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Abstract

Social learning is an important source of human knowledge, and the degree to which we do it sets
us apart from other animals. In this short paper, I examine the role of social learning as part of a
complete agent, identify what makes it possible and what additional functionality is needed. I do this
with reference to COIL, a working model of imitation learning.

1 Building a Brain

The problem of building a brain is one facing me
at this very juncture in my research. I need a brain
capable of controlling indefinitely a complete agent
functioning in the virtual world ofUnreal Tourna-
ment(UT) (Digital Extremes, 1999). As a game do-
main, clearly UT is not an exact replica of the real
world, and much is simplified or omitted altogether.
However, it does provide an opportunity to study a
very broad range of human behavioural problems at
a tractable level of complexity, as opposed to other
more realistic platforms which allow only the study
of narrow classes of problems.

My research thus far has chiefly been in the area
of social learning (particularly imitation), as I be-
lieve this is key to survival in a world where there
are unfortunate consequences if things are not learned
quickly enough. We humans also dedicate a vast
amount of brain space to learning, and social learn-
ing in particular, compared to other species. In the
following section, I will explain what I think the
role of social learning is and why it is important.
I will then briefly overview COIL, a model extend-
ing CELL (Roy and Pentland, 2002) from language
learning to social learning in general. I describe both
what COIL requires to function and how it would be
extended and complemented to form a complete brain
system. I conclude with a discussion.

2 The Role of Social Learning

Human infants seem to be innately programmed to
imitate from birth (Meltzoff and Moore, 1983). Many
animals, particularly the great apes, benefit from sim-

ilar kinds of social learning mechanisms (Byrne and
Russon, 1998), but none to the extent that we do.
The speed and accuracy with which we can assim-
ilate goal-directed (ie. task-related) behaviour from
others is unique. Of course, communicating via lan-
guage and the ability to reproduce actions at fine tem-
poral granularity are among the human-specific skills
which facilitate this learning. Taking these things into
consideration, it would be wise to consider including
social learning capabilities in any system designed to
function as a complete brain.

Furthermore, autonomous agents need skills:
whether ‘basic’, low-level skills such as co-ordinating
motor control, or ‘complex’, high-level skills such as
navigation. To acquire task-related skills at any level,
I believe there are at least four types of things which
need to be learned (Bryson and Wood, 2004, see also
Figure 1):

1. perceptual classes:What contexts are relevant
to selecting appropriate actions.

2. salient actions:What sort of actions are likely
to solve a problem.

3. perception/action pairings:Which actions are
appropriate in which salient contexts.

4. ordering of pairings: It is possible that more
than one salient perceptual class is present at the
same time. In this case, an agent needs to know
which one is most important to attend to in order
to select the next appropriate action.

Some of these may be innate, but those which are
not must be acquired using a combination of indi-
vidual and social learning. For example, assume we
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Figure 1: Task learning requires learning four types
of things: relevant categories of actions, relevant cat-
egories of perceptual contexts, associations between
these, and a prioritized ordering of the pairings. As-
suming there is no more than one action per percep-
tual class, ordering the perceptual classes is sufficient
to order the pairs.

have an agent which can issue motor commands, but
does not initially know the results these commands
will have on its effectors. Using visual and propri-
oceptive sensors (say) to measure these effects, and
trial-and-error (individual) learning, a mapping be-
tween commands issued and effects produced can be
created. This example is deliberately analagous to
human infant ‘body babbling’ (Meltzoff and Moore,
1997). However, assuming a reasonable number of
‘primitive’ actions can be learned this way, the set
of skills that can be built from these blocks is ex-
ponentially larger (and so on as more skills are ac-
quired). To attempt to learn all skills through trial-
and-error, then, would be to search randomly through
these huge, unconstrained skill spaces — very ineffi-
cient.

Social learning can take many forms depending
upon the nature of the agents in question: written
or verbal instruction, explicit demonstration, implicit
imitation, etc. An agent which is part of a soci-
ety which facilitates such learning can take advan-
tage of the knowledge acquired by previous gener-
ations. To do this an agent must be able to relate
what it perceives to the actions it can execute; it must
solve a correspondence problem between the instruc-
tion or demonstration and it’s own embodiment (Ne-
haniv and Dautenhahn, 2002). For a learning agent

in a society of conspecifics, this mapping is simple
(although not trivial to learn), but for, say, a robot liv-
ing among humans, solving this problem amounts to
yet another skill that needs to be mastered. Socially-
acquired skill-related knowledge can be used to sig-
nificantly reduce the skill search space, allowing indi-
vidual learning to merely ‘fine-tune’ new skills, tak-
ing into account individual variability within a soci-
ety. The other alternative is that the ‘instructions’ ac-
quired are coarse-grained enough to perfectly match
existing segments of behaviour in the learner’s reper-
toire.

3 Necessary Components

To better understand the components required for so-
cial learning in general, it makes sense to examine the
information requirements of a model which is capa-
ble of such learning. The Cross-Channel Observation
and Imitation Learning or COIL model of Wood and
Bryson (2005) is suitable. This system is designed to
observe via virtual sensors a conspecific agent execut-
ing a task, then in real-time output a self-executable
representation of the behaviour needed to complete
that task. It achieves this by matching the observed
actions of this taskexpertwith its observed percep-
tions of the environment. I now briefly explain the
model and identify in general terms what is needed at
each stage of processing (see also Figure 2).

Raw Sensor Data

Feature Extraction

P−channels
A−channels

Co−occurence Filtering

Event Segmentation

Recurrence Filtering

Mutual Information Filtering

P−events
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AP−events
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Figure 2: An overview of COIL.

Feature Extraction The inputs to this stage are raw
sensory data. Depending upon the task, some of



these data are discarded and others are recoded
or categorised. Remaining data are diverted into
different channels ready for further processing,
some specialising in action recognition and oth-
ers in environmental parsing (perception). This
stage therefore suggests a need for selectiveat-
tention, compressedrepresentationsandmod-
ularity of processing.

Event SegmentationFollowing Feature Extraction,
the channels containing the data are segmented
into action and perception events depending
upon the channel type. Events define high-level
coarse-grained actions and perceptual classes,
and are further divided into lower-level fine-
grained subevents. This segmentation requires
varioustriggers which are innate in the case of
COIL, but could theoretically be learned.

Co-occurence Filtering Action and perception
events which overlap in time are paired together
and stored in a buffer (called Short Term Mem-
ory or STM). This requirestemporal reasoning
andmemory.

Recurrence Filtering Co-occuring action and per-
ception subevents which are repeated within the
brief temporal window of STM are tagged. A
chunk called a Motivation-Expectation or M-E
Candidate, which represents the set of tagged
pairs, is created and placed in Mid-Term Mem-
ory (MTM). Here we additionally usestatistical
reasoningand abstract judgments ofsimilarity .

Mutual Information Filtering For each M-E Can-
didate, the maximum mutual information be-
tween its component action and perception
subevents is calculated. Those which exceed
some threshold are stored as M-E Items in
Long Term Memory (LTM). COIL currently
uses fixedthresholds, but again they could be
acquired through experience. The LTM is the
output of the system.

The innate skills which are necessary for social
learning identified above can be provided by the hard-
ware (memory, clock, etc.) and software (statistical
algorithms, similarity metrics, etc.) of the agent.

4 Scaffolding COIL

I have looked at the basic components COIL needs in
order to function as a social learning system. How-
ever, the extent of COIL’s role within a complete

agent, and the extra pieces which need to be added,
remain in question.

There are a number of problems in assuming that
a single monolithic COIL system can alone act as the
‘brain’ of our agent. Firstly the algorithm only learns
– it has no capacity for making decisions or acting
based upon what it has learned. Our most recent
work demonstrates the addition of an extra module
for exactly those purposes (Wood and Bryson, 2005).
Secondly, a flat COIL system expected to carry out
the high-level task oflife would have to monitor ev-
ery action and perception channel that could possibly
be useful in achieving this task, or any of its sub-
tasks. Even with the innate attentional capabilities
of COIL’s Feature Extraction stage, the algorithm’s
complexity is still exponential in the number of chan-
nels. Therefore, COIL seems more suited to learning
local specialised tasks where the number of channels
which need to be monitored can be reasonably con-
strained.

Let us assume instead that we have a number of
COIL systems, each observing a localised task and
its associated action / perception channels. We would
need a method for discerning which of the following
four scenarios is occuring:

1. A known task is being observed.

2. A known task is present1.

3. An unknown task is being observed.

4. No known tasks are present or being observed.

It may be that scenarios 1 and 2 occur concur-
rently, in which case a decision would need to be
made whether to observe and learn or join in with
the execution of the task. Also, the presence of a task
does not necessarily imply that the task should be ex-
ecuted. In scenario 4, social learning is impossible,
and the product of previous social learning episodes
is not applicable. This is where an individual learning
module would come into play (see also Section 5).

A complete system that is capable of this arbi-
tration is as yet unrealised. It may be possible to
create a ‘master’ version of COIL which has high-
level perception channels monitoring those environ-
mental states which differentiate between local tasks,
and action channels which cause lower-level task-
specific COILs to be activated. On the other hand,
a totally different system designed specifically to co-
ordinate COILs (for social learning), RL (for inde-
pendent learning) and acting may be more appropri-
ate.

1A task is present if it is available in the environment for exe-
cution by the observer.



5 Discussion

In this final section, I highlight a number of research
problems, some of which I will be investigating in
relation to the COIL project, but all of which I be-
lieve will need to be studied before a complete work-
ing brain becomes a possibility. The balance between
what is innate and what is learned, for both biological
and theoretical robotic examples, has been discussed
by Sloman and Chappell (2005). They claim that us-
ing a hybrid of the two may prove to be better than us-
ing either in isolation. We can further subdivide that
which is learned into that which is learned socially,
and that which is learned independently. Similarly,
the best technique is probably to combine the two,
and it is a thorough study of the balance and appli-
cation of both that may result in significant progress
toward constructing a complete agent. This task has
at least the following component questions:

• What structures must be present to make inde-
pendent learning possible? Presumably many of
these will be innate, but how can social learn-
ing improve these structures / primitives and / or
the efficiency of their usage (ie. learning how to
learn better from another)?

• What primitives are needed to make social learn-
ing a possibility? Must they be acquired through
trial-and-error learning, or can they be innate?
If acquired, what is the cost of such acquisition?
How do they differ from those required for indi-
vidual learning?

• How does the embodiment of a given agent af-
fect the structures / primitives best suited for
both individual and social learning (bothwhat is
learned and thewayit is learned)? How does this
compare / interact with the affect the required
tasks have on these primitives?

• How can individual and social learning be com-
bined at both the practical task level and the ab-
stract memory level? Do different combination
strategies result in different levels of efficiency
and / or goal accomplishment? Is this ‘meta-
skill’ of hybrid learning itself innate, or some-
how learned?

• What is the optimal trade-off between individ-
ual and social learning for a given task? How
does this change with increasing task complex-
ity? How is this affected by the nature of the task
relative to, say, the embodiment of the executing
agent?

• How can knowledge be consolidated to improve
learning (of both kinds) next time? How are con-
flicts between what is learned socially and what
is learned independently resolved? How easily
applicable are social skills and their associated
knowledge to individual learning situations, and
vice versa?

I hope that these proposed research areas, and this
paper as a whole, will in some way stimulate others
into thinking about social learning in the context of a
complete agent system.
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