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Abstract

Imagine a situation in which you had to design a physical agent that could collect information
from its environment, then store and process that information to help it respond appropriately to
novel situations. What kinds of information should it attend to?  How should the information be
represented so as to allow efficient use and re-use? What kinds of constraints  and trade-offs
would there be? There are no unique answers. In this paper, we discuss some of the ways in
which the need to be able to address problems of varying kinds and complexity can be met by
different  information  processing  systems.  We also  discuss  different  ways  in  which  relevant
information can be obtained, and how different kinds of information can be processed and used,
by both biological organisms and artificial  agents. We analyse several constraints  and design
features,  and show how they relate  both to  biological  organisms,  and to lessons that  can be
learned from building artificial systems. Our standpoint overlaps with Karmiloff-Smith (1992) in
that we assume that a collection of mechanisms geared to learning and developing in biological
environments are available in forms that constrain, but do not determine, what can or will be
learnt by individuals.
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1 Introduction

For what purposes do animals need to acquire and use information? At one extreme organisms
are merely  acted on by the environment, which provides them with nutrients and toxins, and
subjects  them  to  various  forces  and  abiotic  conditions  (such  as  temperature,  pressure,  and
humidity). Such organisms can benefit or suffer as a result, but their ability to alter the effect of
these conditions is severely limited. At another extreme, organisms can act on the environment,
by planning and performing actions of varying kinds and degrees of complexity to avoid future
harm or achieve future gain. In these circumstances, selection of behaviour requires the use of
information.  There  are  enormously  diverse  types  of  information  and  types  of  information
processing capabilities.

In this paper, we discuss some examples in the middle of this range of organisms, pose some new
questions  and  suggest  some  new  examples  of  information  processing  capabilities.  We also
illustrate how methods, problems, concepts and theories from Artificial Intelligence (AI) can help
biologists and psychologists make progress, advancing work already done by other authors (e.g.
Gibson, 1988; Gibson and Pick, 2000; Karmiloff-Smith, 1992). This is just a tiny region in a huge



field of research into the possible requirements and designs of different biological information
processing systems. It intersects with existing work on motivation, play, learning, perception and
development,  and should  help  us  understand how such systems have  evolved and how they
develop within an individual’s lifetime. 

1.1 What do we mean by “information”?

The word “information” has two main uses:

a) Shannon's use (Shannon, 1948) refers to a syntactic measure of communicable signals
that ignores what the signals refer to, and

b) The everyday use (Sloman, 2011a) refers to semantic content that is about something that
actually exists or could exist1.

We use “information” (and related words, e.g. “concept”, “symbol”, “meaning”, “content”) in an
informal way in sense b), as do most biologists, psychologists and engineers when discussing
how organisms or machines (“agents”) can acquire factual information, construct theories, make
predictions, draw conclusions, or adopt goals referring to something in the environment or within
themselves. Information in sense b) matters to an organism or machine if the use of information
can provide some benefit to them.

In  each  case  there  must  be  an  “information  bearer”  (representation)  in  the  individual  (e.g.
chemical  or  neural  signals),  or  in  the  environment  (e.g.  pheromone  trails),  or  straddling  the
organism and its environment. New information bearers are often constructed in the process of
using old information, such as when reasoning, planning, or forming goals. Information bearers
need to be acted upon or used, in order to use the information content.

1.2 Plan for this paper

We present some of the requirements for intelligent agents, natural or artificial, that acquire and
use information, showing how modes of thinking from different research fields can inform each
other in designing working systems (e.g. robots) and in the search for explanations of learning
and development in organisms. In this context it is useful to consider biological evolution and
human engineers as playing similar roles, namely producing designs for an immature agent that
can  learn to  cope with  new environments,  including situations  not  encountered  by evolution
(Dennett, 1981; McCarthy, 2008).

2 Theoretical requirements

Imagine that you are given the task of designing a physical agent that will explore the surface of
another planet, collecting and sending information as it travels (e.g. Mars Rovers2). It will be
exposed to a wide variety of unpredictable conditions, so it cannot be pre-programmed for every
possible  contingency  (see  Inglis  et  al.  2001;  McNamara  and  Houston,  2009  for  further
discussion). It will have to operate autonomously, so it must ‘decide’ for itself where to go and

1 There are special cases of things that do not exist in space-time (numbers, theories etc.), but we will ignore those here.
2 http://marsrover.nasa.gov/mission/



what to do, as well as self-diagnosing and fixing its own hardware or software problems. What
are the general requirements of the task of exploration and learning? We sketch some answers
from the standpoint of the designer of such a system who is inspired by biological evidence.
These design considerations can, in turn, inspire developments in biological theorising, including
suggesting new research questions (see for example Hawes,  2011).  Thus,  in this  section and
Section 3, we will illustrate our points with examples from a hypothetical artificial agent (the
Mars Rover-type robot mentioned earlier, hereafter ‘Rover’)  and a biological agent,  the New
Caledonian  crow (Corvus moneduloides,  hereafter  ‘NCC’).  Since  in  both cases  we still  lack
information  about  the  precise  mechanisms  or  computational  processes  underlying  behaviour,
these examples will be purely illustrative examples, in order to clarify a broader theoretical point.
We suggest linking the study of animal cognition with robotics research not because there are
existing robots whose information processing mechanisms might be offered as explanations of
animal competences, but because thinking like a robot designer about mechanisms required in a
robot can suggest research questions regarding such mechanisms in animals.

We proceed to specify some types of information that an animal or machine can acquire, some
ways in  which the information can be used,  and some transformations of stored information
required to extend the generality and power of the agent's competences, in order to illustrate some
of the variety of ways in which biological theory and AI overlap. 

2.1 Persistence of information

Some  uses  of  information  are  transient:  the  individual  acquires  and  immediately  uses  the
information (e.g. while guiding grasping) without retaining any record of it. For other purposes,
persistence of information is required. In this paper, we will mainly discuss types of information
acquisition and exploration that result in persisting information content.

If there is some change in the animal or in the external environment as a result of acquiring
information  (in  other  words,  an  “information  bearer”  is  formed  or  modified  as  discussed  in
Section 1.1), and it persists for even a short time, it can enable further uses of the information
content. Without such persistence, detection of change is impossible. Persistence is also needed in
order to re-use information about enduring objects, properties, locations or processes, such as
approaching predators,  escaping  prey, and so  on.  This  persistent  information  can  be  re-used
through well-known processes of learning such as classical or operant conditioning, or other
probabilistic forms of learning (see Shettleworth, 2010 for an excellent discussion). For example,
information related to the availability of food will become associated with the act of feeding such
that  the  presence  of  this  information  will  increase  frequency  of  food-seeking  and  feeding
behaviours. 

Rover  would  probably  need  persistent  information  of  many  kinds  in  order  to  increase  its
efficiency. For example, it would need to store information about the geographical locations of
interesting samples, in order to return to that location later to collect the samples. Likewise, a
NCC fishing for Cerambycid larvae in rotten logs might store information about the presence or
absence of ‘frass’ from the larvae on the surface of the log, and re-use that information to identify
logs which contain active larvae.



Persistent records can also enable discovery of useful abstractions. This is often referred to as
“concept formation” (Martin,  2007; Zentall,  2008).  Possession of such a concept allows new
questions to be asked, and new goals or generalisations about some portion of the world to be
formulated.  More  complex  examples  include  discovery  of  useful  relations  (between,  inside,
touching:  e.g.  Bird  and  Emery,  2010),  functions  (owner,  initiator,  container  or  location  of),
properties  of  matter  (rigid,  compliant,  elastic,  viscous:  Bushnell  and  Boudreau,  1993)  and
conditional properties (e.g. a compliant branch supports an orangutan's weight only if it is above
a minimal  stiffness).  In some of these examples,  classical  models  of learning will  suffice to
explain the observed behaviours,  but  in others,  they are not  sufficient  (see Section 2.2.2 for
further discussion).

2.2 Coping with variability of the environment

2.2.1 Pre-configured competences

However  varied  the  environments,  certain  competences  will  have  to  be  hard-wired  initially.
Evolution provides many fully pre-configured responses for different situations, such as feeding
behaviours (e.g. suckling, begging, pecking). When the environment is too variable, evolution
(like a human designer) cannot discover in advance suitable fixed responses to all needs in all
situations.  Instead,  it  provides mechanisms of learning and development that use information
about  the  environment.  This  enables  individuals  to  discover  useful  new  actions,  threats  or
opportunities (see Section 2.2.2). However, these discoveries must start from some form of pre-
configured competences.

Initial competences should be designed to make use of relevant environmental information, for
instance detecting shapes of salient objects, their edges or contours, the curvature and orientation
of surface fragments, and their texture. The exact properties will depend partly on what sensory
apparatus the agent is equipped with, and on which features of objects or events are relevant to its
ecological niche. Some objects' properties are difficult to determine without touching them. For
example, if the agent needed to determine the hardness of a material, it could apply pressure to
the surface of the object, while estimating weight would require it to lift the object (Flanagan and
Wing, 1997; Wing and Lederman, 1998). Information gained in this way does not need to be
metrical. For example, Rover might only need two categories of weight (“light enough to carry”
or  “too  heavy”)  to  enable  decisions  to  be  made  about  transporting  samples.  In  other  cases,
orderings may suffice.

Rover might need to be pre-programmed with some basic competences (such as the ability to
grasp a rock or to avoid exceeding its safe loading capacity), or it might damage itself irreparably,
or fail to start collecting samples. However, it could extend those competences by learning more
through exploration (e.g.  learning how to identify, classify and select  the most  relevant  rock
samples).  We  know  that  while  it  can  take  several  years  for  NCC  to  achieve  adult-level
competency at tool use, juveniles perform stereotyped object manipulation patterns which appear
to be precursors of adult tool behaviour (Kenward et al., 2006).

Explaining how such discoveries can be made is very difficult. The methods of robot designers
(identifying  requirements,  then  generating,  testing  and  debugging  designs  to  meet  those



requirements) can usefully complement empirical research into observable behaviours and brain
mechanisms (Webb, 2001). For instance, a learning task can be broken down into many sub-
tasks. One of the tasks could be acquiring and storing information about the layout of the terrain,
and the opportunities and dangers it affords. Various mechanisms for doing this both in animals
and in robots have been studied (e.g. using SLAM algorithms for Simultaneous Localisation and
Mapping; Bailey and Durrant-Whyte, 2006), but will not be discussed further here.

2.2.2 Reducing complexity by partitioning what has to be learnt

Well-designed learners need to be able to cope with many potential sources of variability and
dynamic change in the environment (McNamara and Houston, 2009; Shettleworth, 2010). This
includes spatio-temporal changes caused by seasonal or climatic changes, geological changes,
new  behaviours  of  intra-  or  inter-specific  competitors,  variations  in  food  availability  (e.g.
Houston et al., 1980; Kacelnik and Krebs, 1985; Kacelnik and Todd, 1992), co-evolutionary arms
races between predators and prey, and even niche construction (Sterelny, 2007).

Such learning processes  are  potentially combinatorially explosive (Bellman,  1961;  Perlovsky,
1998) because of the huge search spaces involved in combining, for instance, different perceptual
tests,  motor  sequences,  and modulations  of  generic  actions  to  fit  specific  shapes,  sizes,  and
relations of objects and the processes they generate. In some circumstances it is possible for the
animal to reduce computational load by pursuing a strategy of exploring the environment first
and then  switching to  exploiting  it.  For  example,  Krebs  et  al.  (1978) showed that  great  tits
learning  to  choose  between  exploiting  two  foraging  posts,  each  with  a  fixed  probability  of
reward, stopped exploring and remained at one feeding post after a number of trials close to that
predicted by the optimal solution. However, in this case, the environment was relatively simple
and did not vary over the course of the experiment: the situation is much more complex in non-
stationary environments and other sources of uncertainty (Cohen et al.,  2007).  In addition, a
learning system needs to have good criteria for selecting things to attend to. Evolution seems to
have provided many species with initial  motivations and learning mechanisms specialised for
restricted classes of environment (e.g. Karmiloff-Smith, 1992). Furthermore, in mechanisms of
learning such as classical conditioning, animals attend to and learn about stimuli that convey
information (e.g. Rescorla, 1968). The selection of relevant information3 to learn may be reduced
further  by  decomposing  an  enormously  varied  environment  into  a  collection  of  object
“affordances”  (action  possibilities,  or  what  the  environment  provides  for  the  organism)  and
processes or “exploration domains” (“microdomains” in Karmiloff-Smith, 1992). We suggest that
decomposition is  achieved by perceptual and motor interactions with the environment during
exploration (see Section 4 and Power, 2000 for an extended discussion).

By selecting a physical subset of the environment, and systematically varying actions performed
on it,  the agent solves (temporarily) the problem of what to attend to and limits the range of
phenomena within which patterns are sought. Some of the actions will involve only the agent’s
body-parts, for example moving limbs or digits, controlling eye movements or moving the whole
body. Others will also involve selected objects, or types of object, such as repeatedly grabbing
and pulling, pushing or twisting the same thing, or rearranging a group of objects. All this will
only work if the agent starts off with perceptual mechanisms capable of detecting and recording

3 Here, relevant information is that which – if acted on – will influence the animal’s evolutionary fitness.



the structures and motions produced by the exploratory actions (see Section 2.2.1).  For example,
Rover might have to explore the effects of its own actions when it pushes piles of loose gravel-
like material around, separating movement of the material from self-generated movement of its
own body, thus discovering how to pile the material in a stable heap.

Our anecdotal observations of animals and children suggest that exploration domains are often
inter-leaved,  for  example  alternating  between  eating  and  playing  with  food.  This  allows
knowledge of different domains to be developed roughly in parallel (Bushnell and Boudreau,
1993).  However, when switching domains,  the individual needs to be able to group items of
information together according to the current domain involved. For example, for a tool using
species like NCC, materials such as twigs and grass stems have one kind of affordance in the tool
using domain (inserting into holes to retrieve food items) and other kinds of affordance when
building a nest. For different species, the objects in the environment and their affordances will
differ  according  to  their  ecological  niche,  but  there  seem to  be  some  common  exploration
mechanisms  across  species  (Chappell  and  Sloman,  2007;  Sloman  and  Chappell,  2005;  see
Section 4). 

2.3 Abstracting information

Usually information is acquired in a format that is only of restricted use. Finding generalisations
across cases, using abstraction, extends the use, though usually only within a range of contexts
closely related to the learning situations. However, after a succession of changes, making stored
structures  usable  but  very  particular  and  shallow,  learners  (unconsciously)  reorganise  the
information  into  a  new  generative  form.  This  is  both  more  economical  and  more  powerful
because it is wider in scope – a sort of deductive system in which novel conclusions can be
derived.  This  illustrates  what  Karmiloff-Smith  (1992)  calls  “Representational  Redescription”.
The  transition  in  human  children  from using  empirically  learnt  words  and  phrases  to  using
generative syntax, allowing a potentially infinite class of sentences to be understood or generated,
is a well-known example. As a simpler example, this new kind of generative system potentially
allows animals to apply elements of existing knowledge about how to perform a particular action
in one context to an entirely new context, in order to access a new food resource (e.g. Gajdon et
al., 2006). The mechanisms underlying the processes of abstraction are still subject to debate.
Sidman (see Sidman, 1990; 2000 for example) has proposed that several kinds concepts (such as
equivalence relationships like symmetry and transitivity) might arise purely as a consequence of
reinforcement contingencies. Experiments using successive matching in pigeons (Urcuioli, 2008)
support this theory and further suggest that pigeons might be forming stimulus-temporal location
compounds. However, these experiments involved a small number of familiar, simple stimuli,
presented  in  tightly  constrained  learning  environments.  It  is  much  harder  to  translate  such
mechanisms to  more complex learning situations  encountered  by animals  in  the  wild,  where
stimuli may be novel and it is often not clear precisely what the reinforcement might be. Nor can
such mechanisms readily explain Karmiloff-Smith’s (1992) representational redescription.

While Rover would initially have to learn anew how to handle each new kind of material  it
handled, it might eventually represent them in more abstract categories. This would allow it to
identify  quickly  whether  a  particular  material  is  in  the  category  that  requires  scooping  or



grasping, for example. Similarly, NCC might learn something about the abstract affordance of
hooks, enabling them to manufacture a hook from a novel material (Weir et al., 2002).

For each such exploration domain, Karmiloff-Smith (1992) suggests that a) the learning depends
on  innate  mechanisms,  although  what is  learnt  depends  on  the  environment,  and  b)  that
exploration goes through characteristic phases, but different domains are explored at different
ages.  Finally,  she  suggests  that  c)  learning  within  a  domain  initially  produces  behavioural
competence, followed by a succession of revisions of what is learnt. This reorganises and re-
represents the information to generalise the competence, later allowing the competence itself to
become an object of attention, often manifested in abilities to answer questions about the domain,
such as what can and cannot occur (see Section 4).

2.4 Extending knowledge by combining domains

New domains can be composed by combining old domains, such as combining play with sand
and play with water. Such combinations are possible because so many of the domains involve
spatial structures and processes: actions originally done at different locations or times can be
done together. This can lead to new forms of interaction (e.g. Miyata et al. 2010). In some cases,
what was previously learnt in separate domains provides a basis  for predicting the results  of
composition.  In  other  cases,  more  empirical  learning is  required,  followed by new forms of
conceptual revision, theory construction and meta-cognition. For example, learning about mud
after learning about sand and about water.

One common simplification is the discovery that two domains, involving different perceptual
contents  and  affordances,  can  nevertheless  share  structures  and  be  unified  in  a  useful  new
abstraction. This can create new domains, or be applied to existing domains. Abstractions such as
order,  containment,  contiguity,  motion  and  causation  can  be  applied  to  several  exploration
domains, but showing how a robot can discover and use them has yet to be determined. For
example,  it  is  not  clear  how  the  many  environmental  properties  represented  by  adults  as
numerical  measures  (e.g.  position,  velocity, volume)  can come to  be represented  in  a  young
learner.

2.5 Development of meta-cognition

There  are  many  different  forms  of  meta-cognition  (e.g.  Karmiloff-Smith,  1992  Chapter  5;
Povinelli and Preuss 1995), but in this paper we refer specifically to self-directed meta-cognition.
It would be beneficial for agents to be able to detect and monitor their own level of uncertainty,
for  example,  by  detecting  that  they  do  not  have  sufficient  information  to  make  a  decision,
However, as yet there are no plausible working models for either artificial agents or biological
organisms,  and the evidence for meta-cognition of this  kind in  animals  has been difficult  to
establish (see Smith, 2009 for a review). There may be some self-organising knowledge stores,
able to react automatically to changes and new opportunities. In other cases,  the information
processing  architecture  may include  a  separate  sub-system,  with meta-cognitive  competences
monitoring  other  sub-systems'  behaviour  and  detecting  opportunities  to  initiate  major
reorganisation (e.g.  Sussman, 1975).  For example,  objects  which do not  behave as the agent



expects - rocks that appear to be solid but crumble as soon as Rover grasps them, or materials
which bend when force is applied but do not return to their original shape when released by a
NCC – might stimulate the agent to learn more.

 A  special  sub-set  of  meta-cognitive  competences  includes  sophisticated  self-criticism
mechanisms that can drive learning, such as improving problem-solving skills (Sussman, 1975;
Sloman 2011b). The mechanisms for generating new forms of learning may initially be genome-
based products of evolution, but their effects can vary according to an individual's experience.
Forms of learning can develop throughout life, partly influenced by the genome and partly by
what has been learnt about learning itself at earlier stages. For example, in humans it is necessary
to learn mathematics, geometry, analytical geometry and calculus in that order to learn topology.
 It is not possible to fully understand the deep transformations of spaces involved in topology
(which cannot be visualized), without building upon the concepts and ways of thinking developed
by the other disciplines.

The work of Karmiloff-Smith (1992) on "representational re-description" suggests that, in some
cases at least, the competences gained empirically during a period of learning and development
can  later  be  revised  or  transformed.   However,  it  may be  difficult  to  determine  empirically
whether  that  occurs  by  a  process  of  internal  re-organisation  within  a  complex  form  of
representation, or whether it requires a separate meta-cognitive system. Experiments in AI could
at least reveal some alternatives, and their implications and costs, along with demonstrations of
what is possible. 

3 Constraints on exploration and information processing systems

In  Section  2  we  outlined  some  theoretical  requirements  of  an  exploration  and  information
processing system. We need to consider what constraints evolution imposes upon such systems.
There is no single answer, as the constraints depend on the life history strategy of the species, as
well as the affordances of the individual’s niche (Greenberg and Mettke-Hofmann, 2001; Mettke-
Hofmann et al., 2002).

3.1 Constraints on energy expenditure

Exploration requires energy expenditure, on which there is strong selection pressure,  so more
efficient exploration strategies would provide a selective advantage. One way in which this might
be achieved is by combining exploration with other activities that are vital to survival, such as
foraging (e.g. Krebs et al., 1978; Cohen et al., 2007; Houston et al., this issue). Since Rover will
have  to  balance  time  (and  thus  energy)  spent  exploring  its  environment  with  that  spent
completing its tasks, it  would be helpful to have some mechanism for collecting information
while  pursuing  its  assigned  tasks  (see  discussion  in  Hawes  et  al.,  2010).  Another  way  of
scheduling the costs of exploration is to concentrate this activity into periods of the animal’s life
when other time pressures are low. For instance, many altricial species have an intense period of
exploratory or play activity as infants or juveniles, when parents provide food and protection
(Power, 2000; Held and Špinka, 2011).



3.2 Constraints on timing of exploration

A framework comparing  patterns  of  development  and learning (Chappell  and Sloman,  2007;
Sloman and Chappell,  2005), distinguishes pre-configured competences (present at  birth) and
meta-configured competences (based on forms of development that are the products of previous
learning). These differ in their costs and benefits. Pre-configured competences emerge quickly,
but tend to be less variable. Meta-configured competences are more variable, and can be better
tailored  to  new  environments,  but  require  more  time  to  develop.  This  means  that  they  are
potentially risky for the animal if the competence is required early in life (e.g. predator escape
behaviour). 

As mentioned earlier, altricial NCC seem to spend at least some of their juvenile period exploring
tool-related objects and actions (Kenward et al., 2006) and learning how to use and control tools.
In contrast, Rover is effectively a precocial agent with no parents nearby to shelter and protect it.
Thus,  it  might spend an initial  period acquiring skills  close to a known, safe location before
carrying out real tasks further way.

While the brain is undergoing development during a protracted period of parental dependency,
neural connectivity can be shaped by the current environment, as happens in humans (Supekar et
al.,  2009) and some non-human animals (e.g. song learning in birds: De Groof et  al.,  2010).
However, this may raise additional problems if the re-organisation requires some systems to have
developed or matured before others (Bushnell and Boudreau, 1993).

The  relationship  between  life-history  strategy  and  exploration  costs  and  timing  is  complex.
Longer-lived species have more time to acquire sophisticated competences through interaction
with the environment, but they may also have a greater need for such competences, because they
may experience more environmental variability during their life-span. In turn, the complexity of
their competences generates another source of variability (Sterelny, 2007). These types of species
extend and fine-tune their  knowledge throughout  life  and neophilia  is  often present  into late
adulthood (e.g. parrots; Luescher 2006). 

3.3 Constraints on level of abstraction

Some  complex  environments  contain  self-repeating  elements,  leading  to  redundancy  of
information. More abstract concepts are applicable in a wider range of contexts. However, they
may lead to over-generalisation errors (Marcus et al., 1992), such as wrongly identifying a camel
as a kind of horse (Tenenbaum et al.,  2006).  The impact  of those errors will  depend on the
relative  cost  of  false  positives  and  false  negatives.   If  the  cost  of  false  positives  is  high,
abstraction may be constrained. For example,  Rover might use an abstraction formed from a
constellation of topological features to identify safe surfaces to move on, avoiding having to
probe the surface continuously. However, if it wrongly identifies a darker region as a type of rock
rather than a hole, the consequences could be serious. Conversely, if the costs of false positives
are low and the benefits of not having to respond differently to each item in a broad category are
high, then processes favouring abstraction will be under strong selection pressure.



However, not all exploration domains are equally amenable to abstraction. Simple domains with
very low variation in relevant information allow a small number of abstractions to suffice, with a
correspondingly small number of associations to be learnt. At the other extreme in domains with
high variation, there will be many potential invariances to learn, particularly when the variation
arises from complexity. Indeed,  it  is  in these situations,  in  which complex structures contain
simpler components in various relationships, that learners have the most to gain by going beyond
mere abstraction and developing a generative theory (e.g. a theory of syntax in human language).
One important use of exploration is discovering the type of structural variability in a domain as a
precursor to discovering the generative theory that unifies the varied possibilities.

4 How do animals fulfil the requirements of exploration?

Following our discussion of some of the theoretical requirements of an information processing
system and the evolutionary constraints it faces, and the increasing evidence that – at least in
humans  -  exploration  is  not  random  (Gibson,  1988;  Cook  et  al.,  2011),  we  propose  that
exploration is composed of structured behavioural strategies supported by specific sensory and
motor predispositions. Here we discuss some of the features we could investigate in testing this
proposal in animals.

4.1 Pre-dispositions: 'safe' defaults

There are certain aspects of the physical world that can be regarded as constants, such as the
effect  of  gravity,  the  properties  of  contact,  solidity  and  connectedness  and  of  biological
movement or agency. We can expect many non-human animals to possess mechanisms that cope
with or use these features as defaults from birth or hatching. There is evidence that at least some
organisms have such pre-dispositions, which are fine-tuned and built upon with experience (e.g.
Cacchione and Call, 2010; Cacchione et al., 2009; Kundey et al., 2009 on solidity). The work of
Elizabeth Spelke and others  (Spelke and Kinzler, 2007)  has  argued that  human infants  have
systems representing actions, objects, number, space and possibly social partners, although the
developmental standpoint of Karmiloff-Smith challenges some of the conclusions. Developing
alternative working designs should help us clarify alternative hypotheses. This has begun with
some non-human animal studies (e.g. Bird and Emery, 2010; Funk 2002; O'Connell and Dunbar,
2005).

4.2 Behaviour structured to increase information gained

Agents can gain valuable information from perceiving and acting on objects around them. It has
been suggested that human infants’ understanding of actions and object properties derives from
the  combination  of  their  exploratory  behaviour  and  the  information  processing  systems
generating and modifying their behaviour (Gibson, 1988; Gibson and Pick, 2000; Piaget, 1952;
Rochat, 2004). In turn, the representations that result from such exploratory activity alter and
direct the kinds of actions infants perform on objects (Perone et al., 2008).

If the function of such exploratory behaviour is to gather information, we would expect the form
of exploratory behaviour (and the information processing systems underlying it) to change with



context, maximising opportunities for gaining relevant information. In human infants, the types
of manipulation used alter depending on how the affordances of a series of toys change: looking
at  and fingering of objects  increases  when texture changes,  but actions  such as  rotation and
transferring the object between the hands increases when shape changes (Ruff, 1984). Similarly,
infants are more likely to transfer an object between hands or finger the surface while looking at
it, but are more likely to rotate the object while mouthing it (Ruff et al., 1992). Each kind of
action generates perceptual changes that are best suited to the sensory modality used, and may
maximise the individuals’ opportunities for detecting relevant features.

There has been much less work on the form and function of the information gathering aspects of
exploration in non-human animals (Inglis, 1983; Inglis et al., 2001; Power, 2000; see Kacelnik,
1987 and Renner, 1990 for  critiques),  as  opposed to  the current  or future fitness benefits  of
behaviour usually referred to as “play” (Pellegrini et al., 2007; Bekoff and Byers, 1998; Held and
Špinka, 2011). What we do know, suggests that their sensorimotor behaviour acts to increase the
quantity and quality of  information  gained.  Many species  show active information gathering
(Karmiloff-Smith,  1992).  Rats,  for  instance,  alter  the  speed  and  pattern  of  their  whisking
behaviour to increase information about shape and texture of objects that they contact with their
vibrissae (Grant et al., 2009), which has been confirmed by modelling the behaviour in a robot
(Pearson et al., 2007). So, the parameters of the rats’ whisking behaviour are “designed” in such a
way to increase the probability of detecting important environmental features.

It  is  often difficult  to distinguish exploratory behaviour  from executive action:  is  the animal
lifting an object because it is trying to transport it, or is it gaining information about the object’s
weight? Of course, it may be able to fulfil both goals at the same time (e.g. Elner and Hughes,
1978), but it can be difficult to determine when (or whether) an animal is collecting perceptual
information,  without  having more  detailed  information  about  the  extent  of  its  sensory realm
(Demery et al., in press). We need more detailed information on animals’ sensory systems, as well
as more reliable behavioural or physiological ‘markers’ of exploratory behaviour in non-human
animals.

4.3 Exploration directed towards novelty

Neophilia  has  been  shown  to  be  an  important  aspect  of  exploration  in  non-human  animals
(Greenberg and Mettke-Hofmann, 2001; Mettke-Hofmann et al., 2002), and is often associated
with the juvenile phase of an animal’s development (Heinrich, 1995). Novel objects, places and
events are – by definition – items about which the animal does not have adequate information,
and so animals should prioritise interaction with these items. In particular, animals in dynamic
environments might use exploration to experiment with strategies or behaviours that are effective
in the current environmental context (Pellegrini et al., 2007).

For instance, Ruff (1986) hypothesised that if the main function of “examining” behaviour in
human infants is to gather information, it  should a) decrease in frequency with exposure to a
particular object, and b) occur before other behaviours when an object is new. She found that
both hypotheses were upheld and that the latency and duration of examining seemed to indicate
different  features  of  the  process,  with  latency  reflecting  the  time  it  takes  to  activate  the
information gathering system.



Not all aspects of novelty may be equally salient. For example, Perone and colleagues (2008)
presented infants with a sequence of images depicting a hand acting on a colourful toy, which
produced a sound (e.g. a purple sphere that squeaks when squeezed), followed by an image in
which either the action-sound pair  or the appearance of the object changed. They found that
infants attended more to changes in action than to changes in appearance. In evolutionary terms,
it is not clear why such differences in salience exist, but it may be that changes in appearance are
less likely to have important implications for the object or event function, than changes in action.

4.4 Active 'testing' when expectations are violated

If an organism’s current empirical observations do not fit with the information it has collected, it
should re-initiate exploration in order to resolve the discrepancy: do we observe this process in
biological organisms? There is increasing evidence that human children can use a conditional
intervention principle to learn about causes and are sensitive to ambiguous information (Gopnik,
1996;  Gopnik  and Schulz,  2004;  Schulz et  al.,  2007;  Tenenbaum et  al.,  2006).  Furthermore,
children’s exploration appears to be systematic in many respects, and is thus capable of both
detecting discrepancies between observed data and stored information, and of resolving those
discrepancies. For example, when children are shown that blocks of a certain category (defined
by a linguistic label or by appearance) stick magnetically to a board, they test the properties of
new  blocks  more  extensively  when  they  find  that  properties  vary  within the  category  than
between categories (Schulz et al.,  2008). There are several different,  inter-linked processes at
work here. The individual needs to detect that some aspect of the world is surprising and then
begin exploration, focussing on resolving the discrepancy, which may involve re-organisation, or
other changes in representations. 

Do any non-human animals show similar ‘testing’ behaviours? There seems to be evidence that a
number of taxa (e.g. apes, rats and dogs) can use information from a number of sources to make
causal  inferences.  Some  can  use  evidence  from  the  object  itself  (auditory  information,
displacement of other objects, weight etc.: Blaisdell et al., 2006; Bräuer et al., 2006; Call, 2004;
Hanus and Call, 2008), through social cues (e.g. Povinelli et al., 1990), or by exclusion (Aust et
al., 2008; Call, 2006; Hill et al., 2011). However, these experiments relied on animals observing
the state of the world, or watching others perform actions on objects. As far as we know, there
have been no studies on whether non-human animals spontaneously perform their own ‘tests’, as
shown for human children  (Schulz et al., 2008). However, some studies have manipulated certain
environmental  stimuli  and  measured  exploratory  behavioural  sequences  (Kuba  et  al.,  2006;
Renner 1990; Bekoff 1975), which revealed behaviour, at least in rats and octopuses, that appears
to be similar to human children. We would predict that non-human animals, like children, would
become less repetitive in their exploratory actions as they develop. In other words, they would
show a greater diversity of exploratory behaviours rather than simply repeating a small number of
actions on the same part of the environment, because they learn what  kinds of actions will be
most effective in each situation.



5 Conclusions

We have discussed information  gathering in  biological  and artificial  organisms,  and ways  in
which  taking  a  ‘designer  stance’ (Dennett,  1981;  McCarthy,  2008)  can  help  to  both  clarify
theoretical issues and suggest lines of enquiry for behavioural experiments on humans and non-
human animals (Chappell and Thorpe, 2010). Studying exploration and information acquisition is
difficult partly because it intersects with – and has important consequences for – many other
aspects of an animal’s behaviour. It is part of learning, as well as physical maturation, and it can
help to provide the content and structure for cognition. We need also to take note of both the
successes  and  mistakes of  an  individual  to  help  illuminate  the  underlying  processes.
Understanding the animal’s sensory world is also of vital  importance,  since it  acts  both as a
conduit and a filter for the information that is gathered, but many details remain to be studied
(e.g. Demery et al., in press). There are such substantial differences not only across environments,
but also between and within species, so there are probably many different kinds of mechanisms
operating in combination in different exploration domains.  Future research should investigate
how all these elements  interact quantitatively  and qualitatively. Demonstrable working models
should suggest new research questions. However, some questions may only be answered when
the brain mechanisms are better understood (e.g. Reynolds and O'Reilly, 2009).

We can make progress on the theoretical issues by using the analytical tools and techniques from
AI and robotics (for example Hawes et al. 2010; Markram, 2006; Pardowitz and Dillman, 2007;
Saegusa et al. 2008;), particularly to analyse the environmental requirements. Thinking about the
ways in which one might implement such features in a robot (or actually building a robot), forces
one to consider details and interactions that may otherwise have been overlooked, and can also
generate specific, testable hypotheses for behavioural tests with animals (Chappell and Thorpe,
2010; Pearson et al., 2007; Prescott et al., 2009; Webb, 2001).
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