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Abstract

Animals are much more successful than current robots in their ability to gather information from the
environment, detect affordances, attribute causes to affects, and sometimes generate individually novel
behaviour. What kinds of mechanisms might make this possible? I will discuss different mechanisms
for acquiring information in animals, and their strengths and weaknesses given different life histories
and niches. I will discuss experiments which have attempted to uncover the extent of animals’ abilities
to use information from their environment, and the mechanisms that might be used to accomplish
this. The development of these kinds of competences (in evolutionary time and over the course of an
individual’s lifetime) is another interesting problem. Exploration and play seem to be very important
for some kinds of behaviour, particularly flexible responses to novel problems, but there is also the
possibility that animals come equipped with certain kinds of ‘core knowledge’, which might help to
direct and structure the acquisition of more complex competences.



How do animals gather 
useful information about 

their environment and act 
on it?

Jackie Chappell

Center for Ornithology

School of Biosciences

University of Birmingham
j.m.chappell@bham.ac.uk

1

What is involved in gathering 
information and acting on it?

• How do you perceive objects in ways that allow 

manipulation?

• What do you pay attention to (filtering and selective 

attention)?

• How do you detect affordances?

• How do you assign causality to actions, events or 

agents?

• How can competences be re-combined flexibly to 

generate appropriate behaviour in novel contexts, or 

creativity?

• How does this all develop?
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If  you were trying to build a 
robot to behave 

spontaneously like the 
chimp in the following clip, 

how would you do it?
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Pal, 2.5 years old

video taken by  Misato Hayashi, Primate Research 

Institute, Kyoto University, used with permission

Hayashi & Matsuzawa (2003) Animal Cognition
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Questions raised

• Why did she specifically pay attention to the 

blocks (attention)?

• What mechanism could have allowed Pal to learn 

that she could stack the blocks (detect the 

affordances of blocks)?

• Did she understand causal relationships (e.g. that 

hitting the blocks would make them fall)?

• Would she be able to stack other shapes or 

different objects (re-combinable competences)?

• How did this behaviour develop?
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What kinds of  mechanisms 
make it possible for animals to 

find out about affordances, 
attribute causes to effects and 

generate appropriate (sometimes 
novel) behaviour?

6

What mechanisms do we know of ?

• Developmentally-fixed behaviour - usually genetically 

determined

• Fast and reliable, but inflexible

• Associative learning

• Gradual process, but fairly flexible and surprisingly 

subtle

• Social learning

• Can provide a short-cut to learning a novel behaviour

• Some extended learning mechanism—some ‘core 

knowledge’, new competences acquired, extended and 

re-combined through exploration and play?
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Developmentally-fixed behaviour

• Complex behaviour triggered by simple cues

• Useful when:

• Limited opportunity for learning

• Behaviour needs to be perfect on the first 

attempt (e.g. flight in cliff or tree-nesting 

birds)

• There are time constraints (e.g. short life 

span)

• Common in precocial species where young 

are relatively independent from birth
© Wildlife Film & Foto

© USGS.gov

8



Associative learning

• Classical conditioning and operant 

conditioning

• Can lead to a complex chain of behaviour 

! novel responses to the environment

• Relatively slow and gradual process 

(though one-trial learning is possible)
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Social learning

• Learn from the behaviour of others:

• Directly, by observation

• Or via products of another’s behaviour

• Can spread novel behaviour rapidly 

through a population ! cultural 

transmission ! cultural evolution
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Extended learning 

mechanism and exploration

• Animals can learn about the space of possible 

actions with an object, unusual properties etc.

• Time consuming, but possible for altricial species 

during development, when parent(s) care for 

offspring

• May also enable very rapid learning if ‘chunks’ of 

knowledge about the environment can be reused

• Exploration (not directly reinforced) may be very 

important
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What do you pay attention to?

• Some genetically-determined biases 

which limit the stimuli that form 

associations (e.g. taste conditioning in 

rats)

• Exploration ! classification of some 

things as ‘interesting’?
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“Appropriateness” of  the stimulus or response 
matters (Domjan & Wilson, 1972)

Group taste Group noise

Train Sweet water ! illness Noisy water ! illness

Test
Sweet water vs. Plain 

water

Noisy water vs. Silent 

water

RESULT LEARNING NO LEARNING

Train Sweet water ! shock Noisy water ! shock

Test
Sweet water vs. Plain 

water

Noisy water vs. Silent 

water

RESULT NO LEARNING LEARNING

So, natural selection constrains associations to 

those likely to be causally linked
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How to detect affordances?

• Are affordances tied to specific stimuli, or 

can animals abstract more general 

properties?

• What is the role of experience?

• Is this an adaptation specific to the tool-

using domain?
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Making an appropriate tool for a novel task
(New Caledonian crows)
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What do non-tool users 
understand about the function of  

tools?

push the food item). As such, a “correct” pull was defined as a pull in
which the subject either picked the correct tool or in which the subject was
able to manipulate the incorrect tool (grape located outside of hook) in such
a way as to pull the food item within grasping range. Subjects continued on
Experiment 1 sessions until they reached a criterion of 80% correct pulls
(i.e., 10 out 12 trials) for two consecutive sessions.

Results

Subjects reached criterion on two consecutive sessions on av-
erage in 10.5 sessions (SD ! 4.97 sessions; see Figure 3). There
was no difference between performance in brown lemurs (M !

11.67 sessions) and ring-tailed lemurs (M ! 9.33 sessions). We
then compared our subjects’ performance with that of monkey
tested in previously published studies (Fujita et al., 2003; Hauser,
1997; Hauser, Pearson, & Seelig, 2002; Santos, Pearson, et al., in
press). Our lemur subjects performed about as quickly as tamarins
(M ! 9.4 sessions, SD ! 4.19), capuchins (range ! 15–19
sessions), and vervet monkeys (M ! 6 sessions, SD ! 0.84).

Discussion

Despite the fact that they rarely manipulate objects functionally
in the wild, our lemur subjects performed well on the means-end
task presented to them in Experiment 1. All subjects completed the
training in only a few sessions. Moreover, our lemur subjects
performed at the same rate as other monkey species: capuchins,
tamarins, and vervet monkeys. The fact that our lemur subjects
learned this means-end task as quickly as capuchin monkeys is
striking; unlike lemurs, capuchins are known to use tools sponta-
neously both in the wild (Izawa & Mizuno, 1977) and in captivity
(Anderson, 1990; Ottoni & Mannu, 2001; for review, see Fragaszy
et al., 2004). Consequently, our results suggest that lemurs, which
have never been observed using tools, can learn a simple took task
as quickly as a more dexterous tool-using species like the
capuchin.

Figure 2. A depiction of the tool combinations used in Experiment 1.

Figure 3. Learning curves for each subject tested in Experiment 1.

397HOW LEMURS REPRESENT TOOLS

(Santos et al. 2005)
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How to assign causality?

• Probabilistically, through contingency and 

contiguity (Rescorla & Wagner 1972)

• Test hypotheses by performing 

interventions (Gopnik & Schultz 2004)

• Core knowledge about the structure of 

the world (acquired or developmentally 

fixed) ! expectations about causal 

structure (not all causes are equally 

possible) (Carey & Spelke 1996)
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Animals can learn about the temporal relationship 

between events ! causal attribution 

Test

I

II

(Barnet, Cole & Miller, 1997)
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What causes objects to fall?

Possibly gaining dynamic feedback from environment, and adjusting 

behaviour appropriately
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Re-combinable competences

• To what degree can animals re-combine 

existing competences to generate novel 

behaviour?

• How does this depend on previous 

experience?
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Pilfering in scrub jays: it helps to 
have been a thief  to catch a thief

• Three groups:

• Observer + Pilferer—had experience of 

both observing conspecifics caching, and 

of pilfering others caches

• Observer—only experience with observing 

caching

• Pilferer—listened to others caching, then 

allowed to pilfer caches

(Emery and Clayton 2001)
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Experimental protocol

• Birds allowed to cache food in a tray:

• With an observer bird watching from an 

adjoining cage (‘observed’ trial)

• With no bird watching them (‘in private’ 

trial)

• Then allowed to retrieve cache and also 

given opportunity to re-cache in old tray 

or a new one
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• Pilferers re-cached 

food when observed 

caching (in new sites)

• Specific to the tray 

which was observed, 

not a general 

increase in re-

caching

• Observation of 

caching not sufficient 

to prompt re-caching

observer + pilferer

observer pilferer

(Emery and Clayton 2001)
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• In an experiment on choice between a 

hooked wire and a straight one, Betty 

bent the hook spontaneously on the 5th 

trial

• In a subsequent experiment, she bent the 

hook and used it to remove the bucket on 

9/10 trials

Novel manufacturing behaviour 
with a new material

(Weir, Chappell & Kacelnik 2002)
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[Weir, Chappell & Kacelnik 2002]
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What might the mechanism allowing 
re-combination of  competences be?

• Built-in drive to explore (with no immediate 

reinforcement consequences)

• Cognitive structures (genetically determined) 

which might guide or constrain exploration 

(‘bootstrapping’ of behaviour)

• Construction of reusable ‘chunks’ which can 

themselves be recombined into more 

complex structures (e.g. language learning)
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How do these abilities develop?

• Exploration and play

• Lack of neophobia—you can’t discover 

properties of objects you never go near

• Altricial species often have a large amount 

brain development going on after birth/

hatching

• Is it important that the developing brain is 

exposed to the environment?

• To what degree are animals limited by their 

exploratory tendencies?

28



Are animals limited by species-specific 
representational capacities, or by the their 

exploratory tendencies?

• Representational view vs. Ecological view 

(Cummins-Sebree and Fragaszy, 2005)

• Capuchin monkeys spontaneously re-

positioned canes to pull a food reward towards 

them, unlike tamarins

• Is this difference because of species differences 

in exploratory/manipulatory behaviour? 
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Summary

• We need to combine the richness of animals’ 

behaviour with the depth of knowledge of the 

mechanisms involved in artificial systems to explore 

this

• There is almost certainly more than one solution to 

the problem (in vivo and in silico)—the optimal 

solution depends on the ‘habitat’ of the agent

• Animals (and robots) need to be tested in 

ethologically valid ways to reveal their competences 

fully

• It’s a very difficult (but interesting) problem!

30



 
 
 

A Novel Computing Architecture for Cognitive Systems based on 
the Laminar Microcircuitry of the Neocortex – the COLAMN 

project 
 

Michael Denham 
Centre for Theoretical and Computational Neuroscience 

University of Plymouth, UK 
mdenham@plym.ac.uk 

 
Abstract 

 
Understanding the neocortical neural architecture and circuitry in the brain that subserves our perceptual and 
cognitive abilities will be an important component of a “Grand Challenge” which aims at an understanding of 
the architecture of mind and brain. We have recently embarked on a new five-year collaborative research pro-
gramme, the primary aim of which is to build a computational model of minimal complexity that captures the 
fundamental information processing properties of the laminar microcircuitry of the primary visual area of neo-
cortex. Specifically the properties we aim to capture are those of self-organisation, adaptation, and plasticity, 
which would enable the model to: (i). develop feature selective neuronal properties and cortical preference maps 
in response to a combination of intrinsic, spontaneously-generated activity and complex naturalistic external 
stimuli; and (ii) display experience-dependent and adaptation-induced plasticity, which optimally modifies the 
feature selectivity properties and preference maps in response to naturalistic stimuli. The second aim of the re-
search programme is to investigate the feasibility of designing VLSI circuitry which would be capable of realis-
ing the computational model, and thus demonstrate that the model can form the basis for a novel computational 
architecture with the same properties of self-organisation, adaptation, and plasticity as those displayed by the 
biological system. A basic premise of the research programme is that the neocortex is organised in a fairly 
stereotyped and modular form, and that in this form it subserves a wide range of perceptual and cognitive tasks. 
In principle, this will allow the novel computational architecture also to have wide application in the area of 
cognitive systems. 
 
. 

 
1   Introduction 
The neocortex of the brain subserves sensory per-
ception, attention, memory and a spectrum of other 
perceptual and cognitive functions, which combine 
to provide the biological system with its outstanding 
powers. It is clear that the brain carries out informa-
tion processing in a fundamentally different way to 
today’s conventional computers. The computational 
architecture of the brain involves the use of highly 
parallel, asynchronous, nonlinear and adaptive dy-
namical systems, namely the laminar microcircuits 
of the neocortex. The neurons which make up a 
neocortical microcircuit (Silberberg et al, 2002; 
Mountcastle, 1997) are precisely connected to each 
other and to their afferent inputs through synapses in 
specific layers of the laminar cortical architecture, 
and on specific locations on their dendritic trees 
Thomson and Bannister 2003; Callaway, 1998). Each 

synapse acts as a unique adaptive filter for the 
transmission of data into the circuit and between 
pairs of cells. Thus whilst a single neuron may con-
nect to many hundreds of other neurons, a signal 
sent by one neuron will be interpreted by each target 
neuron in a unique way. Furthermore, these connec-
tions are not static but change their transmission 
characteristics dynamically and asynchronously, on 
a millisecond timescale, partly determined by their 
highly precise spatial location in the dendritic tree 
(Häusser et al, 2003) but also in relation to the func-
tion of the different neuronal types that they con-
nect. In addition, both the synaptic connections and 
the transmission properties of the dendritic tree have 
the remarkable ability to continuously adapt and 
optimise themselves to meet the requirements of 
novel tasks and environments. This takes place both 
through unsupervised, self-organising modification 
of their dynamic parameters, and through optimisa-
tion of the synaptic and dendritic dynamics by spe-
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cific adaptation-induced and experience-dependent 
plasticity mechanisms.  
 
Capturing the fundamental information processing 
properties of the laminar microcircuitry of the neo-
cortex in the form of a computer model could pro-
vide the foundation for a radical new generation of 
machines that have human-like performance in per-
ceptual and cognitive tasks. Such machines would 
be capable of using self-organisation, adaptation, 
and plasticity mechanisms which are inherent in the 
neocortex, in order to deal with complex, uncertain 
and dynamically changing information. They would 
potentially be much more powerful, require minimal 
programming intervention, and be resilient to fail-
ures and errors. Creating the necessary understand-
ing of these properties of the neocortex, expressing 
them as a computational model of minimal com-
plexity, and translating this model into the design of 
a computer architecture capable of realisation in 
VLSI, will require the collaborative efforts of neu-
roscientists, computer scientists, mathematicians, 
and engineers.   
 
2 The aims of the research pro-
gramme 
 
The aim of this research programme is to create a 
new “brain-inspired” computational architecture 
which possesses the basic properties of self-
organisation, adaptation and plasticity manifest in 
the laminar neural microcircuitry of the neocortex. 
The principal objective is a functional model of a 
“stereotypical” cortical microcircuit which captures 
these basic properties of the neocortex, and provides 
the basis for the design of a novel, modular compu-
tational architecture capable of realisation in a com-
bination of analogue and digital VLSI circuits. The 
ultimate goal of this avenue of research is a “brain-
inspired” architecture which will deliver human-like 
levels of performance for a wide range of perceptual 
and cognitive tasks, and deal with all sensory mo-
dalities.  
 
This goal is well beyond the scope of the currently 
envisaged research programme; however, as a first 
step towards this goal, the programme will aim at 
capturing the fundamental properties of self-
organisation, adaptation and plasticity of the neu-
ronal circuitry in the primary visual area of the 
mammalian neocortex. This will allow us to build 
on the wealth of current neurobiological knowledge 
concerning the properties and interconnectivity of 
neurons and the behaviour of local and long-range 
neuronal circuitry in this area of neocortex in re-
sponse to visual stimuli. It must be stressed that our 
aim is not to build a detailed, biologically-precise 

model of neocortex, but rather it is to identify and 
capture in a minimally complex model these key 
fundamental properties that underlie its remarkable 
information processing capabilities. 
 
The specific aims of the proposed research pro-
grammme can therefore be summarised as follows: 
 
1. To build a computational model of minimal com-
plexity that captures the fundamental information 
processing properties of the laminar microcircuitry 
of the primary visual area of neocortex. Specifically 
the properties we aim to capture are those of self-
organisation, adaptation, and plasticity, which 
would enable the model to: 

i. develop feature selective neuronal properties 
and cortical preference maps in response to a 
combination of intrinsic, spontaneously-
generated activity and complex naturalistic ex-
ternal stimuli, and 
ii. display experience-dependent and adaptation-
induced plasticity, which optimally modifies the 
feature selectivity properties and preference 
maps in response to naturalistic stimuli. 

2. To investigate the feasibility of designing VLSI 
circuitry which would be capable of realising the 
computational model, and thus demonstrate that the 
model can form the basis for a novel computational 
architecture with the same properties of self-
organisation, adaptation, and plasticity. 
 
3  The research programme 
 
The research programme involves a high level of 
integration of activities in neurobiological model-
ling, experimental neurobiology and the VLSI cir-
cuit design. It is organised into a set of such activi-
ties, each of which addresses a well-defined aim of 
the research programme, as described below. 
 
3.1   Novel neocortical neuron and circuit 
connectivity models  
 
A basic premise of the research programme is that 
the neocortex is organised in a fairly stereotyped 
and highly modular fashion. Although much is al-
ready known about the structure and functional con-
nectivity of microcircuits in the neocortex, the cur-
rent state of knowledge is only sufficient to inform 
the initial design and construction of the proposed 
computational model. Recent work eg Thomson and 
Bannister (2003), has contributed important and de-
tailed insights into the synaptic connectivity and the 
dynamic and plastic aspects of information trans-
mission along these synaptic connections within a 
cortical column. The research will draw on this and 
on further, on-going work in order to more fully 
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elucidate the neuronal and synaptic connectivity 
which it is necessary to capture within the computa-
tional model in order to endow it with the self-
organisation, adaptation and plasticity properties of 
cortical microcircuits. 
 
In particular, the behaviour of circuit models of 
spiking neurons strongly depends on the properties 
of their constituents, the individual neurons, as well 
as on the synaptic connectivity between them. For 
example, the phase diagrams describing the dynam-
ics of sparsely connected networks of excitatory and 
inhibitory neurons, which can exhibit different syn-
chronous and asynchronous states (Brunel, 2000) 
change fundamentally when current-based integrate-
and-fire neurons are replaced by conductance-based 
integrate-and-fire neurons as the constituents of the 
network. In order to provide the cortical modelling 
and the VLSI designs with the best possible descrip-
tion of single neurons (in terms of both accuracy and 
computational efficiency), the plan is to construct 
new types of integrate-and-fire neuron models that 
represent the biophysical mechanisms operating in 
biological neurons in a more realistic way, including 
the role of neuronal dendrites in the transformation 
of synaptic input into spike output. 
 
Models will be validated by direct comparison with 
experimental data from experiments in brain slices 
and in the intact animal in vivo which describe the 
input-output relation of different types of neurons 
both at a functional, eg Chadderton et al., 2004, and a 
biophysical level, eg Häusser et al., 2001. We will 
focus on those characteristics of real neurons that 
are currently not, or only with insufficient accuracy, 
captured by the integrate-and-fire or spike response 
models currently available. We expect that models 
including the subthreshold dynamics of voltage-
dependent conductances, including oscillatory be-
haviour, as well as the shunt conductances associ-
ated with action potential firing, which provide only 
a partial reset of the membrane potential in the neu-
ron, will lead to more realistic yet compact descrip-
tions of the input-output relations of different types 
of cortical neurons. 
 
Single-neuron models will be complemented by 
three-dimensional geometric models of synaptic 
connectivity based on anatomical and physiological 
data from a large dataset of anatomically and 
physiologically identified, synaptically connected 
neurons which are being generated in a number of  
laboratories. Together these will provide an intra- 
and interlaminar wiring diagram of the cortical mi-
crocircuit. The functional properties of the synaptic 
connections between different types of neurons will 
be described by statistical distributions of the ampli-
tudes and time courses of the synaptic conductances, 

including a representation of short- and long-term 
synaptic plasticity. 
 
 
3.2   Functional analysis and modelling 
of the neocortical microcircuit  
It will be essential to provide constraints for the 
proposed computational model. This is a non-trivial 
but essential task if we are to ensure that the model-
ling work does not result in “parameter explosion”. 
In particular, it will be necessary to constrain the 
model on the basis of the functional properties of the 
neurons and their interconnectivity in the cortical 
microcircuit. In vivo, cortical cells receive input 
from several thousand synaptic connections simul-
taneously, and only a proportion of these are con-
nections from other cells within the cortical micro-
circuit. Some aspects of the intra-columnar connec-
tivity revealed by intracellular recordings will form 
an essential part of the function of the cortical col-
umn, while other aspects are unimportant details 
that are best ignored in the proposed computational 
model. Constraining the model therefore means de-
ciding which aspects are important, and estimating 
the strength of their contribution relative to other, 
external inputs and influences. This will require 
combining new extracellular recording techniques 
and novel statistical analysis and modelling ap-
proaches. Silicon array electrode techniques make it 
possible to record spiking activity simultaneously 
from dozens of neurons throughout a cortical micro-
circuit, in the living brain while it is carrying out its 
natural information processing tasks. In the past, 
simple filter models have been used to predict re-
sponses of individual neurons in sensory cortex 
(Schnupp et al, 2001). The research programme will 
aim at a dramatic improvement in these simplistic 
models through the use of novel statistical model-
ling techniques.  
 
3.3   Learning rules for the development 
of stable self-organised feature selectivity  
 
The role of self-organisation in the stimulus-
dependent development of orientation selectivity 
was first suggested by von der Malsburg and re-
cently reviewed by Miller et al (1999) and Sur and 
Leamey, 2001. The latter suggest that spontaneous 
patterns of neural activity in the absence of visual 
stimuli may be sufficient in the early periods of 
development, after the initial cortical circuitry has 
been established, for the early development of orien-
tation selectivity, but that the formation of orienta-
tion selectivity is strongly influenced by input activ-
ity to the developing cortex (Sur and Leamey, 2001; 
Sur et al, 1988). Experiments show that input activ-
ity has an influence on synaptic connections in the 
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cortical circuitry which gives rise to orientation map 
development and long-range horizontal intracortical 
connections in layers 2/3. A cortical microcircuit 
model would thus need to embody development of 
the dynamical interactions provided by intracortical 
connections in an activity-instructed self-organising 
process of map development. As yet, it would ap-
pear that no biological models exist which imple-
ment this activity-dependent self-organising process 
of development.  
 
It has been demonstrated experimentally that the 
self-organised modification of synapses depends on 
the precise timing of spikes, causing the neuron to 
evolve in such a way as to be driven by its fastest 
and most reliable inputs. Therefore it seems reason-
able to hypothesise that the learning rules which 
govern the self-organised emergence of cortical ori-
entation selectivity should yield populations of se-
lective cells, large enough to perform fast and reli-
able computation, yet small enough to be efficient. 
The investigation of these issues will lead to an un-
derstanding of how learning rules can self-organise 
the synaptic interconnectivity in the cortical micro-
circuit to produce a stable, sparse coded orientation 
selective network. An important component of this 
work will be to investigate how the stability of fea-
ture selectivity might be helped by recurrent interac-
tions between neurons. These connections could 
break the symmetry and stabilise the synaptic 
weights, improving the stability of feature selectiv-
ity. The precise details of the learning rules are ex-
pected to be of crucial importance for the final se-
lectivity patterns learned. This holds for both rate 
based as for spike timing dependent learning rules 
(van Rossum et al, 2000). 
 
3.4 Neural coding of feature selectivity 
properties of cortical circuits  
 
Intimately related to the investigation of develop-
mental self-organisation learning rules is the ques-
tion of neural coding, i.e. of how neuronal popula-
tions represent sensory information. This is even 
more evident in the case of spike timing dependent 
learning rules. For instance, if stimulus features are 
coded across the cortical microcircuit by either pre-
cise spike times of individual neurons or by syn-
chronous neuronal activity across neurons, it is of 
importance to know how such coding affects learn-
ing. Likewise, the developmental learning rules 
which result in specific patterns of synaptic connec-
tivity have to support the selective neural coding of 
the stimulus feature set. A major objective of this 
part of the research programme will be to under-
stand what advantages the laminar architecture of 

the neocortex offers in terms of efficiency of infor-
mation representation.  
 
By using mathematical analysis techniques based on 
the principles of information theory, the role of co-
lumnar organization in cortical information repre-
sentation has recently been investigated (Panzeri et 
al, 2003), but it is clear that the laminar organisation 
can provide both advantages and constraints that are 
as important. It has been shown that real cortical 
neurons encode information by timing of individual 
spikes with millisecond precision (Panzeri et al, 
2001a) and investigated what mechanisms are need 
to read out this information, eg dendritic processing 
must be important to decode information if most 
information is encoded by the “label” of which neu-
ron fired each spike, and not very important if in-
stead neurons can sum up all spikes at the soma and 
still conserve all information (Panzeri et al, 2003). 
 
Research in this part of the programme will extend 
these ideas by investigating in detail the information 
processing capabilities of laminar cortical circuits. 
In particular, we will determine (i) the “neuronal 
code” used in different laminae, i.e. which of the 
features (e.g. spike count, precise spike times, syn-
chronization) characterizing the responses of neu-
ronal populations in different laminae convey the 
most sensory information (ii) whether the precise 
synaptic connectivity within the laminar neocortical 
architecture is to some extent “optimal” for fast in-
formation transmission from one neuron/layer to 
another neuron/layer. By “optimal” we mean that 
the observed wiring comes close enough in terms of 
transmitted information to the best possible one. By 
fast we mean that all of this information must be 
transmitted by the model synaptic system in time 
scales as fast as the cortical ones (Panzeri et al, 
2001b). 
 
3.5 Learning rules for experience-
dependent and adaptation-induced plas-
ticity in the developed cortical microcir-
cuit 
 
It is well known that the ability to detect small ori-
entational differences can be significantly improved 
through training on a visual discrimination task over 
an extended period of time. This perceptual learning 
process is also seen to have a long-lasting effect, 
indicating that it must be the result of some form of 
long-term synaptic plasticity in the brain. Other 
characteristics of the learning, which can be psy-
chophysically observed, such as the lack of transfer 
of the learning from one orientation to the orthogo-
nal orientation or from one learned retinal location 
to a nearby nonoverlapping location, indicate that 
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the plasticity must involve the primary visual cortex, 
where the neurons have localised orientation selec-
tivity and small receptive fields. Orientation plastic-
ity has also been demonstrated in response to con-
tinuous visual stimulation for a period of seconds to 
minutes, a process known as adaptation. The results 
suggest that adaptation-induced orientation plastic-
ity involves changes in circuit connectivity which 
then define a new preferred orientation. As proposed 
in the review by Dragoi and Sur (2003), the changes 
in orientation selectivity following adaptation imply 
a circuit mechanism that reorganizes responses 
across a broad range of orientations, and suggest 
that adaptation-induced orientation plasticity in pri-
mary visual cortex is a self-organised emergent 
property of a local cortical circuitry acting within a 
non-uniform orientation map. Research in this part 
of the programme will investigate the learning rules 
necessary to support the proposed emergence of 
adaptation-induced modification of orientation se-
lectivity, and whether such learning rules can also 
support long-term experience-dependent plasticity 
of orientation selectivity. 
 
3.6   Novel neocortical neuron and circuit 
connectivity models 
 
Spatiotemporal response properties of neurons in 
fully developed primary sensory areas are not static 
but can change on various timescales. Dynamic 
changes of response properties on long timescales 
have been assigned to adaptation and plasticity 
mechanisms. But responses also change on fast 
time-scales of a few to a few hundred milliseconds 
revealing rich dynamic features that result from the 
neural and synaptic activation dynamics and on-
going interactions between neurons within and 
across cortical microcircuits eg Bringuir et al 
(1999). Recent experiments eg Ringach et al (2002) 
indicate even more complex responses of cortical 
neurons and circuits to naturalistic stimuli. Spatio-
temporal responses look similar to those for simple 
bar or grating stimuli, but there are also significant 
differences (Ringach et al, 2002). In part these dif-
ferences seem to be related to influences from out-
side the classical receptive field: These experiments 
provide evidence that spatiotemporal response prop-
erties of cortical neurons are dynamically shaped in 
quite intricate ways by intrinsic neuronal and synap-
tic activation dynamics, interactions between neu-
rons within the microcircuit, and longer ranging 
synaptic recurrent, feedforward and feedback cir-
cuits. These dynamical properties may underlie the 
surprisingly fast and adaptable information process-
ing within the cortical microcircuit. 
 

A general analytical approach has recently been 
described (Wennekers, 2002) that relates differently 
tuned enhanced and suppressed phases in a spatio-
temporal response function to feedforward or recur-
rent pathways between participating cell classes. 
Although useful for some spatiotemporal phenom-
ena, much of the complexity in real neural responses 
remains unexplained by such models. Models of 
complex spatiotemporal phenomena which incorpo-
rate the influence of ongoing and spreading activity, 
or responses to real-world stimuli, are still scarce.  
 
3.7  Feasibility analysis for VLSI circuit 
design  
 
A major aim of the research programme is to use the 
computational model of the neocortical laminar mi-
crocircuit to define an efficient and implementable 
VLSI “building block” for a novel computational 
architecture. The mapping of the model of the corti-
cal microcircuit model into the VLSI circuit design 
for a novel computational architecture will require 
the investigation of detailed issues with respect to 
the numerical accuracy, performance, power con-
sumption and area cost of novel analogue and digital 
circuit alternatives. These investigations will form 
the activity of this workpackage. We envisage a 
structure for the VLSI design based upon an ana-
logue VLSI spiking neural substrate, interconnected 
via a digital VLSI address-event communication 
network, all controlled by a software configuration 
and control system. However, the integration of 
low-level neural models implemented by analogue 
VLSI circuits, with digital VLSI for signal routing 
and communication will need to go far beyond the 
simple protocols currently used by the neuromor-
phic engineers, and presents a major challenge. The 
research will also aim at understanding the implica-
tions, in both directions, for including or omitting 
certain components in the computational model, and 
assessing the relationship between the levels of de-
scription chosen for the computational model and 
the constraints of VLSI circuit design. In addition, 
the issues of optimisation (area, power) are present 
both in the neocortical microcircuit, and in silicon, 
so some direct analogies on a physical level will be 
investigated, eg the possible arrangement of the 
physical layout of devices in a way which is inspired 
by the 3-dimensional laminar architecture of the 
cortical microcircuit, in which connections between 
the cortical microcircuit “building blocks” are pre-
dominantly within or between certain layers.  
 
4  Summary 
 
The neocortex of the brain subserves sensory per-
ception, attention, memory and a spectrum of other 
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perceptual and cognitive functions, which combine 
to provide the biological system with its outstanding 
powers. It is clear that the brain carries out informa-
tion processing in a fundamentally different way to 
today's conventional computers. The computational 
architecture of the brain clearly involves the use of 
highly parallel, asynchronous, nonlinear and adap-
tive dynamical systems, namely the laminar neural 
microcircuits of the neocortex. The fundamental aim 
of this research programme is to create a new brain-
inspired" computing architecture which possesses 
the basic properties of self-organisation, adaptation 
and plasticity manifest in the neural circuitry of the 
neocortex. The objective is a modular architecture 
based on a representation of a "stereotypical" corti-
cal microcircuit. The research will focus on the 
laminar microcircuits of the primary visual cortex in 
order to build on the wealth of neurobiological 
knowledge concerning the behaviour and intercon-
nectivity of neurons in this area of neocortex. How-
ever the wider objective would be to use the laminar 
microcircuitry of primary visual cortex as an exem-
plar for a stereotypical neocortically-inspired archi-
tecture. This will allow the architecture to be de-
ployed in a wide range of perceptual tasks, and po-
tentially also in cognitive tasks such as decision 
making,, with minimal changes to the basic cir-
cuitry. The aim is not simply to build a detailed, 
biologically-precise model of primary visual cortex, 
but rather the challenge is to identify and capture the 
key fundamental principles and mechanisms that 
underlie the remarkable and ubiquitous information 
processing power of the neocortex. 
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Abstract 

 
We propose a bottom-up computer engineering approach to the Grand Challenge of understanding 
the Architecture of Brain and Mind as a viable complement to top-down modelling and alternative 
approaches informed by the skills and philosophies of other disciplines. Our approach starts from 
the observation that brains are built from spiking neurons and then progresses by looking for a sys-
tematic way to deploy spiking neurons as components from which useful information processing 
functions can be constructed, at all stages being informed (but not constrained) by the neural struc-
tures and microarchitectures observed by neuroscientists as playing a role in biological systems. In 
order to explore the behaviours of large-scale complex systems of spiking neuron components we 
require high-performance computing equipment, and we propose the construction of a machine spe-
cifically for this task – a massively parallel computer designed to be a universal spiking neural net-
work simulation engine. 
 

1   Introduction 

1.1   Neurons 
The basic biological control component is the neu-
ron. A full understanding of the ‘Architecture of 
Brain and Mind’ (Sloman, 2004) must, ultimately, 
involve finding an explanation of the phenomenol-
ogical observations that can be expressed in terms of 
the interactions between the neurons that comprise 
the brain (together with their sensory inputs, actua-
tor outputs, and related biological processes). 

Neurons appear to be very flexible components 
whose utility scales over systems covering a vast 
range of complexities. Very simple creatures find a 
small number of neurons useful, honey bees find it 
economic to support brains comprising around 
850,000 neurons, and humans have evolved to carry 
brains comprising 1011 neurons or so. The compo-
nent neuron used this range of complexities is basi-
cally the same in its principles of operation, so in 
some sense it has a universality similar to that en-
joyed by the basic logic gate in digital engineering. 

There is a further similarity between neurons and 
logic gates: both are multiple-input single-output 
components. However, while the typical fan-in (the 
number of inputs to a component) and fan-out (the 

number of other components the output of a particu-
lar component connects to) of a logic gate is in the 
range 2 to 4, neurons typically have a fan-in and 
fan-out in the range 1,000 to 10,000. (It is easy to 
show that that mean fan-in and fan-out in a system 
are the same – they are just different ways of count-
ing the number of connections between compo-
nents.) 

A more subtle difference between a logic gate 
and a neuron is in the dynamics of their internal 
processes. Whereas a logic gate implements a proc-
ess that is essentially static and defined by Boolean 
logic, so that at any time from a short time after the 
last input change the output is a well-defined stable 
function of the inputs, a neuron has complex dynam-
ics that includes several time constants, and its out-
put is a time series of action potentials or ‘spikes’. 
The information conveyed by the neuron’s output is 
encoded in the timing of the spikes in a way that is 
not yet fully understood, although rate codes, popu-
lation codes and firing-order codes all seem offer 
valid interpretations of certain observations of spik-
ing acitivity. 

Accurate computer models of biological neurons 
exist, but these are very complex. Various simpler 
models have been proposed that capture some of the 
features of the biology but omit others. The diffi-
culty lies in determining which of the features are 



essential to the information processing functions of 
the neuron and which are artefacts resulting from 
the way the cell developed, its need to sustain itself, 
and the complex evolutionary processes that led to 
its current form. 

 
1.2   Neural microarchitecture 
The universality of the neuron as a component is 
also reflected in certain higher-level structures of the 
brain. For example, the cortex displays a 6-layer 
structure and a regularity of interconnect between 
the neurons in the various layers that can reasonably 
deserve the application of the term ‘microarchitec-
ture’. The same regular laminar cortical microarchi-
tecture is in evidence across the cortex in regions 
implementing low-level vision processes such as 
edge-detection and in regions involved in high-level 
functions such as speech and language processing. 
This apparent ‘universality’ (used here to describe 
one structure that can perform any function) of the 
cortical microarchitecture suggests there are princi-
ples being applied here the understanding of which 
could offer a breakthrough in our understanding of 
brain function. 

In contrast to the regularity and uniformity of the 
microarchitecture, the particular connectivity pat-
terns that underpin these structures appear to be ran-
dom, guided by statistical principles rather than spe-
cific connectivity plans. The connectivity is also 
locally adaptive, so the system can be refined 
through tuning to improve its performance. 
 
1.3   Engineering with neurons 
As computer engineers we find the neuron’s univer-
sality across wide ranges of biological complexity to 
be intriguing, and there is a real challenge in under-
standing how this component can be used to build 
useful information processing systems. There is an 
existence proof that this is indeed possible, but few 
pointers to how the resulting systems might work. 

There are other ‘engineering’ aspects of biologi-
cal neurons that are interesting, too. We have al-
ready mentioned the regularity of neural microarchi-
tecture. The power-efficiency of neurons (measured 
as the energy required to perform a given computa-
tion) exceeds that of computer technology, possibly 
because the neuron itself is a very low performance 
component. While computer engineers measure gate 
speeds in picoseconds, neurons have time constants 
of a millisecond or longer. While computer engi-
neers worry about speed-of-light limitations and the 
number of clock cycles it takes to get a signal across 
a chip, neurons communicate at a few metres per 
second. This very relaxed performance at the tech-
nology level is, of course, compensated by the very 
high levels of parallelism and connectivity of the 

biological system. Finally, neural systems display 
levels of fault-tolerance and adaptive learning that 
artificial systems have yet to approach. 

We have therefore decided to take up the chal-
lenge to find ways to build useful systems based 
upon spiking neuron components (for example, Fur-
ber, Bainbridge, Cumpstey and Temple, 2004), and 
we hope that this will lead to mutually-stimulating 
interactions with people from many other disciplines 
whose approach to the same Grand Challenge, of 
understanding the Architecture of Brain and Mind, 
will be quite different from our own. 

 
2   Relevance to GC5 
What has any of this engineering really got to do 
with the Grand Challenge of understanding the Ar-
chitecture of Brain and Mind? 

As this is aimed at a broad audience, not many 
of whom are computer engineers, we will digress 
briefly to consider what computer engineers may 
bring to this Grand Challenge. To begin with, it is 
useful to appreciate the skills and mindset that a 
computer engineer, for better or for worse, pos-
sesses. What can a person whose stock-in-trade con-
sists of logic gates, microchips and printed circuit 
boards contribute to the bio-psycho-philosophical 
quest to understand the workings of the mind? 
 
2.1   A Computer Engineer’s manifesto 
To a computer engineer ‘understand’ has a specific 
meaning that is different from what a scientist 
means by the same word, which is in turn probably 
different from the meanings used by other disci-
plines. To the scientist, understanding is to have a 
repeatably-verifiable explanation of a phenomenon. 
To the engineer, understanding means to be able to 
go away and build another artefact that works in the 
same way. The scientist’s analysis reduces a com-
plex phenomenon into its basic components; this is 
complemented by the engineer’s ability to take those 
components, or components that encapsulate the 
same essential behaviour, and synthesize them back 
into a functioning system. 

Thus, when a computer engineer claims to ‘un-
derstands’ how a mobile phone works, the statement 
can be interpreted as meaning that they can (at least 
in principle) explain when every one of the 100 mil-
lion or so transistors switches, why it switches, what 
will happen if it fails to switch, and so on. OK, we 
might get on less secure ground when describing the 
chemistry of the lithium-ion battery and the details 
of the radio and antenna design or the higher levels 
of the software. And when it comes to explaining 
why the plastic case is pink and the buttons are ar-
ranged in swirling patterns with no obvious ergo-
nomic objective we are completely lost! But back in 



the familiar territory of the digital transistor circuits 
we have a vocabulary comprising baseband proces-
sors, DSPs, maximum likelihood error correctors, 
RAMs, buses, interrupts, and so on, that together 
provide a language of description at multiple levels 
of abstraction from an individual transistor to the 
lower levels of the system software. This enables us 
to describe in very fine detail how the phone works 
and, more particularly, how you might make another 
working phone at lower cost and with better battery 
life. 

This is the approach we bring to understanding 
the Architecture of Brain and Mind. In neuroscience 
we see that there are pretty accurate models of the 
basic component from which brains are built – the 
neuron. There are some rather sketchy and limited 
descriptions of how these components are intercon-
nected and how they behave in natural networks, 
and there is rather better information about their 
macro-level modular organisation and gross activity. 
The weakest part of the neuroscientists’ analysis (for 
very good reason – it is hard to apply reductionist 
principles to systems whose interesting characteris-
tics depend on their organizational complexity) is at 
the intermediate levels between the component neu-
rons (where analysis is applicable) and the macro-
organisation (where mean field statistics work). 

This intermediate level is precisely the level at 
which the computer engineer may have something 
to offer. Assembling basic components into func-
tional units, implementing useful computational 
processes based on networks of dynamical systems, 
these are all second nature to the computer engineer 
once we have come to grips with the spiking neuron 
as a component. As we observed earlier, it even 
looks a bit like a logic gate – several inputs but only 
one output. 

The intrinsic dynamics of a neuron may con-
found the computer engineer who is used to working 
only with digital circuits that are controlled by the 
extrinsic straitjacket of a clock signal, but a small 
minority of us are proficient in building circuits 
whose sequential behaviour is intrinsic – members 
of the class of digital circuit generally described as 
asynchronous or self-timed. The knowledge we hold 
on how to build reliable, highly complex asynchro-
nous digital systems may just provide us with new 
insights into the highly complex asynchronous neu-
ral systems that provide the hardware platform upon 
which the brain and mind are built. 
 
2.2   GC5 methodology 
Our approach to this Grand Challenge is essentially 
bottom-up, which will complement the top-down 
and middle-out approaches that are better-suited to 
those who bring different skills and mindsets from 
other disciplines. 

The bottom-up approach starts from the concept 
of a neuron as a basic component, and then seeks 
useful compositions of neurons to create (and im-
plement) increasingly higher levels of functional 
abstraction. These compositions may be inspired by 
neuroscience; for example, we have an involvement 
in the EPSRC-funded COLAMN project which has 
as its goal the creation of novel computational archi-
tectures based on the laminar microarchitecture of 
the neocortex, with considerable input from the 
‘wet’ neuroscientists in the project. Or they may be 
designed in the abstract; for example our earlier 
work on N-of-M coded sparse distributed memories 
(Furber, Bainbridge, Cumpstey and Temple, 2004) – 
with at best tenuous relevance to biology. 

A feature of this research is that it can yield a 
positive outcome in two distinct ways. It may con-
tribute to the scientific objective of understanding 
the architecture of brain and mind, and/or it may 
contribute to the engineering objective of delivering 
better/different/novel models of computation. Either 
of these outcomes would justify our engagement, 
and with a following wind we might just achieve 
both... 

In order to pursue this research agenda we need 
a sandpit in which we can experiment with neuron 
components on a large scale, hence the massively 
parallel high-performance computer theme that we 
will turn to shortly. This large-scale engineering 
project brings with it additional research aspects 
relating to fault-tolerance, autonomic computing, 
self-healing, networks-on-chip, and so forth, all of 
which add to the engineering challenge but probably 
contribute little to the GC5 agenda. 

 
3   Objectives 

We have set ourselves the objective of simulating a 
billion spiking neurons in real time while making as 
few assumptions as possible about what a neuron is 
and how the neurons are connected. We approach 
this by viewing a neural system as an event-driven 
dynamical system – a hybrid system where a (large) 
set of components, each of which operates in con-
tinuous time (and is characteristically described by a 
set of differential equations), interact through dis-
crete events. 

In order to retain complete flexibility in the in-
ternal neural dynamics we implement the real-time 
differential equation solvers (which will typically 
use discrete-time fixed-point approximations) in 
software, and then exploit the high speeds of elec-
tronic signalling to communicate the discrete inter-
neuron communication events around the system in 
a time which is close to instantaneous on the time-
scales of the neuron dynamics. This allows us to use 
a virtual mapping from the physical structure of the 



biological system we are modelling to the physical 
structure of the electronic system we are running the 
model on. 

 
4   Neural computation 

Any computation system must achieve a balance 
between its processing, storage and communication 
functions. It is useful to consider how these three 
functions are achieved in neural systems. 
 
4.1   Processing 
The neuron itself performs the processing function. 
It produces output events in response to input events 
through a non-linear transfer function, which we 
will model using suitable differential equations 
whose complexity is limited only by the available 
computing power. 

The simplest neuron models process inputs by 
taking a linear sum of the inputs, each weighted by 
the strength of its respective synapse. When the in-
puts are spike events the multiplication implied by 
the weighting process reduces to repeated addition. 
Multiplication by repeated addition is usually ineffi-
cient, but here many inputs are likely to be inactive 
at any time and multiplication by zero by repeated 
addition is supremely efficient! 

The weighted input sum is then used to drive the 
neural dynamics. A leaky-integrate-and-fire (LIF) 
model applies an exponential decay to the effect of 
each input, but if enough inputs fire close together 
in time to push the total activation past a threshold, 
the neuron fires its output and resets. More sophisti-
cated models have more complex dynamics. For 
example, the models by Izhikevich (2004) are based 
on mathematical bifurcation and display a more 
diverse range of biologically-relevant behaviours 
that the LIF model. 
 
4.2   Communication 
Communication in neural systems is predominantly 
through the propagation of spike ‘events’ from one 
neuron to the next. The output from the neuron’s 
body – its soma – passes along its axon which con-
veys the spike to its many target synapses. Each 
synapse use chemical processes to couple the spike 
to the input network – the dendritic tree – of another 
neuron. 

Since the spike carries no information in its 
shape or size, the only information is which neuron 
fired and when it fired. In a real-time simulation the 
timing is implicit (and the communication, being 
effectively instantaneous, preserves the timing), so 
all we need to communicate is the identity of the 

neuron that fired, and we must send that to every 
neuron to which the firing neuron connects. 

In the biological system the identity of a firing 
neuron is spatially encoded – each neuron has its 
own physical axon. In our system we cannot imple-
ment an equivalent level of physical connectivity so 
instead we use logical encoding by sending a packet 
identifying the firing neuron around a network that 
connects all of the components together. 
 
4.3   Storage 
It is in the storage of information that the neuron’s 
story becomes most complex. There are many proc-
esses that can be seen as storing information, some 
operating over short time scales and some very 
long-term. For example: 
• the neural dynamics include multiple time con-

stants, each of which serves to preserve input 
information for some period of time; 

• the dynamical state of the network may pre-
serve information for some time; 

• the axons carry spikes at low speeds and there-
fore act as delay lines, storing information as it 
propagates for up to 20ms; 

• the coupling strength of a synapse is, in many 
cases, adaptive, with different time constants 
applying to different synapses. 

The primary long-term storage mechanism is 
synaptic modification (within which we include the 
growth of new synapses). 

In a real-time modelling system we expect the 
modelling to capture the neural and networks dy-
namics, and hence the contributions these mech-
nisms make to information storage. The axon delay-
line storage does not come so easily as we have de-
liberately exploited the high speeds of electronic 
signalling to make spike communication effectively 
instantaneous in order to support a virtual mapping 
of the physical structures. It is likely that the axon 
delay is functionally important, so we must put these 
delays back in, either by delaying the issue of the 
spike or by delaying its effect at the destination. 
Either solution can be achieved in software, but both 
have drawbacks, and this remains one of the trickier 
aspects of the design to resolve to our complete sat-
isfaction. 

The final storage process is the most fundamen-
tal: synaptic weight adaptivity. Here we require 
long-term stability and support for a range of learn-
ing algorithms. We will exploit the fact that digital 
semiconductor memory is a mass-produced low-cost 
commodity, and the proposed machine is built 
around the use of commodity memory for storing 
synaptic connectivity information. 



Indeed, as we shall see in the next section, the 
major resources in a neural computation system 
revolve around the synapses, not around the neural 
dynamics. 
 
 
5   Computing requirements 

Various estimates have been offered for the compu-
tational power required to run a real-time simulation 
of the human brain based on reasonably realistic 
neuron models. The answer generally comes out in 
the region of 1016 instructions per second, which is 
some way beyond the performance of a desktop PC 
or workstation, but not far beyond the performance 
of the petaFLOP supercomputers currently in de-
sign. 

The route to this performance estimate can be 
summarized as follows: the brain comprises around 
1011 neurons, each with of the order of 1,000 inputs. 
Each input fires at an average rate of 10 Hz, giving 
1015 connections per second, and each connection 
requires perhaps 10 instructions. 

Note that this estimate is based on the computing 
power required to handle the synaptic connections. 
Modelling the neuron dynamics is a smaller part of 
the problem: 1011 neurons each requiring a few 10s 
of instructions to update their dynamics perhaps 103 

times a second, requiring in total an order of magni-
tude less computing power than the connections. 

A similar calculation yields the memory re-
quirements of such a simulation: 1014 synapses each 
require of the order of a few bytes, so around 1014 
bytes of synaptic connection data are required. 

At present the only way a machine of such ca-
pacity can be conceived is to employ a massively 
parallel architecture. This is likely to remain true 
even with future developments in CMOS technol-
ogy as further increases in clock speed and individ-
ual processor throughput are unlikely to be great, as 
evidenced by the recent trend towards multi-core 
processors from all of the leading microprocessor 
vendors. The future of the microprocessor is in chip 
multiprocessors, and the future of high-performance 
computing is in massively parallel systems. 

Fortunately, the problem of simulating very 
large numbers of neurons in real time falls into the 
class of ‘embarrassingly’ parallel applications, 
where the available concurrency allows the trade-off 
of processor performance against the number of 
processors to be totally flexible. The issue, then, is 
to determine how such a system might be optimised. 
What are the relevant metrics against which to make 
decisions on the systems architecture? 

We propose that the primary metrics should be 
performance density (measured in MIPS/mm2 of 
silicon) and power-efficiency (measured in 

MIPS/watt). The former is the primary determinant 
of the capital cost of the machine, while the latter 
influences both the capital cost – in terms of the 
cooling plant – and the running cost – a machine 
such as this demands a significant electrical power 
budget. 

A choice then has to be made between using a 
large number of high-performance processors or an 
even larger number of more power-efficient embed-
ded processors. Here the metrics can be our guide – 
embedded processors win handsomely on power-
efficiency, and to a lesser extent on performance 
density, over their much more complex high-end 
counterparts. 

That, then sets the course for this work. The ob-
jective is to build a machine, based on large num-
bers of small processors, that has the potential to 
scale up to the levels of parallelism and performance 
necessary to model a brain in real time. Admittedly, 
modelling a complete human brain is some way 
beyond our current goals, but we should be able to 
model substantial  parts of the human brain and 
complete brains of less complex species with what 
we propose here, which is a machine capable of 
modelling a billion spiking neurons in real time. 
 
6   SpiNNaker 
A spinnaker is a large foresail that enables a yacht to 
make rapid progress in a following wind (see refer-
ence to ‘following wind’ in Section 2.2 above!). We 
have adopted SpiNNaker as a name for our project 
because it comes close to a contraction of ‘a (uni-

Figure 1:  The system architecture. 



versal) Spiking Neural Network architecture’, pro-
vided you say it quickly enough. Again, this is our 
goal: to build a computer system that is as universal 
as we can make it in its ability to simulate large sys-
tems of spiking neurons, preferably in real time. 

The following description of the system is 
largely extracted from Furber, Temple and Brown 
(2006). 
 
6.1   System architecture 
The system is implemented as a regular 2D array of 
nodes interconnected through bi-directional links in 
a triangular formation as illustrated in Fig. 1. The 
2D mesh is very straightforward to implement on a 
circuit board and also provides many alternative 
routes between any pair of nodes which is useful for 
reconfiguration to isolate faults. (Nothing in the 
communications architecture precludes the use of a 
more complex topology if this proves advanta-
geous.)  

Each node in the network comprises two chips: a 
chip multiprocessor (CMP) and an SDRAM, with 
the integer processing power of a typical PC but at 
much lower power and in a compact physical form. 
The six bidirectional links support a total of 6 Gbit/s 
of bandwidth into and out of the node. A system of 
100 x 100 nodes will deliver a total of 40 teraIPS, 
sufficient to simulate perhaps 200 million spiking 
neurons in real time, and will have a bisection band-
width of 200 Gbit/s. 

6.2   ARM968 processor subsystem 
For the reasons already outlined, we choose to base 
the system around a massively-parallel array of 

power-efficient embedded processors, and have 
chosen the ARM968 as offering the best balance of 
performance, area, power-efficiency and ease of use 
for our purposes. The ARM968 is a synthesizable 
ARM9 processor core with tightly-coupled instruc-
tion and data memories, and an integral on-chip bus 
(ARM Ltd, 2004). Each processor subsystem com-
prises a processor, instruction and data memory, 
timers, interrupt and DMA controllers and a com-
munications NoC interface (Fig. 2). 

We estimate that a 200 MIPS integer embedded 
ARM9 processor should be able to model 1,000 
leaky-integrate-and-fire (or Izhikevich) neurons, 
each with 1,000 inputs firing on average at 10 Hz, in 
real time. The synaptic connectivity information for 
these neurons requires around 4 Mbytes of memory 
and the neuron state requires around 50 Kbytes of 
memory. These estimates have led us to adopt a 
hybrid architecture where the synaptic data is held 
in an off-chip SDRAM while the neural state data is 
held in on-chip memory local to each embedded 
processor. A processing node in our system there-
fore comprises two ICs: a chip multiprocessor 
(CMP) with about twenty 200 MIPS embedded 
ARM9 processors, and an SDRAM chip. The synap-
tic data is accessed in large blocks and this enables 
an SDRAM bandwidth of around 1 GByte/s to pro-
vide this data at the required rate. 

The processors on a CMP share access to the 
SDRAM using a self-timed packet-switched Net-
work-on-Chip (NoC). This fabric will use the 
CHAIN technology (Bainbridge and Furber, 2002), 
developed at the University of Manchester and com-
mercialized by Silistix Ltd, which gives a through-

Figure 2:  Processor subsystem organization. 
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put of around 1 Gbit/s per 6-wire link (Bainbridge, 
Plana and Furber, 2004). The organization of the 
system NoC that connects the processor subsystems 
to the SDRAM is shown in Fig. 3.  

 
6.3   The communications system 

The major challenge in designing a scalable 
multi-chip neural modeling system is to emulate the 
very high connectivity of the biological system. The 
high fan-in and fan-out of neurons suggests that an 
efficient multicast communication system is re-
quired. We propose a communication NoC fabric 
based upon address-event signaling, but carried over 
a second self-timed packet-switched fabric rather 
than the usual bus-based fabric. The self-timed fab-
ric decouples the many different clock domains 
within and across the CMPs. 

The inter-chip communication uses a self-timed 
signalling system on an 8-wire inter-chip link that 
employs a self-timed 2-of-7 non-return-to-zero 
(NRZ) code (Bainbridge, Toms, Edwards and Fur-
ber, 2003) with an NRZ acknowledge. 16 of the 21 
possible 2-of-7 codes are used to carry four bits of 
data, and a 17th code carries end-of-packet (EOP). 
Each 8-wire link has a capacity of around 1 Gbit/s 
when connecting two CMPs on the same circuit 
board, matching the on-chip bandwidth of a CHAIN 
link, and the self-timed protocol guarantees correct 
operation (albeit at a lower data rate) when the 
CMPs are on different circuit boards, automatically 
adapting to the addition delays incurred by any sig-
nal buffering that may be required. 

The complete communications subsystem on a 
CMP is illustrated in Fig. 4. The inter-chip links are 
accessed via input protocol converters (‘Rx i/f’ in 
Fig. 4) that translate the off-chip 2-of-7 NRZ codes 
to the on-chip CHAIN codes, and output protocol 
converters (‘Tx i/f’) that perform the inverse transla-
tion. Each of the on-chip processing subsystems 
(‘fascicle processor’) is also a source of network 
traffic and a potential destination. All of the on- and 
off-chip sources are merged through an asynchro-
nous arbiter into a single stream of packets that 
passes through the multicast router which will, in 
turn, propagate the packet to a subset of its on- and 
off-chip outputs. The monitor processor is identical 
to a fascicle processor but is dedicated to system 
management functions rather than neural modeling. 
It is chosen from among the fascicle processors at 
boot time; the flexibility in its selection removes 
another possible single point of failure on the CMP, 
improving fault tolerance. 

The heart of the communication subsystem is the 
associative multicast router which directs every in-
coming packet to one or more of the local proces-
sors and output links using a routing key based on 
the source ID and a route look-up table. 
 
6.4   Fault-tolerance 
The scale of the proposed machine demands that it 
be designed with a high degree of fault-tolerance. 
Since the neural system we are modelling has intrin-
sic fault-tolerant properties (healthy humans lose 
about one neuron a second throughout their adult 
life; neurodegenerative diseases incur much higher 
loss rates) this capacity will be transferred to the 
simulated system to some degree. However, many 
of the techniques we employ to map the natural sys-
tem onto the electronic model concentrate distrib-
uted biological processes into single points of failure 
in the model: a single microprocessor models a 
thousand neurons; a single inter-chip link carries the 
spikes on perhaps a million axons. Thus we must 
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engineer some additional resilience into the elec-
tronic system. 

The highly regular structure of the machine 
comes to our aid here. If a processor fails we can 
migrate its workload to another, on the same or on a 
different chip. This will almost certainly lead to a 
glitch in the system’s real-time performance, but our 
goal is to minimise the size of this glitch and to 
build a system that is continuously monitoring its 
own performance and migrating its workload to 
minimise congestion, so a major failure just puts a 
higher transient demand on the workload manage-
ment processes. 

An inter-chip link failure (whether permanent or 
transient, perhaps due to local congestion) will be 
handled in the first instance at the hardware level, 
redirecting traffic automatically via an adjacent link, 
before invoking the performance management soft-
ware to carry out a more permanent solution. 

At all stages in the design we are exploring op-
portunities to identify mechanisms that support real-
time fault-tolerance, some of which exploit the in-
trinsic fault-tolerance of neural systems but many of 
which will contribute to a separate research agenda 
in the area of autonomic, self-healing systems. 

 
7   Conclusions 
The Grand Challenge of understanding the Architec-
ture of Brain and Mind is a multidisciplinary quest 
that will require many complementary approaches to 
run concurrently, each feeding off the others as 
sources of inspiration, ideas and sanity checks. The 
system synthesis approach of computer engineers 
such as ourselves may have something to contribute 
as a component of the overall process. An under-
standing of complex asynchronous interactions 
within digital systems seems highly relevant to the 
task of understanding the complex asynchronous 
interactions between neurons. 

In our quest to understand the dynamics of sys-
tems of asynchronous spiking neurons we hope to 
contribute both to providing tools that help under-
stand biological brains and also to the creation of 
novel computational systems that are inspired by 
biology, but whose link to biology may ultimately 
become tenuous. 

To this end we propose to construct a massively-
parallel computer that implements a universal spik-
ing neural network architecture, SpiNNaker. Based 
on a chip multiprocessor incorporating around 
twenty 200 MIPS embedded ARM968 processors, 
and employing a communications infrastructure 
specifically designed to support the multicast rout-
ing required for neural simulation, this system will 
scale to hundreds of thousands of processors model-
ling up to a billion neurons in real time. It will form 

a ‘sandpit’ in which we, and others with similar in-
terests, can experiment with large-scale systems of 
spiking neurons to test our network topologies and 
neural models in order to validate (or disprove) our 
theories of how neurons interact to generate the 
hardware platform that underpins the Architecture 
of Brain and Mind. 
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Abstract 

 
Without a doubt the most sophisticated behaviour seen in biological agents is demonstrated by or-
ganisms whose behaviour is guided by a nervous system. Thus, the construction of behaving de-
vices based on principles of nervous systems may have much to offer. Our group has built series of 
brain-based devices (BBDs) over the last 14 years to provide a heuristic for studying brain function 
by embedding neurobiological principles on a physical platform capable of interacting with the real 
world. These BBDs have been used to study perception, operant conditioning, episodic and spatial 
memory, and motor control through the simulation of brain regions such as the visual cortex, the 
dopaminergic reward system, the hippocampus, and the cerebellum. Following the brain-based 
model, we argue that an intelligent machine should be constrained by the following design princi-
ples: (i) it should incorporate a simulated brain with detailed neuroanatomy and neural dynamics 
that controls behaviour and shapes memory, (ii) it should organize the unlabeled signals it receives 
from the environment into categories without a priori knowledge or instruction, (iii) it should have a 
physical instantiation, which allows for active sensing and autonomous movement in the environ-
ment, (iv) it should engage in a task that is initially constrained by minimal set of innate behaviours 
or reflexes, (v) it should have a means to adapt the device’s behaviour, called value systems, when 
an important environmental event occurs, and (vi) it should allow comparisons with experimental 
data acquired from animal nervous systems. Like the brain, these devices operate according to se-
lectional principles through which they form categorical memory, associate categories with innate 
value, and adapt to the environment. Moreover, this approach may provide the groundwork for the 
development of intelligent machines that follow neurobiological rather than computational princi-
ples in their construction. 
 

1   Introduction 

Although much progress has been made in the neu-
rosciences over the last several decades, the study of 
the nervous system is still a wide open area of re-
search. This is not due to a lack of first-rate research 
by the neuroscience community, but instead it re-
flects the complexity of the problem. Therefore, 
novel approaches to the problem, such as computa-
tional modelling and robotics, may be necessary to 
come to a better understanding of brain function. 
Moreover, as our models and devices become more 
sophisticated and more biologically realistic, the 
devices themselves may approach the complexity 
and adaptive behaviour that we associate with bio-
logical organisms and may find their way in practi-

cal applications. In this review, we will outline what 
we believe are the design principles necessary to 
achieve these goals (Krichmar and Edelman, 2005; 
Krichmar and Reeke, 2005). We will illustrate how 
these principles have been put into practice by de-
scribing two recent brain-based devices (BBDs) 
from our group. 
 

2   Brain-Based Modelling Design 
Principles 

2.1   Incorporate A Simulated Brain 
With Detailed Neuroanatomy And Neu-
ral Dynamics 



Models of brain function should take into considera-
tion the dynamics of the neuronal elements that 
make up different brain regions, the structure of 
these different brain regions, and the connectivity 
within and between these brain regions. The dynam-
ics of the elements of the nervous system (e.g. neu-
ronal activity and synaptic transmission) are impor-
tant to brain function and have been modelled at the 
single neuron level (Borg-Graham, 1987; Bower and 
Beeman, 1994; Hines and Carnevale, 1997), net-
work level (Izhikevich et al., 2004; Pinsky and 
Rinzel, 1994), and synapse level in models of plas-
ticity (Bienenstock et al., 1982; Song et al., 2000; 
Worgotter and Porr, 2005). However, structure at 
the gross anatomical level is critical for function, 
and it has often been ignored in models of the nerv-
ous system. Brain function is more than the activity 
of disparate regions; it is the interaction between 
these areas that is crucial as we have shown in Dar-
wins IV through X (Edelman et al., 1992; Krichmar 
and Edelman, 2005; Krichmar et al., 2005b; Seth et 
al., 2004). Brains are defined by a distinct neuro-
anatomy in which there are areas of special function, 
which are defined by their connectivity to sensory 
input, motor output, and to each other. 
 
2.2   Organize the Signals from the Envi-
ronment into Categories Without a pri-
ori Knowledge or Instruction 
One essential property of BBDs, is that, like living 
organisms, they must organize the unlabeled signals 
they receive from the environment into categories. 
This organization of signals, which in general de-
pends on a combination of sensory modalities (e.g. 
vision, sound, taste, or touch), is called perceptual 
categorization.  Perceptual categorization in models 
(Edelman and Reeke, 1982) as well as living organ-
isms makes object recognition possible based on 
experience, but without a priori knowledge or in-
struction. A BBD selects and generalizes the signals 
it receives with its sensors, puts these signals into 
categories without instruction, and learns the appro-
priate actions when confronted with objects under 
conditions that produce responses in value systems. 
 
2.3   Active Sensing and Autonomous 
Movement in the Environment 
 
Brains do not function in isolation; they are tightly 
coupled with the organism’s morphology and envi-
ronment. In order to function properly, an agent, 
artificial or biological, needs to be situated in the 
real world (Chiel and Beer, 1997; Clark, 1997). 
Therefore, models of brain function should be em-

bodied in a physical device and explore a real as 
opposed to a simulated environment. For our pur-
poses, the real environment is required for two rea-
sons. First, simulating an environment can introduce 
unwanted and unintentional biases to the model. For 
example, a computer generated object presented to a 
vision model has its shape and segmentation defined 
by the modeller and directly presented to the model, 
whereas a device that views an object hanging on a 
wall has to discern the shape and figure from ground 
segmentation based on its on active vision. Second, 
real environments are rich, multimodal, and noisy; 
an artificial design of such an environment would be 
computationally intensive and difficult to simulate. 
However, all these interesting features of the envi-
ronment come for “free” when we place the BBD in 
the real world. The modeller is freed from simulat-
ing a world and need only concentrate on the devel-
opment of a device that can actively explore the real 
world. 
 
2.4   Engage in a Behavioural Task 
 
It follows from the above principle that a situated 
agent needs to engage in some behavioural task. 
Similar to a biological organism, an agent or BBD 
needs a minimal set of innate behaviours or reflexes 
in order to explore and initially survive in its envi-
ronmental niche. From this minimal set, the BBD 
can learn and adapt such that it optimizes its behav-
iour. How these devices adapt is the subject of the 
next principle, which describes value systems (see 
section 2.5). This approach is very different from 
the classic artificial intelligence or robotic control 
algorithms, where either rules or feedback control-
lers with pre-defined error signals need to be speci-
fied a priori. In the BBD approach, the agent selects 
what it needs to optimize its behaviour and thus 
adapts to its environment. 

A second and important point with regard to be-
havioural tasks is that it gives the researcher a met-
ric by which to score the BBD’s performance. 
Moreover, these tasks should be made similar to 
experimental biology paradigms so that the behav-
ioural performance of the BBD can be compared 
with that of real organisms (see section 2.6 below). 

 
2.5   Adapt Behaviour when an Impor-
tant Environmental Event Occurs 
 
Biological organisms adapt their behaviour through 
value systems, which provide non-specific, modula-
tory signals to the rest of the brain that bias the out-
come of local changes in synaptic efficacy in the 
direction needed to satisfy global needs. Stated in 



the simplest possible terms, behaviour that evokes 
positive responses in value systems biases synaptic 
change to make production of the same behaviour 
more likely when the situation in the environment 
(and thus the local synaptic inputs) is similar; be-
haviour that evokes negative value biases synaptic 
change in the opposite direction. Examples of value 
systems in the brain include the dopaminergic, cho-
linergic, and noradrenergic systems (Aston-Jones 
and Bloom, 1981; Hasselmo et al., 2002; Schultz et 
al., 1997) which respond to environmental cues sig-
nalling reward prediction, uncertainty, and novelty. 
Theoretical models based of these systems and their 
effect on brain function have been developed (Doya, 
2002; Friston et al., 1994; Montague et al., 1996; Yu 
and Dayan, 2005) and embedded in real world be-
having devices (Arleo et al., 2004; Krichmar and 
Edelman, 2002; Sporns and Alexander, 2002).  

 

2.6   Comparisons with Experimental 
Data Acquired from Animal Models 
The behaviour of BBDs and the activity of their 
simulated nervous systems must be recorded to al-
low comparisons with experimental data acquired 
from animals. The comparison should be made at 
the behavioural level, the systems level, and the 
neuronal element level. These comparisons serve 
two purposes: First, BBDs are powerful tools to test 
theories of brain function. The construction of a 
complete behaving model forces the designer to 
specify theoretical and implementation details that 
are easy to overlook in a purely verbal description 
and it forces those details to be consistent among 
them. The level of analysis permitted by having a 
recording of the activity of every neuron and syn-
apse in the simulated nervous system during its be-
haviour is just not possible with animal experiments. 
The results of such situated models have been com-
pared with rodent hippocampal activity during navi-
gation, basal ganglia activity during action selection, 
and attentional systems in primates (Burgess et al., 
1997; Guazzelli et al., 2001; Itti, 2004; Prescott et 
al., 2006). Second, by using the animal nervous sys-
tem as a metric, designers can continually make 
their simulated nervous systems closer to that of the 
model animal.  This, in turn, allows the eventual 
creation of practical devices that may approach the 
sophistication of living organisms. 
 
3   Illustrative Examples of Brain-Based 
Devices 
 
In this section, we will use our group’s two most 

recent BBDs as illustrative examples of the above 
principles. The first example, Darwin X (Krichmar 
et al., 2005a; Krichmar et al., 2005b), is a BBD that 
develops spatial and episodic memory by incorpo-
rating a detailed model of the hippocampus and its 
surrounding regions. The second example is a BBD 
capable of predictive motor control based on a 
model of cerebellar learning (McKinstry et al., 
2006). 

3.1   An Embodied Model of Spatial and 
Episodic Memory 
Darwin X was used to investigate the functional 
anatomy specific to the hippocampal region during a 
memory task. Darwin X incorporates aspects of the 
anatomy and physiology of the hippocampus and its 
surrounding regions, which are known to be neces-
sary for the acquisition and recall of spatial and epi-
sodic memories. The simulated nervous system con-
tained 50 neural areas, 90,000 neuronal units, and 
1.4 million synaptic connections. It included a visual 
system, a head direction system, a hippocampal 
formation, a basal forebrain, a value or reward sys-
tem, and an action selection system. Darwin X used 
camera input to recognize the category and position 
of distal visual objects and used odometry to de-
velop head direction sensitivity.  

Darwin X successfully demonstrated the acquisi-
tion and recall of spatial and episodic memories in a 
maze task similar to the Morris water maze (Morris, 
1984) by associating places with actions. The asso-
ciation was facilitated by a dopaminergic value sys-
tem based on the known connectivity between CA1 
and nucleus accumbens and frontal areas (Thierry et 
al., 2000). The responses of simulated neuronal 
units in the hippocampal areas during its exploratory 
behaviour were comparable to neuronal responses in 
the rodent hippocampus; i.e., neuronal units re-
sponded to a particular location within Darwin X’s 
environment (O'Keefe and Dostrovsky, 1971). 

Darwin X took into consideration the macro- and 
micro-anatomy between the hippocampus and cor-
tex, as well as the within the hippocampus. In order 
to identify different functional hippocampal path-
ways and their influence on behaviour, we devel-
oped two novel methods for analyzing large scale 
neuronal networks: 1) Backtrace - tracing functional 
pathways by choosing a unit at a specific time and 
recursively examining all neuronal units that led to 
the observed activity in this reference unit 
(Krichmar et al., 2005a), and 2) Causality - a time 
series analysis that distinguishes causal interactions 
within and between neural regions (Seth, 2005). 
These analyses allowed us to examine the informa-
tion flow through the network and highlighted the 
importance of the perforant pathway from the en-



torhinal cortex to the hippocampal subfields in pro-
ducing associations between the position of the 
agent in space and the appropriate action it needs to 
reach a goal. This functional pathway has recently 
been identified in the rodent (Brun et al., 2002). 

As with other BBDs in the Darwin series, Dar-
win X follows the brain-based modelling principles. 
It is a physical device in a real world that carries out 
a task similar to that conducted with animal models. 
It adapts its behaviour based on its value system, 
and the dynamics of its nervous system were ana-
lyzed during its behaviour and compared with the 
responses of real nervous systems. 

3.2   A Model of Predictive Motor Con-
trol Based On Cerebellar Learning and 
Visual Motion 
Recently, our group constructed a BBD which in-
cluded a detailed model of the cerebellum and corti-
cal areas that respond to visual motion (McKinstry 
et al., 2006). One theory of cerebellar function pro-
poses that the cerebellum learns to replace reflexes 
with a predictive controller (Wolpert et al., 1998). 
Synaptic eligibility traces in the cerebellum have 
recently been proposed as a specific mechanism for 
such motor learning (Medina et al., 2005). We tested 
whether a learning mechanism, called the delayed 
eligibility trace learning rule, could account for the 
predictive nature of the cerebellum in a real-world, 
robotic visuomotor task.  

The BBD’s visuomotor task was to navigate a 
path designated by orange traffic cones. The plat-
form for this task was a Segway Robotic Mobility 
Platform modified to have a camera, a laser range 
finder, and infrared proximity detectors as inputs. 
The BBD’s nervous system contained components 
simulating the cerebellar cortex, the deep cerebellar 
nuclei, the inferior olive, and a cortical area MT. 
The simulated cortical area MT, which responds to 
visual motion, was constructed based on the sugges-
tion that the visual system makes use of visual blur 
for determining motion direction (Geisler, 1999; 
Krekelberg et al., 2003). The simulated nervous 
system contained 28 neural areas, 27,688 neuronal 
units, and 1.6 million synaptic connections. Using 
an embedded Beowulf computer cluster of six com-
pact personal computers, it took roughly 40 ms to 
update all the neuronal units and plastic connections 
in the model each simulation cycle. Initially, path 
traversal relied on a reflexive movement away from 
obstacles that was triggered by infrared proximity 
sensors when the BBD was within 12 inches of a 
cone. This resulted in clumsy, crooked movement 
down the path. The infrared sensor input was also 
the motor error signal to the cerebellum via simu-
lated climbing fibre input. Over time, the cerebellar 
circuit predicted the correct motor response based 

on visual motion cues preventing the activation of 
the reflex and resulting in smooth movement down 
the centre of the path. The system learned to slow 
down prior to a curve and to turn in the correct di-
rection based on the flow of visual information. The 
system adapted to and generalized over different 
courses with both gentle and sharp angle bends. 

The experiments, which depend both on the dy-
namics of the delayed trace eligibility learning and 
on the architecture of the cerebellum, demonstrated 
how the cerebellum can predict impending errors 
and adapt its movements. Moreover, by analyzing 
the responses of the cerebellum and the inputs from 
the simulated area MT during its behaviour, we 
were able to predict the types of signals the nervous 
system might select to adapt to such a motor task. 
The BBD’s nervous system categorized the motion 
cues that were predictive of different collisions and 
associated those categories with the appropriate 
movements. The neurobiologically inspired model 
described here prompts several hypotheses about the 
relationship between perception and motor control 
and may be useful in the development of general-
purpose motor learning systems for machines. 

 
4   Conclusions 
 
Higher brain functions depend on the cooperative 
activity of an entire nervous system, reflecting its 
morphology, its dynamics, and its interaction with 
its phenotype and the environment. BBDs are de-
signed to incorporate these attributes such that they 
can test theories of brain function. Like the brain, 
they operate according to selectional principles 
through which they form categorical memory, asso-
ciate categories with innate value, and adapt to the 
environment. These BBDs also provide the ground-
work for the development of intelligent machines 
that follow neurobiological rather than computa-
tional principles in their construction. 
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Aims and agenda

• Consider various approaches
• Review concepts and inspiration
• Illustrate with a case study
• Observations
• Persuade you that development is 

necessary for embedded learning systems



  

Issues

• Why development?
• Why infants? 
• Why robots?



  

Some current approaches

• Cognitive Science
• Connectionism
• Cognitive robotics
• Developmental approach
• Mechanism mapping
• Mechanism mining.



  

Cognitive science

• Memory, reasoning, perception, language
• Computing paradigms
• Rule-based, Soar, ACT
• Modular, architectures, structures
• Tends to impose computing models.



  

Connectionism (1)

• A challenge to the idea of separate process 
and memory

• Mainly artificial neural networks (ANNs)
• Highly parallel, adaptive, fast
• But “model-free statistical function 

estimators”.



  

Input Layer Hidden
 Layer

Output Layer



  

Connectionism (2)

• Large training phases - unrealistic
• Supervised - unrealistic
• Black box (attractive for some)
• Newer neuron models very detailed
• Population simulations impressive
• Dogma of neural models.



  

Cognitive robotics

• Logical foundations - e.g. situation calculus
• Knowledge based - but decision theoretic, 

e.g. “Expectation and Feedback as 
Hypothetico-Deduction”

• Strictly logical - exclusively so
• Not really robotics - ignores sensory/motor
• Not really cognitive - ignores sensory/motor
• High level, abstract, and symbolic.



  

Psychological (developmental) 
approach

• High level - but behavioural data
• Reflect bio/psycho constraints
• Abstract computational models
• Can map onto neural substrate
• Synthesis process - vis Braitenberg.



  

Mechanism mapping

• Top-down
• Scientific analysis
• Artificial -> biological
• Validation against biology
• Analysis, refinement cycle.



  

Mechanism mining

• Bottom up
• Inspired invention
• Biology -> mechanism
• Biological constraints - guidance 
• Synthesis, simulate cycle.



  

Inspiration



  

Raw material

Processes to support 
cognitive development

development

Highly sophisticated

Early Infant DevelopmentEarly Infant Development



  

Alan Turing

“In the process of trying to imitate an adult 
human mind we are bound to think a good 
deal about the process which has brought it 
to the state that it is in.”

A.M. Turing, Mind, 59, 433-460, 1950.



  

“Instead of trying to produce a programme to simulate 
the adult mind, why not rather try to produce one 
which simulates the child's? If this were then 
subjected to an appropriate course of education one 
would obtain the adult brain.”

“We have thus divided our problem into two parts. The 
child programme and the education process. These 
two remain very closely connected.”

“Opinions may vary as to the complexity which is 
suitable in the child machine.” 

Turing quotes (1)



  

Sensorimotor(0-2): not capable of symbolic 
representation. 

Preoperational(2-6): Egocentric, unable to distinguish 
appearance from reality; incapable of certain types of 
logical inference. 

Concrete operational(6-12): capable of the logic of 
classification and linear ordering.

Formal operation(12-):capable of formal, deductive, 
logic reasoning. 

Jean Piaget’s four stages of human 
cognitive development



  

Infant stages
1 month - stare at bright objects.      
Hands normally closed but, if open, 
grasps when palm touched.

3 months - visually very alert, 
gaze follows toy. Hand regard, 
clasp/unclasp. Holds toy but not 
eye coordinated.



  

Infant stages

6 months - visually insatiable, follows 
adults/toys, stares at small objects and tries 
grasp with both hands. Palmar grasp. 
Searches inexpertly when toy lost.  Takes 
all to mouth.



  

Developmental Robotics

• Multidisciplinary research area
• Mostly inspired by developmental 

psychology
• Considerable emphasis on sensory-motor 

interaction
• Embodied (simulation frowned on)
• aka: epigenetic, life-long learning …



  

Approach



  

Examples of systems used in robotic developmental learning

Cog, MIT, USA
Infanoid, CRL, Japan BabyBot, Genoa, Italy

SAIL, MSU,
 USA

OUR’S at ABER:   PHOTO 
HERE

DVL, UWA, Wales



  

“…, cognition depends upon the kinds of 
experiences that come from having a body 
with particular perceptual and motor 
capabilities that are inseparably linked and 
that together form the matrix within which 
reasoning, memory, emotion, language, 
and all other aspects of mental life are 
embedded.”

E. Thelen, Infancy, 1(1), 3-28, 2000   

Embodiment



  

DVL project (EPSRC)

Developmental Learning Algorithms for 
Embedded Agents

• Psychology, rather than neuroscience
• Abstract models, as far as possible
• But biologically compatible ...
• Assumptions - explicit and compatible with 

psychological data
• But not psychological modelling - aim is 

algorithms for robotics.



  

Constraints

• Staged growth of competence
• Constraints are important 
• Constraints are helpful !
• Many forms of constraint:

– Physical - morphology, mechanical, motor
– Internal - cognitive, sensory, neural, maturational
– Environmental - external, scaffolding, social.



  

Issues to investigate

• Proprioception encoding - how can space be 
learned?

• Motor control - how can new actions 
develop?

• Coordination - intra modal and cross-modal
• Constraint schedules - how should 

constraints be exploited?



  

Experiments



  

Our Experimental Developmental Learning System



  



  

Sensory-motor spaces

• Two Arms, each with: 
- Motor drives at the joints,
- Proprioceptive sensing of joint angles
- Tactile sensing of object contact

• One Eye, with:
- Retinal axes
- Foveal feature extraction
- Motor pan and tilt drives.



  

Experimental variables

• Internal/environmental constraints
• Proprioception encoding schemes
• Proprioception resolution
• Novelty/habituation parameters.



  

S-M mappings

• Mappings as a computational substrate for 
sensory-motor learning 

• Based on fields - overlapping patches of 
S-M space. Each has stimulus data, 
excitation levels, habituation values

• Global signals are summations of field 
values across a map.



  

Sensory-motor mapping system

Motors 

Sensors 

 

D1 

D2 

S1 

S2 

 

 

 



  

Variable field sizes and hierarchical maps

start

goal



  

Early actions



  

Proprio-motor correlation

• While this is happening, the mapping 
system records the correlation between the 
D and S values

• When the map is fully/partially developed it 
will associate changes in sensory locations 
with motor acts.



  

Growth of fields



  

Behaviour types

1. “blind groping” actions mainly directed at the body 
area

2. more groping but at the boundary limits
3. unaware pushing of objects out of the local 

environment
4. limb movements stop upon object contact
5. repeated cycles of contact and movement, i.e.  

“touching” of detected objects
6. directed touching of objects and sequences of 

objects. 



  

Staged development

• Hand “grope” creates local space map
• Hands contact objects - sensitive grope
• Eye stimulation creates local visual map
• Eye sees hands - hand fixation
• Hands follow eye fixations
• Grasping of objects.



  

Observations



  

Proprioception encoding

• 4 schemes tested:
– joint, shoulder, body, Cartesian

• None critical: but body and Cartesian 
common for both arms, and eye

• Muscle spindle stretch better than joint 
receptors.

• Mix of receptors ideal for spatial encoding 
(cf. Bosco et al, J. Neurophysiol. 2000)
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Arm kinematics

Reach = √(l1 + l2 + 2l1l2cosθ2)

Angle = θ1 - arctan(l2sinθ2 / l1 + l2cosθ2)

for limb lengths, l1 l2 and joint angles, θ1 θ2



  

Joint or muscle?



  

Morphology is important

• The physical structure of the agent is a key 
determining factor.

• Sensory structure determines capacity and 
capability of sensing modalities. 

• Mobility, dexterity, effect, all depend upon 
appropriate anatomy or hardware.



  

Sensory resolution

(re Westermann & Mareschal, 
Infancy, 2004)



  

Observations (1)

• Spontaneous action can be useful for 
gaining information, but can also be an 
indication of reduced learning activity

• Motor noise (and other noise) can be 
beneficial in early learning

• Low accuracy/resolution can be beneficial 
in early learning.



  

Observations (2)

• Proprioception may be more important for 
supporting vision than previously thought. 
In particular, non-visual reaching can be 
developed prior to visually guided grasping. 
(re: Clifton et al, “Is visually guided reaching a myth?, Child 
Development, 1993)



  

Observations (3)

• The S-M learning is all relative - based on 
changes - no absolute values are needed

A given reset location provides a reference

that anchors the maps - (but this could be 
altered later).



  

The future…



  

Discovered structure

• Self movement - motor control, S-M 
coordination, spatial limits

• Object contact - static environment, spatial 
structure

• Loss of contact - dynamic environment.



  

S-M mappings

• Maps have many advantages - partial 
maps effective, gross to fine scale 
management, generalisation, cross-modal 
action. 

• Also supports rehearsal, planning and 
imagined action.



  

Importance of constraints
• Scaffolding
• Bandwidth reduction
• Degrees of freedom reduction

Constraint lifting
• Main early learning mechanism
• Triggered by plateaus in activity
• Constraints used: tactile/vision/map scale.



  

Importance of Play

• Very prevalent in primates
• Role? - rehearsal, practice, exploration
• Exhaust plateaus before next stage?
• Test out all constraints?
• Growth of imagination.



  

Return to Issues

• Why development?
– Behaviour based
– Transitions between skill stages

• Why infants? 
– Stage n+1 argument

• Why robots?
– Easiest way to embodiment



  

Summary - the important bits

• Behaviour-based
• Development is essential for learning
• Infancy is a very important developmental period
• Psychology is where the data can be found
• Simplicity of mechanisms
• Synthesis, test cycle
• “law of uphill analysis and downhill invention”
• Most of this is under-rated or under-investigated.



Is it just a question of priority ?
Inspiration from the vertebrate basal ganglia

Abbreviat ions:
CPu, caudate put amen
GP, glob us pallidus
MRF,  medullary ret icular format ion
SC, superior colliculus
SNr, subst ant ia nigra pars ret iculat a
STN, subthalamic nucleus

CPu

GP

SNr

Vm

SC

MRF

STNEN

Peter Redgrave
Neuroscience Research Unit, 

Dept Psychology, 
University of Sheffield, UK

wellcometrust



Overview

• Selection - a fundamental computational problem

• Basal ganglia as a biological solution – looped architecture

• Evolution of competing functional systems – layered architecture

• Subcortical loops through the basal ganglia

• Cortical/subcortical competitions – a basis for irrational behaviour

• Adaptive function(s) of the basal ganglia



A general architecture for a multifunctional system

…including the brain

– Largely independent parallel 
processing functional units 

– Each with: 

• specialised sensory input

• specific functional objectives

• specialised physiological and 
behavioural output



The Selection Problem

Behavioural out put
(Feeding)

Fluid balance
(Drinking)

Predisposing Condit ions

Mot or
Resources

Energy balance
(Feeding)

Threat
(Escape)

• Multiple functional systems

• Spatially distributed

• Processing in parallel 

• All act through final common 
motor path

At any point in time which system should be permitted to 
guide motor output (behaviour)? 



  

Parallel processing within sensory representations



Theoretical Solutions

• Recurrent reciprocal 
inhibition
– Selection an emergent 

property
– Positive feedback
– Winner-take-all

• Centralised selection
– Localised switching

– Dissociates selection  from 
perception and motor control

Motor
Plant

Motor
Plant

Input
Saliencies

Input
Saliencies



Problems of Scale

• Recurrent reciprocal 
inhibition
– Each additional competitor 

increases connections by 
n(n-1)

• Centralised selection
– Each additional competitor 

adds 2 further connections 

3 competitors
6 connections

3+1 competitors
6+2 connections

8 competitors
16 connections

3 competitors
6 connections

3+1 competitors
6+6 connections

8 competitors
56 connections



  

Rat

Human

Basal Ganglia: a biological solution to 
the selection problem



Abbreviat ions:
CPu, caudate put amen
GP, globus pallidus
MRF,  medullary ret icular f ormat ion
SC, superior colliculus
SNr, subst ant ia nigra pars ret iculat a
STN, subthalamic nuc leus

CPu

GP

SNr

Vm

SC

MRF

STNEN

External command systems and the basal ganglia

• External command systems
– Cortical 
– Limbic
– Midbrain

• Command inputs
– Sensory
– Cognitive
– Affective

• Command outputs
– Converge on brainstem and 

spinal motor generators

• Links with basal ganglia
– Phasic excitatory inputs
– Tonic inhibitory outpus

Redgrave P, Prescott T, Gurney KN. 1999. The basal ganglia: A vertebrate solution to the selection problem? Neuroscience 89:1009-1023.

Motor 
plant



Evolutionary conservatism

 “The basal ganglia in modern mammals, birds 
and reptiles (i.e. modern amniotes) are very 
similar in connections and neurotransmitters, 
suggesting that the evolution of the basal ganglia 
in amniotes has been very conservative.” 

Medina, L and Reiner, A.

Neurotransmitter organization and connectivity of the basal 
ganglia in vertebrates: Implications for the evolution of basal 
ganglia.   Brain Behaviour and Evolution (1995) 46, 235-258



Basal Ganglia Architecture :Cortically based loops

Alexander, G. E., M. R. DeLong, et al. (1986). "Parallel organization of functionally segregated circuits linking 
basal ganglia and cortex." Ann. Rev. Neurosci. 9: 357-381.



Repeating microcircuitry across territories

• Input functions
– Cognitive
– Affective
– Sensorimotor

Bolam JP, Bennett BD. 1995. Microcircuitry of the neostriatum. In: Ariano MA, Surmeier DJ, editors. Molecular and cellular mechanims of 
neostriatal function. Austin, TX.: R.G. Landes Co. p 1-19.

• External inputs
– Cerebral cortex
– Limbic system
– Brainstem via 

thalamus



Cortical loop: a specific example

Middleton, F. A. and P. L. Strick (1996). "The temporal lobe is a target of output from the basal ganglia." Proc Natl Acad 
Sci USA 93(16): 8683-8687.

Phasic/
excitatory

Phasic/
inhibitory

Tonic/
inhibitory

Phasic/
Disinhibitory
(Positive
Feedback)



  

Disinhibitory output

Chevalier, G. and J. M. Deniau (1990). "Disinhibition as a basic process in the expression of striatal functions." Trends 
Neurosci. 13: 277-281.

Double -ve



Selection by inhibition and disinhibition

Mot or
Resources

Predisposing Condit ions

Energy balance
(Feeding)

Threat
(Escape)

Basal Ganglia

Excit at ionInhibit ion

Behavioural out put
(Feeding)

Fluid balance
(Drinking)

Predisposing Condit ions

Mot or
Resources

Energy balance
(Feeding)

Threat
(Escape)

The Selection Problem 

Potential resolution  



  

Serial Selection in the Basal Ganglia

Striatum

Inputs 
(Cortex/Thalamus)

Output Nuclei

Up-state/down-state filtering

1)  Up-down states 
of medium spiny 
neurones

Local inhibitory circuits

2) Local 
inhibition in 
striatum

Local recurrent circuits4)  Recurrent 
inhibition in 
output nuclei 

Subthalamus

3) Diffuse/focused 
projection onto 
output nuclei

Focused 
inhibition

Diffuse 
excitation



  

• Relative levels of input salience in competing channels 
– Common currency for evaluating priority 

• Determined by   
– Evolution…inputs from different command modules varies across species
– Individual experience…reinforcement learning

• Implemented by
– Differences in relative levels of afferent activity
– Different weights of contact in different channels

Basis for selection



Qualitative model:                        Analysis

Mot or
Resources

Predisposing Condit ions

Energy balance
(Feeding)

Threat
(Escape)

Basal Ganglia

Excit at ionInhibit ion

Model neurons - leaky integrators with 
piecewise linear output

Analytic equilibrium solution
(Kevin Gurney)

Gurney, K., T. J. Prescott, et al. (2001). "A computational model 
of action selection in the basal ganglia. I. A new functional 
anatomy." Biol Cybern 84: 401-410.



Network and spiking model simulations

Dynamic switching between channels on basis of changes in input salience

Gurney, K., T. J. Prescott, et al. (2001). "A computational model of action selection in the basal ganglia. I. A new functional 

anatomy." Biol Cybern 84: 401-410.

Input salience

EP/SNr output



Robot Action Selection

• Motivations
– Hunger
– Fear

• 5 behavioural sub-systems
– Wall seek
– Wall follow
– Can seek
– Can pick-up
– Can deposit

• 8 Infra-red sensors detect
– Walls
– Corners
– Cans

• Gripper sensors detect
– Presence/absence of can

Prescott TJ, Gonzalez FMM, Gurney K, Humphries MD, Redgrave P. 2006. A robot model of the basal ganglia: 
Behavior and intrinsic processing. Neural Networks 19(1):31-61.



Conclusions

• Uniquely, selection hypothesis of basal ganglia architecture confirmed in analysis, 
simulation and control of robot action selection

• Represents a generic task performed in all functionally segregated territories of the 
basal ganglia
– Selection of overall behavioural goal (limbic)

– Selection of actions to achieve selected goal (associative)

– Selection of movements to achieve selected actions (sensorimotor)

• Consistent with early development and evolutionary conservation

• Explains basal ganglia ‘involvement’ in so many tasks 



  

Implications

• If the basal ganglia are operating as a central selection mechanism, what 
follows ?

– Is “selective attention” a higher level description of currently selected 
(winning) channels ?

– How does the evolutionary status of external command systems affect 
selection ?

– What is the role of the central selector in adaptive behaviour ? 



  

Rat

Human

The basal ganglia may have be conserved

…. unlike cerebral cortex and cerebellum 
the basal ganglia have not increased in 
relative size with brain development



  

…but the competing systems certainly haven’t

– How have functional units developed 
during evolution ?

• Early systems simple solutions

• Later components added to provide 
increasingly sophisticated solutions

• ….to the same problems



  

Layered architecture: not a new idea

John Hughlings Jackson
1835-1911

“That the middle motor centers 
represent over again what all the 
lowest motor centers have 
represented, will be disputed by 
few. I go further, and say that the 
highest motor centers (frontal 
lobes) represent over again, in 
more complex combinations, 
what the middle motor centers 
represent.” 

From “The evolution and dissolution of 
the nervous system” (1884)



Increasing sophistication across the neuraxis
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Prescott TJ, Redgrave P, Gurney KN. 1999. Layered control architectures in robots and vertebrates. Adaptive Behavior 
7:99-127.



  

How was selection done before cortical loops ?

Cerebral
Cortex

Striatum

SN/GPi

Thal

Sensory Motor

Sub-cortical
structures

Sensory Motor

Thal SN/GPi

A. Cortical loops B. Sub-cortical loops

Striatum

Input Output Input Output

McHaffie JG, Stanford TR, Stein BE, Coizet V, Redgrave P. 2005. Subcortical loops through the basal ganglia. 

Trends Neurosci 28(8):401-407.

Subcortical loops through the basal ganglia



  

Midbrain superior colliculus

Sparks DL. 2002. The brainstem control of saccadic eye movements. Nature Reviews Neuroscience 3:952-964.



  

Subcortical loops from the superior colliculus

Thalamus

Superior
Colliculus

Striatum

Substantia
Nigra

Rostral
intralaminar

LP Pulvinar

Caudal
intralaminar

Globus
Pallidus



  

Parallel processing sensory representations



  

Signal timing in the superior colliculus

Jay and 
Sparks 
1987

Schultz 
e.g. 1998

Hikosaka 
and Wurtz 
1983

Dopamine 
response

• Unexpected visual stimuli elicit sensory and     
motor responses in the superior colliculus:

• short latency sensory reaction  (~40 ms) 
• longer latency (<150 ms) pre-saccadic motor 
burst temporally associated with orienting

• Activity in basal ganglia output nuclei :
• at 120ms+ nigrotectal disinhibition releases 
the orienting motor response in the colliculus



  

Cortical and subcortical command systems

Architecture for rational/irrational behaviour 

– Cortical representations (bids) often based on more sophisticated 
sensory analyses and models of action consequences

– Subcortical representations heavily dependent on immediate 
sensory events

– What happens when they go head-to-head in the basal ganglia ? 

 …depends on relative input salience



  

Cortical/subcortical competition ?
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Ganglia

• Subcortical system
– Slow optic flow in 

lower visual field
– Defense reaction

• Cortical system
– Knowledge of rope 

strength
– …go for it !



  

Examples of (cortical) loosers

• Phobias
– Specific trigger stimuli known to be harmless
– Elicit uncontrollable fear and defensive reactions

• Anxiety-panic attacks
– Situations known not to be dangerous
– Incapacitating anxiety in absence of specific triggers

• Post-traumatic stress disorders
– Current circumstances unrelated to traumatic event
– Irrelevant stimuli evoked flash-backs which elicit 

uncontrollable fear and defensive reactions

• Addictions
– Knowledge of detrimental effects of drug dependence 

explicit
– Often powerless in the face of drug/food/sex related 

sensory stimuli

• Head versus heart
– Situations where we should know better



  

Cortical and subcortical loops

Cerebral
Cortex

Striatum

SN/GPi

Thal

Sensory Motor

Sub-cortical
structures

Sensory Motor

Thal SN/GPi

A. Cortical loops B. Sub-cortical loops

Striatum

Input Output Input Output

McHaffie JG, Stanford TR, Stein BE, Coizet V, Redgrave P. 2005. Subcortical loops through the basal ganglia. 

Trends Neurosci 28(8):401-407.

An architecture for understanding such conflicts



  

Adaptive selection

– Selective adjustment of afferent 
signals by reinforcement 
outcome

– and/or  adjustment of input 
weights of reinforced channels
 

– The role of dopamine in 
reinforcement learning

Ascending dopaminergic systems in rat brain

Picture by Wes Chang 
(Gallo center San Francisco)

For action selection to adapt with experience, must be responsive to 
reinforcement consequences of action-outcome contingencies



  

Dopaminergic neurones sensitive to reward

– Short latency (70-100ms)

– Short duration (~ 100ms) burst 
of impulses

• Schultz (1998) – signals reward prediction error

– Shares many characteristics of ‘r’ in Temporal Difference algorithms

– Used to adjust response probabilities in associative learning 

Schultz W. J. Neurophysiol.  
(1998)

• Phasic short-latency sensory response



  

Phasic dopamine unlikely to signal 
reward prediction error

• Elicited by unpredicted biologically salient stimuli
– Salient by virtue of:

• novelty (independent of reward value)

• association with reward

• intensity 
• physical resemblance to reward related stimuli  

• Response homogeneity  
– 100ms latency 100ms duration response constant across:

• species

• experimental paradigms
• sensory modality 

• perceptual complexity of eliciting events

• Response latency (~100ms)
– Precedes gaze shift that brings event onto fovea…



  

The latency constraint

Redgrave P, Prescott TJ and Gurney K  (1999). TINS 22(4): 146-151

Unexpected visual stimuli elicit sensory and 
motor responses in superior colliculus:
 - sensory response  (~40 ms) 
 - motor response (<150 ms)

Phasic DA responses occur before 
foveating eye-movements

70-100ms after stimulus onset

Dopamine 
response

• Conclusion: anomaly of having brain’s main reinforcement learning 
systems relying on reward identification done by pre-attentive, pre-
saccadic stimulus processing



  

So how was it for you ?

Takikawa Y, Kawagoe R, Hikosaka O. 2004. A possible role of midbrain dopamine neurons in short- and long-term 
adaptation of saccades to position-reward mapping. J Neurophysiol 92(4):2520-2529.

“We also noticed that DA neurons typically responded to a visual 
or auditory stimulus when it was presented unexpectedly, but 
stopped responding if the stimulus was repeated; a subtle 
sound outside the monkey’s view was particularly effective.” 



  

If phasic dopamine isn’t signaling 
reward prediction error….

 what is it signaling ?



  

Essential characteristics of the phasic dopamine signal

• A striking resemblance to the Temporal Difference reinforcement 
error term
….suggests it is critically associated with reinforcement learning

• It is precisely timed  
…..involved in a process where the timing of the reinforcement signal is critical

But more information needed



  

Prior Questions

• What is the source of the short latency sensory (visual) input 
to dopamine neurones ?

• What signals does the timed dopamine response interact with 
in target regions of the basal ganglia ? 



  

Response latencies suggest the 
superior colliculus

Redgrave P, Prescott TJ and Gurney K  (1999). TINS 22(4): 146-151

Dopamine 
response



  Comoli, et al. (2003). Nature Neurosci 6: 974-980.

Anatomical Evidence

– The Tectonigral projection

– Direct pathway discovered from superior 
colliculus to substantia nigra pars compacta 

Colliculus as the source of visual 
input: I



  

• When SC cells ‘see’ so do DA cells
– Excitatory responses: 17/30 (56.6%)

• Pre-drug baseline 
– No flash-evoked response in deep 

SC or DA cells

• After BIC into deep SC 
– local neurones responsive to light

Dommett E, Coizet V, Blaha CD, Martindale J, Lefebvre V, Walton N, Mayhew JE, Overton PG, Redgrave P. 2005. 
How visual stimuli activate dopaminergic neurons at short latency. Science 307(5714):1476-1479.

Colliculus as the source of visual input: II

Electrophysiological Evidence



  

• No release to light without 
collicular bicuculline

• 10-40ng bicuculline in 100-400nl 
into colliculus elicited light 
response

• Amplitude and duration of 
response increased by selective 
DA re-uptake blocker Nomifensin

Colliculus as the source of visual input: III

Electrochemical Evidence

Dommett E, Coizet V, Blaha CD, Martindale J, Lefebvre V, Walton N, Mayhew JE, Overton PG, Redgrave P. 2005. 
How visual stimuli activate dopaminergic neurons at short latency. Science 307(5714):1476-1479.



  

Question: 
What signals are present in the target regions at the 

time of the phasic dopamine input ?

• 1st Signal – a separate representation of the sensory 
event that fired off the dopamine signal 



  

Sensory inputs to the striatum 

Superior colliculus

Substantia nigra 
pars compacta

Intralaminar
Thalamus

Striatum

Light Flash

McHaffie et al TINS , Aug. 2005, Sub-cortical loops through the basal ganglia



  

• 2nd Signal – a running efference copy or corollary 
discharge of ongoing motor commands 



  

Motor inputs to the striatum: Efference copy 

Superior colliculusIntralaminar
Thalamus

Striatum

Light Flash

Motor cortex

Substantia nigra 
pars compacta



  

Causal  Contingencies
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Why a short latency reinforcement 
signal is essential 

0.0 0.5 1.0

Evaluated reinforcement

Gaze-shift

Changed context

Relevant action

Relevant context

Recognised event

1.50.5

Context

Motor copy

Sensory signals

Reinforcement DA

Caused event onset

EO

Approximate timing (s)

What-action-caused-the-event learning



  

Conclusions

• Multifunctional systems must have effective solution(s) to 
the selection problem 

• The basal ganglia appear to provide a biological solution 
deemed adequate for > 400M years

• Distribution of competitors across different levels of the 
neuraxis can lead to competition between systems of 
different evolutionary status

• Analysis of basal ganglia functional architecture suggests 
intrinsic reinforcement properties could operate to 
determine agency 
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Overview

Three related issues

Neural parallelism

Modular theories of mind

The frame problem

Global workspace theory (GWT)

Applying GWT to the three issues
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First Issue
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Neural Parallelism
An animal’s nervous system is massively parallel

Masssive parallelism surely underpins human 
cognitive prowess

So how are the massively parallel computational 
resources of an animal’s central nervous system 
harnessed for the benefit of that animal?

How can they orchestrate a coherent and flexible 
response to each novel situation?

What is their underlying architecture?

Nature has solved this problem. How?
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Second Issue
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Modular Theories of Mind (1)
Many cognitive scientists advocate modular 
theories of mind (Gardner, Tooby & Cosmides, 
Fodor, Mithen, Carruthers)

The mind comprises (or incorporates) an 
assemblage of distinct specialist modules

Fine-grained horizontally modular theories (eg: 
Tooby & Cosmides) posit specialists for particular 
behaviours (eg: foraging)

More coarse-grained vertically modular theories 
(eg: Fodor) posit specialists for certain input and 
output processes (eg: parsing, low-level vision)
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Modular Theories of Mind (2)

In addition to the specialist modules, all modular 
theories demand (for humans) some overarching 
faculty, central system, super-module, meta-
representational facility, or whatever

This addition is capable, when required, of 
transcending modular boundaries to produce 
flexibly intelligent behaviour rather than an 
automatic, preprogrammed response to a novel 
situation

But nobody has a very convincing account of this
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Third Issue
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The Frame Problem (1)
The frame problem orginated in classical AI

This is tricky, but was more-or-less solved in the 
mid 1990s

Our concern is the wider interpretation given to the 
frame problem by philosophers, notably Dennett 
and Fodor

How can we formalise the effects of actions in 
mathematical logic without having to explicitly 

enumerate all the trivial non-effects?
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The Frame Problem (2)
Fodor’s version:

A cognitive process is informationally unencapsulated 
if it has the potential to draw on information from any 
domain

Analogical reasoning is the epitome of informational 
unencapsulation

How do informationally unencapsulated cognitive 
processes manage to select only the information 
that is relevant to them without having to explicitly 

consider everything an agent believes ?
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Computational “Infeasibility”
Fodor claims that informationally unencapsulated 
cognitive processes are computationally infeasible

Fodor believes that this is a fatal blow for cognitive 
science as we know it because it entails we cannot 
find a computational explanation of the human 
mind’s “central systems”

“ The totality of one’s epistemic commitments is 
vastly too large a space to have to search … 
whatever it is that one is trying to figure out. ”

(Fodor, 2000)
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Fodor’s Modularity of Mind
The mind’s peripheral processes are special purpose, 
do things like parsing and low-level vision, and are 
computational

The mind’s central processes are general purpose, do 
things like analogical reasoning, are informationally 
unencapsulated, and (probably) aren’t computational

“… it probably isn’t true that [all] cognitive processes 
are computations. … [so] it’s a mystery, not just a 
problem, what model of the mind cognitive science 

ought to try next. ” (Fodor, 2000)
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The Solution
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Global Workspace Architecture
Parallel Unconscious
Specialist Processes

Global Workspace

Multiple parallel specialist processes compete and 
co-operate for access to a global workspace
If granted access to the global workspace, the 
information a process has to offer is broadcast 
back to the entire set of specialists
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Conscious vs Non-Conscious
Global workspace theory (Baars) hypothesises 
that the mammalian brain instantiates such an 
architecture

It also posits an empirical distinction between 
conscious and non-conscious information 
processing

Information processing in the parallel specialists is 
non-conscious

Only information that is broadcast is consciously 
processed
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Empirical Evidence
Contrastive analysis compares and contrasts closely matched 
conscious and unconscious brain processes
Dehaene, et al. (2001)

Imaged subjects being presented with “masked” words
Masked and visible conditions compared

Such experiments suggest that conscious information 
processing recruits widespread brain resources while 
unconscious processing is more localised
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Embodiment
According to GWT, only something that instantiates a 
global workspace architecture is capable of conscious 
information processing

But this is a necessary not a sufficient condition

I have argued (Shanahan, 2005) that the architecture 
must direct the actions of a spatially localised body 
using a sensory apparatus fastened to that body

This allows the set of parallel specialists a shared 
viewpoint, from which they can be indexically directed 
to the world and fulfil a common remit
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Combining GWT with Internal 
Simulation

GW

AC1a

AC2a

AC3a

AC1b

AC2b

AC3b

VC / IT

Am

This “core circuit” combines an internal sensorimotor loop with mechanisms 
for broadcast and competition, and thereby marries the simulation 

hypothesis (Cotterill, Hesslow) with global workspace theory (Baars)

Motor
cortex

Affect

WORLD

Inner sensorimotor loop
(the Òcore circuitÓ)

Sensory
cortex

ACa ACb
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Applying the Solution
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Serial from Parallel / Unity 
from Multiplicity

The global workspace architecture harnesses the power 
of massively parallel computation

The global workspace itself exhibits a serial procession of 
states

Yet each state-to-state transition is the result of filtering 
and integrating the contributions of huge numbers of 
parallel computations

The global workspace architecture thereby distils unity out 
of multiplicity

This is perhaps the essence of consciousness, of what it 
means to be a singular, unified subject

Remember This
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GWT and the Frame Problem (1)
Both Fodor and Dennett seem to have a strictly serial 
architecture in mind when they characterise the frame problem

Peripheral Processes (Modules)

Central Processes

B

DA

C B

DA

C B

DA

C

“Is A relevant?” “Is B relevant?”
“Is C relevant?

Yes!”

This certainly looks computationally infeasible
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GWT and the Frame Problem (2)
But global workspace architecture offers a parallel alternative

In the context of an appropriate parallel architecture, the frame 
problem looks more manageable

Parallel Unconscious Specialists

Global Workspace

B

DA

C“Am I relevant?”

“Am I relevant?”
“Am I relevant?

Yes!”

“Am I relevant?”B
DA

C
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Analogical Reasoning (1)
Analogical reasoning is informational unencapsulation in its 
purest form

Computational models of analogical reasoning distinguish 
between

retrieval – the process of finding a potential analogue in long-term 
memory for a representation already in working memory – and

mapping – the subsequent process of finding correspondences 
between the two

“Analogical reasoning depends precisely upon the 
transfer of information among cognitive domains 

previously assumed to be irrelevant ” (Fodor)
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Analogical Reasoning (2)
Retrieval is the locus of the frame problem in analogical 
reasoning

The most psychologically plausible computational model is 
currently LISA (Hummel & Holyoak), which mixes serial and 
parallel computation, and also fits a global workspace 
architecture very closely

Serial presentation in working memory

Active proposition in WM

Parallel activation in long-term memory

Distributed propositions in LTM

Serial presentation in global workspace

Contents of GW

Broadcast of GW contents

Unconscious parallel processes

LISA GWT
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Reinventing Modularity

The global workspace architecture can be 
appropriated by any of the modular theories of 
mind

It potentially supplies the means of transcending 
modular boundaries required to realise human-
level, flexible, creatively intelligent cognition

Its application to the frame problem in general, 
and to analogical reasoning in particular, is an 
example of this
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Conclusion

Is there a fundamental link between cognition 
and consciousness?

There is plentiful support for an affirmative reply

So perhaps an understanding of cognition has 
to go hand-in-hand with an understanding of 

consciousness
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1 Some background

We start with some background to put the research in vision into the larger context of an attempt to
specify requirements for future robots with human-like capabilities.

This is of interest both because it may help with the practical goal of designing more intelligent and
more useful, flexible, companionable robots and also because it may help us understand human
beings better by understanding the requirements for designs that explain what we can do.

The latter is my personal aim: I am more a biologist (and philosopher) than an engineer, but the
engineering methodology is required for doing biology, psychology and philosophy well.



Steps towards a research roadmap

Forward chaining research asks: how can we improve what we have already done?
Backward chaining research asks: what is needed to achieve our long term goals?

See the introduction to GC5 in the booklet and on the web: researchers don’t put
nearly enough effort into analysing requirements.

Many of the hardest tasks are concerned with seeing 3D motion and affordances
New Theory Vision Slide 2 Last revised: June 28, 2006 Page 3



Doing science
We need to move beyond ‘Here’s my architecture’.

For real scientific knowledge we need to have a theory about the
space of possible designs and how design options relate to task
requirements.

This leads to the idea of studying relations between
– design space (space of possible designs), and
– niche space (space of possible sets of requirements).
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REQUIREMENTS FOR ANIMAL & ROBOT VISION

Vision is a process involving multiple concurrent
simulations at different levels of abstraction in

(partial) registration with one another and
sometimes (when appropriate) in registration with

visual sensory data and/or motor signals.
Max Clowes: Vision is controlled hallucination.
We add: multi-level controlled hallucination.

The theory has different facets, which link up with many different phenomena of
everyday life as well as experimental data, and with a host of problems in
philosophy, psychology (including developmental and clinical psychology),
neuroscience, biology and AI (including robotics).

It raises new questions for AI, psychology, neuroscience and others.

Example: watch this video of child playing with a toy train set.
http://www.cs.bham.ac.uk/˜axs/fig/josh34 0096.mpg
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Perceiving structures vs perceiving affordances
Structures

things that exist, and have relationships, with parts that exist and have
relationships

Affordances (positive and negative)
processes that could or could not (sometimes conditionally could or could not)
be made to exist by the agent, with particular consequences for the perceiver’s
goals, preferences, likes, dislikes, etc.:

modal, as opposed to categorical, types of perception.

• Betty looks at a piece of wire and (maybe??) sees the possibility of a hook, with a collection of
intervening states and processes involving future possible actions by Betty.

• The child looks at two parts of a toy train remembers the possibility of joining them, but fails to
see the precise affordances and is mystified and frustrated: presumably he sees parts and
structural relationships because he can grasp and manipulate them in many ways. But he
appears not to see some affordances.

• Seeing affordances seems to be related to being able to run simulations of unseen but possible
processes in registration with the scene.

How specialised are the innate mechanisms underlying the abilities to learn
categories, perceive structures, understand affordances, especially
structure-based affordances.

Beware the tabula rasa trap: millions of years of evolution were not wasted!
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We should not consider only human
competence

Humans are a result of billions of years of evolution producing many different
solutions to the problems of coping with a complex environment.

Betty the hook-making
New Caledonian crow.
Give to google: betty crow hook:
You’ll find a link to the Oxford Zoology lab, with
videos of Betty making hooks in different ways.

She appears to have a deep understanding of

structure, process and causation.

See the video here:
http://news.bbc.co.uk/1/hi/sci/tech/2178920.stm

Contrast the 18 month old child attempting
unsuccessfully to join two parts of a toy train by
bringing two rings together
(http://www.cs.bham.ac.uk/˜axs/fig/josh34 0096.mpg)

Does Betty see the possibility of making a hook before she makes it?

She seems to. How?
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Some tasks for a crow-challenging robot?

UPDATING THE BLOCKS WORLD

Using a two-finger gripper, what actions can get

from this: to this:

and back again?

Or with saucer upside down?
Unfortunately even perceiving and representing the initial or final state (e.g. as something to copy)
seems to be far beyond the capabilities of current AI vision systems, let alone thinking about
possible actions to transform one to the other – e.g. the angle of approach required to grip cup or
saucer or spoon in a particular location, e.g. the left-most point of the saucer’s rim, or the tip of the
teaspoon’s bowl.
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Some tasks for a crow-challenging robot? (2)

Consider how, prior to the action, the agent has to

• identify parts of objects, or parts of parts, e.g. the edge of the handle, or the far edge of the
handle or a certain portion of the edge of the saucer

• see and understand their shapes and relationships

• identify possible actions: grasping this thing here from this direction

Could such deliberative premeditation use the action schema (operator) with approximate,
qualitative parameters instead of the more definite actual parameters that would be used if the
action were performed?

• think about various effects of actions, including changing effects of continuous processes

NOTE: there are problems here partly analogous to problems of reference and identification in
language, except that the mode of reference is not linguistic and what is referred to typically cannot
be expressed in language because it is anchored in non-shared structures and processes.

(Internal ‘attention’ processes are partly like external pointing processes: virtual fingers. )
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Compare Freddy the 1973 Edinburgh Robot
Some people might say that apart from
wondrous advances in mechanical and
electronic engineering there has been little
increase in sophistication since the time of
Freddy, the ‘Scottish’ Robot, built in
Edinburgh around 1972-3.

Freddy II could assemble a toy car from the
components (body, two axles, two wheels)
shown. They did not need to be laid out
neatly as in the picture.
However, Freddy had many limitations
arising out of the technology of the time.
E.g. Freddy could not simultaneously see and act:
partly because visual processing was extremely slow.
Imagine using a computer with 128Kbytes RAM for a robot now.
There is more information on Freddy here

http://www.ipab.informatics.ed.ac.uk/IAS.html

http://www-robotics.cs.umass.edu/ pop/VAP.html

In order to understand the limitations of robots built so far, we need
to understand much better exactly what animals do: we have to look
at animals (including humans) with the eyes of (software) engineers.
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Perception of shape is not
shape-reconstruction

What sort of 3-D interpretation is required depends on what it is to be used for.

Shape perception in computers is often demonstrated by giving the machine one
or more images, from which it constructs a point-by-point 3-D model of the visible
surfaces of objects in the scene (sometimes using laser range-finders).

This achievement is then demonstrated by projecting images of the scene from
new viewpoints.

But there is no evidence that any animal can do that and very few humans (e.g.
some artists) can produce accurate pictures of viewed objects using a new
viewpoint, whereas many graphics engines do it.

Human/animal understanding of shape, including having information relevant to
action and prediction, is very different from having a point by point 3-D model

The point of perception is not making images: the results must be useful for action – e.g. building
nests from twigs, peeling and dismembering food in order to get at edible parts, escaping from a
predator, making a tool, using a tool.
A ‘percept’ constructed by the perceiver needs to include information about what is happening,
what could happen and what obstructions there are to various kinds of happening (positive and
negative affordances).
These happenings are of many different kinds, so different kinds of information must be
synthesised from sensory information (influenced by prior knowledge, prior ontologies, prior
goals).
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2 A vision system has to be part of a larger architecture

In my ‘Talks’ directory

http://www.cs.bham.ac.uk/research/cogaff/talks/

there are several presentations on architectures, and on a conceptual framework called CogAff for
thinking about types of architectures supporting multiple kinds of functionality operating in parallel.

As an example of the application of the CogAff framework, it is conjectured that the human
architecture has a kind of complexity illustrated very sketchily in the next slide.

There’s no time to explain this now, but many of the features of vision that are mentioned in the rest
of this presentation depend on the fact that vision has multiple functions because visual
mechanisms are connected to many different subsystems in the architecture.

Because of this, evolution produced multilayered vision systems (and multilayered action systems)
that, at least in humans, do not have a fixed structure but can be extended during learning and
development, including learning to read, learning to understand abstract diagrams, and learning to
see new kinds of affordances, e.g. the properties of hooks.



A hypothetical Human-like architecture:
H-CogAff (See http://www.cs.bham.ac.uk/research/cogaff/)

This is an instance (or specialised
sub-class) of the architectures
covered by a generic schema
called “CogAff”.

Many required sub-systems are not
shown.

Different kinds of process
simulation may go on in different
parts of the architecture – some
very old and widely shared, some
relatively new and found in very
few species.
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A Shift of View
• For many years I assumed (like many other people) that if we could understand

perception of static scenes we could later deal with motion.
• I also thought (as explained below) that perception of a static scene involved

forming (static) descriptions of its contents (at different levels of abstraction),
and that a theory of perception of motion might later be derived from that.
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A Shift of View
• For many years I assumed (like many other people) that if we could understand

perception of static scenes we could later deal with motion.
• I also thought (as explained below) that perception of a static scene involved

forming (static) descriptions of its contents (at different levels of abstraction),
and that a theory of perception of motion might later be derived from that.

• Then I learnt about Gibson’s theory of affordances, which made it necessary to
relate perception of static scenes to the possibility of (and constraints on)
actions and their consequences that are not occurring, but might occur.

• For a while I assumed that a theory of perception of affordances could be tacked
onto a theory of perception of structure by representing the perceived
affordances as collections of something like condition-action rules associated
with various parts of a scene.
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A Shift of View
• For many years I assumed (like many other people) that if we could understand

perception of static scenes we could later deal with motion.
• I also thought (as explained below) that perception of a static scene involved

forming (static) descriptions of its contents (at different levels of abstraction),
and that a theory of perception of motion might later be derived from that.

• Then I learnt about Gibson’s theory of affordances, which made it necessary to
relate perception of static scenes to the possibility of (and constraints on)
actions and their consequences that are not occurring, but might occur.

• For a while I assumed that a theory of perception of affordances could be tacked
onto a theory of perception of structure by representing the perceived
affordances as collections of something like condition-action rules associated
with various parts of a scene.

• In retrospect it seems silly to have forgotten that vision evolved in organisms
embedded in a dynamically changing environment – so its primary function
must be not to discover what exists in the environment, but what is happening
in the environment, including the perceiver’s movements and actions.

• Add the observation that what is happening, and what is potentially important to
an organism, is not a unique process, but a collection of processes at different
levels of abstraction, e.g. a wave moving horizontally towards the shore and
millions of molecules mostly moving roughly up and down in the same place.
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3 Example: A child playing with a train-set on the floor

The video mentioned above shows a child about three and a half years old doing things with a train
set that surrounds him as he sits in the middle, turning this way and that, pointing at things behind
him to answer questions, pushing the train through a tunnel, changing his position to replace a tree
knocked down by the back of his head when he puts his head down to look through the tunnel.

http://www.cs.bham.ac.uk/˜axs/fig/josh tunnel.mpg (5MB)
http://www.cs.bham.ac.uk/˜axs/fig/josh tunnel big.mpg (15MB)
(High resolution version.)

My claim that this child is running various simulations of things going on in the environment begs
the question: ‘What kind of thing is a simulation?’

My provisional answer is that anything that is capable of usefully representing a process can be
called a simulation for present purposes, even if it is a static structure accessed sequentially.

Later I’ll say more about what I do and do not mean.

NOTE: I am not making any use of Grush’s distinction between ‘emulation’ and ‘simulation’, though
it is possible that it will turn out that what I mean by ‘simulation’ is what he means by ‘emulation’.



Snapshots from tunnel video
A child playing with his train illustrates the theory.

• The child clearly knows what’s going on in places he cannot see.
• He can point at and talk about something behind him that he cannot see.
• When he turns to continue playing with the train he knows which way to turn

and roughly what to expect.
• When the train goes into the tunnel and part of it becomes invisible, he does not

see the train as being truncated, and he expects the invisible bit to become
visible as he goes on pushing.

• He sees the whole train as one thing while part of it is hidden in the tunnel.
• What is the role of vision in all of this? Frequently sampling the environment?

Vision is concerned with what is and is not happening in the environment – that’s
potentially of relevance to the perceiver: ongoing situations and processes.
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Tunnel vision
Think about the child playing with and talking about his toy train, with track, tunnel
and other things on the floor around him.

How many different levels of abstraction occur in
• the processes he needs to perceive,
• the processes he needs to use in controlling his actions,
• the processes he needs to think about, explain, modify, predict, ...

Is there a sharp division between

• seeing geometric structures, relationships, changes and

• seeing causal and functional relations?
Is there a sharp distinction between what the child sees as caused by his action ,
and what he sees as merely happening in the environment?
Could the same mechanisms represent both?

Compare

– Movement of the truck he is holding and pushing
– Movement of the truck adjacent to the one he is pushing
– Movement of the trucks in the tunnel that cannot be seen
– Reappearance of the front of the train from the far end of the tunnel

We return to perception of causal relations later.
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Background
• There are many views of the nature and function(s) of vision,

including the following:

– Vision produces information about physical objects and their geometric and
physical properties, relationships in the environment.

(Marr and many others.)

– Much recent work treats vision as a combination of recognition, classification
and prediction – the latter sometimes used in tracking

(often using classifications arbitrarily provided by a teacher, rather than being derived from
the perceiver’s needs and the environment).

– Vision controls behaviour (Obviously true?)
– Behaviour controls perception, including vision. (W.T.Powers)
– Vision is unconscious inference (Helmholtz)
– Vision is controlled hallucination (Max Clowes) Pretty close
– Grush on Emulation theory of representation (BBS 2004)

• I’ll try to present phenomena that require a richer deeper theory.
It will be evident that the new theory uses many of the above ideas, and assembles them with
some new details. Some of the ideas are criticised.
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Relationship with CoSy project
A change of view came while I was working on the CoSy project

http://www.cs.bham.ac.uk/research/projects/cosy/

I have been thinking about many of the problems for many years, but what made
things click into place recently was examining very closely the perceptual and
representational requirements for a robot manipulating 3-D objects on a table-top,
e.g. watching a hand picking up a cup, or assembling a meccano model.

Try thinking about it yourself!

Using one or two hands, perform simple, everyday actions on cups, spoons,
scissors, paper, string, a handkerchief, nuts and bolts, tin-openers, your food, a
sweater you put on or remove ....

and watch very, very closely.

How can your brain represent the information you use, including
• all the things and processes you see, as complex 3-D objects move while changing their

shapes and mutual relationships,
• what you anticipate,
• your recollection of what just happened,
• your thoughts about what would have happened if you, or someone else, had done

something different?

PERHAPS YOU WILL INVENT THE SAME THEORY .
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The theory is not totally new
There are many precursors of different kinds:

Some old philosophical theories of minds as idea-manipulators.
Kant’s Critique of Pure Reason (1780) (Including his theory of mathematical knowledge)
Helmholtz: perception is unconscious inference
Kenneth Craik in 1943 (animals use predictive models)
Ulric Neisser and others (1960s): theories of vision as analysis by synthesis, and hierarchical

synthesis.
Karl Popper (our hypotheses can die in our stead)
William T Powers: Behaviour controls perception.
Lots of control engineering using ‘predictive’ models.
Max Clowes: Vision is controlled hallucination
David Hogg’s work on perceiving a walking person (1983)
My own work in the 1970s on multi-level perception and visual reasoning
Work by Tsotsos on motion perception.
Roger Shepard and others on mental rotation tasks.
Steve Kosslyn on imagery
Phil Johnson-Laird on reasoning with mental models
JJ Gibson on perceiving affordances (and his earlier ideas about ‘perceptual systems’)
Minsky’s Society of Mind and other work.
Arnold Trehub: (1991) The Cognitive Brain
Alain Berthoz (2000) The Brain’s sense of movement ,
Murray Shanahan AISB 2005
Philippe Rochat, 2001, The Infant’s World ,
R. Grush, 2004, The emulation theory of representation: ... BBS, 27,

And probably more: but does any combine all the elements proposed here?
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4 From structures (in the Popeye system) to processes

About 30 years ago a project at Sussex University explored some aspects of the theory that
perception of complex and noisy structures could be facilitated by a visual architecture in which
processes at different levels of abstraction, concerned with different ontologies, ran concurrently
with a mixture of bottom up and top down control, including top-down control of attention.

But there was nothing in this about perceiving processes at different levels of abstraction, as is
proposed here. Yet some of the ideas remain relevant.



How do we process noisy pictures? (1)
DO YOU SEE A WORD?
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How do we process noisy pictures? (2)
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How do we process noisy pictures? (3)
DO YOU SEE A WORD?
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Multiple levels of structure perceived in parallel
Old conjecture: We process different
layers of interpretation in parallel.

Obvious for language. What about vision?
Concurrently processing bottom-up and top- down helps
constrain search. There are several ontologies involved,
with different classes of structures, and mappings
between them – so the different levels are in ‘partial
registration’.
• At the lowest level the ontology may include dots, dot

clusters, relations between dots, relations between
clusters. All larger structures are agglomerations of
simpler structures.

• Higher levels are more abstract – besides grouping
(agglomeration) there is also interpretation , i.e.
mapping to a new ontology.

• Concurrent perception at different levels can
constrain search dramatically (POPEYE 1978)
(This could use a collection of neural nets.)

• Reading text would involve even more layers of
abstraction: mapping to morphology, syntax,
semantics, world knowledge

From The Computer Revolution in Philosophy (1978)
http://www.cs.bham.ac.uk/research/cogaff/crp/chap9.html

Replace all that with concurrent multi-level processes – using different process-ontologies.
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Seeing a cup at multiple levels of abstraction

Many levels of structure and of affordances.

The identification of ‘objects’ is not fixed by the environment: e.g.
thinking about different places to grasp.

But even that is not all that goes on in vision
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From Structures to Processes

In the light of earlier observations we can replace the idea that

1. seeing involves multi-level structures in partial registration using different
ontologies,

with the claim that

2. seeing involves multi-level process-simulations in partial registration using
different ontologies, with rich (but changing) structural relations between
levels.

NOTE:
After developing these ideas I found that Philippe Rochat’s book The Infant’s World
claims on pages 103-7 that there is evidence that even at 4 months infants are
capable of ‘dynamic imagery’, used to predict trajectories of objects when the pass
out of view.
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The walking man
• Shortly after the work on Popeye was done, David Hogg was a PhD student in

the same department working on motion perception.
D. Hogg. Model-based vision: A program to see a walking person. Image and Vision
Computing , 1(1):5–20, 1983.

• His well known ‘walking man’ system was an early example of what I am now
talking about: his model-based interpretation of a video of a walking man
amounted to a simulation of a walker, partly controlled by the changing image
data, and partly controlled by the dynamics of the model.

• Despite being his supervisor I did not appreciate the full significance of that
work till now.

I think he also did not see the full significance of what he had done: he described the system
as showing how to use a model to interpret an image, rather than claiming to show how to
interpret a sequence of images as representing a process.

• Making Popeye see dotty images of moving overlapping laminas forming
different words at different times would have been a very different task ....
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How to see a static scene as a process
If all this is right, our ability to see processes is used even when we
look at a static scene:

it’s just that then the process is one in which nothing changes.

• But if something started changing we would see it, using the same mechanisms
as were previously perceiving the static configuration.

• A static scene is just a special kind of process, in which nothing changes.

• Whether the things change or not the system has to be prepared for many
possibilities.

• Thus perception of a static structure already involves perception of possibilities
for motion (mostly latent: the simulation capabilities may be turned on if motion
occurs, and left dormant otherwise).

This could be seen as a minimal notion of affordance.
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The importance of concurrency
Besides emphasising the importance of processes as being the content of what is
perceived (i.e. not just static structures), we are also emphasising the importance
of concurrency , namely the perception as involving multiple perceived processes,
some at the same level of abstraction, some at different levels of abstraction

• Perceived concurrency is involved in various human and animal activities
involving two or more individuals engaged in fighting, dancing, mating, playing
games, performing music, etc.

• Doing this well implies a need to be able to keep track of (partly by running
simulations?) the actions of others at the same time as planning and performing
one’s own actions.

• What are the evolutionary precursors of this, e.g. in hunting animals and prey of
hunting animals, including parents defending young from predators?

• Concurrency is also important in social learning, since many social interactions
are concurrent rather than simply based on turn-taking: e.g. dancing, old
friends embracing, lifting or pushing a heavy article, and mating.

• Conjecture: our architecture evolved to support at least three sorts of concurrency:
– Perceiving multiple concurrent external processes
– Representing the same process at different levels of abstraction
– Different concurrent actions in an individual, such as walking (including posture control),

working out where to walk, discussing philosophy with a companion, using different parts of
the information-processing architecture.
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Liberation from the here and now
CONJECTURE
The same mechanisms (or similar mechanisms produced using
evolution’s ‘duplicate then differentiate’ strategy) can be used

(a) Without using sensor-specific or motor-specific representations
(b) In relation to things that are not currently perceived

– Past

– Remote

– Future

Contrast:
multi-modal integration vs a-modal abstraction

Contrast:
Learning about (intra-somatic) sensorimotor contingences
vs
Learning about objective (extra-somatic) condition-consequence
contingencies
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We are not insects
The vast majority of animals (microbes, crustaceans, fish, reptiles....)
may be able to get by with much less powerful and flexible perceptual
systems.

They may always be involved in control of current actions (including
quite sophisticated dynamical systems with predictive control
mechanisms – using feedforward loops – e.g. flying insects).

But what humans and a few other species goes far beyond that: and
much research on vision and robotics, including some research in
neuroscience(?), does not take account of the requirements – e.g. to
be able to remember what you did, to understand what went wrong,
to think about what someone else may do, to plan several steps
ahead....

Theories of insect intelligence may not be adequate for chimps,
cheetahs and crows, let alone humans.

Note: all this may be unfair to some insects.

(And what about the octopus?)

New Theory Vision Slide 30 Last revised: June 28, 2006 Page 34



Simulation capability exceeds behavioural capability
If human brains (and perhaps others) can construct and run simulations of
processes of many kinds, there is no need for each one to be closely related either
to the specific motor system that would be used to produce such processes or to
the sensory systems that would be used to perceive such a process.

After all, we can perceive many processes we cannot produce, e.g. waterfalls – and
we shall later give examples of perceiving and thinking about ‘vicarious
affordances’, i.e. affordances for others.

So we have an ability to experience and appreciate processes that are richer and
more complex than anything we can produce using our own bodies.

• Evolution apparently ‘discovered’ the benefits of structural and causal disconnection between
representation and thing represented, long ago (in a subset of animals only?):
can we replicate this in our designs?

• Compare
– the ability of a prey animal to think about what a predator might do
– the ability of a composer to think up a multi-performer composition, and specify it in a

musical score.
– the ability of a general to prepare orders for various concurrently active platoons.
– the ability of some programmers to design, implement, and debug programs involving

concurrent processes (e.g. operating systems).
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So....

Many current theories of embodied cognition ignore
the extent to which evolution discovered the power of
disembodied cognition for a small subset of species

Infant humans seem to have minds with learning and developmental capabilities
that can use a variety of different bodily forms available from infancy to achieve a
common adult humanity.

For example, consider the thalidomide babies born limbless in the 1960s, and the
artist Alison Lapper, celebrated here

http://www.ldaf.org/pages/dail/dailarticles.htm#lapper
http://www.mymultiplesclerosis.co.uk/misc/alisonlapper.html

She can clearly see many structures and processes that can be seen by people
with normal arms and legs.
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Reminding the audience:
relevant things you probably know

There are many aspects of our everyday experience that people may
or may not notice that seem to involve this ability to run some sort of
simulation of environmental processes.
So this is not really a theory that’s new to you, even if you previously never thought
about it.

• E.g. when you see something moving behind an opaque object you don’t see
the moving object as being truncated – you see it as having a hidden portion
that continues to move (like the child in the video pushing his train into a
tunnel), and typically you know roughly where the hidden parts are as the
motion continues (though of course stage conjurers can fool us because we are
not infallible).

• Many cartoons and jokes depend on our ability to run simulations derived from
the information presented, e.g. pictorially or verbally.

• Droodles depend on this ability too. In fact many/most(?) forms of visual art do.

Some cartoons showing ‘snapshots’ of extended processes follow. Some project
into both future and past, some only one or the other.
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5 Cartoons and miming



‘French Cartoons’ Published 1955
Ed William Cole and Douglas McKee, : Panther Books

When you look at the cartoons that follow, what past
and future processes come to mind and how do they

relate to details of the scene?
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Mostly future

Another kind of footbrake ???
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Mostly past

Understanding the picture involves ‘running a simulation’ but at a high level of
abstraction with many details of the previous history left out.
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We produce joke actions also
Using a tennis ball and
badminton shuttlecock to
simulate eating an ice-cream –
he never actually licked the
ball.

We often use external simulations,
including gestures, diagrams,
working models. However most of
our examples below will be cases of
purely internal simulation.

Perhaps a major function of play in
young mammals is developing
simulation capabilities through
learning about different things to
simulate (as opposed to developing
motor skills, muscles, etc.)

Evolution (and processes in individual development) somehow gave us the ability to make use of
either internal or external objects, when running simulations. My 1971 IJCAI paper claimed that
reasoning with diagrams is essentially the same thing whether done on paper or in the mind .

Brain mechanisms for this are still waiting to be discovered.
(See the interesting discussions in BBS paper and commentary by R.Grush, 2004 – found after
much of this had been written).
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Sensorimotor vs Condition consequence
contingencies

Insects may be restricted to learning conditional probabilities relating total sensory
and motor signal-sets.

In some cases that would be combinatorially explosive – e.g. all the ways of
perceiving grasping, whether done with mouth, or left hand or right hand, or two
hands holding an object.

An organism that can abstract from all the intra-somatic sensorimotor details and
represent extra-somatic relationships between surfaces and their consequences
(e.g. if something moves) independently of how movements are produced or
sensed has a great advantage in generality and economy.

That includes being able to perceive and think about actions done by others:
perceiving vicarious affordances.

So mirror neurons should have been called ‘abstraction neurons’.

CONJECTURE: this ability to represent objective structures and processes, a kind
of disembodiment, was a major evolutionary development.

It’s not clear whether that is present at birth – though much else is .
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6 Perceiving causation

Two kinds of causation: Humean (probabilistic, evidence based) and Kantian (deterministic: based
on hypothesised structures)



Perceiving causation

Our ability to perceive moving structures, and our
meta-level ability to think about what we perceive, is

intimately bound up with perception of
causation and affordances.

In some cases the causal relations are inherent in
what is seen, whereas in others they involve invisible
structures and processes: but the same key idea is

used in both cases.

Illustrations follow.
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Invisible, Humean, causation – mere correlation
Two gear wheels attached to a box with hidden contents.
Here we do not perceive causation: we infer it from statistics.

Can you tell by looking what will happen to one wheel if you rotate the other about
its central axis?

You can tell by experimenting: you may or may not discover a correlation.
Compare experiments reported by Alison Gopnik in her invited talk at IJCAI’05, Edinburgh July 2005
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Visible, intelligible, Kantian, causation
Two more gear wheels:
Here you (and some children) can tell
‘by looking’ how rotation of one
wheel will affect the other.

NB The simulation that you do makes
use of not just perceived shape, but
also unperceived constraints :
rigidity and impenetrability. These
constraints need to be part of the
perceiver’s ontology and integrated into the simulations, for the simulation to be
deterministic.

Visible structure does not determine all the constraints: we also have to learn
about the nature of materials, to see what is happening, and understand causation.

We need to explain how brains and computers can set up and run simulations
involving multiple concurrent changes of relationships, subject to varying
constraints determined by context.

These ideas are developed in two online documents
http://www.cs.bham.ac.uk/research/projects/cosy/papers/#pr0506
COSY-PR-0506: Two views of child as scientist: Humean and Kantian

http://www.cs.bham.ac.uk/research/projects/cosy/papers/#dp0601
COSY-DP-0601 Orthogonal Competences Acquired by Altricial Species (Blanket, string and plywood).
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Humean and Kantian Causation
• When the only way you can find out what the consequence of an action will be

is by trying it out to see what happens, you may acquire knowledge of causation
based only on observed correlations. This is ‘Humean causation’ – David Hume
said there was nothing more to causation than constant conjunction, and this is
now a popular view of causation: causation as statistical (often represented in
Bayesian nets).

• However if you don’t need to find out by trying because you can see the
structural relations (e.g. by running a simulation that has appropriate
constraints built into it) then you are using a different notion of causation:
Kantian causation, which is deterministic and structure-based.

• I claim that as children learn to understand more and more of the world well
enough to run deterministic simulations they learn more and more of the
Kantian causal structure of the environment.

• Typically in science causation starts off being Humean until we acquire a deep
(often mathematical) theory of what is going on: then we use a Kantian concept
of causation.

• This requires learning to build simulations with appropriate constraints.

For more on this see this talk
http://www.cs.bham.ac.uk/research/projects/cosy/papers/#pr0505
COSY-PR-0506: Two views of child as scientist: Humean and Kantian
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7 Geometry-based causation

Perceiving causation in changing geometric structures.

We can often see and understand consequences of motion of one part of a structure, including
being able to predict effects on other parts.

But not when the structures are too complex, or have too many degrees of freedom.

Every kind of human competence has fairly low complexity limits, even though humans are
enormously flexible in deploying and combining their competences.



Simulating motion of rigid, flexibly jointed, rods
On the left: what happens if joints A and B move together as
indicated by the arrows, while everything moves in the same plane?
Will the other two joints move together, move apart, stay where they
are. ???

• What happens if one of the moved joints crosses the line joining the other two
joints?

• We can change the constraints in our simulations: what can happen if the joints
and rods are not constrained to remain in the original plane?
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Multiple links: how we break down
Can you tell how the other rods
will move, if A and B are moved
together and all the rods are rigid,
but flexibly jointed?
There are not enough constraints. In this
case our causal reasoning merely allows
us to think about a range of options,
though it is not easy. Unlike simpler
linkages, most people will not be able to
see whether the continuum of possible
processes divides into clearly distinct
subsets except (perhaps) by spending a
lot of time exploring.

As situations get more complex, human
abilities to simulate degrade rapidly: our
understanding of Kantian causation
tends to be limited to relatively simple,
deterministic cases, though we can learn
to grasp more complex structures and
processes – up to a point. Perhaps intelligent artificial systems will have similar limitations.
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The moral?

• Processes we can imagine, see, think about are not necessarily
related to what our own bodies can do: the importance of
embodiment is currently being grossly oversold.

• Humans do not scale up, though we do ‘scale out’ – many different
competences are available that can be combined in different ways.

How they are acquired, represented, stored, accessed and combined,
is largely unknown.
(That’s one difference between what I am saying and ‘global
workspace theory’, which doesn’t address those questions.)
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8 Multi-modal perception of causation

We can combine information from different senses to produce a running simulation of what is going
on.

(As Grush (2004) points out.)

In some case what is represented in the simulation is not sensed at all, until some time after the
simulation starts.



Mixed mode input to an integrated simulation
• What you hear, like what you see, can be a process occurring in the

environment, for instance hearing someone moving round you when your eyes
are shut.

• If you are sitting in a room with a door opening into a corridor, subtle aspects of
the changing sound of footsteps (which you process unconsciously) may
produce a percept of an unseen person moving to the door, so that you know
when he will become visible – a device used often in movies.

• Likewise when you see the unseen person’s shadow changing.

• So the process you hear occurring and the things you see occurring may exist
in the same integrated simulation — which is just as well since they exist in the
same spatial environment.

• Likewise what a dentist sees and feels with the probe as she looks into the
patient’s mouth need to be in the same perceived part of the world, and when
you use a hand to feel the underside of the table you are looking at you see and
feel the same table .

• If you push a pencil up through a hole in the table you see and feel the same
moving pencil.
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Sensory modality and mode of representation
• Sensory modality driving a simulation need not determine the nature of the

percept.

• A unitary, amodal, percept of a process can be driven by input from diverse
sensory modalities – e.g. seeing, hearing, feeling the same thing happening.

• What is simulated does not determine the nature of the medium used to
implement the simulation, as long as it has a rich enough structure and
appropriate mechanisms to create, modify, access and use the contents.

• Examples of what the simulation might be include:
– a set of variables with changing values driven by sensory data
– a database of logical assertions along with insertions and deletions driven by sensory data
– a hybrid mechanism – logical assertions with equations linking changing variables, as can

happen in some spreadsheets,
– a spatially structured changing model,
– a stored ‘script’ for the process with a pointer moving through the script at a rate determined

by sensory input,
– it may use a powerful form of representation that we have not yet thought of though

evolution discovered it long ago.

• Whatever form of representation is used, currently known brain mechanisms do
not seem to support the required functionality.
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Visual reasoning about something unseen
An example of disconnection between simulation and sensory data.
If you turn the plastic shampoo container upside down to get shampoo out, why is
it often better to wait before you squeeze?

In causal reasoning we often use
runnable models that go beyond the
sensory information: part of what is
simulated cannot be seen – a Kantian
causal learner will constantly seek
such models, as opposed to Humean
(statistical) causal learners, who
merely seek correlations.

Note that the model used here assumes
uncompressibility rather than rigidity.

Also, our ability to simulate what is going on
explains why as more of the shampoo is used
up you have to wait longer before squeezing.

Sometimes we run the wrong simulation if we
don’t understand what is going on.

Like the person who suggested that you have to wait for the water from the shower to warm the air
in the container.
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9 Many distinct competences have to be learnt

The competences described above are not all present at birth, though some of the mechanisms
required to acquire them are (while other learning mechanisms have to be produced by learning).

They are not pre-configured by genetic mechanisms, like innate abilities or innate latent
genetically-determined competences that emerge long after birth (e.g. sexual competences, or
migration in some birds).

The learnt, meta-configured competences need powerful bootstrapping mechanisms.

See

A. Sloman and J. Chappell (2005), The Altricial-Precocial Spectrum for Robots, Proceedings
IJCAI’05 pp. 1187–1192.

http://www.cs.bham.ac.uk/research/cogaff/05.html#200502
A. Sloman and J. Chappell (2005), Altricial self-organising information-processing systems,
AISB Quarterly , 121, Summer 2005, pp. 5–7,

http://www.cs.bham.ac.uk/research/cogaff/05.html#200503

What the bootstrapping mechanisms achieve is extremely dependent on what is in the
environment (including the culture), which is why altricial species with many meta-configured
competences can differ enormously in what they know and can do, unlike precocial species, in
which most competences are pre-configured, like deer which run with the herd soon after birth.

The examples that follow indicate some of what a child has to learn to see, before it can control its
actions so as to achieve its goals, like inserting a puzzle piece where it belongs.



We cannot do it all from birth
The causal reasoning we find so easy is difficult for infants.

A child learns that it can lift a piece out of its recess, and
generates a goal to put it back, either because it sees the
task being done by others or because of an implicit
assumption of reversibility. At first, even when the child
has learnt which piece belongs in which recess there is
no understanding of the need to line up the boundaries,
so there is futile pressing.
Later the child may succeed by chance, using nearly
random movements, but the probability of success with
random movements is very low. (Why?)

Memorising the position and orientation with great accuracy will
allow toddlers to succeed: but there is no evidence that they have
sufficiently precise memories or motor control. Eventually a child
understands that unless the boundaries are lined up the puzzle
piece cannot be inserted. Likewise she learns how to place
shaped cups so that one goes inside another or one stacks rigidly
on another.

These changes require the child to build a richer ontology for
representing objects, states and processes in the environment,
and that ontology is used in a mental simulation capability. HOW?

Stacking cups are easier partly because of symmetry, partly
because of sloping sides: both reduce the uniqueness of required
actions, so the cups need less precision and are easier to manage.
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Learning ontologies is a discontinuous process
• The process of extending competence is not continuous (like growing taller or

stronger).

• The child has to learn about new kinds of
– objects,
– properties,
– relations,
– process structures,
– constraints,...

• and these are different for
– rigid objects,
– flexible objects,
– stretchable objects,
– liquids,
– sand,
– mud,
– treacle,
– plasticine,
– pieces of string,
– sheets of paper,
– construction kit components in Lego, Meccano, Tinkertoy, electronic kits...

I don’t know how many different things of this sort have to be learnt, but it is easy
to come up with many significantly different examples.
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CONJECTURE

In the first five years

• a child learns to run at least hundreds, possibly thousands,

• of different sorts of simulations,

• using different ontologies

• and different kinds of constraints on possible motions
with different materials, objects, properties, relationships, constraints, causal interactions.

• and throughout this learning, perceptual capabilities are extended by adding
new sub-systems to the visual architecture, including new simulation
capabilities

Some more examples are available in

http://www.cs.bham.ac.uk/research/projects/cosy/papers/#dp0601

COSY-DP-0601 Orthogonal Competences Acquired by Altricial Species (Blanket, string and plywood).
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10 Much of what is learnt is about kinds of stuff

Human children (and presumably also chimpanzees, nest building-birds and members of other
altricial species) learn many things about the environment by playful exploration, using a collection
of special-purpose mechanisms developed by evolution for the task.

Part of what they learn concerns the behaviour of various kinds of physical stuff in the environment,
including
• kinds of material like:

– sand, water, mud, straw, leaves, wood, rock,
– and in our culture also: things like paper, cloth, cotton-wool, plastic, aluminium foil, butter,

treacle, velcro, meal, concrete, glue, mortar,
– various kinds of food (meat, fish, vegetable matter, peanut-butter, etc.)

• kinds of components that can be combined to form larger objects including:

lego, meccano, tinker-toy, Fischer-technik, and many more,
including, for nest-building birds, twigs, leaves, etc.

‘Behaviour’ of such things includes their responses to being folded, crushed, picked up, thrown,
twisted, chewed, sucked, pressed together, compressed, stretched, dropped, and also the
properties of larger wholes containing them.

The variety of kinds of stuff and kinds of behaviour should not be thought of as a continuum , e.g.
something that might be form a vector space parametrised by a collection of real-valued
parameters. Rather there are qualitative and structural differences important in many
sub-ontologies that have to be learnt separately (even if some precocial species have precompiled
subsets).
A few examples follow: you can probably think of many more.



Cloth and Paper

You have probably learnt many subtle things unconsciously about the different
sorts of materials you interact with (e.g. sheets of cloth, paper, cardboard,
clingfilm, rubber, plywood).

That includes learning ways in which you can and cannot distort their shape.
Lifting a handkerchief by its corner produces very different results from lifting a sheet of printer
paper by its corner – and even if I had ironed the handkerchief first (what a waste of time) it would
not have behaved like paper.

Most people cannot simulate the precise behaviours of such materials but we can impose
constraints on our simulations that enable us to deduce consequences.

In some cases the differences between paper and cloth will not affect the answer to a question, e.g.
the example on the slide about folding a sheet of paper, below.
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What do you know about cloth and paper?
There are probably many things you know about cloth and (printer) paper that you
have never thought about, but implicitly assume in your reasoning about them,
including imagining consequences of various sorts of actions.

Common features
• Both have two 2-D surfaces, one on each side.
• Both have bounding edges.
• Both can be made to lie (approximately) flat on a flat surface.
• Both can be smoothly pressed against a cylindrical or conical surface, but not a spherical

(concave or convex surface)
• To a first approximation neither is stretchable, in the sense that between any points P1 and P2

there is a maximum distance that can be produced between P1 and P2, if there is no cutting or
tearing.

• Both can be cut, torn, folded, crumpled into a ball....

Differences
• most cloth can be slightly stretched (though some is very stretchy)
• Paper folded and creased tends to retain its fold, cloth often doesn’t (there are exceptions,

especially if heat is applied).
• Paper folded and not creased tends to return to its flatter state. It is more elastic.
• Paper folded once can stand upright resting on either a V-shaped edge or a pair of parallel

edges.
• Paper is rigid within its plane (three collinear points remain collinear while the paper lies flat).

NOTE: tissue paper is somewhere in between.
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Contributors to simulation features

• We have so far seen that both shape and material can contribute to
features of a simulation, including the constraints on what can and
cannot change and what the consequences of change are.

• Another thing that can be important is viewpoint .

E.g. viewpoint can interact with opacity of materials, as well as with the
mathematics of projection from 3-D to 2-D.
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Sometimes a simulation includes a viewpoint
Droodles illustrate our ability to generate a simulation
(possibly of a static scene) from limited sensory information
(sometimes requiring an additional cue, such as a phrase
(‘Mexican riding a bicycle’, or ‘Soldier with rifle taking his dog
for a walk’).

In both of these two cases the perceiver is implicitly involved:
one involves a perceiver looking down from above the cycling
person, whereas the other involves the perceiver looking
approximately horizontally at a corner of a wall or building.

In both cases the interpretation includes not only what is seen
but also occluded objects: the simulation depends on
knowing about opacity.

This does not imply that we have opaque objects in our
brains: merely that opacity is one of the things that can play a
role in the simulations, just as rigidity and impenetrability can.

The general idea may or may not be innate, but creative
exploration is required to learn about the details.
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We can see things from more than one viewpoint
• Vicarious affordances: a parent watching a child needs to be able to see what is

and is not possible in relation to the child’s needs, actions, possible intentions,
etc. (It is also useful to be able to perceive a potential predator’s affordances.)

• This may include such things as visualising the scene from the child’s
viewpoint, including working out what the child can and cannot see – and the
possible consequences of the child seeing some things and not seeing others.

• Some people can draw pictures of how things look from some other place than
their current location.

• This ability to contemplate the world from multiple viewpoints, not just one’s
own current viewpoint, is essential for planning, since at some future state in
the plan one’s location and orientation could be very different from what it is
now, yet it still needs to be reasoned about in extending the plan.

• The ability to perceive and use information about ‘vicarious’ affordances
(affordances for others) and the ability to perceive affordances for oneself in the
past (e.g. thinking about a missed opportunity) or future (planning to use
opportunities that have yet to be created) may use the same mechanisms
because both are disconnected from current viewpoint .

Could that be the main point of substance behind all the fuss about “mirror
neurons”? They should have been called abstraction neurons .
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Seeing things from the viewpoint of your hand
The importance of hand-eye uncoordination!
• The evolution of body-parts for manipulation that can move independently of a

major sensor perceiving what’s happening (hands vs beak or mouth) had
profound implications for processing requirements.

• Most animals are restricted to doing most of their manipulation with a mouth or
beak, which cannot move much without the eyes moving too.

• If your eyes move as your gripper moves, because they are closely physically
connected, then the sensorimotor contingencies linking actions and their
sensory consequences will have strong, useful regularities that can be learnt
and used.

• If a gripper can move independently of the eyes then the variety of relationships
between actions and sensed consequences explodes.

The explosion can be reduced by modeling action at a level of abstraction removed from
sensory changes: e.g. by representing actions as altering 3-D structures and processes
(including subsequent actions), independently of how they are sensed.

• The mapping between sensory data and what is perceived becomes very
indirect, and there may need to be several intermediate layers of interpretation:
perception becomes akin to constructing a structured theory to explain
complex data. (Compare the ‘dotty picture’ example, above.)

• This is one of many reasons for NOT regarding perception as simply concerned
with detecting sensorimotor contingencies.
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Seeing from no particular viewpoint

Dealing with a changing scene perceived by a moving observer may,
for some purposees, require a representation of what is happening
that is viewpoint independent as well as being modality independent.
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Sensorimotor vs action-consequence contingencies
Two evolutionary ‘gestalt switches’?
The preceding discussion implies that during biological evolution
there was a switch (perhaps more than once) from

insect-like understanding of the environment in terms of sensorimotor
contingencies linking internal motor signals and internal sensor states
(subject to prior conditions),

to
a more ‘objective’ understanding of the environment in terms of action-
consequence contingencies linking changes in the environment to
consequences in the environment,

followed by
a further development that allowed a generative representation of the
principles underlying those contingencies, so that novel examples could
be predicted and understood, instead of everything having to be based on
statistical extrapolation.

To be more precise, it was an addition of a new competence rather than a switch

One of the major drivers for this development could be evolution of body parts
other than the mouth that could manipulate objects and be seen to do so.

However the cognitive developments were not inevitable consequences:
e.g. crabs that use their claws to put food in their mouth do not necessarily
use the more abstract representation.

New Theory Vision Slide 59 Last revised: June 28, 2006 Page 69



11 No good theories about shape perception exist

A huge amount of work on machine vision totally ignores shape and is concerned only with
recognition, classification, prediction, or tracking, more or less treating the world as
two-dimensional.

However there are some attempts to get machines to perceive shape.

Unfortunately these mostly seem to use inadequate requirements for shape perception. E.g. using
vision and laser-scanning or whatever, to produce a detailed 3-D model of space occupancy which
can be given to computer graphics programs to project images from any viewpoint in different
lighting conditions may be very useful for many applications (e.g. medical imaging, and computer
games) this does not give the computer a kind of understanding of shape that is required for
manipulating objects.



Structures vs combinations of features
It is important to understand the difference between
• Categorising
• Perceiving and understanding structure.

You can see (at least some aspects of) the structure of an unfamiliar object that
you do not recognise and cannot categorise: e.g. you probably cannot
recognise or categorise this, though you see it clearly enough.

Oooo
Oooooo-------+
OOOoooOOO +

|oooOOOooo----+
+-------------+

What is seeing without recognising?

There’s a huge amount of work on visual recognition and labelling e.g. statistical
pattern recognition. (Using totally arbitrary collections of benchmark images.)

But does that tell us anything about perception of structure?
Much work on vision in AI does not get beyond categorisation.

There is some work that attempts to identify structure from visual images, but the form in which
structure is represented is merely a volumetric model, which may be very suitable for generating
graphical displays from different viewpoints, but does not include any understanding of the
structure by the computer – it leaves the main representational problems unsolved.

There is something even more subtle and complex than perception of structure.
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How many non-human species?
Betty the hook-making New Caledonian crow.

Give to google: betty crow hook:
You’ll find a link to the oxford zoology lab, with videos
of Betty making hooks in different ways.

She appears to be a Kantian causal reasoner.

See the video here:
http://news.bbc.co.uk/1/hi/sci/tech/2178920.stm

Contrast the 18 month old child attempting
unsuccessfully to join two parts of a toy train by
bringing two rings together
(http://www.cs.bham.ac.uk/˜axs/fig/josh34 0096.mpg)

Does Betty see the possibility of making a hook before she makes it?

She seems to. How?
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Understanding how hooks work
• Betty seems to understand how hooks work when she uses hooks to lift a

basket of food out of the glass tube.

• The depth of understanding seems even greater when she demonstrates her
ability to make hooks from straight pieces of wire in several different ways. I
have also seen her make a hook from a long thin flat strip of metal.

• The behaviour is clearly not random trial and error learning behaviour: she
seems to know exactly what to do, even though she does things in slightly
different ways, e.g. making hooks using different techniques.

• Note that in Betty’s environment far more distinct motions are possible than in
the multi-rod linkage a few slides back: how does she confidently select a
course through the continuum of continua?

The answer cannot simply be: by running a simulation, because the simulation might have the
same problem of under-determination.

• A young child does not start off understanding how a hook and a ring can
interact in such a way as to allow the hook to pull the ring and what it is
attached to.

• At some stage that (Kantian) understanding develops.
But I don’t think anyone knows how – even if some psychologists know when.

• The next slide points to a video showing a child who has not yet got there.
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12 A child can appear less competent than a crow

We next show a video of a 19 month old child who is competent in many ways but seems to fail to
understand how a hook and ring are used to join up a toy train.



Defeating a 19 Month old child

See the movie of an 19-month old child failing to work out how to join
up the toy train – despite a lot of visual and manipulative competence
also shown in the movie.
• http://www.jonathans.me.uk/josh/movies/josh34 0096.mpg

4.2Mbytes

• http://www.jonathans.me.uk/josh/movies/josh34 0096 big.mpg
11 Mbytes
The date is June 2003, when he was 19 months old. (Born 22 Nov 2001)

A few weeks later he had no problem joining up the train.
Was he a Humean causal learner or a Kantian causal learner?
I suspect the latter, but specifying the simulation model developed by a learner
who understands hooks and rings will not be easy.
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13 Running 2-D or 3-D simulations to answer questions

Perhaps the child who fails to join up the train does not understand because he has not yet learnt to
simulate processes in which a hook and a ring form a connection that is useful for pulling.

Why not? Why are some competences innate, and some learnt. Why are some learnt very early and
some only later.

Maybe we still have to understand the dependency relations between hundreds, or thousands, of
sub-competences.

There are many problems we can solve, by running 2-D or 3-D simulations.

Some examples follow.



Simulating potentially colliding cars

The two vehicles start moving towards one another at the same time.

The racing car on the left moves much faster than the truck on the right.

Whereabouts will they meet – more to the left or to the right, or in the middle?

Where do you think a five year old will say they meet?

New Theory Vision Slide 64 Last revised: June 28, 2006 Page 77



Five year old spatial reasoning

The two vehicles start moving towards one another at the same time.

The racing car on the left moves much faster than the truck on the right.

Whereabouts will they meet – more to the left or to the right, or in the middle?

Where do you think a five year old will say they meet?

One five year old answered by pointing to a location near ‘b’

Me: Why?

Child: It’s going faster so it will get there sooner.

What is missing?
• Knowledge?
• Appropriate representations?
• Procedures?
• Appropriate control mechanisms in the architecture?
• A buggy mechanism for simulating objects moving at different speeds?
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Mr Bean’s underpants
This paper (from a conference on thinking with diagrams in 1998)

http://www.cs.bham.ac.uk/research/cogaff/00-02.html#58

discusses how we can reason about whether Mr Bean (the movie star) can remove
his underpants without removing his trousers.
People often don’t see all the possibilities at first.
The paper discusses how changing the
simulation to a topologically ‘equivalent’
one can help us count the possible ways
to perform the task.

Children can learn to perform such
actions (as party tricks) physically long
before they can reason with the mental
simulations.

What changes as the simulation ability
develops?

In part it seems to require an
introspective ability to understand the
nature of the simulations we use.

See
Jean Sauvy & Simonne Sauvy The Child’s Discovery of Space, From Hopscotch to Mazes: an
Introduction to Intuitive Topology (Translated P.Wells 1974).
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KANT’S EXAMPLE: 7 + 5 = 12
Kant claimed that learning that 7 + 5 = 12 involved acquiring synthetic (i.e. not just
definitionally true) information that was also not empirical . I think his idea was
related to the simulation theory of perception – but I am guessing.

You may find it obvious that the equivalence below is preserved if you spatially
rearrange the twelve blobs within their groups:

ooo o oooo
ooo + o = oooo
o ooo oooo

Or is it?
How can it be obvious?
Can you see such a general fact?
How?

What sort of equivalence are we talking about?

I.e. what does “=” mean here?

Obviously we have to grasp the notion of a “one to one mapping”.

That can be defined logically, but the idea can also be understood by people who
do not yet grasp the logical apparatus required to define the notion of a bijection —
if they have a way of thinking about the consequences of motion of the blobs.
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SEEING that 7 + 5 = 12

Is it ‘obvious’ that the same mode of reasoning will also work for other additions,
e.g. 777 + 555 = 1332

Humans seem to have a ‘meta-level’ capability that enables us to understand why
the answer is ‘yes’. This depends on having a model of how our model works – e.g.
what changes and does not change if you add another pair of objects joined by a
string.
But that’s a topic for another occasion.
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14 What the simulation theory does and does not say

So far I have given many examples, and talked very vaguely about perception and reasoning as
involving various kinds of simulations, using different ontologies with different sorts of constraints,
different viewpoints, etc.

But the theory is easily misunderstood – and also still has many gaps.

I’ll now try to make it a little more precise, including saying what I am NOT claiming.



The concurrent simulation theory in more detail
• Different simulations of the same scene may be used in different

sub-mechanisms running simulations at different levels of abstraction and
serving different functions.

• Some parts of simulations may go beyond sensory data , e.g. including
unobserved sub-mechanisms (Kant)

• Some of the processes are continuous some discrete .

• The continuous and discrete processes may both have different levels of
resolution .

• There may be gaps in the simulation at all levels (for different reasons)

• Mode of processing can change dynamically : parts of the simulation may be
selected for more detailed processing, or type of processing can be changed.

• Seeing static scenes involves running simulations in which nothing happens –
though many things could happen (cf. seeing affordances).

• The mechanisms originally evolved to support perceptual and motor control
processes but became detachable from that role in humans and can be used to
think about things that could never be observed,

e.g. search spaces, high-dimensional spaces, infinite sets, including operations on transfinite
ordinals (move all the odd numbers after the even numbers and reverse their order).
See my paper ‘Diagrams in the mind’ 1998
http://www.cs.bham.ac.uk/research/cogaff/96-99.html#38
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Development of perceptual sub-systems
The ability to run these simulations is not static, and may not even exist at birth:
• Visual capabilities described here develop in part on the basis of developing

architectures for concurrent simulations and in part on the basis of learning
new types of simulation, with appropriate new ontologies and new forms of
representation.

• The initial mechanisms that make all of this possible must be genetically
determined (and there may be limitations caused by genetic defects).

• But the contents of the abilities acquired through various kinds of learning are
heavily dependent on the environment – physical and social, and on the
individual’s history. Some innate content is needed for bootstrapping.

• For instance someone expert at chess or Go will see (slow-moving!) processes
in those games that novices do not see.

• Expert judges of gymnastic or ice-skating performance will see details that
others do not see.

• An expert bird-watcher will recognize a type of bird flying in the distance from
the pattern of its motion without being able to see colouring and shape details
normally used for identification.

A deeper theory would explain the variety of types of changes involved in such
developments: including changes in ontologies used, in forms of representation,
and perhaps also in processing architectures.
These will be changes in virtual machines implemented in physical brains.
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A hypothetical Human-like architecture:
H-CogAff (See http://www.cs.bham.ac.uk/research/cogaff/)

This is an instance (or specialised
sub-class) of the architectures
covered by a generic schema
called “CogAff”.

Many required sub-systems are not
shown.

Different kinds of process
simulation may go on in different
parts of the architecture – some
very old and widely shared, some
relatively new and found in very
few species.

(This is an illustration of some recent work on how to combine things: much work remains to be
done. This partly overlaps with Minsky’s Emotion machine architecture.)

For more details, see the presentations on architectures here
http://www.cs.bham.ac.uk/research/cogaff/talks/

New Theory Vision Slide 71 Last revised: June 28, 2006 Page 85



Seeing intentional actions
Seeing a person or animal or machine doing something may involve a richer
ontology than is required for seeing physical things moving under the control of
purposeless physical forces.

• If you see a marble rolling down a slope occasionally changing direction or
bouncing into the air as a result of surface irregularities or stones in its path,
your simulation may include changes of position, speed and direction of
motion, all consistent with what you know about physical objects.

• If you see a person walking down a slope occasionally moving to one side and
picking things off bushes, you will see not only physical motion, but the
execution of an intention , possibly several intentions, e.g. getting to something
at the bottom of the slope, collecting biological specimens, and eating berries.

• One of the things a child has to learn to do is interpret perceived motion in
terms of inferred goals, plans and processes of plan execution. Thus the
simulations run when intentional actions are perceived may include a level of
abstraction involving plan execution .

For a recent discussion see Sharon Wood, ‘Representation and purposeful autonomous
agents’ Robotics and Autonomous Systems 51 (2005) 217-228
http://www.cogs.susx.ac.uk/users/sharonw/papers/RAS04.pdf

• When several individuals are involved, there may be several concurrent, interacting, processes
with different intentions and plans to simulate. Learning to understand stories beyond the
simplest sequential narratives requires learning to do this. (Contrast coping with ‘flashbacks’.)
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15 What I am NOT saying

The theory being proposed is easily misinterpreted.

The following slides attempt to explain what is not being said, by pointing out that some tempting
interpretations of the theory are wrong.



Disclaimers: No claim is made:
• That the simulations at any level are complete

• That they are accurate (errors, imprecision and fuzziness abound)

• That we are aware of all the simulations we are running

• That only humans can do this

• That all humans can run the same kinds of simulations
Different kinds of education, different kinds of training, e.g. artistic, athletic, mathematical
training, playing with different kinds of toys, etc. can all produce different ontologies,
representations and simulation capabilities. Even children with similar competences may get
there via different routes along a partially ordered network of trajectories. There are genetic
differences too – e.g. ‘Williams syndrome’ children don’t develop normal spatial competences.

• That it is obvious how to implement these ideas in artificial visual systems

• That the theory is compatible with any current theory of learning

• That the theory is compatible with known brain mechanisms
We may have to search for previously undiscovered mechanisms (including previously
unknown types of virtual machines implemented in brains)
See Trehub’s book ( The Cognitive Brain, 1991 ) for some relevant ideas.
There are probably lots of things I should have read but have not.

There is considerable overlap with the BBS paper by R.Grush (2004): The Emulation Theory of
Representation.
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Isomorphism is not needed
Here’s a modified version of a picture from chapter 7 of The
Computer Revolution in Philosophy , also in the 1971 IJCAI paper.
Objects and relations within a
picture need not correspond 1 to
1 with objects and relations
within the scene, as is obvious
from 2-D pictures of 3-D scenes.

For example: pairs of points in
the image that are the same
distance apart in the image can
represent pairs of points that are
different distances apart in 3-D
space – e.g. vertically separated
points on the walls, and
horizontally separated points on
the floor and ceiling. (And vice
versa .)

Some pairs of parallel edges in the scene are represented by parallel picture lines, others by
converging picture lines.

The small blue lines can be interpreted in different ways, with different spatial locations,
orientations and relationships. On each interpretation the structure of the image remains
unchanged, but the structure of the 3-D scene changes.
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MAJOR DISCLAIMER
I am not claiming that simulations have to be isomorphic with what
they simulate
• As pointed out in my 1971 paper, analogical representations use relations to

represent relations but they need not be the same relations:
Think of a 2-D picture of a 3-D scene (the same 2-D relation ‘above’ can correspond to
different 3-D relations in different parts of the picture – floor, far wall, ceiling).
See http://www.cs.bham.ac.uk/research/cogaff/crp/chap7.html

• Not all simulations of spatial processes have to be spatial: it may often be
simpler to use equations, for example, and psychological behavioural
experiments may be wholly unable to determine which kind of implementation is
used without having access to design information.

• Somehow we have developed enormously flexible ways of using mappings
between one changing structure and another changing or static structure – it is
a matter of learning what kinds of formalism with what kinds of constraints do
and do not work for particular tasks.

E.g. programming language constructs can map onto dynamic graphical displays.

• The ability I am talking about goes on being developed throughout life as we
acquire more and more kinds of expertise.

• That means a complete theory will have to explain that acquisition process –
and no finite theory will explain all past, present and future human competence.
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Inadequate alternative theories
Among the precursors to the theory are several that in different ways
are inadequate, despite providing useful steps in the right direction.
• One general kind of inadequate theory assumes that what is perceived can be

expressed as a collection of measures, sometimes called ‘state variables’, (e.g.
coordinates, orientations, and velocities of objects in the scene) and that what
is simulated can be expressed as continuous or discrete changes in a (possibly)
large vector of state variables.

• This kind of numerical representation is inadequate because it fails to capture
the structure of the environment, e.g. the decomposition into objects with parts,
and with different sorts of relationships between objects, between parts within
an object, between parts of different objects, etc.

People who are familiar with a particular collection of mathematical techniques keep trying to
apply them everywhere instead of analysing the problems to find out what forms of
representation are really required for the tasks in hand.

• Many theories do not do justice to the diversity of functions of vision. E.g. some
people seem to think the sole or main function of vision is recognition of
instances of object types.

• Most theories of vision do not allow that we see not only what exists but what
can and cannot happen in a given situation – affordances.

• Dynamical systems theorists have some of the right ideas but restrict
ontologies and forms of representation to what physicists understand.
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Terminology
• Some people distinguish simulation, emulation, imagery, etc.

• What I call a simulation is a representation of a process that can be used for a variety of
purposes, e.g. recording, predicting, tracking, explaining, controlling.

• A simulation may itself be a process, or it may in some cases be a re-usable static trace of a
process, e.g. an executable plan, even a plan with loops and conditionals – with a ‘now’ pointer.

• The same process may be simulated at different levels of abstraction:
simulations run at a high level may be very much faster than what they represent.

• Different sorts of simulations are useful for different purposes.

• A child continually learns new sorts of simulations and new uses for old sorts.

• Some running simulations can change direction, can explore options.

• Some simulations are continuous, and some discrete, and some simulated processes are
continuous and some discrete.

A continuous simulation may represent a discrete process and vice versa.
It is difficult for a continuous simulation do searching, e.g. in a space of possible explanations
or possible plans: discretisation makes multi-step planning feasible.

• A simulation may change in complexity and structure as it runs (e.g. simulation of development
of an embryo — unlike simulations that involve a fixed dimensional state vector).

• The things that change in a simulation need not be numerical variables.

• We probably don’t yet know all the powerful ways of representing processes that evolution may
have discovered and implemented in brains.

• In principle a simulation can itself be simulated (e.g. at a higher level of abstraction) – as in
John Barnden’s ATT-META system. http://www.cs.bham.ac.uk/ jab/ATT-Meta/
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16 Re-runnable check-points

One of the consequences of discretisation is support for multi-step deliberation, e.g. systematic
searching for a plan, including use of back-tracking.



Re-runnable check-points
• When searching for a solution to a problem we often have to explore a

branching space of possibilities.

• Continuous simulations are not good tools for exploratory searching because
there are always infinitely many possible branch points with infinitely many
branches.

• This can be overcome by doing the searching with the aid of a discrete, more
abstract, symbolic version of the simulation, and saving check-points, which
can later be compared with one another.

• Ideally the check-points should be able to generate new lower-level runs of the
simulation, when you back-track to a check-point.

• But for this, fully fledged deliberative mechanisms (for exploring answers to
‘what if questions’) could not really use simulations.

• So the development of discrete (symbolic) forms of representation was a major
step for evolution. It had profound consequences including making
mathematics and human language possible.

Some animals probably use discrete symbols in internal languages.
http://www.cs.bham.ac.uk/research/cogaff/81-95#43
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Orthogonal environment-related competences 1
A typical child about five years old has much detailed knowledge of several distinct
kinds, which can be combined in different ways in perceiving, understanding and
planning actions in the environment:

• many kinds of physical stuff with different physical properties (e.g. water, sand, mud, wood,
string, rope, paper, metal, stone, plastic, human skin, cotton wool, hair, butter, treacle, plastic
film, aluminium foil, various kinds of food, wind, breath, fire and many more)

• different kinds of surface features – flat curved, smooth, rough, sticky, slimy, wet, sharp,
textured in different ways, with ridges, furrows, dents, etc. etc.

This decomposes further into yet more orthogonal sub-spaces.

• different shapes of whole objects , varying in topological and metrical aspects, with both
continuous and discrete sub-spaces, at different levels of abstraction,

E.g. there are discrete differences between numbers of holes, between being symmetric or not, having a long
axis or not, etc. as well as a huge variety of types of continuous variation.

• different ways in which new, possibly more complex, wholes can be formed by combining or
modifying things (in ways that depend on their shape, material, etc.)

We could include ‘negative’ combinations, e.g. gouging out, carving, punching a hole, to make a new shape as in
sculpture.
Other shape-making transformations include bending, twisting, etc.

(continued...)
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Orthogonal environment-related competences 2
.... Continued from previous page

• different sorts of spatial relations between different objects of similar or different material (e.g.
containing, touching, being glued to, being hooked round, being a certain distance apart,
resting on, being mixed, attracting, repelling, etc. etc.)

There’s a particularly important difference between ‘rigid’ containment (e.g. the streak of metal in a rock, the
screw in a plank) and ‘fluid’ containment, e.g. water, sand or a small ball in a mug, a river flowing in its bed.

• different kinds of force that can be applied to things, e.g. prodding, poking, stroking, squeezing,
twisting, pulling, pushing, screwing, patting, ....

• different sorts of process that can occur, including moving, rotating, changing shape, entering,
coming out of, passing between, pushing, pulling, stretching, swaying, covering, uncovering,
putting on (clothing), flocking, swarming, as well applying forces, and changing the application
of forces .....

Some of these may result from the individual’s actions, some merely observed.

As remarked previously, more complex things can be observed by an individual than produced by that individual,
e.g. a busy street scene, a waterfall, a football match.

(There may also be behaviours an animal (e.g. insect) can produce that it cannot perceive because its perceptual
mechanisms lack the required sophistication.)

These lists are illustrative, not definitive or exhaustive, and do not include social abilities.
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Example: Blanket and String
If a toy is beyond a blanket, but a string
attached to the toy is close at hand, a very
young child whose understanding of causation
involving blanket-pulling is still Humean, may
try pulling the blanket to get the toy.

At a later stage the child may either have
extended the ontology used in its conditional
probabilities, or learnt to simulate the process
of moving X when X supports Y, and as a
result does not try pulling the blanket to get
the toy lying just beyond it, but uses the string.

However the ontology of strings is a bag of worms, even before knots turn up.

Pulling the end of a string connected to the toy towards you will not move the toy if
the string is too long: it will merely straighten part of the string.

The child needs to learn the requirement to produce a straight portion of string
between the toy and the place where the string is grasped, so that the fact that
string is inextensible can be used to move its far end by moving its near end (by
pulling, though not by pushing).
Try analysing the different strategies that the child may learn in order to cope with a long string, and
the perceptual, ontological and representational requirements for learning them.
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Creativity in a physical environment
The different kinds of knowledge mentioned above can be combined in many
different ways, including novel ways, in understanding what is perceived in the
environment and what actions are and are not possible in different circumstances,
and what the consequences of those actions will be.
We need to understand architectures and mechanisms for combining such knowledge and
competences where appropriate.

Chapter 6 of The Computer Revolution in Philosophy attempted to analyse some of the processes about 30 years
ago, but only at a high level of abstraction. http://www.cs.bham.ac.uk/research/cogaff/crp/chap6.html

• Sometimes competences are combined in physical action , using new combinations of material,
tool, arrangement of parts or actions, to solve a problem; but in some cases it is done in
thought (i.e. using deliberative mechanisms), as pointed out by Craik, Popper and many others.

• Precocial species, e.g. spiders, may have very specific ‘hard wired’ combinations of
competence regarding specific kinds of stuff, specific spatial structures and processes;
whereas humans some other altricial species are able both to extend knowledge within each of
the categories, and to forge new combinations in perceiving novel scenes and performing novel
actions — a meta-competence that underlies engineering, science and art.

• Such competence in pre-linguistic children and non-linguistic animals cannot depend on
language, though it may be part of the basis for language, which, with other forms of cultural
information-transmission (e.g. toys) enormously enhances and accelerates development.

• In a young child and in many animals the creative recombination of competence is applied in
perceiving and using affordances for oneself, whereas humans later learn to see ‘vicarious
affordances’, as discussed previously – essential in parents and carers watching children who
may be about to hurt themselves, or may need help, or in seeing opportunities for predators
who may attack one’s young.
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How much of this applies to other animals?
• Not all animals can learn these things, even if they share a lot of physical

structure with humans.
• So it is likely that there are very specific, very powerful brain mechanisms

involved, possibly several different mechanisms that evolved in different
combinations — we are not discussing all-or-nothing capabilities.

• Even among humans there may be different combinations, e.g. Archimedes,
Shakespeare, Newton, Kant, Mozart, Darwin, Turing. Picasso, Menuhin – in
which case there is no such thing as human psychology .

• If the hundreds, or thousands, of different kinds of knowledge acquired in the
first few years are stored in different parts of the brain, using different
mechanisms, then different sorts of brain damage or deficiency could interfere
with different sub-competences. Has anyone looked? (E.g. Williams’ Syndrome?)

• Since most of the creative brain mechanisms evolved before human language
capabilities and appear in pre-linguistic children, despite involving rich forms of
semantic and syntactic competence (using internal representations), it could be
that the generative (combinatorial) and extendable aspects of those
pre-linguistic competences provided a foundation for the later evolution of
linguistic competence.

Perhaps that is an example of the common pattern in evolution: duplication of structures or
mechanisms followed by differentiation. (See the ‘primacy’ paper.)

New Theory Vision Slide 83 Last revised: June 28, 2006 Page 99



Conjecture

Alongside the innate physical sucking reflex for
obtaining milk to be digested, decomposed and used

all over the body for growth, repair, and energy,
there is, in some species, a genetically determined

information-sucking reflex , which seeks out, sucks in,
and decomposes information, which is later

recombined in many ways, growing the
information-processing architecture and many

diverse recombinable competences.

Human-like robots will also need to be able to do that.

HOW ???
See also http://www.cs.bham.ac.uk/research/projects/cosy/papers/#dp0601
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Mind vs. Life

”That mind requires life is often stated, and even
more commonly assumed.”

(Margaret Boden’s plenary abstract)

Is it really?

AISB 2005 machine consciousness symposium vote: 
only 3 out of about 30 participants thought that 
cognition/consciousness requires life/autopoiesis



Embodiment?

Different notions of embodiment emphasize:
– Interaction (agent-environment)
– Structural coupling (agent-environment) 
– Adaptation (to an ecological niche)
– Physicality
– Morphology
– Complex interplay of morphology, neural processes

and environment
– Grounding of cognition/representation in sensorimotor 

processes (e.g. simulation theories)
– Facilitation of social interaction
– Autopoietic organization of living organisms



Embodiment à la Murray 

”a spatially localised body using a sensory apparatus
fastened to that body”

”shared viewpoint, from which they can be 
indexically directed to the world”

parallel-to-serial transition ”perhaps the essence of 
consciousness, of what it means to be a singular, 
unified subject”

Is that it?



Organismic Embodiment?

examples:

– Maturana & Varela’s (1980) work on autopoiesis 
and the biology of cognition

– von Uexküll’s (1928) theoretical biology

– Damasio’s (1994, 1999) theory of emotion and 
consciousness

– Barandiaran & Moreno’s (in press) notion of 
emotional embodiment



Why organisms?

Philosophy: see M. Boden’s plenary talk

Science:
– All interesting cognitive systems we know of are organisms; 

it’s those we want to understand

Engineering:
– Living organisms have a range of highly useful capacities 

(self-maintenance, self-repair, etc.) 
• Robots with energy autonomy, etc.
• Autonomic computing systems

Historical:
• Dennett (1978) - “Why not a whole iguana?”
• Brooks (1989a) - “to build complete creatures rather than 

isolated cognitive simulators”



Internal Robotics (Parisi, 2004)

… behaviour is the result of the interactions of an 
organism’s nervous system with both the external 
environment and the internal environment, i.e. with 
what lies within the organism’s body. 

While robotics has concentrated so far on the first 
type of interactions (external robotics), to more 
adequately understand the behaviour of organisms 
we also need to reproduce in robots the inside of the 
body of organisms and to study the interactions of 
the robot’s control system with what is inside the 
body (internal robotics). (p. 325)



Barandiaran & Moreno (in press)

sensory-motor nervous system (SMNS) vs. nervous
system of the interior (INS) (cf. Edelman, 1989)
– INS: neuroendocrine system, autonomic nervous

system, limbic system, etc.

emotion ~ complex interplay between INS and 
SMNS (e.g. Damasio, 1994; Lewis, 2005)

emotional embodiment:
– the modulatory capacity of emotional dynamics is 

recruited to adaptively modify the SMNS



Levels of Regulation (Damasio, 1999)

Cognition

Feelings

Emotions

Life Regulation

complex, flexible, and customized plans 
of response are formulated in images 
and may be executed as behavior

images (representations) of sensory 
patterns signaling pain, pleasure, and 
emotions

complex, stereotyped patterns of 
response, which include primary, 
secondary and background emotions

relatively simple, stereotyped patterns 
of response, incl. metabolic regulation, 
reflexes, the mechanisms behind pain 
and pleasure, drives and motivations



ICEA project - motivation

Jan 2006 – Dec 2009, 100+ person-years, 8 million euros

“the emotional and bioregulatory mechanisms that come 
with the organismic embodiment of living cognitive 
systems also play a crucial role in the constitution of their 
high-level cognitive processes, and

models of these mechanisms can be usefully integrated 
in artificial cognitive systems architectures, which will 
constitute a significant step towards truly autonomous 
cognitive systems that reason and behave, externally and 
internally, in accordance with energy and other self-
preservation requirements, and thus sustain themselves 
over extended periods of time.”



Consortium

Skövde Cognition & AI Lab – Tom Ziemke (coordinator)

Animat Lab, Paris – Jean-Arcady Meyer

College de France – Sidney Wiener

CNR, Rome – Baldassarre, Parisi, Nolfi

Sheffield - Tony Prescott, Peter Redgrave

Bristol Robotics Lab – Chris Melhuish

BAE Systems, Bristol – Hector Figuereido

Cyberbotics – Olivier Michel

Hungarian Academy of Sciences – Peter Erdi

Autonomous Systems Lab, Madrid – Ricardo Sanz



Emotions (Damasio, 2004)

… emotions are bioregulatory reactions that aim at 
promoting, directly or indirectly, the sort of physiological 
states that secure not just survival, but … [also] well-
being. (p.50)

… emotional responses target both the body and other 
regions of the brain … The responses alter the state of 
the internal milieu (using, for example, hormonal 
messages disseminated in the bloodstream); the state of 
the viscera; the state of the musculoskeletal system, and 
they lead a body now prepared by all these functional 
changes into varied actions or complex behaviours. (p. 
51)



Emotion (Petta, 2003)

Emotion can be viewed as a flexible adaptation 
mechanism that has evolved from more rigid adaptational
systems, such as reflexes and physiological drives …

The flexibility of emotion is obtained by decoupling the 
behavioral reaction from the stimulus event. The heart of 
the emotion process thus is not a reflexlike stimulus-
response pattern, but rather the appraisal of an event 
with respect to its adaptational significance for the 
individual, followed by the generation of an action 
tendency aimed at changing the relationship between the 
individual and the environment. (p. 257)



Feeling (Damasio, 1999)

feeling = “the mental representation of the physiologic 
changes that occur during an emotion”

while emotions involve bodily reactions, feelings (mental 
images of those reactions) allow the cognizer to 
temporarily decouple its cognitive processes from its 
immediate bodily reactions
– e.g. anticipation of bodily reactions in the planning of 

behavior 
– “as if body loop” (Damasio)

• a neural “internal simulation” (cf. Murray’s and Owen’s
talks) that uses the brain’s body maps, but bypasses the 
actual body 



Feelings of emotion (Damasio, 2004)

The essence of feelings of emotion is the mapping of the 
emotional state in the appropriate body-sensing regions 
of the brain. (p. 52)

Whereas emotions provide an immediate reaction to 
certain challenges and opportunities … [t]he adaptive 
value of feelings comes from amplifying the mental 
impact of a given situation and increasing the probabilities 
that comparable situations can be anticipated and 
planned for in the future so as to avert risks and take 
advantage of opportunities. (pp. 56-57)



ICEA - The rat as a starting point

Massive literature on behavior & neurobiology
Rather homologous to man 
Clever, intelligent, adaptive, compact
– a model that works

Realizable target for a four-year project
– compared to human

Complements existing EC-funded Cognitive Systems 
projects

But: will surpass (selected) rat cognitive capacities 



ICEAbot

Rat-like physical robot platform
Builds on the Animat Lab’s previous
Psikharpax project



Active whisking

active touch for perception and spatial cognition  
– a neck with 3-DOF two arrays of macro-vibrissae, and 
– an array of smaller micro-vibrissae that provide a form 

of tactile ‘fovea’ for close-up examination of surfaces 
– based on high-speed digital videography of real rats 

(cf. Sheffield’s posters & demo)



ICEAsim

Rat-like simulation platform
– based on Cyberbotics’

Webots toolkit
– used by all modelers in 

the consortium
• Integration of models

– based on ICEAbot 
• but with additional

features: active
whiskers, metabolism, 
etc.

Will be made available for 
free to other researchers



Project elements

overall volume: 100+ person-years of funded research
– about 10% neurophysiology, rat experiments
– about 80% comp. modelling, robotics, systems integration 
– about 10% theoretical integration

alternative breakdown:
– three main ‘chunks’, 25% each

• central ICEA integrated robot and simulation platforms 
• motivated spatial cognition/behaviour
• emotion-based representation/cognition

– smaller ‘chunks’
• layered self-defense architecture
• energy autonomy



Spatial behavior & cognition

rat neurophysiology
computational
neuroscience models
at different levels of 
abstraction



Mammalian brain structures modeled

cortex - planning, motivation, working memory, and 
analysis of sensory data
cerebellum - anticipation, prediction
amygdala - emotion and classical conditioning
basal ganglia (incl. nucleus accumbens) - action 
selection sequencing, and reinforcement learning 
(operant conditioning)
hippocampus - spatial and contextual memory
superior colliculus - orienting
hypothalamus - drives
brain-stem - bio-regulation and pattern generation 



BAEbot

Layered defence
architecture (cf. Peter 
Redgrave’s talk) on an 
all-terrain vehicle
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BREADbot

”Bio-regulation and energy autonomy with digestion”
Based on the BRL’s current work on energy
autonomy using microbial fuel cells
Coordination of internal homeostasis and effective
foraging behavior



Anticipation, imagination, planning

starting point: simulation/emulation theories of 
cognition/representation as based on simulated
agent-environment interaction

– e.g. Hesslow, Grush, Barsalou
• Thought ~ simulated sensorimotor interaction

– Damasio’s ”as-if body loop”
• e.g. anticipation of bodily/emotional reactions in the 

planning of behavior 

– What’s the right level of abstraction?

beyond the real rat’s cognitive capacities (?)



Integrating everything …

… to be continued



ICEA Summary
(in terms of Jeff’s BBD principles)

”Incorporate a simulated brain …”
– ICEA: integration of partial models of mammalian brain

”Active sensing and … movement in the environment”
– ICEA:  rat-like robots doing rat-like tasks

”Engage in a behavioral task”
– ICEA: rat-like tasks in rat-like environments

Categorization without a priori knowledge/instruction
– ICEA: in particular for abstraction/representation

”Adapt behavior when an important … event occurs”
– ICEA: emotional appraisal, value systems, etc.

”Comparisons with experimental data acquired from animals …”
– ICEA: based on and compared to rats 


