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CHAPTER 9
PERCEPTION AS A COMPUTATIONAL PROCESS

9.1. Introduction
In this chapter I wish to elaborate on a theme which Immanuel Kant found obvious: there is no
perception without prior knowledge and abilities. 

In the opening paragraphs of the Introduction to Critique of Pure Reason he made claims about
perception and empirical knowledge which are very close to assumptions currently made by people
working on artificial intelligence projects concerned with vision and language understanding. He
suggested that all our empirical knowledge is made up of both ’what we receive through impressions’
and of what ’our own faculty of knowledge supplies from itself. That is, perception is not a passive
process of receiving information through the senses, but an active process of analysis and
interpretation, in which ’schemata’ control what happens. In particular, the understanding has to ’work
up the raw material’ by comparing representations, combining and separating them. He also points out
that we may not be in a position to distinguish what we have added to the raw material, ’until with
long practice of attention we have become skilled in separating it’. These ideas have recently been
re-invented and elaborated by some psychologists (for example, Bartlett).

One way of trying to become skilled in separating the raw material from what we have added is to
attempt to design a machine which can see. In so doing we learn that a great deal of prior knowledge
has to be programmed into the machine before it can see even such simple things as squares, triangles,
or blocks on a table. In particular, as Kant foresaw, such a machine has to use its knowledge in
comparing its sense-data, combining them into larger wholes, separating them, describing them, and
interpreting them as representing some other reality. (This seems to contradict some of the claims
made by Ryle about perception, in his 1949, e.g. p. 229, last paragraph.)
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[[Note added August 2002: 
A slide presentation on requirements for some sort of "innate" conceptual information in intelligent systems can be found
here 
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#talk14 
Getting meaning off the ground: symbol grounding vs symbol attachment.]]  

[[Note added Jan 2007 
During 2005-6, while working on the CoSy robotic project I became increasingly aware that the ideas
presented here and in several later papers were too much concerned with perception of multi-layered 
structures, ignoring perception of processes, especially concurrent perception of processes at
different levels of abstraction. This topic was discussed in this presentation 
"http://www.cs.bham.ac.uk/research/projects/cosy/papers/#pr0505 
"A (Possibly) New Theory of Vision." 
And in this much older paper: 
Aaron Sloman, 1983, Image interpretation: The way ahead?, in 
Physical and Biological Processing of Images 
(Proceedings of an international symposium organised by The Rank Prize Funds, London, 1982.), Eds.
O.J. Braddick and A.C. Sleigh, pp. 380--401, Springer-Verlag, Berlin, 
http://www.cs.bham.ac.uk/research/projects/cogaff/06.html#0604 ]]  

9.2. Some computational problems of perception
People have very complex perceptual abilities, some of them shared with many animals. Especially
difficult to explain is the ability to perceive form and meaning in a complex and messy collection of
ambiguous and noisy data. For instance, when looking at a tree we can make out twigs, leaves,
flowers, a bird’s nest, spiders’ webs and a squirrel. Similarly, we can (sometimes) understand what is
said to us in conversations at noisy parties, we can read irregular handwriting, we can see familiar
objects and faces depicted in cartoons and ’modern’ paintings, and we can recognise a musical theme
in many different arrangements and variations. 

Seeing the significance in a collection of experimental results, grasping a character in a play or novel,
and diagnosing an illness on the basis of a lot of ill-defined symptoms, all require this ability to make a
’Gestalt’ emerge from a mass of information. A much simpler example is our ability to see something
familiar in a picture like Figure 1. How does a ’Gestalt’, a familiar word, emerge from all those dots?

Close analysis shows that this kind of ability is required even for ordinary visual perception and
speech understanding, where we are totally unaware that we are interpreting untidy and ambiguous
sense-data. In order to appreciate these unconscious achievements, try listening to very short extracts
from tapes of human speech (about the length of a single word), or looking at manuscripts, landscapes,
street scenes and domestic objects through a long narrow tube. Try looking at portions of Figure 1
through a hole about 3 mm in diameter in a sheet of paper laid on the figure and moved about. This
helps to reveal how ambiguous and unclear the details are, even when you think they are clear and
unambiguous. Boundaries are fuzzy, features indistinct, possible interpretations of parts of our
sense-data indeterminate.

2

http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#talk14
http://www.cs.bham.ac.uk/research/projects/cosy/
http://www.cs.bham.ac.uk/research/projects/cosy/papers/#pr0505
http://www.cs.bham.ac.uk/research/projects/cogaff/06.html#0604


Figure 1

Fragments of this picture are quite ambiguous, yet somehow they help to disambiguate one another, so
that most people see a pile of letters forming a familiar word. Often the word is seen before all the

letters are recognized, especially if noise is introduced making recognition of the letters harder (e.g. if
some dots are removed and spurious dots added). Without knowledge of letters we would have no

strong reason to group some of the fragments, e.g. the top of the "I" and the rest of the "I". 

Perceived fragments require a context for their interpretation. The trouble is that the context usually
consists of other equally ambiguous, incomplete, or possibly even spurious fragments. 

Sometimes our expectations provide an additional context, but this is not essential, since we can
perceive and interpret totally unexpected things, like a picture seen on turning a page in a newspaper,
or a sentence overheard on a bus.

9.3. The importance of prior knowledge in perception
What we can easily perceive and understand depends on what we know. One who does not know
English well will not be able to hear the English sentences uttered at a noisy party, or to read my
handwriting! Only someone who knows a great deal about Chemistry will see the significance in a
collection of data from chemical experiments. Only someone with a lot of knowledge about lines, flat
sheets, letters and words will quickly see ’EXIT’ in Figure 1. 

Perception uses knowledge and expertise in different ways, clearly brought out by work on computer
programs which interpret pictures. One of the most striking features of all this work is that it shows
that very complex computational processes are required for what appeared previously to be very
simple perceptual abilities, like seeing a block, or even seeing a straight line as a line. These processes
make use of many different sorts of background knowledge, for instance in the following conscious
and unconscious achievements:

a)  Discerning features in the sensory array (for instance discerning points of high contrast in the
visual field), 
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b)  Deciding which features to group into significant larger units (e.g. which dots to group into line
segments in Figure 1), 

c)  Deciding which features to ignore because they are a result of noise or coincidences, or irrelevant
to the present task, 

d)  Deciding to separate contiguous fragments which do not really belong together (e.g. adjacent dots
which are parts of the boundaries of different letters), 

e)  Making inferences which go beyond what is immediately given (e.g. inferring that the edge of
one bar continues behind another bar, in Figure 1 ), 

f)  Interpreting what is given, as a representation of something quite different (e.g. interpreting a flat
image as representing a scene in which objects are at different depths: Figure 1 is a very simple
example), 

g)  Noticing and using inconsistencies in an interpretation so as to re-direct attention or re-interpret
what is given. 

h)  Recognising cues which suggest that a particular mode of analysis is appropriate, or which
suggest that a particular type of structure is present in the image or the scene depicted e.g. detecting
the (style of a picture this can enable an intelligent system to avoid a lot of wasteful searching for
analyses and interpretations.

So, perceiving structure or meaning may include using knowledge to reject what is irrelevant (like
background noise, or coincidental juxtapositions) and to construct or hallucinate what is not there at
all. It is an active constructive process which uses knowledge of the ’grammar’ of sensory data, for
instance knowledge of the possible structures of retinal images, knowledge about the kinds of things
depicted or represented by such data, and knowledge about the processes by which objects generate
sense-data. Kant’s ’schemata’ must incorporate all this.

We need not be aware that we possess or use such knowledge. As Kant noticed, it may be an ’art
concealed in the depths of the human soul’ (p. 183, in Kemp Smith’s translation), much of it
"compiled" into procedures and mechanisms appropriate to images formed by the kind of world we
live in. But at present there are no better explanations of the possibility of perception than explanations
in terms of intelligent processes using a vast store of prior information, much of which is "compiled"
(by evolution or by individual learning) into procedures and mechanisms appropriate to images formed
by the kind of world we live in.

For instance, theories according to which some perception is supposed to be ’direct’, not involving any
prior knowledge, nor the use of concepts, seem to be quite vacuous. A theory which claims that
perceptual achievements are not decomposable into sub-processes cannot be used as a basis for
designing a working mind which can perceive any of the things we perceive. It lacks explanatory
power, because it lacks generative power. If the processes cannot be decomposed, then there is no way
of generating the huge variety of human perceptual abilities from a relatively economical subsystem.
By contrast, computational theories postulating the use of prior knowledge of structures and
procedures can begin to explain some of the fine structure (see chapters 2 and 3) of perceptual
processes, for example, the perception of this as belonging to that, this as going behind that, this as
similar to that, this as representing that, and so on.
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Quibbles about whether the ordinary word ’knowledge’ is appropriate for talking about the
mechanisms and the stored facts and procedures used in perception seem to be merely unproductive
distractions. Even if the ordinary usage of the word ’knowledge’ does not cover such inaccessible
information, extending the usage would be justified by the important insights gained thereby.
Alternatively, instead of talking about ’knowledge’ we can talk about ’information’ and say that even
the simplest forms of perception not only provide new information, in doing so they make use of
various kinds of prior information.

In a more complete discussion it would be necessary to follow Kant and try to distinguish the role of
knowledge gained from previous perceptual experiences and the role of knowledge and abilities which
are required for any sort of perceptual experience to get started. The latter cannot be empirical in the
same sense, though it may be the result of millions of years of evolutionary "learning from
experience". 

Since our exploration of perceptual systems is still in a very primitive state, it is probably still too early
to make any such distinctions with confidence. It would also be useful to distinguish general
knowledge about a class of theoretically possible objects, situations, processes, etc., from specific
knowledge about commonly occurring subsets. As remarked in chapter 2, we can distinguish
knowledge about the form of the world from knowledge about its contents. Not all geometrically
possible shapes are to be found amongst animals, for example. A bat may in some sense be half way
between a mouse and a bird: but not all of the intervening space is filled with actually existing sorts of
animals. If the known sorts of objects cluster into relatively discrete classes, then this means that
knowledge of these classes can be used to short-circuit some of the more general processes of analysis
and interpretation which would be possible. In information-theoretic terms this amounts to an increase
of redundancy -- and a reduction of information -- in sensory data. This is like saying that if you know
a lot of relatively commonly occurring words and phrases, then you may be able to use this knowledge
to cut down the search for ways of interpreting everything you hear in terms of the most general
grammatical and semantic rules. (Compare Becker on the ’phrasal lexicon’.) This is one of several
ways in which the environment can be cognitively ’friendly’ or ’unfriendly’. We evolved to cope with
a relatively cognitively friendly environment.

In connection with pictures like Figure 1, this means that if you know about particular letter-shaped
configurations of bars, then this knowledge may make it possible to find an interpretation of such a
picture in terms of bars more rapidly than if only general bar-configuration knowledge were deployed.
For instance, if you are dealing with our capital letters, then finding a vertical bar with a horizontal one
growing to the left from its middle, is a very good reason for jumping to the conclusion that it is part
of an ’H’, which means that you can expect another vertical bar at the left end of the horizontal.

Thus a rational creature, concerned with maximising efficiency of perceptual processing, might find it
useful to store a very large number of really quite redundant concepts, corresponding to commonly
occurring substructures (phrases) which are useful discriminators and predictors.

The question of how different sorts of knowledge can most fruitfully interact is a focus of much
current research in artificial intelligence. The strategies which work in a ’cognitively friendly world’
where species of things cluster are highly fallible if unusual situations occur. Nevertheless the fallible,
efficient procedures may be the most rational ones to adopt in a world where things change rapidly,
and your enemies may not give you time to search for a conclusive demonstration that it is time to turn
around and run. Thus much of the traditional philosophical discussion of rationality, in terms of what
can be proved beyond doubt, is largely irrelevant to real life and the design of intelligent machines.
But new problems of rationality emerge in their place, such as problems about trading space against
time, efficiency against flexibility or generality, and so on. From the design standpoint, rationality is
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largely a matter of choosing among trade-offs in conditions of uncertainty, not a matter of getting
things ’right’, or selecting the ’best’. (For more on trade-offs see the chapters on representations, and
on numbers: Chapter 7 and Chapter 8)). 

9.4. Interpretations
Knowledge is used both in analysing structures of images and in interpreting those structures as
depicting something else. There may be several different layers of interpretation. For example in
Figure 1, dot configurations represent configurations of lines. These in turn represent configurations of
bars. These represent strokes composing letters. And sequences of letters can represent words (see fig.
6). Within each layer there may be alternative structures discernible, for instance alternative ways of
grouping things, alternative relations which may be noticed. These will affect the alternative
interpretations of that layer. By examining examples in some detail and trying to design mechanisms
making the different experiences possible we can gain new insights into the complex and puzzling
concept of ’seeing as’, discussed at length in part II of Wittgenstein’s Philosophical Investigations. 

Contrary to what many people (including some philosophers) have assumed, there need not be any
similarity between what represents and what it represents. Instead, the process of interpretation may
use a variety of interpretation rules, of which the most obvious would be rules based on information
about a process of projection which generates, say, a two-dimensional image from a three-dimensional
scene. (For more on this see the chapter on analogical representations.)

The projection of a three dimensional scene onto a two dimensional image is just a special case of a
more general notion of evidence which is generated in a systematic way by that which explains it. A
two-dimensional projection of a three-dimensional object bears very little similarity to the object. (Cf.
Goodman, Languages of Art.) The interpretation procedure may allow for the effects of the
transformations and distortions in the projection (as a scientist measuring the temperature of some
liquid may allow for the fact that the thermometer cools the liquid).

This is an old idea: what is new in the work of A.I. is the detailed analysis of such transformations and
interpretation procedures, and the adoption of new standards for the acceptability of an explanation:
namely it must suffice to generate a working system, that is, a program which can use knowledge of
the transformations to interpret pictures or the images produced by a television camera connected to
the computer.

What we are conscious of seeing is the result of many layers of such interpretation, mostly
unconscious, yet many of them are essentially similar in character to intellectual processes of which
we are sometimes conscious. All this will be obvious to anyone familiar with recent work in
theoretical linguistics.

So the familiar philosophical argument that we do not see things as they are, because our sense-organs
may affect the information we receive, is invalid. For however much our sense-organs affect incoming
data, we may still be able to interpret the data in terms of how things really are. But this requires the
use of knowledge and inference procedures, as people trying to make computers see have discovered.
Where does the background knowledge come from? Presumably a basis is provided genetically by
what our species has learnt from millions of years of evolution. The rest has to be constructed, from
infancy onwards, by individuals, with and without help, and mostly unconsciously.
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9.5. Can physiology explain perception?
To say that such processes are unconscious does not imply that they are physiological as people
sometimes assume in discussions of such topics. Physical and physiological theories about processes
in the brain cannot account for these perceptual and interpretative abilities, except possibly at the very
lowest levels, like the ability to detect local colour contrasts in the visual field. Such tasks can be
delegated to physical mechanisms because they are relatively determinate and context-independent,
that is algorithmic (e.g. see Marr, 1976). In particular, such peripheral processes need not involve the
construction and testing of rival hypotheses about how to group fragments of information and how to
interpret features of an image. But, physical and physiological mechanisms cannot cope with the more
elaborate context-dependent problem-solving processes required for perception. The concept of using
stored knowledge to interpret information has no place in physics or physiology, even though a
physical system may serve as the computer in which information is stored and perceptual programs
executed. 

Moreover, even colour contrasts can sometimes be hallucinated on the basis of context, as so-called
’illusory-contrasts’ show. For an example see Figure 2.

Figure 2
This picture (based on Kanizsa, 1974) shows that perceived colour at a location depends not only on
the corresponding physical stimulus, hut also on the context. Most people see the central region as

whiter than the rest, even though there is no physical difference. 

Instead of physiological theories, we need ’computational theories, that is, theories about processes in
which symbolic representations of data are constructed and manipulated. In such processes, facts about
part of an image are interpreted by making inferences using context and background knowledge. We
must not be blinded by philosophical or terminological prejudices which will not allow us to describe
unconscious processes as inferences, or, more generally, as ’mental processes’.

How is it done? In particular, what exactly is the knowledge required for various kinds of perception,
and how do we mobilise it as needed? We cannot yet claim to have complete or even nearly complete
explanations. But A.I. work on vision has made some significant progress, both in showing up the
inadequacies of bad theories and sketching possible fragments of correct explanations.
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Our present ignorance is not a matter of our not knowing which theory is correct, but of our not
even knowing how to formulate theories sufficiently rich in explanatory power to be worth testing 
experimentally.

Attempting to program computers to simulate human achievements provides a powerful technique for
finding inadequacies in our theories thereby stimulating the rapid development of new theory-building
tools. In the process we are forced to re-examine some old philosophical and psychological problems.
For a survey of some of this work, see the chapters on computer vision in Boden (1977). Winston
(1975) also includes useful material, especially the sections by Winston, Waltz, and Minsky. The rest
of this chapter illustrates some of the problems with reference to an ongoing computer project at
Sussex University, which may be taken as representative.

9.6. Can a computer do what we do?
We are exploring some of the problems of visual perception by attempting to give a computer the
ability to perceive a configuration of known shapes in a scene depicted by a ’spotty’ picture like
Figure 1. The pictures are presented to the program in the form of a 2-dimensional binary (i.e. black
and white) array. The array is generated by programs in the computer either on the basis of
instructions, or with the aid of a graphical input terminal. Additional spurious dots (’positive noise’)
can be added to make the pictures more confusing. Similarly, spurious gaps (’negative noise’) can be
added. 

People can cope quite well with these pictures even when there is a lot of positive and negative noise,
and where further confusion is generated by overlaps between letters, and confusing juxtapositions.
Some people have trouble at first, but after seeing one or two such pictures, they interpret new ones
much more rapidly. The task of the program is to find familiar letters without wasting a lot of time
investigating spurious interpretations of ambiguous fragments. It should ’home in on’ the most
plausible global interpretation fairly rapidly, just as people can.

Out of context, picture details are suggestive but highly ambiguous, as can be seen by looking at
various parts of the picture through a small hole in a sheet of paper. Yet when we see them in context
we apparently do not waste time exploring all the alternative interpretations. It is as if different
ambiguous fragments somehow all ’communicate’ with one another in parallel, to disambiguate one 
another.

Waltz (1975) showed how this sort of mutual disambiguation could be achieved by a program for
interpreting line drawings representing a scene made up of blocks on a table, illuminated by a
shadow-casting light. He gave his program prior knowledge of the possible interpretations of various
sorts of picture junctions, all of which were ambiguous out of context. So the problem was to find a
globally consistent interpretation of the whole picture. The program did surprisingly well on quite
complex pictures. His method involved letting possible interpretations for a fragment be ’filtered out’
when not consistent with any possible interpretations for neighbouring fragments. 

[[Note added 2001: 
since 1975 there have been huge developments in techniques for ’constraint propagation’, including both hard and

soft constraints. ]]

But the input to Waltz’ program was a representation of a perfectly connected and noise-free line
drawing. Coping with disconnected images which have more defects, requires more prior knowledge
about the structure of images and scenes depicted, and more sophisticated computational mechanisms.
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Which dots in Figure 1 should be grouped into collinear fragments? By looking closely at the picture,
you should be able to discern many more collinear groups than you previously noticed. That is, there
are some lines which ’stand out’ and are used in building an interpretation of the picture, whereas
others for which the picture contains evidence are not normally noticed. Once you have noticed that a
certain line ’stands out’, it is easy to look along it picking out all the dots which belong to it, even
though some of them may be ’attracted’ by other lines too.

But how do you decide which lines stand out without first noticing all the collinear groups of dots?
Are all the collinear dot-strips noticed unconsciously? What does that mean? Is this any different from
unconsciously noticing grammatical relationships which make a sentence intelligible?

When pictures are made up of large numbers of disconnected and untidy fragments, then the
interpretation problem is compounded by the problem of deciding which fragments to link together to
form larger significant wholes. This is the ’segmentation’ or ’agglomeration’ problem. As so often
happens in the study of mental processes, we find a circularity: once a fragment has been interpreted
this helps to determine the others with which it should be linked, and once appropriate links have been
set up the larger fragment so formed becomes less ambiguous and easier to interpret. It can then
function as a recognisable cue. (The same circularity is relevant to understanding speech.)

9.7. The POPEYE program [1]

Our computer program breaks out of this circularity by sampling parts of the image until it detects a
number of unambiguous fragments suggesting the presence of lines. It can then use global
comparisons between different lines to see which are supported most strongly by relatively
unambiguous fragments. These hypothesised bold lines then direct closer examination of their
neighbourhoods to find evidence for bar-projections. Evidence which would be inconclusive out of
context becomes significant in the context of a nearby bold line hypothesised as the edge of a bar an
example of a ’Gestalt’ directing the interpretation of details. 

Thus, by using the fact that some fragments are fairly unambiguous, we get the process started. By
using the fact that long stretches of relatively unambiguous fragments are unlikely to be spurious, the
program can control further analysis and interpretations. Parallel pairs of bold lines are used as
evidence for the presence of a bar. Many of the strategies used are highly fallible. They depend on
assumption that the program inhabits a ’cognitively friendly’ world, that is, that it will not be asked to
interpret very messy, very confusing pictures. If it is, then, like people, it will become confused and
start floundering.

Clusters of bar-like fragments found in this way can act as cues to generate further higher-level
hypotheses, for example, letter hypotheses, which in turn control the interpretation of further
ambiguous fragments. (For more details, see Sloman and Hardy ’Giving a computer gestalt
experiences’ and Sloman et al. 1978.) In order to give a program a more complete understanding of 
our concepts, we would need to embody it in a system that was able to move about in space and
manipulate physical objects, as people do. This sort of thing is being done in other artificial
intelligence research centres. However, there are still many unsolved problems. It will be a long time
before the perceptual and physical skills of even a very young child can be simulated.

The general method of using relatively unambiguous fragments to activate prior knowledge which
then directs attention fruitfully at more ambiguous fragments, seems to be required at all levels in a
visual system. It is sometimes called the ’cue-schema’ method, and seems to be frequently re-invented.
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However, it raises serious problems, such as: how should an intelligent mechanism decide which
schemas are worth storing in the first place, and how should it, when confronted with some cue, find
the relevant knowledge in a huge memory store? (Compare chapter 8.) A variety of sophisticated
indexing strategies may be required for the latter purpose. Another important problem is how to
control the invocation of schemas when the picture includes cues for many different schemas.

Our program uses knowledge about many different kinds of objects and relationships, and runs several
different sorts of processes in parallel, so that ’high-level’ processes and (relatively) low-level’
processes can help one another resolve ambiguities and reduce the amount of searching for consistent
interpretations. It is also possible to suspend processes which are no longer useful, for example
low-level analysis processes, looking for evidence of lines, may be terminated prematurely if some
higher-level process has decided that enough has been learnt about the image to generate a useful 
interpretation.

This corresponds to the fact that we may recognise a whole (e.g. a word) without taking in all its parts.
It is rational for an intelligent agent to organise things this way in a rapidly changing world where the
ability to take quick decisions may be a matter of life and death.

Like people, the program can notice words and letters emerging out of the mess in pictures like Figure
1. As Kant says, the program has to work up the raw material by comparing representations,
combining them, separating them, classifying them, describing their relationships, and so on. What
Kant failed to do was describe such processes in detail.

9.8. The program’s knowledge
In dealing with Figure 1 the program needs to know about several different domains of possible
structures, depicted in Figure 3: 

The domains of knowledge involved include: 

a)  The domain of 2-dimensional configurations of dots in a discrete rectangular array (the "dotty
picture" domain). 

b)  The domain of 2-dimensional configurations of line-segments in a continuous plane. The
configurations in the dotty picture domain represent configurations of such lines -- notice the
differences between a collection of dots being a line segment, lying on a line segment and 
representing a line segment. 

c)  The (two-and-a-half-dimensional) domain of overlapping laminas composed of ’bars’. Patterns in
the line-domain 

d)  represent configurations of bars and laminas made of rectangular bars. 

e)  An abstract domain containing configurations of ’strokes’ which have orientations, lengths,
junctions, and so on, analogous to lines, but with looser criteria for identity. Letters form a subset
of this domain. Configurations in this domain are represented by configurations of laminas. That
is, a bar-shaped lamina represents a possible stroke in a letter, but strokes of letters can also be
depicted by quite different patterns (as in this printed text) which is why I say their domain is
’abstract’ following Clowes, 1971. 

f)  An abstract domain consisting of sequences of letters. Known words form a subset of this 
domain.
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Figure 3, below, illustrates some of the possible contents of the 2-D Domains used by the Popeye
program in interpreting images like Figure 1. 

Figure 3
Some concepts relevant to the domain of 2 dimensional configurations of line-segments required for
the interpretation of Figure 1. In this 2-D domain, nothing can be invisible or partly covered, unlike

the domain of overlapping rectangular laminas shown in Figure 4, below. The process of interpreting
Figure 1 includes identifying items in the 2-D domain and mapping them to items in the 2.5D domain

of laminas. 

In particular the program has to know how to build and relate descriptions of structures in each of
these domains, including fragments of structures. That is, the ability to solve problems about a domain
requires an ’extension’ of the domain to include possible fragments of well-formed objects in the
domain Becker’s ’phrasal lexicon’ again. Our program uses many such intermediate concepts. Figures
3 and 4 list and illustrate some of the concepts relevant to the second and third domains. Figure 5
shows some of the cues that can help reduce the search for an interpretation. Figure 6 shows all the
domains and some of the structural correspondences between items in those domains.
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By making use of the notion of a series of domains, providing different ’layers’ of interpretation, it is
possible to contribute to the analysis of the concept of ’seeing as’, which has puzzled some
philosophers. Seeing X as Y is in general a matter of constructing a mapping between a structure in
one domain and a possibly different structure in another domain. The mapping may use several
intermediate layers. 

[[Note added 2001: 
our recent work on architectures containing a ’meta-management’ layer suggests that being aware
of seeing X as Y requires additional meta-management, i.e. self-monitoring processes, which are
not essential for the basic processes of seeing X as Y, which could occur in simpler architectures,
e.g. in animals that are not aware of their own mental processes (like most AI systems so far). ]]

Figure 4 (Below)
Some concepts relevant to the domain of overlapping rectangular laminas. This sort of domain is
sometimes described as "two and a half dimensional" (2.5D) because one object can be nearer or

further than another, and because all or part of an object can be invisible because it is hidden behind
another, unlike a purely 2D domain where everything is visible. Knowledge of such 2.5D concepts can
help the search for a good interpretation of pictures like Figure 1. This raises problems about how the
concepts are stored and indexed, how they are accessed by cues, and how ambiguities are resolved.

Some of the discussion in Chapter 6 regarding special purpose and general purpose monitors is 
relevant. 
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Facts about one domain may help to solve problems about any of the others. For instance, lexical
knowledge may lead to a guess that if the letters ’E’, ’X’ and T’ have been found, with an unclear
letter between them, then the unclear letter is ’I’. This in turn leads to the inference that there is a
lamina depicting the ’I’ in the scene. From that it follows that unoccluded edges of the lamina will be
represented by lines in the hypothetical picture in domain (b). The inferred locations of these lines can
lead to a hypothesis about which dots in the picture should be grouped together, and may even lead to
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the conclusion that some dots which are not there should be there.

The program, like a person, needs to know that a horizontal line-segment in its visual image can
represent (part of) the top or bottom edge of a bar, that an ELL junction between line segments can
depict part of either a junction between two bars or a corner of a single bar. In the former case it may
depict either a concave or a convex corner, and, as always, context will have to be used to decide 
which.

The program does not need to define concepts of one domain in terms of concepts from another.
Rather the different domains are defined by their own primitive concepts and relations. The notion of
’being represented by’ is not the same as the notion of ’being defined in terms of’. For instance, ’bar’
is not defined in terms of actual and possible sense-data in the dot-picture domain, as some
reductionist philosophical theories of perception would have us believe. Concepts from each domain
are defined implicitly for the program in terms of structural relations and inference rules, including
interpretation strategies.

So the organisation of the program is more consistent with a dualist or pluralist and wholistic
metaphysics than with an idealist or phenomenalist reduction of the external world to sense-data, or
any form of philosophical atomism, such as Russell and Wittgenstein once espoused.

Programs, like people, can in principle work out lots of things for themselves, instead of having them
all programmed explicitly. For instance Figure 5 shows typical line-picture fragments which can be
generated by laminas occluding one another. A program could build up a catalogue of such things for
itself for instance by examining lots of drawings. Research is in progress on the problem of designing
systems which learn visual concepts, possibly with the help of a teacher who chooses examples for the
system to work on. (For example, see Winston, 1975.) It is certain that there are many more ways of
doing such things than we have been able to think of so far. So we are in no position to make claims
about which gives the best theory of how people learn. 

[[Note added 2001: 
In the decades since this book was written many more learning methods have been developed for
vision and other aspects of intelligence, though surprisingly few of them seem to involve the
ability to learn about different classes of structures in domains linked by representation
relationships. Many of them attempt to deal with fairly direct mappings between configurations
detectable in image sequences and abstract concepts like "person walking". For examples see
journals and conference proceedings on machine vision, pattern recognition, and machine 
learning.]]

Currently our program starts with knowledge which has been given it by people (just as people have to
start with knowledge acquired through a lengthy process of biological evolution). Perhaps, one day,
some of the knowledge will be acquired by a machine itself, interacting with the world, if a television
camera and mechanical arm are connected to the computer, as is already done in some A.I. research
laboratories. However, real learning requires much more sophisticated programs than programs which
have a fixed collection of built-in abilities. (Some of the problems of learning were discussed
previously in Chapter 6 and Chapter 8.) 
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Figure 5
This shows a number of sub-configurations within the 2-D line-segment domain of Figure 3 which are
likely to occur in images depicting overlapping laminas from the domain of Figure 4. A set of 2-D line
images depicting a different class of laminas, or depicting objects in a different domain, e.g. 3-D forest

scenes, would be likely to include a different class of sub-configurations made of lines. 

Likewise in depictions of forest scenes, commonly occurring configurations in the dotty picture
domain would be different from those found in Figure 1. 

Knowledge of commonly occurring sub-structures in images, corresponding to particular domains
represented, like knowledge about the objects represented, can help the interpretation process. This is

analogous to processes in language-understanding in which knowledge of familiar phrases is combined
with knowledge of a general grammar which subsumes those phrases. (Becker 1975) 

[[This caption was substantially extended in 2001]] 

Given structural definitions of letters, and knowledge of the relations between the different domains
illustrated in Figure 6, a program might be able to work out or learn from experience that certain kinds
of bar junctions (Figure 4), or the corresponding 2-D line configurations (Figures 3 and 5), occur only
in a few of them, and thus are useful disambiguating cues. This will not be true of all the fragments
visible in Figure 1. Thus many fragments will not be recognised as familiar, and spurious linkages and
hypotheses will therefore not be generated. If the program were familiar with a different world, in
which other fragments were significant, then it might he more easily be confused by Figure 1. So
additional knowledge is not always helpful. (Many works of art seem to require such interactions
between different domains of knowledge.)
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A program should also be able to ’learn’ that certain kinds of fragments do not occur in any known
letter, so that if they seem to emerge at any stage this will indicate that picture fragments have been
wrongly linked together. This helps to eliminate fruitless searches for possible interpretations. So the
discovery of anomalies and impossibilities may play an important role in the development of rational
behaviour. A still more elaborate kind of learning would involve discovering that whether a fragment
is illegitimate depends on the context. Fragments which are permissible within one alphabet may not
be permissible in another. Thus the process of recognising letters is facilitated by knowledge of the
alphabet involved, yet some letter recognition may be required for the type of alphabet to be inferred:
another example of the kind of circularity, or mutual dependence, of sub-abilities in an intelligent 
system.

Figure 6
This shows how several layers of interpretation may be involved in seeing letters in a dot-picture. 

Each layer is a domain of possible configurations in which substructures may represent or be
represented by features or substructures in other layers. The following domains are illustrated: (a)

configurations of dots, spaces, dotstrips, etc., (b) configurations of 2-D line-segments, gaps, junctions,
etc., (c) configurations of possibly overlapping laminas (plates) in a 2.5D domain containing bars,
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bar-junctions, overlaps, edges of bars, ends of bars, etc., (d) a domain of stroke configurations where
substructures can represent letters in a particular type of font, (e) a domain of letter sequences, (f) a

domain of words composed of letter sequences. 

NOTE [13 Jan 2007; Clarified 1 Jul 2015]: 
The original diagram in Figure 6 suggested that all information flows upwards. That is not how
the program worked: there was a mixture of bottom-up, top-down and middle-out processing, and
the original arrows in the figure showing information flow have been replaced with bi-directional
arrows to indicate this.

9.10. Style and other global features
Knowledge of ’picture styles’ can also play an important role in the process of perception and
interpretation. Variations in style include such things as whether the letters are all of the same height
and orientation, whether the bars are all of the same width, whether the letters in words tend to be
jumbled, or overlapping, or at stepped heights, and so on. Notice that some of these stylistic concepts
depend on quite complex geometrical relationships (for instance, what does ’jumbled’ mean?). If the
program can take note of clues to the style of a particular picture, during its analysis, this can help with
subsequent decisions about linking or interpreting fragments. If you know the sizes of letters, for
instance, then you can more easily decide whether a line segment has a bit missing. 

Hypotheses about style must, of course, be used with caution, since individual parts of a picture need
not conform to the overall style. Local picture evidence can over-ride global strategies based on the
inferred style provided that the program can operate in a mode in which it watches out for evidence
conflicting with some of its general current assumptions, using monitors of the sorts described in 
Chapter 6.

9.11. Perception involves multiple co-operating processes
Our program includes mechanisms which make it possible to set a number of different processes going
in parallel, for example, some collecting global statistics about the current picture, some sampling the
picture for dot-configurations which might represent fragments of lines, others keeping track of
junctions between lines, or attempting to interpret parallel segments as bars, some trying to interpret
bars as strokes of letters, and so on. 

This parallelism is required partly because, with a large amount of information available for analysis
and interpretation, it may not be easy to decide what to do next, for example, which configurations to
look for in the picture, and where to look for them. Deciding between such alternatives itself requires
analysis and interpretation of evidence and at first it will not be obvious where the important clues are,
nor what they are. So initially many on-going processes are allowed to coexist, until items both
unambiguous and relatively important emerge, such as a long line, an unambiguous clue to the
location of a bar, some aspect of the style, or a set of linked bar fragments which uniquely identify a 
letter.

When fragments forming clear-cut cues emerge, they can invoke a ’higher-level’ schema which takes
control of processing for a while, interrupting the ’blind’ searching for evidence, by directing attention
to suitable parts of the picture and relevant questions.

If higher level processes form a plausible hypothesis, this may suppress further analysis of details by
lower level processes. For instance, recognition of fragments of ’E’, or ’X’, and of "I", where there
appear to be only about four letters, might cause a program (or person) to jump to the conclusion that
the word is ’EXIT’, and if this fits into the context, further examination of lines to check out on
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remaining strokes of letters, and the missing 1’, might then be abandoned. This ability to jump to
conclusions on the basis of partial analysis may be essential to coping with a rapidly changing world.
However it depends on the existence of a fair amount of redundancy in the sensory data: that is, it
assumes a relatively ’friendly’ (in the sense defined previously) world. It also requires an architecture
able to support multiple concurrent processes and the ability for some of them to be aborted by others
when their activities are no longer needed.

This type of programming involves viewing perception as the outcome of very large numbers of
interacting processes of analysis, comparison, synthesis, interpretation, and hypothesis-testing, most, if
not all, unconscious. On this view the introspective certainty that perception and recognition are
’direct’, ’unmediated’ and involve no analysis, is merely a delusion. (This point is elaborated in the
papers by Weir -- see Bibliography.)

This schizophrenic view of the human mind raises in a new context the old problem: what do we mean
by saying that consciousness is ’unitary’ or that a person has one mind? The computational approach
to this problem is to ask: how can processes be so related that all the myriad sub-tasks may be sensibly
co-ordinated under the control of a single goal, for instance the goal of finding the word in a spotty
picture, or a robot’s goal of using sensory information from a camera to guide it as it walks across a
room to pick up a spanner? See also chapter 6 and chapter 10. 

[[Note added 2001: 
At the time the program was being developed, we had some difficulty communicating our ideas
about the importance of parallel processing concerned with different domains because AI
researchers tended to assume we were merely repeating the well-known points made in the early
1970s by Winograd, Guzman and others in the MIT AI Lab, about "heterarchic" as opposed to
"hierarchic" processing. 
Heterarchic systems, dealt, as ours did, with different domains of structures and relations between
them (e.g. Winograd’s PhD thesis dealt with morphology, syntax, semantics and a domain of
three dimensional objects on a table). 
Both models involve mixtures of data-driven (bottom-up) and hypothesis-driven (top-down)
processes. 
Both allow interleaving of processes dealing with the different domains -- unlike hierarchic or 
pass-oriented mechanisms which first attempt to complete processing in one domain then pass
the results to mechanisms dealing with another domain, as in a processing pipeline. 

The main differences between heterarchy and our model were as follows:

a)  In an implementation of "heterarchic" processing there is typically only one locus of control
at any time. Thus processing might be going on in a low level sub-system or in a high level
sub-system, but not both in parallel with information flowing between them. 

b)  In those systems decisions to transfer control between sub-systems were all taken explicitly
by processes that decided they needed information from another system: e.g. a syntactic
analyser could decide to invoke a semantic procedure to help with syntactic disambiguation,
and a semantic procedure could invoke a syntactic analyser to suggest alternative parses. 

c)  In that sort of heterarchic system it is not possible for a process working in D1 to be 
interrupted by the arrival of new information relevant to the current sub-task, derived from
processing in D2. 
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d)  Consequently, if a process in that sort heterarchic system gets stuck in a blind-alley and does
not notice this fact it may remain stuck forever.

The POPEYE architecture was designed to overcome these restrictions by allowing processing to
occur concurrently in different domains with priority mechanisms in different domains
determining which sub-processes could dominate scarce resources. Priorities could change, and
attention within a domain could therefore be switched, as a result of arrival of new information
that was not explicitly asked for. 
In this respect the POPEYE architecture had something in common with neural networks in
which information flows between concurrently processing sub-systems (usually with simulated
concurrency). Indeed, a neural net with suitable symbol-manipulating sub-systems could be used
to implement something like the POPEYE architecture, though we never attempted to do this for
the whole system. After this chapter was written, work was done on implementing the top level
word-recognizer in POPEYE as a neural net to which the partial results from lower level systems
could be fed as they became available. ]]

9.12. The relevance to human perception
The world of our program is very simple. There are no curves, no real depth, no movement, no forces.
The program cannot act in this world, nor does it perceive other agents. Yet even for very simple
worlds, a computer vision program requires a large and complex collection of knowledge and abilities.
From such attempts to give computers even fragmentary human abilities we can begin to grasp the
enormity of the task of describing and explaining the processes involved in real human perception.
Galileo’s relationship to the physics of the 1970s may be an appropriate and humbling comparison. 

In the light of this new appreciation of the extent of our ignorance about perceptual processes, we can
see that much philosophical discussion hitherto, in epistemology, philosophy of mind, and aesthetics,
has been based on enormous over-simplifications. With hindsight much of what philosophers have
written about perception seems shallow and lacking in explanatory power. But perhaps it was a
necessary part of the process of cultural evolution which led us to our present standpoint.

Another consequence of delving into attempts to give computers even very simple abilities is that one
acquires enormous respect for the achievements of very young children, many other animals, and even
insects. How does a bee manage to . land on a flower without crashing into it?

Many different aspects of perception are being investigated in artificial intelligence laboratories.
Programs are being written or have been written which analyse and interpret the following sorts of
pictures or images, which people cope with easily.

a)  Cartoon drawings. 

b)  Line drawings of three dimensional scenes containing objects with straight edges, like blocks and
pyramids. 

c)  Photographs or television input from three-dimensional scenes, including pictures of curved
objects. 

d)  Stereo pairs from which fairly accurate depth information can be obtained. 

e)  Sequences of pictures representing moving objects, or even television input showing moving
objects. 
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f)  Satellite photographs, which give geological, meteorological, or military information.
(Unfortunately, some people are unable to procure research funds unless they pretend that their work is
useful for military purposes and, even more unfortunately, it sometimes is.) 

g)  Pictures which represent ’impossible objects’, like Escher’s drawings. Like people, a program
may be able to detect the impossibility (see Clowes, 1971, Huffman, 1971, and Draper (to appear)).

Some of the programs are in systems which control the actions of artificial arms, or the movements of
vehicles. The best way to keep up with this work is to read journal articles, conference reports, and
privately circulated departmental reports. Text-books rapidly grow out of date. (This would not be so
much of a problem if we all communicated via a network of computers and dispensed with books! But
that will not come for some time.)

Each of the programs tackles only a tiny fragment of what people and animals can do. For example,
the more complex the world the program deals with the less of its visible structure is perceived and
used by the program. The POPEYE program deals with a very simple world because we wanted it to
have a fairly full grasp of its structure (though even that is proving harder than we anticipated). One of
the major obstacles to progress at present is the small number of memory locations existing computers
contain, compared with the human brain. But a more important obstacle is the difficulty of articulating
and codifying all the different kinds of structural and procedural knowledge required for effective
visual perception. There is no reason to assume that these obstacles are insuperable in principle,
though it is important not to make extravagant claims about work done so far. For example, I do not
believe that the progress of computer vision work by the end of this century will be adequate for the
design of domestic robots, able to do household chores like washing dishes, changing nappies on
babies, mopping up spilt milk, etc. So, for some time to come we shall be dependent on simpler, much
more specialised machines.

9.13. Limitations of such models
It would be very rash to claim that POPEYE, or any other existing artificial intelligence program,
should be taken seriously as a theory explaining human abilities. The reasons for saying that existing
computer models cannot be accepted as explaining how people do things include: 

a)  People perform the tasks in a manner which is far more sensitive to context, including ulterior
motives, emotional states, degree of interest, physical exhaustion, and social interactions. Context
may affect detailed strategies employed, number of errors made, kinds of errors made, speed of
performance, etc. 

b)  People are much more flexible and imaginative in coping with difficulties produced by novel
combinations, noise, distortions, missing fragments, etc. and at noticing short cuts and
unexpected solutions to sub-problems. 

c)  People learn much more from their experiences. 

d)  People can use each individual ability for a wider variety of purposes: for instance we can use our
ability to perceive the structure in a picture like Figure 1 to answer questions about spaces
between the letters, to visualise the effects of possible movements, to colour in the letters with
different paints, or to make cardboard cut-out copies. We can also interpret the dots in ways
which have nothing to do with letters, for instance seeing them as depicting a road map. 
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e)  More generally, the mental processes in people are put to a very wide range of practical uses,
including negotiating the physical world, interacting with other individuals, and fitting into a society.
No existing program or robot comes anywhere near matching this.

These discrepancies are not directly attributable to the fact that computers are not made of neurons, or
that they function in an essentially serial or digital fashion, or that they do not have biological origins.
Rather they arise mainly from huge differences in the amount and organisation of practical and
theoretical knowledge, and the presence in people of a whole variety of computational processes to do
with motives and emotions which have so far hardly been explored.

A favourite game among philosophers and some ’humanistic’ psychologists is to list things computers
cannot do. (See the book by Dreyfus for a splendid example.) However, any sensible worker in
artificial intelligence will also spend a significant amount of time listing things computers cannot do
yet! The difference is that the one is expressing a prejudice about the limitations of computers,
whereas the other (although equally prejudiced in the other direction, perhaps) is doing something
more constructive: trying to find out exactly what it is about existing programs that prevents them
doing such things, with a view to trying to extend and improve them. This is more constructive
because it leads to advances in computing, and it also leads to a deeper analysis of the human and
animal abilities under investigation.

As suggested previously in Chapter 5, attempting to prove that computers cannot do this or that is a
pointless exercise since the range of abilities of computers, programming languages and programs is
constantly being extended, and nobody has any formal characterisation of the nature of that process
which could serve as a basis for establishing its limits. The incompleteness and unsolvability theorems
of Goedel and others refer only to limitations of narrowly restricted closed systems, which are quite
unlike both people and artificial intelligence programs which communicate with the world.

This chapter has presented a few fragments from the large and growing collection of ideas and
problems arising out of A.I. work on vision. I have begun to indicate some of the connections with
philosophical issues, but there is a lot more to be said. The next.chapter develops some of the points of
contact at greater length. 

Endnotes
(1) The name ’POPEYE’ comes from the fact that the program is written in POP-2, a programming
language developed at Edinburgh University for artificial intelligence research. See Burstall et al. A
full account of how POPEYE works, with an analysis of the design problems could fill a small book.
This chapter gives a superficial outline, focusing on aspects that are relevant to a general class of
visual systems. Details will be published later. The work is being done with David Owen, Geoffrey
Hinton, and Frank O’Gorman. Paul (1976) reports some closely related work. 

[[Note added 1 Jul 2015 The published version of this book did not make it clear that the POPEYE
program was able to cope with pictures similar to Figure 1 but with additional positive and negative
noise added, as illustrated here: 
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A consequence of the parallelism and the bi-directionality of information flow was that the program
could often conclude that the word, or some higher level structure, had been identified before all
processing of the evidence had been completed. Sometimes that identification was mistaken e.g.
because the addition of positive and negative noise, or overlap of letters, had obscured some of the
evidence, and further processing would reveal the error. This seems to reflect the fact that humans
sometimes think they have recognized someone or something (and may then greet the person) and
soon after that realise, with the person out of sight, that the recognition was mistaken, presumably
because more of the links relating data and interpretation fragments have been computed. This familiar
feature of human vision, and related errors of proof-reading text, were among the motivations for the
design of Popeye. ]]

[[Notes added Sept 2001. 
(a) A more complete description of Popeye was never published and the application for a research grant to extend the
project around 1978 was unsuccessful. Both appear in part to have been a consequence of the view then gaining currency,
based largely on the work of David Marr, that AI vision researchers who concentrated on mixtures of top-down and
bottom-up processes were deluded, usually because they were misled by problems arising from the use of artificial  images.

Marr’s ideas about mistakes in AI vision research were originally published in MIT technical reports that were widely
circulated in the mid 1970s. He died, tragically, in 1981, and the following year his magnum opus was published: D. Marr, 
Vision, 1982, Freeman, 1982.

(b) Marr’s criticism of AI vision research was based in part on the claim that natural images are far richer in information
and if only visual systems took account of that information they would not need such sophisticated bi-directional
processing architectures. My own riposte at the time (also made by some other researchers) was:

On the one hand human vision can cope very well with these artificial and degraded images, e.g. in cartoon drawings,
so there is a fact to be explained and modelled. Moreover that ability to deal effortlessly with cartoon drawings may
have some deep connection with intermediate stages of processing in natural perception.
In addition even natural images are often seriously degraded -- by poor light, dirty windows, mist, dust-storms,
occluding foliage, rapid motion, other features of the environment, and damage to eyes.

(c) In the late 1970s there was also growing support for a view also inspired in part by Marr’s work, namely, that symbol
manipulating mechanisms and processes of the sorts described in this chapter and elsewhere in this book were not really
necessary, as everything could be achieved by emergent features of collections of ’local cooperating processes’ such as
neural nets.

Neural nets became increasingly popular in the following years, and they have had many successful applications, though it
is not clear that their achievements have matched the expectations of their proponents. Work on neural nets and other
learning or self-organising systems, including the more recent work on evolutionary computation, is often (though not
always) driven by a desire to avoid the need to understand a problem and design a solution: the hope is that some automatic
method will make the labour unnecessary. My own experience suggests that until people have actually solved some of
these problems themselves they will not know what sort of learning mechanism or self-organising system is capable of
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solving them. However, when we have done the analysis required to design the appropriate specialised learning
mechanisms we may nevertheless find that the products of such mechanisms are beyond our comprehension. E.g. the visual
ontology induced by a self-organising perceptual system that we have designed may be incomprehensible to us.

What I am criticising is not the search for learning systems, or self-organising systems, but the search for general-purpose
automatic learning mechanisms equally applicable to all sorts of problems. Different domains require different sorts of
learning processes, e.g. learning to walk, learning to see, learning to read text, learning to read music, learning to talk,
learning a first language, learning a second language, learning arithmetic, learning meta-mathematics, learning quantum
mechanics, learning to play the violin, learning to do ballet, etc. In some cases the learning requires a specific architecture
to be set up within which the learning can occur. In some cases specific forms of representation are required, and
mechanisms for manipulating them. In some cases specific forms of interaction with the environment are required for
checking out partial learning and driving further learning. And so on.

(d) At the time when the Popeye project was cancelled for lack of funds, work was in progress to add a neural net-like
subsystem to help with the higher levels of recognition in our pictures of jumbled letters. I.e. after several layers of
interpretation had been operating on an image like Figure 1, a hypothesis might begin to emerge concerning the letter
sequence in the second domain from the top. In the original Popeye program a technique analogous to spelling correction
was used to find likely candidates and order them, which could, in turn, trigger top-down influences to check out specific
ambiguities or look for confirming evidence. This spelling checker mechanism was replaced by a neural net which could be
trained on a collection of known words and then take a half-baked letter sequence and suggest the most likely word. (This
work was done by Geoffrey Hinton, who was then a member of the Popeye project, and later went on to be one of the
leaders in the field of neural nets.)

(e) Despite the excellence of much of Marr’s research (e.g. on the cerebellum) I believe that AI research on vision was
dealt a serious body blow by the publication of his views, along with the fast growing popularity of neural nets designed to
work independently of more conventional AI mechanisms, and likewise later work on statistical or self-organising systems,
motivated in part by the vain hope that by writing programs that learn for themselves or evolve automatically, we can avoid
the need to understand, design and implement complex visual architectures like those produced by millions of years of 
evolution.

Certainly no matter what kinds of high level percept a multi-layer interpretation system of the sort described in this chapter
produces, it is possible to mimic some of its behaviour by using probabilistic or statistical mechanism to discover
correlations between low level input configurations and the high level descriptions. This is particularly easy where the
scenes involve isolated objects, or very few objects, with not much variation in the arrangements of objects, and little or no
occlusion of one object by another.

The problem is that in real life, including many practical applications, input images very often depict cluttered scenes with
a wide variety of possible objects in a wide variety of possible configurations. If the image projection and interpretation
process involves several intermediate layers, as in figure 6 above, each with a rich variety of permitted structures, and
complex structural relations between the layers, the combinatorics of the mapping between input images and high level
percepts can become completely intractable, especially if motion is also allowed and some objects are flexible. One way of
achieving tractability is to decompose the problem into tractable sub-problems whose solutions can interact possibly aided
by background knowledge. This seems to me to require going back to some of the approaches to vision that were being
pursued in the 1970s including approaches involving the construction and analysis of structural descriptions of
intermediate configurations. The computer power available for this research in the 1970s was a major factor in limiting
success of that approach: if it takes 20 minutes simply to find the edges in an image of a cup and saucer there are strong
pressures to find short cuts, even if they don’t generalise.

(f) The growing concern in the late 1970s and early 1980s for efficiency, discouraged the use of powerful AI programming
languages like Lisp and Pop-11, and encouraged the use of lower level batch-compiled languages like Pascal and C and
later C++. These languages were not as good as AI languages for expressing complex operations involving structural
descriptions, pattern matching and searching, especially without automatic garbage collection facilities. They are also not
nearly as flexible in permitting task-specific syntactic extensions as AI languages, which allow the features of different
problems to be expressed in different formalisms within the same larger program. Moreover AI languages with interpreters
or incremental compilers provide far better support support for interactive exploration of complex domains where the
algorithms and representations required cannot be specified in advance of the programming effort, and where obscure
conceptual bugs often require interactive exploration of a running system.
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However, the emphasis on efficiency and portability pressurised researchers to use the non-AI languages, and this subtly
pushed them into focusing on problems that their tools could handle, alas.

Robin Popplestone (the original inventor of Pop2) once said to me that he thought the rise in popularity of C had killed off
research in the real problems of vision. That may be a slight exaggeration.

(g) For a counter example to the above developments see Shimon Ullman, High-level vision: Object recognition and visual 
cognition, MIT Press, 1996. I have the impression that there may now be a growing collection of AI vision researchers who
are dissatisfied with the narrow focus and limited applicability of many machine vision projects, and would welcome a
move back to the more ambitious earlier projects, building on what has been learnt in recent years where appropriate. This
impression was reinforced by comments made to me by several researchers at the September 2001 conference of the 
British Machine Vision Association.

(h) Besides the obvious limitations due to use of artificially generated images with only binary pixel values, there were
many serious limitations in the Popeye project, including the restriction to objects with straight edges, the lack of any
motion perception, and the lack of any perception of 3-D structure and relationships (apart from the partial depth ordering
in the 2-D lamina domain). Our defence against the criticism of over-simplification was that we thought some of the
architectural issues relevant to processing more complex images or image sequences, dealing with more complex
environments, could usefully be addressed in an exploration of our artificial domain, if only by producing a "proof of
principle", demonstrating how cooperative processes dealing with different domains could cooperate to produce an
interpretation without time-consuming search.

(i) In the 20 years following the Popeye project (and this book) I gradually became aware of more serious, flaws, as 
follows.

I had assumed that although seeing involved processing structures in different domains in parallel, it was necessarily
a unitary process in that all those processes contributed to the same eventual high level task of acquiring information
about the structure and contents of the environment. Later it became clear that this was a mistake: there are different
architectural layers using visual information in parallel for quite different purposes, e.g. posture control, planning
ahead of actions to be performed, fine-control of current actions through feedback loops, answering questions about
how something works, social perception, and so on. The different sub-mechanisms require different information
about the environment, which they can acquire in parallel, often sharing the same low level sensors. 

Some of these are evolutionarily very old mechanisms shared with many animals. Others use much newer
architectural layers, and possibly functions and mechanisms unique to humans.

This point was already implicit in my discussion of the overall architecture with its multiple functions in Chapter 6,
e.g. in connection with monitors.

At that time I shared the general view of AI researchers and many psychologists that the primary function of
perception, including vision, was to provide information about the environment in the form of some sort of
"declarative" description or information structure that could be used in different ways in different contexts. Later I
realised that another major function of perceptual systems was to trigger appropriate actions directly, in response to
detected patterns. 

Some of these responses were external and some internal, e.g. blinking, saccadic eye movements, posture control,
and some internal emotional changes such apprehension, sexual interest, curiosity, etc.

This use of perceptual systems seems to be important both in innate reflexes and in many learnt skills for instance
athletic skills.

Of course, when I started work on this project I already knew about reflexes and trained high speed responses, as did
everyone else: I simply did not see their significance for a visual architecture (though I had read J.J.Gibson’s book 
The senses considered as perceptual systems, which made the point.)

Later this idea became central to development of the theory about a multi-layer architecture, mentioned above, in
which reactive and deliberative processes run in parallel often starting from the same sensory input. This theme is
still being developed in papers in the Cogaff project.
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Like many researchers on vision in AI and psychology, I had assumed that insofar as vision provided factual
information about the environment it was information about what exists in the environment. Later I realised that what
is equally or more important, is awareness of what might exist, and the constraints on what might exist, e.g. "that
lever can rotate about that point, though the rotation will be stopped after about 60 degrees when the lever hits the edge of
the frame". 

The need to see what is and is not possible, in addition to what is actually there, has profound implications for the
types of information representations used within the visual system: structural descriptions will not suffice. Several papers
on this are included in the Cogaff web site, some mentioned below.

The last critique was inspired by J.J.Gibson’s notion of "affordance". See for example his book, The Ecological Approach
to Visual Perception originally published in 1979. Although I rejected some of his theories (e.g. the theory that perception
could somehow be direct, and representation free) the theory that vision was about detecting affordances seemed very
important. I.e. much of what vision (and perception in general) is about is not just provision of information about what is 
actually in the environment, but, more importantly, information about what sorts of things are possible in a particular
environment that might be useful or harmful to the viewer, and what the constraints on such possibilities are.

Although I think very little progress has been made on this topic, several of my papers explored aspects of this idea, e.g.

A. Sloman, ’Image interpretation: The way ahead?’ 
Invited talk, in Physical and Biological Processing of Images, Editors: O.J.Braddick and A.C. Sleigh, Pages
380--401, Springer-Verlag, 1982. 
A. Sloman, ’On designing a visual system (Towards a Gibsonian computational model of vision)’, in Journal of
Experimental and Theoretical AI, 1, 4, pp. 289--337, 1989. 
A. Sloman, ’Actual Possibilities’, in Eds. L.C. Aiello and S.C. Shapiro, Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifth International Conference (KR ‘96), pp. 627--638, 1996, 
A. Sloman, ’Diagrams in the mind’, in Diagrammatic Representation and Reasoning, Eds. M. Anderson, B. Meyer
and P. Olivier, Springer-Verlag, 2001, 
A. Sloman ’Evolvable Biologically Plausible Visual Architectures’, in Proceedings British Machine Vision 
Conference, Eds T.Cootes and C.Taylor. 2001.
Talks/presentations on vision in http://www.cs.bham.ac.uk/research/projects/cogaff/talks/ and in 
http://www.cs.bham.ac.uk/research/projects/cosy/papers/. 
During work on the CoSy robotic project in 2005 I became increasingly aware that in addition to concurrent
perception of structures at different levels of abstraction a human-like (or intelligent robot’s) vision system would
need to perceive processes of different sorts, and different levels of abstraction concurrently, as explained in this PDF
presentation: 
A (Possibly) New Theory of Vision (2005). 

The above papers are all available here http://www.cs.bham.ac.uk/research/cogaff/ along with additional papers on
architectural layers and their implications for the evolution of visual systems and action systems. 

(j) The Edinburgh AI language Pop2 mentioned above later evolved into Pop-11, which became the core of the Poplog
system developed at Sussex University and marketed for several years by ISL, who contributed further developments. It is
now available free of charge with full system sources for a variety of platforms here: 
http://www.cs.bham.ac.uk/research/poplog/freepoplog.html, including materials supporting teaching and research on 
vision, developed by David Young at Sussex University. 
]]
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