geometrical theorem GT is implicitly of
the form “If Axioms then GT” (Russell, 1917). David Hilbert (Hilbert, 2005), and
others produced such axiomatisations of Euclidean geometry. But if the axioms and
theorems make use of non-logical, but undefined, symbols, such as “point”, “line”,
“lies on”, “intersection”, then it can be argued, and was argued in (Frege, 1950), that
those are not theorems about geometry, since they are not about points, lines, planes,
circles, and so on, but about some hypothetical logically specified, type of subject
matter and it remains to be proved that geometrical entities and relationships, such
as points, lines, and incidence, satisfy the axioms.

Frege (op. cit) defended against a similar objection, by avoiding use of undefined
symbols, and attempting to show that all the concepts of arithmetic (e.g. “0”, “1”,
“+”, “−” and “=” ), could be defined using only logical concepts and constructions,
which he thought was not possible for the concepts of geometry, concluding that
Kant was wrong about arithmetic, but right about geometry.

He seems not to have considered an objection that could be made his programme,
namely that even if he was able to demonstrate that there is a subset of logic
that is isomorphic to arithmetic, this is analogous to Descartes’ demonstration
that there is a subset of arithmetic, including ordered pairs or triples of numbers,
and equations relating different pairs or triples of numbers, that is isomorphic to
Euclidean geometry. Descartes did not show that geometry is arithmetic, merely that
arithmetic can model geometry. Likewise geometry can model arithmetic, a topic
not discussed here. In fact, as noted in (Sloman, 1962) even logic is in some sense
modelled in geometry insofar as logicians use geometric patterns and operations on
geometric patterns when stating and proving logical theorems, as was done long
before a domain of operations on bit patterns was used to model a great deal of
logical reasoning, in computers.

Frege went to enormous lengths to demonstrate that the concepts of arithmetic
were all definable in terms of pure logic and all the truths could be proved using
only logical truths and logical inferences. In order to achieve this he produced
new analyses of familiar mathematical concepts (including concepts of particular
numbers, 0, 1, 2, etc., of number in general, of arithmetical operations, e.g. addition
and multiplication), and new purely logical proofs of previously known arithmetical
truths. He also extended the content of what had previously been thought of as the
scope of logic, for example by generalising the mathematical concept of “function”.
This concept had previously been used only to refer to mathematical functions

7 I first attempted to show that Kant was right in my DPhil thesis (Sloman, 1962), though at that
time I had never heard of Artificial Intelligence, which I now regard as central to the explication of
what Kant meant, as suggested in (Sloman, 1978a).
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applied to mathematical objects such as numbers. Frege showed how concepts could
be thought of as functions from objects (or collections of objects) of any kind, or
from functions, to truth-values. The last claim introduced higher-order functions:
functions whose arguments and results could be functions.

This showed how certain logical forms of expression that had been studied at
least since Aristotle could be construed as using “higher order” logical functions (i.e.
the universal and existential quantifiers) – though some of his logical translations of
familiar natural language expressions remain controversial.8

Frege, like Bertrand Russell, built on ideas previously developed by Georg
Cantor (http://en.wikipedia.org/wiki/Georg_Cantor), usually
thought of as the inventor of set theory. One of Cantor’s key ideas was that the
notion of a one-to-one correspondence between sets was the basis of our notion
of cardinality of a set (the answer to “How many things are in X?”), a notion that
he extended to infinite sets. Frege added the claim that the notion of a one-to-one
mapping and operations related to such mappings (e.g. the combination of two
disjoint sets A and B to form a new set C whose cardinality can be derived from
the cardinalities of A and B) could all be defined using purely logical apparatus and
proved to have the required properties using purely logical methods of proof. For
that reason he claimed to have shown that truths of arithmetic were analytic, not
synthetic as Kant had claimed.

Like Kant, Frege thought that geometry was not reducible to logic, and therefore
that Kant (1781) had been right in claiming that geometrical truths were synthetic
and necessary though wrong in making that claim about arithmetic. When David
Hilbert demonstrated (Hilbert, 2005) that axioms of Euclidean geometry could be
presented in a purely logical formalism and theorems derived using only logical
inference Frege did not regard that as proving that geometrical theorems were
analytic. I shall later raise similar objections to his claim about arithmetic. There
is a very useful discussion of his disagreement with Hilbert in Blanchette (2014).

Frege’s claim that arithmetic was reducible to logic received a serious blow
when Russell discovered that Frege’s logical system could be used to “prove” a
contradiction, now known as “Russell’s paradox”.9 The discovery of this paradox
and others had deep effects on the Frege’s and Russell’s logicist project but that’s
not a topic for this paper.

Frege appears not to have reflected on the following parallel between arithmetic
and geometry: both can be presented logically using logical concepts, definitions,
axioms and rules of inference (though with special manoeuvres to avoid paradoxes),
but before that was demonstrated both arithmetic and geometry had had a long
history in human thought based on modes of thinking and reasoning that were
different from (and arguably more biologically primitive than) the sophisticated

8 I don’t understand the recent proof of Fermat’s last theorem well enough to know whether it
can be said to use only pure logical inferences. I suspect not. It is not uncommon for proofs in a
mathematical domain to require consideration of a larger domain, e.g. extending the rationals to
the reals, extending the reals to complex numbers.
9 See http://en.wikipedia.org/wiki/Russell%27s_paradox and http://
plato.stanford.edu/entries/russell-paradox/ Irvine and Deutsch (2013)

http://en.wikipedia.org/wiki/Georg_Cantor
http://en.wikipedia.org/wiki/Russell%27s_paradox
http://plato.stanford.edu/entries/russell-paradox/
http://plato.stanford.edu/entries/russell-paradox/
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and very abstract forms of logic that logicians, mathematicians and computer
scientists are now familiar with. But those earlier modes of thought were clearly
mathematical, not empirical.

He thought Immanuel Kant’s claim that mathematical truths were both necessary
(i.e. incapable of being proved false by facts about the world) and synthetic (i.e.
not provable on the basis of logic and definitions alone) was true for geometry but
not for arithmetic. But I suggest there is a deep parallel between the two cases,
that for some reason Frege rejected, although he came close to considering it in his
condemnation of other theories of the nature of arithmetic. For example, he writes in
his Introduction “It may well be that in many cases the history of earlier discoveries
is a useful study, as a preparation for further researches; but it should not set up to
usurp their place”, and earlier sarcastically comments (page xix):

What, then, are we to say of those who, instead of advancing this work where it is not
yet completed, despise it, and betake themselves to the nursery, or bury themselves in the
remotest conceivable periods of human evolution, there to discover, like JOHN STUART
MILL, some gingerbread or pebble arithmetic! It remains only to ascribe to the flavour of
the bread some special meaning for the concept of number.

Frege is famous for his anti-psychologism, especially in connection with the
nature of mathematics, but perhaps the reason he thinks geometry escapes that
charge can be generalised to allow for an arithmetical domain that humans
discovered and explored prior to the logicisation of arithmetic, just as they
discovered and explored a geometric domain prior to the development of purely
logical formalisations of geometry (though with undefined primitive predicates and
relations).

A defense of Mill against Frege along those lines is proposed by Kessler (1980),
but I want to offer a different defence for an analogy between a non-logical, yet
mathematical, domain of arithmetic and a non-logical, yet mathematical, domain
of geometry, both to be understood as important for the evolution of animal and
human minds, but not because arithmetic and geometry are within the subject
matter of psychology. Rather evolution produces some of its advances because it
repeatedly develops new forms of psychology to cope with increasingly complex
mathematical domains. How it copes, at least in the early stages, uses information
structures and modes of reasoning that are different from, but just as capable of
supporting mathematical discovery and proof as, logical modes. Frege seems to have
accepted something like that as true of geometry, and it seems that his criticism
of Hilbert’s axiomatisation of geometry is that it ignores the pre-logical form of
mathematics used in Euclid’s discoveries. I am making the same criticism of Frege’s
(and Russell’s) formalisation of arithmetic using only logic. This is connected with
the great difficulty in giving current computers the ability to reason geometrically,
discussed below.10

This is still sketchy and programmatic, and requires much additional work, so
here I’ll merely hint at the theory.

10 Also in: http://www.cs.bham.ac.uk/research/projects/cogaff/misc/
triangle-theorem.html

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-theorem.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-theorem.html
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If there is a non-logical way of thinking about and proving truths of arithmetic,
analogous to but different from proofs in geometry, then it would follow for
both pre-logical Geometry and pre-logical Arithmetic that they include synthetic
necessary truth that can be demonstrated without using empirical evidence, although
both also have more abstract analogues in the space of logical systems definable
using purely logical concepts with theorems provable using purely logical reasoning
from axioms expressed using only logical concepts and additional variables.

My DPhil thesis and a derived publication (Sloman, 1962, 1965a), argued that
Frege’s notion of function was not general enough to accommodate concepts whose
applications to potential instances produce truth values that depend on how the
world is. I called those “rogators”. A major theme of this paper is that tracing
biological origins of mathematical concepts requires understanding how they start
life as rogators. This is as true of arithmetical and logical concepts as geometrical
concepts.

This project should not be confused with the research in developmental
psychology and ethology that aims to test whether very young children or
non-human animals have some mathematical concepts and understand some
mathematical truths. Most of the empirical research I have encountered shows at
best that some children and other animals can use concepts partly analogous to
mathematical concepts (e.g. “numerosity”, which is a perceptible pattern rather
than “cardinality”, which depends on use of one-one correlations) but lacking
some of their core features, and also that the experimental subjects can acquire
and use generalisations that appear to have mathematical content, but not that
they are able to reason mathematically about what is mathematically necessary or
impossible. There’s a difference between learning empirically, for example, that
removing some chairs from a room whose human occupants were all sitting on
separate chairs earlier, can produce a result that prevents them all sitting at the
same time, and understanding mathematically why that happens, which depends
on a mathematical fact about one-one correlations. Compare Rips et al (2008). I
think Piaget understood the problems but lacked the conceptual tools needed for
explanatory theories. Piaget (1981, 1983).

6.1 Different conceptions of mathematics

Many non-mathematicians I have encountered have an extremely narrow conception
of mathematics, perhaps related to what they were taught in an impoverished
mathematical education, which may have included arithmetic, a little algebra,
and some memorised geometrical theorems and trigonometric formulae, with a
little statistics added if they are empirical researchers. Often they have memorised
theorems that they cannot prove. Some of those who have studied mathematics at
University level seem to think of mathematics in terms of formal languages, axioms,
rules of inference and formal proofs. But that is a relatively recent rather narrow
view of mathematics, not shared by all mathematicians. Formalised mathematics
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can be viewed as merely a subset of the subject matter of mathematics, that
was unknown to those who made the earliest mathematical discoveries presented
in Euclid’s Elements. My (Sloman, 1962) agrees with (Mueller, 1969) on this.
Compare what Benoit Mandelbrot wrote in the Foreword to Dauben (1995)

“What is mathematics? Opinions range the spectrum from a wide, liberal Open Mathematics
to a small Fortress Mathematics. For proponents of the former school, which I favour and
which I am sure Abraham Robinson also favoured, mathematics is a big rambling building
permanently under construction, with many doors and many windows revealing beautiful
and varied landscapes. For proponents of the latter, the highest ambition is to wall off the
windows and preserve only one door.”11

Although Euclid’s Elements included axioms and proofs, that is because the
ancient mathematicians had begun to notice that mathematical discoveries are
often related to other mathematical discoveries. This is part of what constitutes a
mathematical domain. However they were not using (and could not have used) the
notion developed at least two millennia later of formal proof involving primitive
symbols, formation rules, derivation rules – axioms that need not be justified except
as specifying the system being investigated – and explicit, formal, definitions of
validity and soundness.

Chains of reasoning linking discoveries in a mathematical domain can go
in different directions, as shown by the discovery of different, mathematically
equivalent, axiomatisations of the same domain. E.g. Boolean propositional calculus
can be presented with different initial symbols in terms of which others can
be defined, and with different axioms, and different proofs of the same results.
Neither the original discoveries in Euclidean geometry nor the original ideas about
propositional calculus were concerned with logical derivability in a formal system.
For example, propositional calculus can be, and often is, taught in terms of the
domain of binary truth functions defined by truth-tables not axioms or rules of
inference. Later, truth tables can be used as basis for validating axioms and inference
rules. I taught beginners that way for many years, as others have done.

The variety of mathematical investigations and discoveries covers a huge
and diverse collection of topics, going far beyond arithmetic and geometry
(including, for example, shapes in motion, games of many types, grammars,
language types, computational systems, logic, transfinite ordinals, probability,
utility maximisation, finite and infinite dimensional vector spaces, and many
others). A fairly broad partial overview of the scope of mathematics is provided
by Wikipedia: http://en.wikipedia.org/wiki/Mathematics though
it does not mention the role of (primitive) mathematical competences in organisms
discussed below. There is also a brief introduction to the variety of forms of proof,
including proofs using spatial reasoning in, http://en.wikipedia.org/
wiki/Mathematical_proof.

There are systematic ways of discovering new mathematical domains simply by
“thinking mathematically” about familiar non-mathematical topics, which turn out

11 http://www-history.mcs.st-and.ac.uk/Extras/Mandelbrot_Robinson.
html

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Mathematical_proof
http://en.wikipedia.org/wiki/Mathematical_proof
http://www-history.mcs.st-and.ac.uk/Extras/Mandelbrot_Robinson.html
http://www-history.mcs.st-and.ac.uk/Extras/Mandelbrot_Robinson.html
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to instantiate mathematical domains. I shall present several examples below. Even
a child can discover a mathematical domain through play – e.g. discovering the
domain of shapes that can be constructed by means of a single rubber band stretched
over a flat surface and held in place by pins. (The shapes include an outline capital
“T”. Do they include an outline capital “A”? Can you justify your answer?)

The wonderful little book (Sauvy and Sauvy, 1974) shows how young children
can be introduced to mathematical thinking by exploring properties of everyday
objects such as string, rubber bands, pins, buttons, etc., rather than axiomatic
systems. There are also many examples in the work of Piaget and Holt (Piaget,
1981, 1983; Holt, 1967). I believe this is also how Kant thought about mathematics
(Kant, 1781; Giaquinto, 2007).

7 The blind theorem-prover

There are different ways evolution makes use of mathematical relationships, some
more sophisticated than others, including at one extreme simple organisms whose
evolved design implicitly incorporates mathematical competences, and at another
extreme human mathematicians who discover and explicitly investigate previously
unnoticed mathematical domains, some of which turn out to have important
practical applications, as Turing did in his work on computable numbers and later in
his work on chemical morphogenesis (Turing, 1936, 1952) – two streams of thought
awaiting unification, as suggested in (Sloman, 2013b).

So far those who have thought about the nature of mathematics have mostly
thought of mathematical domains investigated by humans. But thinking of natural
selection as (blindly) exploring and using mathematical domains can help us achieve
a better understanding of both evolution and mathematics. From this point of view,
the huge variety of more or less successful products of evolution is in part explained
by the huge variety of mathematical domains.

There is an infinity of mathematical domains: After exploring a collection of
mathematical domains it is always possible to find new domains by adding or
modifying components of old ones, or combining domains, or abstracting from
details. For example, the game of Go can be played on boards of different
sizes. Each board size determines a mathematical domain. There is no limit in
principle to the size of a Go board, though human brain limits may limit the
feasibility of developing expertise beyond certain sizes. So even the game of GO
generates infinitely many mathematical domains. (http://en.wikipedia.
org/wiki/Go_and_mathematics)

That mathematics itself is unbounded (as implied in the quotation from
Mandelbrot, above), should be no more surprising than that many mathematical
structures are unbounded, including the set of integers, the set of ratios, the set of
logical proofs and the set of geometrical structures.

This view of mathematics as infinitely extendable may be unfamiliar to most non-
mathematicians. I’ll try to support it by presenting various examples of previously

http://en.wikipedia.org/wiki/Go_and_mathematics
http://en.wikipedia.org/wiki/Go_and_mathematics
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unnoticed mathematical domains both in order to demonstrate both how easy it is to
discover previously unnoticed domains, and also how varied they are.

Many of the domains in which humans and other animals achieve mastery in their
everyday life have mathematical structures: for example tying shoelaces, putting on
or taking off clothing, domains that involve separating food into parts before eating,
such as cracking a walnut shell or peeling a banana in order to access the edible part,
or extracting meat from a carcass; or domains that involve constructing large objects
(e.g. nests) by assembling many smaller objects (e.g. twigs, or lumps of mud)
possibly requiring lengthy journeys with navigational sub-tasks. In each domain
there are collections of possibilities that are generated by a subset of possibilities
and modes of combination and variation, and it is possible to discover invariants
and impossibilities as well as learning about ranges of possibilities.

One of the consequences of playing with toys or other physical objects is often
meeting new domains, some continuous, some discrete, some continuous but with
discrete partitions (e.g. because players alternate), some bounded (e.g. Tic-Tac-
Toe) others potentially infinite, e.g. making sand-castles). Careful observation can
sometimes reveal transitions in understanding: e.g. the child who at a certain stage
does not understand why two trucks each with a hook and a ring at opposite ends
can be joined by bringing a hook and a ring together, but not by bringing two rings
together. In contrast, some birds can learn to make hooks to lift an inaccessible food
container by its handle (Weir et al, 2002), and will do this in sufficiently varied ways
to indicate a grasp of the mathematical structure of the problem.

Using familiar objects Vi Hart demonstrates a rich variety of mathematical
domains in her wonderful videos presenting mathematical “doodles”, e.g.:
https://www.khanacademy.org/math/recreational-math/vi-hart and
http://vihart.com/.

8 Types of domain mastery

Mastery, or partial mastery, of a domain can take many forms, including acquiring
abilities to perform actions – possibly to achieve some goal, e.g. crawling, walking,
running, catching, throwing things into a bucket, drawing a circle, tying laces,
putting on a shirt, or getting food out of a banana or walnut – and abilities
to predict consequences of events, or processes, including some of one’s own
actions. Performing and predicting depend on the ability to identify distinct sets
of possibilities, e.g. possible actions to perform, and possible future consequences
of some type of change. Expertise that comes from accumulating evidence from
previous repeated actions or recording results of predictions, constitutes empirical
mastery in a domain.

Empirical mastery in an individual organism or machine is produced by training
in varied situations so that response types are associated with problem types in a
memory system shaped by training (for which different mechanisms are available).
A novel problem covered by one or more learnt types allows goals to be achieved by

https://www.khanacademy.org/math/recreational-math/vi-hart
http://vihart.com/
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adjusting one or more parameters (angle, force, speed, direction), or by combining
sub-competences (e.g. a familiar type of perceptual skill used to control a familiar
type of movement), or by recognising states that have a winning move, or states that
are followed by states that have a winning move, for example. Such learning may
be based either on randomly attempted combinations, or by application of meta-
competences that recognise relevant aspects of a novel problem type and direct the
search for a new solution.

Likewise, natural selection is able to use various adjustments to designs of
organisms, including parameter modification or combining previous solution types,
for example. But that uses no explicit recognition of a problem type and no explicit
meta-knowledge about previously acquired competences encoded in a genome.
There is no directed search for a solution to a new problem, though a new solution
can be adopted if an unintended design change produces instances with new powers.
This need not be at the expense of other species or other individuals, if the
resources used by the new individuals are not used by previous individuals, e.g.
when organisms move into new previously uninhabited terrain. Natural selection
does not have to be competitive all the time!

There are also changes that allow conspecifics to collaborate (e.g. by “division
of labour”) and changes that allow cross-species symbiotic co-operation. Such
evolutionary changes may involve new mathematical domains composed of
different sub-domains corresponding to different roles in collaborative relationships.
A similar point can be made about the mathematics of competitive relationships.
(Simple cases where all the relevant changes involve numerical utilities have long
been studied mathematically in the framework of theory of games and decisions.)

For novel types of situation, where old competences cannot easily be made
useful by modifying parameters, more radical changes are needed, for example
the enormous changes between a light sensitive area of skin to a mechanism
for acquiring information about enduring structures in the environment using
vision. One of the goals of the Meta-Morphogenesis project (Sloman, 2013b) is
to investigate types of transition in information-processing that might have occurred
at various stages.

More generally, we should aim for a theory of types of transition. This will
involve new mathematical domains linking old and new designs. One likely result
is that there are some transitions that can happen directly from one generation to
another, whereas others require intermediate stages. For example, forms of life in
which competition for mates occurs cannot emerge in a population that does not
use sexual reproduction. So only after evolution of sexual reproduction can there
be evolution of cognitive abilities required for perceiving potential mates and their
properties, and abilities for recognising and competing with potential rivals for
the same mate. Many more mathematically complex routes through evolutionary
transitions await future research.

Many different types of competence are required for success in naturally
occurring environments. Over-emphasis on the role of embodiment in intelligence
has led to excessive focus on robots with practical empirical mastery using sensory-
motor loops, as a result of which other kinds of learning and mastery are often
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ignored (Sloman, 2009b). Both online intelligence and offline intelligence, e.g. the
ability to develop an improved ontology, or to notice a new type of constraint in a
space of possibilities, or to develop a new form of representation, are all part of what
needs to be investigated and explained.

A type of offline mastery that seems to exist only in a small subset of
species is what could be called mathematical mastery, using information-processing
capabilities that probably evolved relatively recently. This includes the ability
to invent theories about structures and processes in a domain and to derive
consequences about what is or is not possible in the domain. This can make it
possible to choose a new solution in a new situation by reasoning about a range
of possible consequences, without first having to try alternatives to find out what
will and what will not work.

9 Mathematical mastery

That sort of reasoning competence is particularly important for satisfying goals that
are not specified in full metrical detail: e.g. the goal of getting to the other side of a
wall, where the precise trajectory, the precise speed of motion, the precise sequence
of moves, etc. is immaterial to the goal. For example, an intermediate goal could
be finding or building a rigid object whose top surface is within reach by stepping
or clambering, and which is close enough to the top of the wall to allow someone
resting on that surface to lift a leg over the wall. Satisfying the goal of getting to the
other side of a river may include achieving the intermediate goal of finding a set of
suitably arranged stepping stones. In both cases the precise size, shape, location,
etc. of the objects used is immaterial, provided certain constraints are satisfied.
Representing this range of possibilities using a probability distribution is using a
sledgehammer to crack a nut. For more examples, see (Sloman, 1996).

An animal that lacks the mathematical mastery required to design plans may
nevertheless be trained by someone else to build an intermediate platform to get
over the wall, or to search for and use stepping stones to cross the river. Such
training can produce competence without mathematical understanding (like much
bad education).

It is also possible to learn as a result of some random sequence of movements
that happens, fortunately, to produce success. But in many cases the search space
will be too large, and better methods are needed.

Moreover, even when learning based on training by another individual or based
on trial and error, produces successful behaviour, the learner may not acquire
the ability to use suitable variants of the solutions, because there is no deep
understanding of which features of the working solutions are required and which
can be varied.

When that additional deep (proto-mathematical) understanding is present it can
lead a child who has learned to use a screwdriver as a lever to open a flanged lid, to
cope when no screwdriver is available, by working out that the required functionality
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also exists in a different rigid object, another flanged lid, or rigid disc. This sort of
discovery, which can occur in pre-verbal children, would be an example of a “toddler
theorem”12.

When present, such theoretical/mathematical mastery does not provide infallible
powers, partly because things that look similar may behave differently, e.g. two
levers with similar appearance, one of which is made of weaker material than
the task requires. In sufficiently sophisticated organisms such failures can drive
ontology extension, e.g. leading to richer concepts of kinds of stuff, including kinds
of stuff with similar appearances but different physical properties (e.g. different
strengths). This requires an ontology that extends beyond perceptual categories.

An even deeper understanding can come from insight into structural relationships
between features of a complex object: for example understanding why a loosely
linked tetrahedron formed from 6 rods will be rigid whereas a cube made in the
same way from 12 rods will not. For individuals who understand the differences
between triangles and other polygons that would be a “theorem”, for others merely
an empirical discovery.

These abilities to perceive, understand and use various abstract kinds of
affordance in the environment may have been essential precursors to the
evolutionary changes that allowed the discoveries later assembled in Euclid’s
Elements. The capabilities required are not yet available in AI or robot systems,
for reasons that will be discussed below.

10 What makes a domain mathematical?

In a mathematical domain, relationships can initially be discovered empirically, e.g.
by observation or repeated experiment, then later proved to hold without exception.
The second step is impossible in non-mathematical domains. For example, in the
domain of state changes of electric light wall switches (e.g. going up or down) and
the domain of state changes in electric lights (going on or off) someone may live in
a house where there is a 100% correlation between switches going down and lights
going on. But no amount of experimental repetition amounts to a proof. Moreover,
the learner cannot examine more closely the process of moving a switch downwards
or the process of a lamp beginning to glow, so as to discover deep connections
between them.

Many adults know that a power supply or a lamp can fail, fuses can blow,
or an electrician can swap the switch connections. There are also lights, e.g. on
stairways and corridors, that are controlled by two switches, and how one switch
affects the light depends on the state of the other switch. Furthermore the switch
wiring conventions in different countries are not the same. So we understand why
the mapping between switch states and light states is highly variable.

12 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/
toddler-theorems.html

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html


22 Aaron Sloman

In some cases close investigation of variable relationships discovered empirically
can reveal special cases of the relationship that have some invariable properties.
For example, the light-switching domain can be transformed into a mathematical
domain by extending the portion of the world the child can see so as to include
hidden cables and connections that change state when a switch is operated, along
with power supplies and mechanisms for converting electrical energy into light
energy. With those extra details, a user still cannot reason mathematically about
the domain. That can be done after idealising the domain in various ways, e.g.
treating the power supplies, electrical conductors, switches, etc. as infallible and
then reasoning mathematically about what must happen and what cannot happen in
various situations. (Compare the levels of domain mastery in Section 8.)

A simpler example of this transformation of an empirical regularity to something
provable might start with the empirical discovery that if a large wheel is used
to make a small co-planar wheel in contact with its rim turn, then if the ratio
of circumferences is 2 to 1, then, if both wheels have fixed axles, the ratio of
rotational speeds is 1 to 2. But further experiments may reveal cases where the ratio
is different, and the small wheel turns less than expected. Then further analytical
thought may reveal the possibility of distinguishing two cases, one where there is
slippage, so that portions of the wheels that are in contact may move at slightly
different speeds, and one where there is no slippage – in which case the ratio of
circumferences implies that one rotation of the big wheel will be accompanied
by two rotations of the small wheel, as can be seen by picturing the rotation, and
thinking about how much of each circumference has passed the contact point when
the big wheel has completed one rotation.

At that stage a mathematical thinker could generalise the relation to other cases
than 2 to 1 ratios, and after learning some more mathematics may realise that
the ratio of diameters has the same implication as the ratio of circumferences.
(I am skipping complications regarding the ability to compare amount of motion
in a straight line and amount of motion in a curved path, and other important
developmental complications.)

Transforming the empirically observed rotation ratio into a proved mathematical
theorem, and transforming the empirically observed light switching correlation into
a proved relationship, both involve re-representing the structures and processes
involved, in some cases adding extra components (the originally hidden circuits,
connections and light producing mechanisms) and in the other case excluding a type
of process, namely slippage or bending, which could also be done by postulating a
mechanism producing perfect friction and postulating perfect rigidity.

I leave it to the reader to try inventing a mathematical domain in which the wheel
mechanism is altered so that the turn ratio is larger than 2 to 1. It might be done by
adding new microstructure to the domain.

In presenting these examples I am using a great deal of common knowledge,
probably shared by the vast majority of humans likely to read this! A more
detailed theory would be required to explain how that knowledge arises, how it
is represented, how its relevance is recognized and exactly how it is used. Such
processes might go on in future robots, but we shall first need a better understanding
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of the innate mechanisms required to support the staged processes of concept
formation, theory extension, growth in explanatory reasoning, and development of
abilities to create and evaluate explanations and proofs.

The crucial feature of a proof of a mathematical property in a mathematical
domain is that all potentially relevant influences have been noted. This provides
a guarantee that nothing can disrupt what has been proved (if you have made no
mistakes), whereas there’s no such proof for the initial connection between light
switches and lighting states.

In more complex cases, how the proofs used by mathematicians work is not
obvious, and I’ll return to that later. The most important fact for now is that an
individual with the competences that allow certain proofs to be understood may not
need to be taught the proof by a teacher or community of others. The learner may not
even notice that the proof has been understood and an exceptionless generalisation
discovered. It is possible to be an unselfconscious mathematician (as most people
are about their linguistic competences).

It is also not true in general that understanding a proof is a matter of checking
that various proof rules have been followed without exception, since, during normal
development of mathematics, rules are usually discovered only after instances of
the rules have been understood Sloman (1968/9). At a much later stage, after the
development of metamathematics, explorations of alternative sets of axioms and
rules becomes part of mathematics (in the late 19th Century?).

11 Mathematical development

Many animals, including human infants and toddlers, acquire practical non-
mathematical mastery of many domains, as do highly trained robots. Acquiring
mathematical mastery is less common, and in humans comes later than the empirical
practical mastery, sometimes very much later. Meta-mathematical competence is
very rare, even in adults. I don’t know whether a different educational system could
change that.

For example, a child who can put on a shirt expertly may be unable to think
about the number of significantly different ways of doing that, or about why starting
from a different configuration would lead to the shirt being on back to front. Being
able to start from a configuration and perform actions to achieve a desired result
is possible without the ability to notice that there are many slightly different initial
configurations and trajectories with common constraints that produce functionally
equivalent results, whereas other initial configurations, or other trajectories that
diverge from the first set that produce different results, like a shirt being on back
to front, or an arm going through a neck-hole rather than an arm-home. That
sort of thinking about how to divide sets of possibilities into subsets with non-
overlapping continuations where the different subsets satisfy different constraints
requires cognitive abilities that are not required for performing actions using one set
of possibilities successfully.
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As far as I know no current robots (in 2013) acquire theoretical/mathematical
mastery, in the sense discussed here, partly because researchers are mainly focused
on providing empirical mastery through training processes – providing robots with
“online” intelligence. This tendency to ignore “offline” intelligence is one of the bad
consequences of the over-emphasis on embodied cognition in the last two decades
(Sloman, 2009b).

That work ignores the important roles of “offline” intelligence, or “deliberative”
competence: namely being able to think and reason about sets of possibilities
without acting, including inferring consequences of types of situations that do not
exist but might, as opposed to reasoning about consequences of a very specific
situation, which game engines can already do.

Research in the first two decades of AI attempted to give machines such
abilities to reason hypothetically, but most of the work had to be done by human
programmers designing suitable formalisms, rules, inference mechanisms, etc., as in
the STRIPS problem-solver developed in the 1960s http://en.wikipedia.org/
wiki/STRIPS. We have yet to produce machines that can produce the theoretical
discoveries (and inventions) that the human AI/Robotic researchers achieved and
used in programming their machines.

What’s missing is the ability to understand invariants in a structure, e.g. invariant
properties of triangles, that are independent of particular shape, size, location, etc.
An example is the difference between a person who can predict that the intersection
between a particular plane and a particular sphere will have a circular boundary,
and someone who understands that the prediction holds for any plane intersecting
any sphere anywhere. (A tangent plane can be regarded as a limiting case, where
a point is a limiting case of a circle.) What sorts of shapes can result from a plane
intersecting a cube?

These abilities to chunk future possibilities into clusters with different constraints
and further possibilities can be used for construction of multi-step plans that involve
types of situation an individual has never previously experienced. (For further
discussion of different levels of deliberative competence, see Sloman (2006).)

Although such hypothetical, counter-factual thinking and reasoning is not
normally classified as mathematical it is possible only because there are
mathematical domains that thinkers have understood, including domains of possible
physical configurations, domains of possible actions in those configurations,
domains of possible state-action-state combinations forming a space of possible
futures, and many more. Exactly what changes in brain design evolution had to
produce in order to make this possible is not clear.

There is also meta-mathematical mastery, which involves being able to think
about one’s mathematical thinking or reasoning and identify steps as valid or invalid,
redundant or not, specialised or widely applicable, elegant or clumsy, etc.

Sometimes meta-mathematical mastery of two domains leads mathematicians to
discover a common structure leading to a new more abstract domain. An example is
noticing the mathematical group structure common to addition, multiplication, and
various transformations of geometrical operations (e.g. rotations) on 3-D objects.

http://en.wikipedia.org/wiki/STRIPS
http://en.wikipedia.org/wiki/STRIPS
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In other cases, domain combination can enrich previously understood domains,
e.g. adding forces, masses and accelerations to a domain of topological and
geometric constraints on motion, or adding folding operations to Euclidean
geometry, as in origami geometry, which starts from a subset of Euclidean geometry
(without circles) and add folding of planes subject to constraints (Geretschlager,
1995). An interesting question is whether humans who had never encountered
materials like paper or cardboard could have thought of origami geometry. I suspect
the answer is yes in principle, though it may be unlikely. Not all humans have the
same potential to make mathematical discoveries.

Another kind of mastery of a domain, closely related to meta-mathematical
mastery is Pedagogical mastery which includes being able to detect whether other
individuals have empirical or theoretical or meta-mathematical mastery of a domain,
and helping them improve their mastery. This requires meta-semantic competences:
abilities not only to use information (semantic competences) but also to think
and reason about use of information, including use by others. Polya’s pedagogical
mastery is demonstrated in his (1945).

An aspect of pedagogical mastery identified by Lev Vygotsky is understanding a
student’s “Zone of proximal development”13 and using it to set challenges that are
neither too easy nor too difficult for the individual14 – which some learners can do to
themselves (self-scaffolding). Explaining what domains are and describing various
kinds of domain mastery that individuals can acquire, requires unusual pedagogical
mastery – which I am struggling to achieve!

These different forms of domain mastery (empirical, mathematical, pedagogical,
self scaffolding, mastery, etc.) can be found in relation to many different domains,
including different subsets of mathematical knowledge, e.g. arithmetic, algebra,
calculus, topology, geometry, logic, meta-mathematics, theory of computation, and
many more. It is unlikely that there will turn out to be one specific information
processing mechanism that performs all these tasks, despite claims of those who,
like Turing in his (1950), rashly propose totally general learning mechanisms, for
example, mechanisms based on neural learning, or information compression, or
some form of logical reasoning. Part of the evidence for the diversity of mechanisms
(and the information structures on which they operate) is the length of time between
the earliest (prehistoric) discoveries leading to ancient recorded mathematics,
and the most recent forms of mathematical research, including computer-aided
mathematical research. Different domains often require different mechanisms for
their mastery.

These ideas about common types of transition with different contents and
different mechanisms are closely related the ideas about “representational
redescription” in Karmiloff-Smith (1992).15.

To illustrate these ideas about mathematical domains, the next few sections
introduce domains that arise out of familiar structures and processes and have

13 http://en.wikipedia.org/wiki/Zone_of_proximal_development
14 http://en.wikipedia.org/wiki/Instructional_scaffolding
15 I have begun to summarise and discuss aspects of that work in
http://tinyurl.com/CogMisc/beyond-modularity.html

http://en.wikipedia.org/wiki/Zone_of_proximal_development
http://en.wikipedia.org/wiki/Instructional_scaffolding
http://tinyurl.com/CogMisc/beyond-modularity.html
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been well studied by mathematicians, though I’ll present only simple cases, some
continuous and some discrete. I’ll then move on to geometry, my main target, and
attempt to characterise its role in human and animal competences (i.e. its biological
importance) and then present some simple examples of kinds of reasoning that could
have led to the development of Euclid’s elements in our ancestors thousands of
years ago, but seem to be very difficult to give computers, or robots. These tell
us far more about human consciousness and its underpinnings than theorems about
incomputability or undecidability emphasised by Penrose 1989 and others. Later I’ll
raise the question what all this tells us about the nature of mathematics, and ask why
it has proved so difficult to mechanise human geometrical reasoning abilities.

12 A domain of curves on a doughnut

Fig. 1 Five red and two blue closed non-self-
crossing paths on a torus. Are other types
possible?

A doughnut-shaped object (a torus, or ring) is the basis for a domain of closed
non-self-crossing paths on its surface. In how many different ways can you draw
a closed curve on such a surface that nowhere crosses itself (as “8” does)? What
should count as different curves? Examples are depicted in Figure 1.

Ask whether a loop of stretchable string lying on the surface can be transformed
from one closed curve to another by sliding the string around on the surface without
cutting the string and without the string ever losing contact with the surface, or
crossing itself. If such a transformation from one curve to another is possible the
curves are equivalent, otherwise not. A set of curves that can be transformed into
one another without any cutting and joining (or passing through solid material), form
an “equivalence class”. It should be obvious from the figure that the blue curves are
in the same equivalence class, since each blue curve can be smoothly transformed
into any other in the surface of the solid, without any cutting or joining. Likewise the
red curves (if each is a separate ring, not joined to the others out of sight) are in the
same equivalence class, though the transformations between them have a different
character. Can you tell whether the red curves and the blue curves are in the same
equivalence class (ignoring the colour difference)? Answering this requires not only
failing to find a smooth transformation between a red and a blue curve, but detecting
that it is impossible for such a transformation to exist, just as you can detect that it is
impossible for line in a plane, straight or curved, to connect a point inside a circle in
that plane to a point outside the circle without somewhere touching the circle. Are
you sure that is impossible? Why?
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You can try a range of transformations that fail and eventually be sure there’s
nowhere else to go to find another transformation. Some people will find that less
obvious than others. This is a subset of topology16, a branch of mathematics not
normally taught to beginners, though there’s no reason why topology should not be
taught to children, informally, for example using ideas in Sauvy and Sauvy (1974).
Many board games introduce children to different sorts of routes in a space. (E.g.
“Go directly to jail” in Monopoly, and snakes vs ladders in Snakes and ladders.)

A different question: Are there other possible closed curves on the surface of a
torus that are not in the same equivalence class as either the red or the blue curves in
the figure? How many equivalence classes of non-crossing closed curves are there
on a plane surface, or on a sphere? How many classes are there on a torus? (After
you have reached a your own conclusion, look at Figure 2, below.)

A set of equivalent smooth curves on a smooth surface, like the set of curves of
which a small sample is shown in red in Figure 1, is a continuous set: between any
two curves there are infinitely many others and each can be smoothly deformed
into any of the others. Likewise the curves equivalent to the blue curves form
a continuous set. But no member of the red set can be continuously deformed
into a member of the blue set, or vice versa, so in the case of the torus there
are discontinuities between classes of curves. Why can’t a red curve be smoothly
transformed into a blue curve or vice versa, without damaging the torus? You can
try to find a way of doing it and be convinced that you have tried all the possibilities.
It is always possible in principle that you’ve missed something: humans are not
infallible at mathematical reasoning – (Lakatos, 1976) famously showed that even
outstanding mathematicians can make mistakes. However mistakes can be detected
and corrected. But in simple cases it is possible to be sure that you have considered
all the possible moves. There’s nowhere else for the transition to go. Discovering
that requires use of “offline intelligence”, defined in Section 29.

How do you do this reasoning about what is and is not possible? Do you use
logic? Most people would be incapable of saying what they know about a torus using
only logic, without any diagrams, 3-D examples, or gestures indicating shapes.

Can you give a logical proof that there’s no smooth transition between a red
curve and a blue curve in Figure 1? Is using a logical formalism a requirement for
reasoning about transformations of curves on a torus? If not, what alternatives are
possible?

Humans thinking about this must use some internal structures and processes
encoding information about the domain and the constraints on processes in the
domain, aided in complex cases by external diagrams or other objects. Some
problems about curves on a torus can be made easier to think about by noticing that
two appropriate cuts on the surface of the torus allow the torus to be flattened (with
minor distortion) to form a rectangle. What brain mechanisms allow that discovery?
How could a machine make that discovery? What did evolution have to do in order
to make produce these human capabilities? I don’t think anyone has the faintest idea,
though the apparent abilities of other intelligent animals to reason about what is or

16 http://en.wikipedia.org/wiki/Topology

http://en.wikipedia.org/wiki/Topology
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is not possible in a situation suggest that some of the relevant competences evolved
in other species.17 I’ll offer some conjectures later.

Fig. 2 Another non-crossing closed path on a
torus. There is no upper bound to the number of
different such paths. Why not? How does this differ
from the paths in Figure 1?

13 Mathematisation of a domain

What starts as an empirical discovery can sometimes be transformed into a
mathematical discovery after thinking about what has been learnt and understanding
why that must always be the case. Why are no exceptions possible to the discovery
that if you count 1, 2, 3, ... in synchrony with turning coin over, then even numbers
coincide with a repeat of the initial state when coin flipping is combined with
counting? What would have to happen for an odd number to coincide with a repeat
of the initial state? Can you be sure that’s impossible?

In this case, even though the domain is infinite, composed of an unending stream
of states with two components, a coin state and a number counted, it is possible
to notice a pattern that the process cannot break out of. To see that, you have to
think about what happens during a state transition – the coin is reversed, and the
number goes from odd to even or even to odd, another reversal. Why can’t there
be two consecutive odd numbers, or two consecutive even numbers? To answer that
you have to specify what the odd/even distinction is. How is the problem changed
if instead of counting you simply continue alternating between two different words,
e.g.: cat, dog, cat, dog,... ?

Another way to combine coin flipping with counting, or with a potentially infinite
odd/even alternation, is to start with two coins, and generate a sequence of flips
where either coin can be flipped at any time, but never both coins at the same time.
By counting at the same time as flipping, a new domain is created. By playing
with examples and thinking about the patterns found, you may be able to find new
unbreakable patterns that are generated. Can you explain why they are unbreakable?

You may discover that if the initial state has both coins with heads up then after
an odd numbered flip the two coins will be in different states and after an even
numbered flip they will be in the same state, no matter which coins have been
flipped, and in what order as long as it is only coin at each counting step. What
difference will it make if instead of starting in the same state the coins start in

17 For further discussion of requirements for “internal languages” see Sloman (1971, 1978b, 1979,
2008, 2011); Sloman and Chappell (2007)
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opposite states: one heads up and one tails up? This is an example of discovering a
structural relationship between two domains when they are merged to form a new
domain.

With three coins there are more complex mappings between numbers of flips
and properties of the coin state sequences – left as an exercise in mathematical
exploration, for the reader.

Discovering such regularities empirically, by recording frequencies of
associations, requires quite different information-processing mechanisms from
those needed for understanding why the regularity must exist. Much current research
into learning in children and robots fails to distinguish the two sorts of learning
and two related concepts of causation – Kantian and Humean causation18. In part
the failure comes from a common belief that the kind of necessity discovered in
mathematical reasoning is just a very high probability. This is not the case when
what is discovered is a structural limitation on what is possible, not a probability.

Being able to represent something as impossible requires conceptual and
representational competences whose precise nature is not easy to specify. Making
such discoveries requires an information processing architecture whose capabilities
are not restricted to discovering correlations and their frequencies. Observed
correlations tell you nothing about what must or what cannot happen. Mathematical
insights of the kinds described here go beyond that. However an observed instance
can refute a suspected mathematical generalisation, as the history of mathematics
shows.

The ability to discover mathematical necessities probably evolved long after the
ability to detect and use correlations. The ability to use discovered correlations is
often implemented as a mechanism that adjusts preferences between selections –
with varying degrees of sophistication in the mechanisms by which past evidence
and preferred outcomes influence the adjustments, some discussed in Russell and
Wefald (1991) – though like many AI researchers they assume resource allocation
problems arise out of use of a single CPU, ignoring the biological solution of
dedicating different processors with different capabilities to different tasks.

A robot that learns from experience that three coins added to two coins always
gives five coins, or that counting from left to right gives the same result as counting
from right to left, is not learning mathematics, even if it ends up always giving
the right answers to test questions. The non-mathematical robot does not treat this
generalisation any differently from observation-based generalisations about which
way to move a light switch. It uses only evidence, not proof. As far as I can tell,
this is true also of the very impressive robots developed in Ben Kuipers’ “Bootstrap
learning” project19 The robots learn empirically, using correlational evidence, but
are not able to discover mathematical proofs, or use pre-human proto-mathematical
modes of reasoning about affordances. Likewise the impressive toddler-like types

18 A distinction presented with Jackie Chappell, in these talks: http://www.cs.bham.ac.
uk/research/projects/cogaff/talks/wonac
19 http://web.eecs.umich.edu/˜kuipers/research/ssh/
bootstrap-learning.html

http://www.cs.bham.ac.uk/research/projects/cogaff/talks/wonac
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/wonac
http://web.eecs.umich.edu/~kuipers/research/ssh/bootstrap-learning.html
http://web.eecs.umich.edu/~kuipers/research/ssh/bootstrap-learning.html
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of robot learning based on reward-free motivation reported in Ugur (2010) (though
I need to study this work more closely).

14 Domains in the physical environment

Many domains are related to the properties of different kinds of matter: e.g. water,
sand, syrup, mud, porridge, kitchen salt, caster sugar, normal sugar, skin, hair,
various kinds of cloth, various kinds of paper (tissue paper, writing paper, sheets of
cooking foil, sheets of plastic film). Some kinds of matter are fluid or flexible, and
some of them can interpenetrate e.g. sand and water forming mud. Kinds of matter
that are rigid and impenetrable are the basis of many processes of construction of
shelters, clothing, tools, and machines. They are also the basis of certain kinds of
mathematical reasoning.

Fig. 3 If the gears are made of
rigid, impenetrable, material and
the two axles are fixed, what can
you conclude about how the gears
rotate? Rigidity and impenetrability
are mathematical constraints, though
their existence has physical causes.

Children playing with examples of such domains may discover properties of
various structures and processes empirically. They sometimes get things wrong,
like the child of a colleague who was surprised when she failed to grasp a vertical
column of water flowing from a bath tap. But in some cases they understand that
the domain specification has implications that can be derived simply by reasoning,
without using evidence.

For example, if two co-planar gear wheels are made of rigid, impenetrable
material, and their teeth are meshed, as in Figure 3, do you have to find out
empirically how rotating one wheel affects the other? If one wheel turns clockwise
the other must turn counter-clockwise since otherwise at least one of the wheels is
not made of rigid and impenetrable material. Understanding this requires thinking
about what happens when one of the meshed teeth moves upwards or downwards.
What is implied by rigidity and impenetrability of the material? What does that
allow you to infer about motion of a tooth in contact with the other wheel?

A child who grasps the generalisation needs to have an understanding of
impenetrability and rigidity (impossibility of shape change) that is independent of
the size and shape of a rigid object. The impenetrability implies that if a tooth moves
upwards and comes into contact with the lower surface of part of the other wheel,
and continues moving, then the part of the other wheel being touched must also
move upwards. If that wheel is rigid, and has a fixed axle, then as one part moves
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up the whole wheel must rotate about the axle. Rigidity implies that no portion of
the surface of the object can change shape, such as acquiring a new crack, fold,
dent or bump. Similar considerations apply to motion of levers, and to pulleys with
unstretchable strings going round them. In all these cases, as with electric light
switches, and the routes by which light travels, we need to separate out the empirical
discovery of how things actually work from the mathematical study of implications
of particular ways of working.

For the latter, we do not need to start from logical specifications of (e.g.)
rigidity, contact, or rotation, Some learners who are incapable of logically deriving
theorems from axioms expressed using boolean operators and quantifiers can, after
a certain process of development, grasp the mathematical impossibility of a counter
example to the gear wheel generalisation, e.g. the impossibility of a pair of rigid
impenetrable meshed gearwheels turning in the same direction about fixed axles.
(Contrast empirical Bayesian learning.)

Biological evolution somehow produced the ability to detect and reason about
necessary connections between structures and processes, but as yet we do not know
what the information-processing architecture is that makes this possible – though it
seems to depend on a meta-cognitive ability to reflect on what has been done. This
is connected with, but different from, Gibson’s ideas about affordance perception.

15 Domains of view-changes and epistemic affordances

Many animal actions alter the information available to the animal. Different sorts
of information need different actions, provided by tasting, smelling, listening,
prodding, pulling, twisting, threatening, and many more. Some of the actions
assume that the entity being investigated is itself an information-processor, e.g.
a conspecific with useful information to impart, or a competitor or predator from
whom information should be kept.

A subset of animals use vision as one of the major sources of information, if not
the dominant sort. For such animals there is a great deal to learn from vision, but also
a great deal to learn about vision, e.g. about how to change what visual information
is available, or what new visual information would be provided by various actions,
that alter what is visible, and how it is visible, e.g. with more or less detail.

In particular, many animals have to learn that moving around makes different
things become visible or invisible. As you walk round a house you can see different
parts of it, so different information becomes available in a sequence that depends on
the structure of the house (as Kant noticed). We can say that motion of a perceiver
alters the “epistemic affordances” available to the perceiver. A special case of this is
indicated in Figure 4. What can be seen through a door from a particular viewpoint
changes as the viewpoint changes, because the viewer moves left or right or forwards
or backwards, what can be seen in the room changes.

These relationships may be used by many animals. For some of them,
information about the role of vision as a source of information may be built into their
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Fig. 4 Example “toddler theorems” about
visibility: If you move towards or away from
the open door, or sideways to the left or to the
right how does what is visible through the door
change?

information processing mechanisms as a result of their evolutionary history. They
simply use vision to obtain practical information and don’t consider any alternatives,
or ask how it works. For some species, how vision is used, and which actions
are deployed to alter visual information could be results of individual empirical
learning. Correlations between how they move and what they can see are noticed
and used to influence future movements when information is required. They may
learn (implicitly) that rotating an object gives new information about its surface
without knowing why it does – namely because it produces new unobstructed linear
pathways between parts of the surface and the individual’s eyes.

For animals or robots with additional cognitive competences it may be possible
to work out rather than learn empirically what follows from the assumption that
visual information travels in straight lines. An individual with an understanding of
straight lines could work out that as a viewpoint approaches a fixed doorway, the
lines defining the limits of what is visible from that viewpoint diverge increasingly,
or equivalently, the walls block a reducing subset of lines of sight. What can you
infer about moving backward, or moving left or right? How? This seems to require
some of the key ideas about straightness in Euclidean geometry. It may depend
on an ability to imagine a downward facing view (plan-view) of the whole scene,
showing how horizontal view angles change as the viewer moves. The opportunities
to learn and use such relationships vary according to where individuals live. A built
environment with vertical walls and door frames provides epistemic opportunities
missing for bush-dwellers or desert-dwellers – they have only much more complex
configurations where boundaries of visible portions of scenes are rarely vertical
lines. (I have omitted counter examples to the claim about gaining more information
on moving towards the doorway. These are left for the reader to explore.)

Other actions that can alter epistemic affordances include rotating an object,
to make new parts of it visible, removing intervening objects that block some
or all of the desired view, or removing something covering the object, such as
a lid, or a towel resting on it. In this case we need to separate the fact learnt
empirically that visual information (light) travels in straight lines (for which there
are well known exceptions produced by variations in transmission media, and
gravitational fields) from the mathematically derivable implications, which I am
suggesting even young children and some non-human animals learn and use. It
may be possible to show that in some cases the learning is empirical initially,
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then replaced with mathematical reasoning. (A non-empirical truth can be derived
from empirical facts Sloman (1965b), even though there are quicker, more general,
deeper, non-empirical derivations of the same generalisation, requiring a more
complex cognitive architecture.)

In the last few centuries, use of microscopes, telescopes, and cameras, including
video cameras, have contributed new information-altering options. The use of
these additional devices alters the set of possible routes and patterns of flow of
visual information. Humans can learn to think about this and reason about what
will happen in new situations, e.g. when designing a surveillance mechanism. An
interesting question is whether playing with virtual spaces can damage formation of
some mathematical understanding of spatial relationships in young children, e.g. if
the theories about acquisition of geometric concepts in Nicod (1930) are correct.

16 What’s the source of arithmetical truths?

It is sometimes suggested that social conventions or stipulations are the source of
mathematical truths: as if humans had room to agree that 3 plus 5 should equal 8.
In order to discuss this we have to get clear what is meant by 3, 5, 8 and other
numbers are and what “plus” means. These concepts have been used for centuries
in many practical applications, in connection with payments, numbers of soldiers or
other participants in organised activities, measures (e.g. of length, area or weight)
and with relations between discrete sets: e.g. the set of chairs at a table and the set
of people sitting on them. Ensuring that there are enough chairs for each person to
have one, and no chairs are unused can be done by using results of counting, where
counting allocates a numerical label to a set of objects.

Some readers may need to be reminded that integer arithmetic as originally
discovered, and still widely used, was not based on Peano’s axioms: the axioms
merely expressed an important relatively recent (late 19th Century) discovery about
the positive integers, namely that Peano’s axioms along with recursive definitions
of concepts of addition and multiplication, provide a logical specification for which
positive integer arithmetic, as understood centuries earlier, is a model.20 Negative
integers, ratios, subtraction and division require additional constructions.

What are the original number concepts? The key notion required to answer this is
the idea of a one to one correspondence between two sets of entities, as illustrated in
Figure 5 It is a curious fact that humans had been using one to one correspondences
for centuries, for example whenever they counted objects, but also when assigning
people to places at a table, when performing dances composed of male-female
couples, and in many practical tasks such as making gloves designed for normal
human hands. (The reader is invited to think of additional examples.)

20 The axioms are presented briefly in http://mathworld.wolfram.com/
PeanosAxioms.html, with a more extended presentation and discussion in http:
//en.wikipedia.org/wiki/Peano_axioms

http://mathworld.wolfram.com/PeanosAxioms.html
http://mathworld.wolfram.com/PeanosAxioms.html
http://en.wikipedia.org/wiki/Peano_axioms
http://en.wikipedia.org/wiki/Peano_axioms
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Fig. 5 A one to one mapping between the
set of objects on the left made of closed
curves, some smooth some not, and the
set of objects on the right made of groups
of overlapping lines. The blue double-
headed arrows indicate the mapping, but
there are several more possible mappings
between the two sets. If the two sets
remain unchanged, it is clear that the one-
one mapping can be changed, e.g. by
moving the arrow-heads on one side of
the diagram. How many distinct one-one
mappings are possible between the two
sets?

Frege (1950) Once the structures and operations have been specified there is no
room for arbitrary decisions: the structures of the mappings and the concatenation
relationship, make only one outcome of the extended counting operation possible.
A philosopher might argue: “But what if the result comes out different, with no
mistakes being made?”

A possible reply is that an examination of the process of combining two such one
to one mappings so as to produce a new one to one mapping shows that only one
outcome is possible. We can see that that must be so when the sets are small. It is
not possible to have the same clarity of vision for addition of very large sets. But we
can work out that the case of large sets is approached step by step from the case of
small sets being added and it is possible to see that if one case of adding M and N
entities produces a total of K entities and another case produces a different total of
L, then we can map the two together and must find an error in at least one of them.

This needs more detailed argument and demonstrations of how errors can be
detected though for most readers that will be obvious.

Some mathematicians and philosophers have doubted that forms of reasoning
that work for small numbers, or simple structures can be extended to arbitrary
situations without becoming empirical.

Notice that I am not claiming that the principle of mathematical induction is
used as a premiss in a logical argument. The principle is itself a summary of a
mode of reasoning that in each case is justified by the contents of the case. The
cases are not justified by the principle. Likewise inferences of type modus ponens
are not justified by a logical rule: the rule summarises what has been discovered
about that form of inference without using the rule.21 However it is possible for
a mathematical reasoner to abstract the general principle from particular cases and
understand why the principle works in all cases. There are also important differences
between cases, for example differences between induction applied to numbers
generated by a successor function, and “structural” induction, applied to infinite

21 Assuming that a rule is required leads to absurdity as shown in Carroll (1895). See also Sloman
(1968/9).



Evolution of Geometrical Reasoning 35

classes of structures generated by more complex construction processes – widely
used in computer science. Compare the comment on the disjunctive syllogism in
Section 17.

“3+5=8” expresses an unavoidable property of the domain of mappings from sets
of entities to numerals expanded with operations for merging sets and concatenating
mappings. For many people, that example may be too abstract to be obvious,
which is why I started with much simpler examples of domains which don’t come
with a large collection of “baggage”(good and bad) produced by past philosophers
discussing them.

A major missing part of the argument is identification of the particular biological
competences that led up to, and provide mechanisms for, these human mathematical
competences. Insofar as those competences are products of biological evolution we
need explanations of how the relevant evolutionary mechanisms work. Insofar as
they are products of learning and development in individuals, we need detailed
descriptions of what those mechanisms are and how they work.

Some of the problems were discussed, but without mechanisms specified, by
Piaget in his last two books Piaget (1981, 1983). The ideas about “Representational
Redescription” described in Karmiloff-Smith (1992) also seem to be very relevant,
as discussed earlier.

Although there are impressive computer based theorem provers, not all human
mathematical competences have been modelled or replicated, some because nobody
has tried, and others because they have proved difficult to specify or model
computationally. In some cases that is because of the modelling resources chosen.

For example, McCarthy and Hayes (1969) proposed that a variant of first
order logic should suffice for all AI purposes, in particular because it was
metaphysically adequate (everything that needed to be expressed as true in AI
theories could be expressed using logic) it was epistemologically adequate (all
the knowledge that intelligent agents required could be expressed in logic) and
it was heuristically adequate (logical forms of representation could suffice for
efficient reasoning). Sloman (1971) suggested that they might be mistaken at least
as regards heuristic adequacy. It is also possible that logical forms of representation
are epistemologically inadequate to express the type of information used and the
means of manipulating it when our ancestors first discovered Euclidean geometry.

More generally, the possibility of biological mechanisms and evolution of those
mechanisms depends on the existence and reliability of physical mechanisms that
achieve reproduction and maintenance of complex structures, discussed in more
detail in Ganti (2003). Compare Kauffman (1995) (NB. Reliability does not need
to be perfect.) Brian Goodwin’s idea that there are “Laws of Form” constraining
evolution may also turn out relevant here.22

The processes involved in physical reproduction, growth, repair and the processes
involved in provision and use of energy and various kinds of information in
organisms all have complex mathematical structures. The mechanisms that reliably
achieve those functions also have mathematical structures. If the physical world

22 See http://en.wikipedia.org/wiki/Brian_Goodwin.

http://en.wikipedia.org/wiki/Brian_Goodwin
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could not support mechanisms that reliably operate within mathematical constraints
required by complex enduring molecules and more complex multi-functional
chemical structures require, then complex forms of life would not be able to endure,
replicate and diversify.

17 Mathematical theory formation

When proofs have been created for a collection of different but related cases, it is
sometimes possible to group them into an elegant theory covering all the cases in a
systematic way: and that’s what Euclid’s Elements did for a large chunk of spatial
reasoning about 2-D surfaces and 3-D structures, though I don’t believe much is
known abut the earliest stages of discovery leading to the Elements. Mathematicians
and AI researchers are still extending that work, e.g. see Ida and Fleuriot (2012).

Aristotle attempted to do something similar for logic, but from the 19th century
it was realised that he had barely scratched the surface; and mathematical studies
of logical reasoning were extended by Boole, Peano, Frege, Russell, and others.
The details are not important here except insofar as they reveal that far from logical
reasoning providing the basis of mathematics, as some have suggested (e.g. Russell
in Russell (1917)), logic is itself a topic that can be studied mathematically, with
different systems of logic explored in much the same way as different systems of
geometry and different number systems have been.

For example, one form of logical reasoning is the disjunctive syllogism, e.g.
from premisses (P1) “Fred is in the kitchen or in the bathroom” (P2) “Fred is
not in the bathroom” it follows logically that (C) “Fred is in the kitchen”. It is
sometimes suggested that in order to understand the validity of such reasoning one
must (a) have learnt a rule of inference (e.g. the rule From “p or q” and “not q”
infer “p”) and (b) must have noticed that the rule applies to this example – an
idea famously challenged in Carroll (1895). But that’s back to front: a rule like the
disjunctive syllogism is simply a generalisation of what one can learn by inspecting
special cases, whose validity is evident because if P1 asserts that there are only
two possibilities, and P2 denies one of them, then if P1 and P2 are true the second
possibility of P1 must be true. Instead of using such rules of logic in order to think
mathematically, one needs to think mathematically in order to understand why such
a logical rule is valid, which can start from seeing its validity in a particular case,
and then generalising, just as reasoning about joining points on a cube can start from
a particular case then generalising to all cubes, because they have the same structure
as the particular case, at a certain level of abstraction. You may be able to illustrate
this with a theorem you have discovered about rubber bands, or tying shoelaces,
or uses of cupboards. For more on mathematical and logical necessity see Sloman
(1965b, 1968/9).
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18 Can we explain and replicate human geometric reasoning?

Among many competences that all humans seem to have, though they differ in the
details, is the ability to learn euclidean geometry to some level, even though, sadly,
this is not taught to all children. The kind of competence I am interested in is not the
ability to memorise and recite definitions or theorems of geometry, e.g. the theorem
that internal angles of a triangle sum to half a rotation, or Pythagoras’ theorem.
Neither is it the ability to use those theorems in practical applications.

Instead it is the ability to understand why a theorem is true: why there cannot
be any counter examples. Some philosophers have argued that understanding that
there can be no counter examples is possible only for truths that are either simple
matters of definition, e.g. “All bachelors are unmarried” or can be derived from
definitions using nothing but pure logic. For example, if “bachelor” is defined to
mean “unmarried adult male” and “x is an uncle of y” is defined to mean “x is the
brother of a parent of y or is married to the sister of a parent of y” then by logic we
can derive the impossibility of an only child being a bachelor uncle.

What evolution has produced has many facets that are already the subject of
intense scientific research, including microbes that altered the climate on earth,
ecosystems in which millions of different types of organism can coexist, sub-
microscopic organisms that can kill animals as large as whales or elephants, immune
systems that resist such invaders, eggs that can turn themselves into caterpillars that
turn themselves into soup-filled cocoons that turn themselves into butterflies, and
many other amazing (and beautiful – a topic for another day) achievements.

The vast majority of research on evolution so far seems to have been concerned
with (a) which physical structures, are products of biological evolution, including
organisms of all sizes, shapes, and habitats, (b) how the physical structures grow
and reproduce, (c) what sorts of behaviours organisms can produce in which
environments, (d) what sorts of social or cultural behaviours, including forms of
communication, are found in different species or in symbiotic interactions, (e)
which physical/chemical mechanisms and processes are involved in the processes
of reproduction, growth and development, and evolution, and (f) which sorts of
sensory-motor morphologies and neural mechanisms make all those behaviours
possible.

There is a further unifying collection of problems that seem not to have received
much attention, namely: what are the varieties of information processing that
make all those changes possible: e.g. what information contents, what information
sources, what forms of representation of information, and what information-
processing mechanisms are used, what are they used for, and how did they evolve
on an initially lifeless planet?

One of the things that makes this research hard is that most of the processes
and mechanisms involved in acquisition, analysis, interpretation, storage, derivation,
combination, and use of information items are invisible. There are fossil records of
products but not processes. Another source of difficulty is that many researchers
fail to notice the need for some forms of information-processing because their
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assumptions about what animals can do, or need to do in order to produce observed
behaviours are mistaken. A few examples follow:

• Vision as pattern recognition: There is much research on animal or machine
vision that studies only ways in which portions of images can be segmented and
labelled as belonging to some category, e.g “ball”, “cow”, “desk”, or “elephant”.
This ignores many facts about vision, such as that complex objects can be
seen and acted on (e.g. pushed, broken, eaten) without being recognized or
categorized. It also ignores the fact that an important aspect of visual perception
is identification of three-dimensional structure, e.g. the existence of surface
fragments that have different curvatures or orientations, and the varying spatial
relationships between parts, e.g. these thorns grow out of the same stem, but point
in different directions.

• Vision as reversing the projection process: Many researchers, especially those
influenced by David Marr Marr (1982) believe that the function of animal vision
is to take in retinal image data and infer the 3-D structures from which light
bounced into the viewer’s eye.
There are many problems with this proposal, including the impossibility in
general of reversing the process, though in special cases, e.g. using two eyes and
stereo decoding mechanisms it may be possible to compute depths, orientations,
curvatures, etc. of visible surface. Gibson (1979) in contrast argued that the
function of animal vision, and more generally animal perception, was not to
reverse the projection process but to acquire information about actions available
to the organism to enable it to meet its biological needs.

Gibson’s general point is right, but the types of information organisms may need
are more subtle and complex than he proposed. Some of the additional functions
are closely related to perception of mathematical relationships, e.g. characterising
not just what is actually happening and how it relates to possible actions of the
perceiver, but all sorts of possibilities inherent in a situation and constraints on those
possibilities. For more largely unnoticed functions and limitations of animal vision
and requirements for possible mechanisms see Clowes (1971); Sloman (1978a,
1982, 1989, 1996, 2011), Hochberg’s work reported in Peterson (2007) and many
others focusing on different subsets of the phenomena.

19 The Side Stretch Theorem (SST) and area of a triangle

Fig. 6 Some additional lines added to these
figures allow reasoning about equivalences
between different areas in the diagrams,
leading to a formula for area of a triangle. Can
you derive it?
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Many non-mathematicians have learnt a formula for computing the area of a
triangle even if they cannot prove that it is correct. Most are unaware of the problems
of defining the notion of “area” for an arbitrary shape, eventually solved by using
the notion of two limits as the shape is filled with successively smaller squares
so that as the squares get smaller the outer boundary of the enclosed squares
increasingly approaches a limit, as does the outer boundary of all the squares
contained inside or overlapping the boundary. This notion goes back to ancient
Greece.23 An extended online discussion of ways of thinking about this is still under
development, exploring ways of thinking about the area of a triangle and how to
compute it.24

The “standard” proof of the formula for the area of a triangle uses of ways of
fitting triangles into rectangles and employs a prior formula for area of a rectangle,
as hinted at in Figure 6. Readers are invited to reconstruct a proof.

For now, let’s focus on a much simpler theorem, the Side-Stretch Theorem
depicted in Figure 7, which, as far as I know has never previously been noticed,
though it may be equivalent to a known axiom or theorem in one of the many
formulations of Euclidean geometry.

Fig. 7 The Side Stretch Theorem (SST): extending or shrinking the length of side P1P2 alters
the area of the triangle. If point P1 moves further from vertex P2 then the area of triangle P1P2P3
increases. Thinking about this can use a messy, blurred diagram, on paper or imagined

SST states that IF a vertex (P1) is moved on a fixed line (from P1 in direction V )
while the far end of the line (P2) is unchanged and another side of the triangle (P2P3)
remains unchanged, then the area of triangle P1P2P3 will increase. In order to prove
this theorem it is necessary to think about what can change in the diagram in Fig 7,
and what the consequences of such a change would be.

The relationship between direction of motion of the vertex V and whether the
area increases or decreases, or the changes in containment corresponding to motion
of V , can be seen to be invariant features of the processes. But it is not clear
what information-processing mechanisms make it possible to discover that invariant

23 http://en.wikipedia.org/wiki/Integral#Pre-calculus_integration
24 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/
triangle-theorem.html

 http://en.wikipedia.org/wiki/Integral#Pre-calculus_integration
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-theorem.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-theorem.html
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relationship before the connections between geometry and coordinate systems have
been noticed.

We are not discussing probabilities here, only what’s possible or impossible.
A robot with statistical learning capabilities might discover a regular relationship
between moving the vertex up or down whether a new shape contains or is contained
by an old shape, but lack the ability to discover that the connection is inviolable.

All the mathematical discoveries we have been discussing are very different
from the discoveries currently made by AI programs that collect large numbers of
observations and then seek statistical relationships in the data generated, which is
how much robot learning is now done. The kind of learning described here, when
done by a human, does not require large amounts of data, nor use of statistics. There
are no probabilities involved, only invariant relationships: if a vertex P1 moves along
one side, away from the opposite end of that side P2, and the other two vertices, P2
and P3 do not move, then the new triangle must contain the old one. Therefore the
new area must be larger than the old one. This is not a matter of a high probability,
not even 100% probability. It is about what combinations of states and processes are
impossible.

A “virtual discontinuity” can be based on continuous change. As a vertex V
moves along one side away from the other end of that side, P2, the area will increase
continuously. However, if the vertex moves in the opposite direction, towards the
other end, i.e. V moves toward P2, then the change in direction of motion necessarily
induces a change in what happens to the area: instead of increasing, the area must
decrease.

As the vertex moves with continuously changing location, velocity, and/or
acceleration, there are some unavoidable discontinuities: the direction of motion
can change, and so can whether the area is increasing or decreasing. But there are
more subtle discontinuities, which can be crucial for intelligent agents.

A “virtual discontinuity” can occur during continuous motion with fixed velocity
and direction. If a vertex V of a triangle starts beyond a position P1 on one of the
sides of the triangle and moves back towards the other end of the line, P2, then the
location of V , the distance from the other end, and the area of triangle V P2P3 will
all change continuously.

But, for every position P on the line through which V moves, there will be a
discontinuous change from V being further than P from the opposite end (P2), to
V being nearer than P to the opposite end. Likewise, there will be a discontinuous
change from containing the triangle with vertex P to being contained in that triangle,
and the area of the triangle with vertex V will change discontinuously from being
greater than the area of the triangle with vertex P to being smaller. Between being
greater, or containing, to being smaller, or being contained there is a state of
“instantaneous equality” separating the two phases of motion.

These discontinuities are not intrinsic to the motion of V , but involve a
relationship to a particular point P on the line. The same continuous motion can
be interpreted as having different virtual discontinuities in relation to different
reference points or structures on the route of the change.
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If an observer has identified the location P, the discontinuity may be noticed by
the observer. But there need not be any observer: the discontinuity exists in the space
of possible shapes of the triangle as V moves along one side.

There are many cases where understanding mathematical relationships or
understanding affordances involves being able to detect such virtual discontinuities
based on relational discontinuities (phase changes of a sort). For example, a robot
that intends to grasp a cylinder may move its open gripper until the ‘virtual’ cylinder
projected from its grasping surfaces down to the table contains the physical cylinder.
Then it needs to move downwards until the gripping surfaces are below the plane of
the top surface of the cylinder, passing through another virtual discontinuity. Then
the gripping surfaces can be moved together until they come into contact with the
surfaces of the cylinder: in that case a physical, non-virtual, discontinuity. An expert
robot, or animal, instead of making the three discrete linear motions could work out
(or learn) how to combine them into a smooth curved trajectory that subsumes the
three types of discontinuity. But without understanding the requirements to include
the virtual discontinuities a learning robot could waste huge amounts of time trying
many smooth trajectories that have no hope of achieving a grasp.

After discovering this strategy in relation to use of one hand a robot or animal
may be able to use it for the other hand. Moreover, since the structure of the
trajectory and the conditions for changing direction are independent of whose
hand it is, the same conceptual/perceptual apparatus can be used in perceiving or
reasoning about the grasping action of another individual capable of grasping with a
hand. It may even generalise to other modes of grasping, e.g. using teeth, if the head
can rotate. (The concept of a “mirror neuron” which fires both when the perceiver
performs an action and when another individual performs the same action, may
actually be part of a detector for changing mathematical relationships: the same
changes in relationships between surfaces can occur whether some of the surfaces
are parts of the perceiver or parts of something else. This could be an important
source of generalisation of competences, and have nothing to do with perception of
actions of conspecifics.)

The examples above show that a perceiver looking at a triangle may not only
able to see and think about the particular triangle displayed, but can also use
what is learnt from the perceived triangle, e.g. The Side-Stretch theorem or other
theorems, to support thinking and reasoning about large, indeed infinitely large, sets
of possible triangles, related in different ways to the original triangle.

The concept of an infinitely large set being used here is subtle and complex and
(as Immanuel Kant noted) raises deep questions about how it is possible to grasp
such a concept. For this discussion we need only note that if we are considering a
range of cases and have a principled means of producing a new case different from
previously considered cases, then that supports an unbounded collection of cases.
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20 Implications for biological meta-cognition

In some cases the new configurations thought about in mathematical discoveries
include additional geometrical features, specifying constraints on a new figure, For
example, after considering a vertex moving along a side of a triangle we can consider
it moving along a median, or along a line parallel to or perpendicular to one of the
sides.25 Such constraints, involving lines or circles or other shapes, can be used to
limit the possible variants of a starting shape, while still covering infinitely many
cases. However, the infinity of possibilities is simplified by making use of common
features, or invariants, among the infinity of cases. Some mathematical thought
experiments are more complex than others. The Side-Stretch Theorem considered
only two cases: a vertex moving further from or towards another vertex. However
thinking about a vertex moving on a line parallel to the opposite side of the triangle,
or a vertex moving on a line perpendicular to the opposite side produces more
qualitatively distinct cases. For example, There are infinitely many perpendiculars
to the base of a triangle, adding complexity missing in the previous examples. This
is why mathematical reasoning often requires case-analysis, and if a case is missed
a proof will be erroneous.

This ability to think about infinitely many cases in a finite way seems to
depend on the biological meta-cognitive ability to notice that members of a set of
perceived structures or processes share a common feature that can be described in
a meta-language for describing spatial (or more generally perceptual) information
structures and processes. An example would be noticing that between any two stages
in a process there are intermediate stages, and that between any two locations on a
line, two thicknesses of a line, two angles between lines, two degrees of curvature,
there are always intermediate cases, with the implication that there are intermediate
cases between the intermediate cases and the intermediate cases never run out.

(We can ignore the difference between a set being dense and being continuous –
a difference that mathematicians did not fully understand until the 19th Century. I
have been using “continuous” loosely to cover both cases.)

This ability to notice that some perceived structure or process is continuous, and
therefore infinite, is meta-cognitive insofar as it requires the process of perceiving,
or imagining, a structure or process to be monitored by another process which
inspects the changing information content of what is being perceived, or imagined,
and detects some feature of this process such as indefinite divisibility. A more
complex meta-cognitive process may notice an invariant of the perceived structure
or process, for instance detecting that a particular change necessarily produces
another change, such as increasing area, or that it preserves some feature, e.g.
preserving area.

This sort of ability contrasts with the ability to reason about discrete cases,
for example logical structures where a new disjunct is added, or an expression is
repeatedly negated. Researchers have been developing logical theorem provers (and
planners) with meta-cognitive capabilities for several decades, since that is easy

25 See Note 24
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to do in list processing or logical programming languages (like Lisp and Prolog).
There has been work on giving computers meta-cognitive reasoning abilities about
spatial reasoning in cases where the spatial structures are discrete, e.g. arrays of
dots or squares Jamnik (1999). Some progress on reasoning about continuity, in an
automated tutor for calculus is presented in Winterstein (2005). But neither of those
has the features of a child exploring spatial structures and discovering euclidean
geometry.

For example, learners can find it obvious that the arguments used in connection
with the Side-Stretch theorem, and earlier in connection with curves on a toroid
or paths on a cube, do not depend on the locations, orientations, sizes, or exact
shapes of the examples considered. So the proofs cover infinitely many different
cases. This seems to be connected with the fact that diagrams used in mathematical
reasoning do not have to exhibit mathematical precision, which would normally be
impossible anyway, when producing proofs on a blackboard or sheet of paper. In a
logical or algebraic formalism, generality is typically achieved by using variables for
which many different constants can be substituted. In geometrical and topological
reasoning generality may be expressed in the fact that a particular structure is
capable of being continuously deformed into many different cases without important
structural relationships changing.

Noticing an invariant topological or geometrical relationship by abstracting
away from details of one particular case is very different from searching for
correlations in a large number of particular cases represented in precise detail. For
example computation of averages, co-variance and various other statistics requires
availability of many particular, precise, measurements, whereas the discovery
processes demonstrated above do not require even one precisely measured case.

An observation made in Lenat and Brown (1984) concerning Lenat’s AM and
Eurisko programs, which learnt through unsupervised exploration of structured
domains, is relevant here: “If the language or representation employed is not well
matched to the domain objects and operators, the heuristics that do exist will be long
and awkwardly stated, and the discovery of new ones in that representation may be
nearly impossible.” We may one day discover that the sort of design effort that AI
researchers have to put into some of their programs for independent exploration
and discovery were preceded by the “design effort” of evolution in producing
animals with powerful learning abilities tailored to the environments in which they
evolved, as opposed to the totally general learning mechanisms sought by some AI
researchers. Moreover, learning about spatial structures may require very different
forms of representation from learning about arithmetic or programming.

The transitions in biological information processing required for organisms to
have this sort of meta-cognitive competence are still largely unknown. But I suspect
they form a very important feature of animal intelligence in organisms as different as
dolphins, squirrels, elephants, crows and apes. The genetic mechanisms underlying
such forms of learning and reasoning may share commonalities across different
animal forms, despite differences in sensors, effectors and modes of locomotion,
because the mechanisms address common environmental challenges, such as finding
routes, disassembling food, bringing food to helpless young in a shelter or nest,
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moving obstacles out of the way or avoiding them, building shelters, using matter
to manipulate matter in various ways. The commonalities come from the spatial
structures of environments rather than morphological commonalities of organisms.

Such evolved, possibly convergently evolved, features could then have
provided the basis for further evolutionary transitions, in some species, including
development of meta-meta-meta... competences required for some aspects of human
intelligence, as speculated in Chappell and Sloman (2007). Perhaps evolution first
produced organisms that are able to detect and make use of invariant relationships,
e.g. in controlling movements, selecting materials, using tools, and only later
produced the meta-cognitive competences required for noticing the reasoning
processes, although the meta-cognitive competences may then have supported more
advanced versions of the cognitive competences.

Allowing results of such learning and reasoning to be communicated to other
individuals required further evolutionary steps. I have speculated that this started
with modifications of actions allowing and then enhancing the side-effect of
communicating intentions and indicating where help might be useful. These action-
modifications might later have developed into sign languages, before there was vocal
communication Sloman (1979, 2008). Further research, including experimental AI
modelling, is required.

Some of these points about the need for intelligent systems to use diverse
forms of representation were made, though perhaps less clearly in Sloman (1971)
which also emphasised the fact that for mathematical reasoning the use of external
diagrams is sometimes essential because the complexities of some reasoning are too
great for a mental diagram. Every mathematician who reasons with the help of a
blackboard or sheet of paper knows this, and understands the difference between
using something in the environment to reason with and using physical apparatus to
do empirical research, though it took some time for many philosophers of mind to
notice that minds are extended.

21 Toward robot mathematicians discovering geometry

It is likely to be some time before we have robot mathematicians that understand, or
independently discover the Side-Stretch theorem and similar theorems, or discover
the elegant proof of the Triangle Sum theorem by Mary Pardoe shown in Figure 8,
and discussed in http://www.cs.bham.ac.uk/research/projects/cogaff/

misc/triangle-sum.html, or which can think about how to compute the area of
a triangle, or can discover the existence of prime numbers by playing with blocks
(in the manner described in Sloman (2013a)), or can perceive and make use of the
many different sorts of affordance that humans and other animals can cope with
(including, in the case of humans: proto-affordances, action affordances, vicarious
affordances, epistemic affordances, deliberative affordances, and communicative
affordances), illustrated in Sloman (2011).

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html
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Fig. 8 Mary Pardoe’s proof of the triangle sum theorem (see text)

A deeper question is whether there are features of the information-processing
engines developed and used by evolution that are not modelled in Turing machines
or modern digital computing systems, or which have totally intractable complexity
on Turing machines but not on special purpose spatial-reasoning machinery.

If there are important differences between Turing machines and chemical
computers they may depend on some of the following:

• Chemical processes involve both continuous changes in spatial and structural
relations and also the ability to cross a phase boundary and snap into (or out of) a
discrete stable state that resists change by thermal buffeting and other processes.
This stability could rely on quantum mechanisms.

• They allow multiple constraints to be exercised by complex wholes on parts, that
permit certain forms of motion or rotation or chemical behaviours but not others.

• Some switches between discrete states, or between fixed and continuously
variable states can be controlled at low cost in energy by catalytic mechanisms.
Compare Kauffman (1995).

It is clear that organisms used chemical computation long before neural or
other forms were available. Even in organisms with brains, chemical information
processing persists and plays a more fundamental role (e.g. building brains and
supporting their functionality). Does chemical computation have a more important
role than anyone has realised in supporting evolution, or individual learning or
reasoning? This is just a question: I have no answers at present. The CogAff
architecture schema and ideas about evolved virtual machinery may provide a
framework for gap-filling: http://www.cs.bham.ac.uk/research/projects/

cogaff/misc/vm-functionalism.html

22 Conclusion

Despite presenting more questions than answers I have tried to explain in
outline connections between the possibility of mathematical thinking, exploration,
discovery and proof and the existence of a huge variety of domains that include
structures, relationships, and processes about which discoveries can be made by
thinking in a special way, using offline intelligence, that is very different from the
processes of collecting and summarising evidence for use in online intelligence, that
now dominate much of AI including robotics.

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/vm-functionalism.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/vm-functionalism.html
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I have cast doubt on “deflationary” theories that suggest that mathematics is a
product of human thought or culture, or of biological evolution, while allowing
that some of the processes of evolution and learning may instantiate areas of
mathematics whose possibility is part of the fabric of reality, whether noticed by
anyone or not.

A hypothesis that some may find very surprising is that the possibility of
biological evolution of kinds hypothesised here implicitly depended on natural
selection “discovering” forms of mathematical structure and derivation that were at
first “blindly” used in production of new, increasingly complex types of individuals,
then later implemented in learning and discovery processes in individuals who
thought about and found new uses for those mathematical principles.

At a still later stage evolution produced mechanisms allowing some of those
mathematical thinkers to become aware of some of their thinking and in some cases
to find ways of criticising and improving it. On other planets where life emerges this
might not happen – as it did not happen here for several billion years (as far as we
know).

This form of meta-cognition, supported communication between individuals
about mathematical reasoning and eventually produced massive collaborative
activities leading to Euclid’s elements and other collections of communicable
mathematical results. In the process the individuals became increasingly aware
of what they were doing and able to communicate thoughts the nature of the
activity. This generated disagreements about the nature of mathematics that remain
unresolved, but perhaps the theories presented here will one day lead to agreement.

These processes can be construed as natural selection (or the biosphere)
undergoing a process analogous to what Karmiloff-Smith calls “Representational
Redescription” when it happens in individuals (Karmiloff-Smith, 1992).

These processes were recently enormously enhanced by the availability of digital
computers and the development of many computational tools and applications.
But some apparently simple forms of human and animal reasoning, e.g. about
affordances and properties of geometrical shapes, have proved hard to implement
on computers and it is possible that importantly different forms of computing
machinery, will be required before robots can match a wider range of animal
capabilities. Perhaps the Turing-inspired meta-morphogenesis project will generate
new ideas about how this could happen.
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