
State space search with prioritised softconstraintsNatasha Alechina and Brian LoganSchool of Computer Science, University of BirminghamBirmingham B15 2TT UKfn.alechina, b.s.logang@cs.bham.ac.ukAbstractThis paper addresses two issues: how to choose between solutions for a problem speci�edby multiple criteria, and how to search for solutions in such situations. We argue againstan approach common in decision theory, reducing several criteria to a single `cost' (e.g.,using a weighted sum cost function) and instead propose a way of partially ordering solutionssatisfying a set of prioritised soft constraints. We describe a generalisation of the A� searchalgorithm which uses this ordering and prove that under certain reasonable assumptions thealgorithm is complete and optimal.1 IntroductionConsider the problem of an agent playing the game of `hide-and-seek' which has to plan a routefrom its current position to the `home' position in a complex environment consisting of hills,valleys, impassable areas and so on. The plan should satisfy a number of criteria, for example, itshould be concealed from the agent's opponents, it should be as short as possible and be executablegiven the agent's current resources (e.g., fuel or energy). This problem is sometimes formulatedas that of �nding a minimum-cost (or low-cost) route between two locations in a digitised mapwhich represents a complex terrain of variable altitude, where the cost of a route is an indicationof its quality [1]. In this approach, planning is seen as a search problem in space of partial plans,allowing many of the classic search algorithms such as A� [4] or variants such as A�� [8] to beapplied. However, while such planners are complete and optimal (or optimal to some bound �), itcan be di�cult to formulate the route planning task in terms of minimising a single criterion.One way of incorporating multiple criteria (such as time, energy, visibility) into the planningprocess is to de�ne a cost function for each criterion and use, e.g. a weighted sum of these functionsas the function to be minimised. However the relationship between the weights and the solutionsproduced is complex, and it is often not clear how the di�erent cost functions should be combinedto give the desired behaviour across all magnitude ranges for the costs. This makes it hard tospecify what kinds of plans a planner should produce and hard to predict what it will do in anygiven situation; small changes in the weight of one criterion can result in large changes in theresulting plans. Changing the cost function for a particular criterion involves changing not onlythe weight for that cost, but the weights for all the other costs as well. Moreover, if di�erentcriteria are more or less important in di�erent situations, we need to �nd sets of weights for eachsituation.Rather than attempt to design a weighted sum cost function, it is often more natural toformulate such problems in terms of a set of constraints which a solution should satisfy. In thispaper, we focus on optimisation constraints (requirements to minimise a cost) and upper boundconstraints (requirements that a cost be less than or equal to some value). We allow constraintsto be prioritised, i.e., it is more important to satisfy some constraints than others, and soft, i.e.,constraints which can be satis�ed to a greater or lesser degree. Such a framework is more general1

in admitting both optimisation problems (e.g., minimisation constraints) and satis�cing problems(e.g., upper bound constraints), and cannot be modelled using weighted sum cost functions.The A� search algorithm is ill-suited to dealing with problems formulated in terms of con-straints. We present a generalisation of A�, A� with bounded costs (ABC) [7], which searchesfor a solution which best satis�es a set of prioritised soft constraints. In the next section weintroduce state space search and A�. In section 3 we de�ne a preference order on solutions basedon prioritised soft constraints and in section 4 we describe the ABC search algorithm. In section 5we show that, given certain reasonable assumptions about the constraints, ABC is both completeand optimal. Section 6 discusses some complexity issues. In section 7, we briey describe animplemented route planning system based on ABC and show that ABC cannot be emulated byA�.Although ABC was originally motivated by the route planning problem described above, webelieve that it can be applied in other problem domains which involve searching for a solutionspeci�ed by multiple incommensurable criteria or prioritised soft constraints. In the sequel, wewill use route planning as a running example.2 State space searchSearch is a universal problem-solving technique in AI. It is useful when the sequence of actionsrequired to solve a problem are not known a priori, but must be determined by systematic trialand error exploration of the alternatives. In particular, route planning can be seen as a searchproblem.A state space search problem consists of the following components:� A state is a complete description of the world for the purposes of problem-solving. Forexample, in a chess game, the states might be the positions of the pieces on the board, inroute planning, a location. Some states are designated as goal states, e.g. in route planningthe goal states would be the desired destination(s).� An operator is an action that transforms one state of the world into another state. In a chessgame, the operators might be the legal moves for the pieces given the current board position.In route planning on a digitised map, the operators would be moves to a neighbouring cell.� the state space is the set of all states reachable from the initial state (the state the world isin when problem-solving begins) by any sequence of operator applications.A path in the state space is any sequence of operator applications leading from one state toanother. A solution is a path from an initial state to a goal state.We assume that each application of an operator has a cost associated with it (which dependson the operator and the context in which the operator is applied). A path cost function g is thesum of costs of operator applications which constitute the path. It can be seen as a measure ofquality of the path. For example, in the route planning problem, we might prefer solutions whichminimise the distance travelled or the time taken to reach a goal.A search strategy which is guaranteed to �nd a solution (if one exists) is said to be complete.If it also �nds the minimum cost solution it is said to be optimal.The A� search algorithm is an example of an informed search strategy which uses additionalinformation about the likely cost of completing a path to a goal. This is expressed as a heuristicfunction, h(p), which, given a path p to some state s, returns an estimate of the cost of theminimum cost path from s to a goal state. A� uses an estimated total cost:f(p) = g(p) + h(p)to guide the search, so that the most promising paths (partial solutions) are considered �rst. A�is complete if each operator costs at least d for some positive d. A� is optimal if h(p) is always anunderestimate of the true cost of extending the path p to a goal state.2

3 Ordering pathsWhen solutions are evaluated on multiple criteria, coming up with a single cost function becomesproblematic. Instead we use several partial orders on solutions. In this section, we introduce apreference order on paths in the state space and a dominance order on paths. Both orders areused by the ABC search algorithm introduced in the next section. First we need to introduceseveral notions.Constraint order Constraints are bounds on costs of solutions (where a solution has multiplecosts, one for each criterion of evaluation). A cost can be anything for which a (partial) orderrelation can be de�ned: e.g., numbers, booleans, or more generally a label from an ordered setof labels (e.g., `tiny', `small', `medium', `large', `huge') etc. A constraint is a requirement thata cost lies within a given range of values; for example, `f(n) =true', `f(n) = 100', `f(n) < 10',`f(n) > 20', or `f(n) � O+ �' (i.e. within � of the optimum value O). A constraint is satis�ed, ifthe cost is inside the required range, and violated otherwise.An important class of constraints are upper/lower bound constraints which de�ne an upperor lower bound on some property of the solution, such as the time required to execute a plan, itsdegree of visibility etc. Another kind of constraint which we consider in detail, since they allowus to formulate ABC as a generalisation of A�, are optimisation constraints which require thatsome property of the solution be minimised or maximised, or more generally should lie within �of the minimum or maximum value (for example that a plan should be as short as possible).Suppose the requirements on a solution are given by a set of constraints C1; : : : ; Cn. If a solutionp satis�es the same constraints as a solution p0 and at least one more, p should be preferred to p0.This gives a very uninformative preference relation; for example, a solution p which satis�es onlyC1 and p0 which satis�es C2; : : : ; Cn are incomparable. In some cases, either the constraints areprioritised (e.g., C1 is more important than C2; : : : ; Cn taken together, and therefore p is preferredto p0) or, more generally, some combinations of constraints are more important to satisfy thanothers.More precisely, we associate with every path p a vector of t's and f 's of length n, where the ithelement of the vector is t if Ci is satis�ed, and f otherwise. The value t is preferred to f (t v f),since it is always better to satisfy a constraint than to violate it. This gives rise to the pointwiseorder on vectors of constraint values:� t v f , t v t, f v f ;� Let 1 � i � n and ai; bi 2 ft; fg. Then ha1; : : : ; ani v hb1; : : : ; bni if for all i ai v bi;� As usual, x < y if x v y and not y v x� x � y if x v y and y v x.In general, we assume that v is any reexive and transitive extension of the pointwise orderde�ned above, for example lexicographic order or the order in which only the number of satis�edconstraints matter.The order v on the vectors gives rise to the order on paths: p < (v;�)p0 if the correspondingvectors of constraint values are in < (v;�) relation. A set of solutions satisfying the sameconstraints is called a constraint equivalence class (since they are in the � relation).Cost order Within each equivalence class, the paths can still be distinguished on the basis oftheir costs. For example, consider a constraint that the time required to execute a plan shouldbe less than 1 hour. A route which takes 50 minutes satis�es this constraint `better' than a routewhich takes 59 minutes. A route which takes two hours violates it `more' than a route which takes1 hour 10 minutes. In general, given a constraint, it is sometimes possible to say which values ofthe corresponding cost function are `better'. If v1 and v2 are values and k1; k2 constants, then v1is preferred to v2 (v1 � v2) if, for example: 3

Form of constraint on cost v Conditions on costsv < Oe + � v1 < v2v < k1 v1 < v2v > k1 v1 > v2v = k1 jk1 � v1j < jk2 � v2jWe can associate with each path a vector of cost values hv1; : : : ; vni and de�ne a partial order� on them, which we again assume to be at least the pointwise order. For two paths p and p0,p � p0 if � holds between the corresponding vectors of costs. We call � the slack order. We mayprefer paths which over-satisfy the constraints, i.e., where there is some `slack' between the costof a path and the bound on the cost de�ned by a constraint. In the case of route plans, solutionswhich over-satisfy time or energy constraints are often more robust in the face of unexpectedproblems during the execution of the plan. If constraints are prioritised, the slack order can be alexicographic ordering of cost vectors. The only assumption which we use in the proofs throughoutthe paper is that the slack order is at least the pointwise order.Preference order Finally, we de�ne the combination of the two orders which will be used toorder the paths in the search space. Given the two orders v and �, the preference order on pathsis uniquely determined by by �rst ordering the paths with respect to v and then sub-ordering theequivalence classes with respect to �. We denote the preference order by �pref . Note that �prefmight still be a partial (not total) order.Dominance order Another order used in the algorithm is the dominance order. A path pdominates a path p0 if both paths terminate in the same state and p is preferred to p0 in thepointwise order of costs.The preference order on paths is used to direct the search and control backtracking.1 Thedominance ordering is used to decide which newly generated paths to keep and which to discard.Below we show that all non-dominated paths to a state should be kept by the algorithm, even ifsome of them are below others in the preference order.4 ABC algorithmIn the remainder of this paper we describe a generalisation of A� search algorithm, A� withbounded costs (ABC), which uses the preferences order de�ned above to search for a solutionwhich best satis�es a set of prioritised soft constraints, rather than the solution with lowest coston a single cost function [7].We de�ne an ABC search problem as consisting of:� a set of states and operators as for A�;� a set of cost functions, one for each criterion on which solutions are to be evaluated;� a set of constraints on acceptable values for each cost;� an order v over vectors of constraint values; and� an order � over vectors of cost values.A solution to an ABC search problem is a path from the start state to a goal state.The search strategy of ABC is similar to A� (see Figure 1). We use two lists, an open list ofunexpanded nodes (paths) ordered using the preference order, and a closed list which records allnon-dominated expanded paths to each state visited by the algorithm. At each step, we take the1Favouring paths which over-satisfy the constraints has the additional advantage of reducing the likelihood thatthe path will violate the constraint as the length of the path increases, reducing the amount of backtracking.4

�rst node from the open list and put it on closed. Call this node n. If n is a valid solution wereturn the path and stop. Otherwise we generate all the successors of n, and for each successor wecost it and determine its equivalence class. We remove from open and closed all paths dominatedby any of the successors of n and discard any successor which is dominated by any path on openor closed. We add any remaining successors to open, in order, and recurse.open [start]closed []repeatif open is empty return falseremove n, the least member of the first non-empty equivalenceclass, from open and place it on closedif n is a solution then return notherwise for every successor, n0, of ncost n0 and determine its equivalence classremove from open and closed all paths dominated by n0if n0 is dominated by any path on open or closed, discard n0otherwise add n0 to open, in preference orderFigure 1: The ABC algorithm5 Completeness and optimality of ABCIn this section we prove that, given some reasonable assumptions, ABC is both complete andoptimal. By an optimal solution we mean a solution p such that there is no solution p0 which isstrictly preferred to p. Note that there may be several di�erent optimal solutions.As for A�, completeness and optimality for ABC hold only under some assumptions aboutoperators and cost functions. Here we formulate them for increasing cost functions; it is straight-forward to formulate analogous conditions for decreasing cost functions.1. There are �nitely many operators, and each application of an operator increases the cost ofa path by at least some minimal positive amount d.2. Heuristic components in cost functions never overestimate the actual cost of the completionof a path.We call a constraint admissible if it is an upper bound or minimisation constraint on an increas-ing cost function satisfying the conditions above (or a lower bound or maximisation constraint ona decreasing cost function satisfying analogous conditions).Theorem 1 ABC with admissible constraints is complete.Proof. Suppose that the problem consists in �nding a solution satisfying admissible constraintsC1; : : : ; Cn. For simplicity, assume that they all are upper bound or minimisation constraintscorresponding to increasing cost functions f1; : : : ; fn. Suppose further that a solution does exist,and that the optimal solution(s) belong to the kth equivalence class.5

It su�ces to show that (1) all equivalence classes preceding the kth equivalence class are �niteand hence the kth equivalence class will be searched after a �nite number of steps. Note that thekth equivalence class itself need not be �nite; if the search space is in�nite, the last equivalenceclass for the given problem is in�nite. So, we also need to show that (2) within the kth equivalenceclass, a solution will be found after a �nite number of steps.Recall that there are �nitely many operators and an application of each of them increases thecost on f1; : : : ; fn by at least a �xed amount di. A path consisting of m application of operatorscosts at least m � di for every function fi. For every upper bound constraint fi(s) � r there aretherefore only �nitely many paths which cost less than r. Hence all equivalence classes whichsatisfy at least one upper bound constraint are �nite. The cost of the solution on a cost functionfi (even though it is not known in advance and might be overestimated) gives an upper bound onthe optimum for fi and hence on the number of paths satisfying a minimisation constraint on fi.We assume that the order of constraint equivalence classes is at least pointwise and hence everyclass preceding the kth equivalence class satis�es some constraint which is not satis�ed by the kthclass. So, there are only �nitely many paths in the preceding equivalence classes. We have proved(1).If the kth class itself satis�es at least one admissible constraint, it is �nite as well, and asolution will be found regardless of the ordering of the class. In this case, the ordering of the classonly matters for �nding the optimal solution. If the kth equivalence class is in�nite, we use thefact that it is ordered by the pointwise ordering over costs: a path which is cheaper on all costfunctions is preferred. Eventually a path leading to a goal will have lower costs than any otherpath and will be chosen for expansion. This proves (2). 2Theorem 2 ABC with admissible constraints is optimal.Proof. The proof of the previous theorem did not rely on the slack ordering (apart from thepointwise ordering on costs) or the fact that cost functions never overestimate the true cost ofa path. It only used the fact that costs are �nite and increasing by a discrete amount at everystep, so that even a solution with overestimated cost will eventually become cheaper than anyother path expanded so far. If, in addition, the slack ordering is used and the true cost is neveroverestimated, the �rst solution found will be the cheapest. The formal argument is the same asfor A� [8]. 26 Comparison of ABC and A�In the worst case, A� requires exponential space (and hence exponential time) to �nd a solution.ABC is a strict generalisation of A�: with a single admissible optimisation constraint its behaviouris identical to A�, and in this case its worst-case performance is identical to that of A�. However,in general, the performance of ABC and A� are not directly comparable, since the problemssolved by ABC (e.g., problems involving upper-bound constraints or multiple constraints) cannotbe re-formulated in terms of weighted sum cost functions (see section 7).As might be expected, this additional exibility involves a certain overhead compared withA�. In particular, we must remember all the non-dominated paths to each state visited by thealgorithm rather than just the minimum cost path as with A� since: (a) it may be necessary to`trade o�' slack on a more important constraint to satisfy another, less important constraint; and(b) it may not be possible to satisfy all the constraints, in which case we must backtrack to apath in a lower equivalence class. If slack ordering is used, we must also perform an additionallogm comparisons of k cost values, where m is the number of paths in the equivalence class. Inaddition, we must update the constraint values of the paths in the open list when we obtain abetter estimate of the optimum value for an optimisation constraint.In some cases remembering all the non-dominated paths can be a signi�cant overhead. How-ever, there are a number of ways round this problem, including more intelligent initial processingof the constraints and discretising the Pareto surface. For example we can require that the algo-rithm retain no more than n paths to any given point, by discarding any path which is su�ciently6

similar to an existing path to that point. In the limit, this reduces to A� where we only rememberone path to each point.7 A route planner based on ABCIn this section, we present an example application of the ABC algorithm and compare it toconventional approaches based on weighted sum cost functions. We describe a simple route plannerbased on ABC for an agent which plays the game of `hide-and-seek' in complex environments.The goal of the agent is to get from a given position to the `home' position subject to a numberof constraints, e.g., that the route should take less than t timesteps to execute or that the routeshould be hidden from the agent's opponents, and the function of the planner is to return a planwhich best satis�es these constraints.The current implementation of the route planner supports seven constraint types which boundthe time and e�ort taken to execute the plan or require that certain cells be visited or avoided,for example, concealed route constraints enforce a requirement that none of the steps in the planbe visible by the agent's opponents.2 However, for reasons of brevity, we shall consider only timeand energy constraints here. Time constraints establish an upper bound on the time requiredto execute the plan assuming the agent is moving at a constant speed of one cell per timestep.Energy constraints bound a non-linear `e�ort' function which returns a value expressing the easewith which the plan could be executed|the cost function is based on the 3D distance travelledwith an additional non-linear penalty for going uphill.In the following example, we consider the problem of planning from coordinates (50, 10) to (10,45) in an 80� 80 grid of spot heights representing a 10km � 10km region of Southern California.The terrain model is shown in Figure 2 (lighter shades of grey represent higher elevations).3 We usea lexicographic ordering over constraints and costs, with the time constraint being more importantthan the energy constraint. The time taken to execute the plan should be less than 100 timesteps(t < 100) and the energy cost should be less than 15,000 units (e < 15; 000). There is a conictbetween the two constraints, in that shorter plans involve traversing steeper gradients and sorequire more energy to execute.Figure 2 shows the plan returned by the ABC planner. The plan requires 63 timesteps and14,736 units of energy to execute, i.e. it just satis�es the energy constraint. A straight line pathwould have given maximum slack on the �rst (time) constraint, but the planner has traded slackon the more important constraint to satisfy the second, less important, constraint (energy). Theplan is optimal in the sense that there is no plan which takes less time to execute and still satis�esthe energy constraint.It is important to stress that this plan could not be found by a planner based on A�. ABCwill never prefer a route which satis�es only the second constraint to a route which satis�es the�rst constraint. If we attempted to obtain the same behaviour with A� using a weighted sumcost function of the form w1t+w2e we must ensure that the ratio of w1 to w2 is greater than themaximal value of je(pa)� e(pb)jjt(pa)� t(pb)jfor any two plans pa and pb. But then a planner minimising w1t + w2e will never trade o� slackon the �rst constraint to satisfy the second one. The following example illustrates this point, andalso explains the necessity to store all non-dominated paths to a state in ABC (see Figure 3).Suppose that there are two plans, pa and pb to a point n, both satisfying the time and energyconstraints, that is, t(pa) < T , e(pa) < E, and t(pb) < T , e(pb) < E, where T and E are upperbounds on time and energy respectively. Suppose further that t(pa) < t(pb) and e(pa) > e(pb).Given that w1w2 > e(pa)� e(pb)t(pb)� t(pa) ;2Note that the current implementation of the planner does not support optimisation constraints.3We are grateful to Jeremy Baxter at DERA Malvern for providing the terrain model.7

Figure 2: Planning with two constraints.we have w1t(pa) + w2e(pa) < w1t(pb) + w2e(pb);that is, pa is cheaper than pb.

start

end

n

p
a

p
b

Figure 3: Plan subsumption with A�.However if it subsequently turns out that no completion of pa through n will satisfy the energyconstraint but there exists a completion of pb which satis�es both constraints, we cannot backtrackto pb since A� retains only the (estimated) cheapest solution through n. A� collapses both costsinto a single value which is used to determine both the preference ordering and whether one plandominates another. The resulting loss of completeness means we cannot use A� to trade oneconstraint o� against another [7].Another possible way of attempting to solve the example problem using A� would be to usea single partial order on the set of plans. Suppose we have some partial order on plans, whichis at least the dominance ordering. Given two plans to the same point, pa and pb such that pasatis�es the time and energy constraints, and pb takes less time to execute but violates the energyconstraint, then if pa and pb are comparable in this ordering, then pa is preferred to pb. If A�uses this ordering to decide which plans to discard, then only pa will be retained. However, if allextensions of pa violate the �rst constraint, while there exists an extension of pb which satis�es it,8

then the optimal solution will never be found. Conversely if A� uses only the dominance orderingthen the �rst solution found may not be optimal.8 Related workOur work has similarities with work in both optimisation (e.g., heuristic search for path �ndingproblems and decision theoretic approaches to planning) and constraint satisfaction (e.g., planningas satis�ability). ABC is a strict generalisation of A�: with a single optimisation constraint itsbehaviour is identical to A�. However unlike heuristic search and decision theoretic approaches,we do not require that all the criteria be commensurable. The emphasis on non-dominated solu-tions has some similarities with Pareto optimisation which also avoids the problem of devising anappropriate set of weights for a composite cost function. However the motivation is di�erent: theaim of Pareto optimisation is to return some or all of the non-dominated solutions for further con-sideration by a human decision maker. In contrast, when slack ordering is used, ABC will returnthe most preferred solution from the region of the Pareto surface bounded by the the constraintswhich are satis�ed in the highest equivalence class. If an optimal solution is not required (i.e., aslack ordering is not used), the algorithm will return any solution which satis�es the constraints;such a solution will not necessarily be Pareto optimal.ABC also has a number of features in common with boolean constraint satisfaction techniques.However, algorithms for boolean CSPs assume that: (a) all constraints are either true or false, (b)all constraints are equally important (i.e., the solution to an over-constrained CSP is not de�ned),and (c) the number of variables is known in advance. Considerable work has been done on partialconstraint satisfaction problems (PCSP), e.g., [3], where the aim is to �nd a solution satisfyingthe greatest number of most important constraints. Dubois et al. [2] introduce Fuzzy ConstraintSatisfaction Problems (FCSP), a generalisation of boolean PCSPs, which support prioritisationof constraints and preference among feasible solutions. In addition, FCSPs allow uncertainty inparameter values and ill-de�ned CSPs where the set of constraints which de�ne the problem isnot precisely known. However, in common with more conventional techniques, both PCSP andFCSP assume that the number of variables is known in advance. In many cases this assumptionis violated, for example, in route planning the number of steps in the plan is not normally knownin advance. Several authors, for example [5, 6], have described iterative techniques which can beapplied when the number of variables is unknown. However, these techniques are incapable ofhandling prioritised or soft constraints, and the problems to which they have been applied areconsiderably smaller than the route planning problems which have been solved by ABC whichtypically involve more than 100,000 states and plans of more than 500 steps.Like A�, ABC requires monotonic cost functions and good heuristics. However it has manyof the advantages of PCSP/FCSPs and iterative techniques: it can handle prioritised and softconstraints (though not uncertain values or cases in which the set of constraints which de�ne theproblem is not precisely known) and problems where the number of variables is not known inadvance.9 Conclusions and further workIn this paper, we have presented a new approach to formulating and solving multi-criterion searchproblems with incommensurable criteria.We have argued that it is often di�cult or impossible to formulate many real world problems interms of minimising a single weighted sum cost function. By using an ordered set of prioritised softconstraints to represent the requirements on the solution we avoid the di�culties of formulatingan appropriate set of weights for a composite cost function. Constraints provide a means of moreclearly specifying problem-solving tasks and more precisely evaluating the resulting solutions: asolution can be characterised as satisfying some constraints (to a greater or lesser degree) and onlypartially satisfying or not satisfying others. 9

We have described a new search algorithm, A� with bounded costs, which searches for a solutionwhich best satis�es a set of prioritised soft constraints, and shown that for an important class ofconstraints the algorithm is complete and optimal. The utility of our approach and the feasibilityof the ABC algorithm has been illustrated by an implemented route planner which is capable ofplanning routes in complex terrains satisfying a variety of constraints.The present work is the �rst step in the development of a hybrid approach to search withprioritised soft constraints. It raises many new issues related to preference orderings over solutions(`slack ordering') and the relevance of di�erent constraint orderings for di�erent kinds of problems.More work is also necessary to characterise the performance implications of ABC relative to A�.However, we believe that the increase in exibility of our approach outweighs the increase incomputational cost associated with ABC.AcknowledgementsWe wish to thank Aaron Sloman and the members of the Cognition and A�ect and EEBIC(Evolutionary and Emergent Behaviour Intelligence and Computation) groups at the School ofComputer Science, University of Birmingham for useful discussions and comments. This researchis partially supported by a grant from the Defence Evaluation and Research Agency (DERAMalvern).References[1] C. Campbell, R. Hull, E. Root, and L. Jackson. Route planning in CCTT. In Proceedings ofthe Fifth Conference on Computer Generated Forces and Behavioural Representation, pages233{244. Institute for Simulation and Training, 1995.[2] Didier Dubois, Helene Fargier, and Henri Prade. Possibility theory in constraint satisfactionproblems: Handling priority, preference and uncertainty. Applied Intelligence, 6:287{309, 1996.[3] Eugene C. Freuder and Richard J. Wallace. Partial constraint satisfaction. Arti�cial Intelli-gence, 58:21{70, 1992.[4] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination ofminimum cost paths. IEEE Transactions on Systems Science and Cybernetics, SSC{4(2):100{107, 1968.[5] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochasticsearch. In Proceedings of the Thirteenth National Conference on Arti�cial Intelligence, AAAI-96, pages 1194{1201. AAAI Press/MIT Press, 1996.[6] Vassilis Liatsos and Barry Richards. Least commitment|an optimal planning strategy. InProceedings of the 16th Workshop of the UK Planning and Scheduling Special Interest Group,pages 119{133. University of Durham, Dec 1997.[7] B. Logan. Route planning with ordered constraints. In Proceedings of the 16th Workshop ofthe UK Planning and Scheduling Special Interest Group, pages 133{144. University of Durham,Dec 1997.[8] J. Pearl. A�� | an algorithm using search e�ort estimates. IEEE Transactions on PatternAnalysis and Machine Intelligence, 4(4):392{399, 1982.
10

