AISB

SUMMER CONFERENCE
JuY 1974

University of Sussex:

A.P. Ambler and
R.J. Popplestone

John Burge

D.J.M. Davies

Ira P, Goldstein
Steven Hardy

Patrick J. Hayes
John Knapman

C. Lamontagne

David C. Luckham
and Jack R, Buchanan

Alan K. Mackworth

Donald Michie

P.D. Scott
Aaron Sloman

Brian Smith and
Carl Hewitt

James L. Stansfield

Gerald Jay Sussman

Kennetn J, Turner

Sylvia wWeir
David Wilkins

Yorick Wilks

Richard ¥. Young

CONTENTS

Inferring the position of bodies from
specified spatial relationships

Al and sensori-motor intelligence

Representing negation in a Planner
system

Understanding single picture programs
Automatic induction of LISP functions

Some problems and non-problems in
Representation theory

Programs that write programs and
know what they are doing

Defining some primitives for a

computational model of visual motion
perception

Automatic generation of programs
containing conditional statsments

Using models to see

A theory of evaluative comments in
chess

Cortical embodiment of procedures
On learning about numbers

Towards a programming apprentice

Active descriptions for representing
Knowledge

The virtuous nature of bugs

Computer perception of curved
objects

Action perception

A& non-clausal theorem proving system

A computer system for making inferences

about natural language

Production systems as models of

14

26

37

50

63

80

90

102

127

138

160

2u7

257

2868

Some Problems and Non-Problems in Representation Theory

Patrick J. Hayes

0. Introduction

The purpose of this paper is to give a brief survey of some general
issues and problems in representing knowledge in AI programs. This
general area I will call representation theory, following John McCarthy.
Its boundaries are, like those of all interesting subjects, not crisply
defined, It merges in one direction with programming language design,
in another with philosophical logic, in another with epistemology, in
another with robotics. Nevertheless, it is an increasingly important
aspect of AI work, Since my main concern here is to draw attention to
problems which seem to me to be difficult, and issues which seem to be
important, this paper should be read as an appeal for help rather than
a statement of achievements (and comments, criticisms and suggestions
are welcome),

Inevitably, to believe that some issues are important, and some
problems difficult, is to believe that others aren't. At the end of the
paper 1 draw attention to some specific points of disagreement with
other authors. It may be helpful, however, to point out immediately that
my goals here are not philosophical, but technical. Some commentators
on an earlier draft seemed to take it as an essay in philosophical analysis
in the modern Oxford style. My aim rather is to substitute, for informal
and apparently endless philosophical discussion, the precision of mathe-
matics. (This aim is not achieved in this paper, I hasten to add, but is
I hope brought nearer.) To emphasise this, I will, when introducing a
technical woerd intended (ultimately) to have a precise meaning, underline
it.

1. Semantics

There are many ways known of systematically representing knowledge
in a sufficiently precise notation that it can be used in, or by, a compu-
ter program. I will refer generally to such a systematic representational
method as a scheme. It is not a very good word, but one cannot say
'language' as that begs an important question (see section 2). Examples
of schemes include logical calculi, some programming languages, the
systematic use of data structures to depict a world (e.g. as in the early
Shaxey's use of an array as a room-map), musical notation, map making
conventions, circuit diagrams, 'JCM Schemas', 'Conceptual Dependency'
notation, 'Semantic Templates' (all in [?f}), etc, A configuration is
a particular expression in a scheme: an assertion, a p;géram, a data
structure, a score, a map, etc. Thus one might, formally, define a scheme
to be a set of configurations.

All of these examples are formal in the sense that the question,
«4hether a particular arrangement of marks is a well-formed configuration,
always has e definite answer: there is a definite notion of well-formedness.
Hany ways which humans have of conveying meaning will not be allowed as
schemes, for they fail this criterion: drawings, phctographs, poems,
conversational English, musical perfermances, TV pictures, etc. In brief,
I wish to draw a distinction between (formal) schemes, in which knowledge
can be stored and used by a program, and on the other hand, (informal)

%3

Hayves

scenes or perceptual situations requiring the deployment of knowledge
for their successful interprestation,

I am aware of several philosophical problems in analysing this
distinction further. As a rough-and-ready guide, schemes can be recog-
nised by the fact that one can construct ill-formed 'configurations'.
There is no such thing as an ill-formed photograph. MNatural language
is & borderline case, as are accurate line drawings of pelyhedra.

Schemes are usually intended as vehicles for conveying meanings
about some ‘werld' or environment. In order to be clear about this
important topic, a scheme must have an associated semantic theory. A
semantic theory is an account of the way or ways in which particular
configurations of the scheme correspond to (i,e. have as their meanings),
particular arpangements in the external world, i.e. the subject matter
about which the scheme is intended to represent knowledge. Some of the
schemes referred to above have very precise semantic theories, others have
none (and seem to rejoice in this lack: see section 7 below), others
(music, maps, circuit diagrams) have informal semantic theories which
can be made precise by the approach outlined in section 2 below.

It is not at all fashionable in AI at present to give semantics for
new representational schemes, and this is, I believe, a regrettable source
of confusion and misunderstanding. Now, one cannot prove such an opinion,
of course, One can point to other fields where syntactic confusion and
proliferation of ad-hoc formalisms has been or is being replaced by the
development of semantic insights: notably, philosophical logic and the
design of programming languages. One can point to the way in which, in
AI itself, elementary semantic ideas have been re-invented by various
authors over the years (especially the Frege/Tarski notion of individuals
and relations between them, which crops up with remarkable regularity

y s]). And one can point to several important questions which simply
cannot be answered without a semantic theory. Of these, the most urgent
concern the equivalence or otherwise of different formalisms. Is there a
difference in meaning between a conjunction of atomic predicate-calculus
assertions and the corresponding semantic network? Is there anything which
can be expressed in the notation of Merlin [16 which cannot be expressed
in a logical notation? The answer to both these questions is yes, in fact:
but without a semantic theory the questions cannot even be precisely formu-
lated. Finally, discussion in the AI literature, on, for example, the
different roles of deductive, inductive and analogical reasoning and the
relative merits or demerits (either technical or philosophical) of various
formalisms, is often ill-informed or at best vague due to a lack of a
clear model theory for the systems under discussion.

Nothing so far has been an argument for any particular sort of
semantic theory: for example, some kinds of 'intensional', ‘operational!’,
'meaning-intentional' or 'procedural' semantics, may eventually enable the
meanings of configurations in a scheme to be rigorously defined. However,
as a matter of fact, the only mathematically precise account which I have
seen of how a scheme can talk of entities outside of the computer, is the
Tarskian model theory for first-order logic (but see section 2 below)., I
Selieve there are important reasons for going beyond this semantics, but
many of the arguments in the AI literature against the use of predicate
logic as a scheme are based or misunderstandings of one kind or another,
especially the assumption that the use of predicate calculus necessarily
involves the use of a general-puppose theorem-proving program, (See section
7 for more discussion.) To defend first-order logic is unfashionable:
however, I do want to emphasise that it is the semantics of predicate logic

64

PRLEIUR G dsyyuo

which I wish to preserve. I have no brief for the usual syntax: networks,
for example, can be used as a syntactic device for expressins predicate
calculus facts. GSome other authors advocate_ rather the use of predicate
calculus syntax either without semantics {19, or with an alien semantics
imported from computational thecry [é]. This is throwing out the baby
and keeping the bathwater.

To insist on a semantic theory is not, of course, to insist that
the expressions comprising a program's beliefs are accurate, i.e. that
what they express about the world is in fact the case. (This common mis-
understanding may be caused by the phrase "truth-recursion", which leads
people to think that metamathematics guarantegs infallibility.) Without
a semantics, one cannot even say precisely what is being claimed about the
vorld: that is the point.

It is important to emphasise that to regard a formalism ‘'simply' as a
programming language: that is, a way of getting the machine to do what one
wants, is to adopt a rather different point of view towards it. (Unless,
that is, the semantics of the scheme are concerned with machines and what
they do,) For example, many people argue that PLANNER is to be regarded
'simply' as a programming language which provides useful facilities for
the sorts of programming one finds oneself involved in when writing AI
programs. Much of the force of the criticism in E?i] for example, is from
this position, While this is a perfectly respectable point of view, it is
different from the one which regards PLANNER as a scheme which refers to
external worlds of, say, blocks, It is even different from the idea that
PLANNER is a scheme which refers to problem-solving processes or the like.
For the 'programming language' view encourages the user (for example), if
he needs a new semantically primitive notion, like negation, to encode it
- that is, to implement it - in PLANNER in some way. In terms of schemes
this is a change of scheme, since the semantics have been enriched.

To put it extremely: the only difference, in this view, between
(say) CONNIVER and (say) FORTRAN, is user convenience: for one could
implement the one in the other, (I have heard precisely this view forcibly
maintained by professional systems programmers). Hewitt characterises the
essence of PLANNER in terms of schemas E}J‘ While this syntactic approach
works up to a point, the relationships between programming languages are,
I feel, greatly clarified by giving them natural semantics. The trivial
universality which FORTRAN possesses can then be eliminated by the require-
ment that in embedding one language in another there is a corresponding
embedding of the meanings of programs. "Implemented in", as a relation
between languages, then ceases to be an embedding since the meaning of
(say) THCONSE does not correspond to the meaning of the rather large piece
of (say) FORTRAN which would be in the implementation (actually, several
pleces scattered about the program but related by context,) The former
has to do, presumably, with goals and facts and such things: the latter,
probably, with arithmetic relationships between numbers which represent
list structures in some way.

In saying all this, cne must admit that there is much force in the
position that it is too early in Al to settle on particular schemes with
fixed semantics, According tc this view, AI programs should be implemented
using all possible programming skill and ingenuity and we snould leave to
the future the (perhaps rather arid) task of tidying~up., Huch very good
A1 work has Leen done from this standpoint, and will probablv continue to
be done, I do not wish to give the impression of arguing against pragmatic
expediency in writing advanced programs., 3ut I do feel that it {s not too
early to investigate schemes with organised semantics, both on general
grounds of schelarliness and because [believe that such schemes are

£5

Parrick J. Hayes

ultimately easier to use in programming.

2. Linguistic and direct representations

Several authors have drawn attention to a distinction between repre-
sentations consisting of a description in some language and representations
which are in some sense more direct models or pictures of the things repre-
sented, I first met this distinction in [1], and it has been more
recently emphasised by Sloman {22]. It seems tc be clearly important but
I have met with surprising difficulty in trying tc make the distinction
precise.

One problem is to suitably define what is meant by a descriptive
language, for we must not beg the question by being too restrictive in
our definitions of language. Thus Sloman's emphasis on what he calls
analogical representations is really a plea for the consideration of a
wider class of languages than those in which the only semantic primitive
is the application of a function to arguments (Sloman's term is 'Fregean'
languages, like predicate calculus and PLANNER. Some authors seem to have
interpreted Sloman as arguing against the use of descriptive representations
[3], but this is a misunderstanding.)

Another problem is that a representation which appears to be a direct
model at one level of analysis, may, upon enquiring further, be itself
represented in a descriptive fashion, so that it becomes impossible to
describe the overall representation as purely either one or the other.

For example, a room may be directly represented by a 2-dimensional array

of values which denote the occupants of various positions in the room: but
this array may itself be implemented by the programming system as a list of
triplets <i,j,a[},j]>, i,e. by a sort of description. It seems essential,
therefore, to use a notion of level of representation in attempting to make
the distinction precise,

Third, any representation must also be a direct representation of
something., For, the pattern of marks which is a configuration of the
scheme, can convey meaning only by virtue of the fact that its parts are
physically arranged in some definite way. This physical arrangement has
to be a direct representation of (at least) the way in which meanings of
some configurations are compounded into meanings of larger configurations.

Fourthly, the notion of direct representation seems to depend upon
some similarity between the medium in which the representation is embedded,
and the thing represented, Thus a map of a room is a direct representation
of the spatial relationships (in the horizontal place) in the room, by
virtue of the similarity between the 2-dimensional plane of the paper and
the 2-dimensional plane of the floor of the room. The paper is a direct
homomorph of the room: they are the same sort of structure (2-D Euclidean
space), admitting the same sorts of operations (sliding, rotation, measure-
ment), but the map is a simplification of the reality, in the sense that
certain properties present in reality (colour, exact shapes, etc.) and
certain relations (the third dimension, comparisons of value) are missing
in the map. Another example is an ordered vector of items in a core
store: here the medium is the address structure of the store, which is
similar to the integers in respect of its ordering relationships, but not
(for example) in respect of its cardinality (stores are finite).

Putting all this together, one arrives at the following general
position. There are things called media in which one can construct certain

66

Fatrick J. Haves

configurations of marks or symbols: that is, arrangements of marks in
wnich relations exhibited directly in the medium hold between the marks.

A language is defined (syntactically) by a set of 'primitive' symbols

and a set of grammatical rules which define new configurations in terms

of old ones. One gets the usual ideas of parsing. (It could be mathe-
matically interesting to see how much of formal language theory can be
generalised to this setting from the conventional 'string' case of 1-
dimensional media. One can certainly define context-free, and context-
sensitive grammars, but I am not so sure about finite-state, for example.)
A model for such a language is provided by a set of entities acting as
meanings of the primitive symbols; and, for each grammatical rule, a
semantic rule which defines the meaning of the configuration in terms of
the meanings of its parts. (One needs variables and variable-binding
expressions also, so this account needs elaboration and qualification,

but space does not permit a full discussion,) This, so far, is the usual
Tarskian idea of a truth-recursion, generalised to this more general notion
of language. But now, we also insist that each medium-defined relation
used in constructing configurations corresponds to a similar relation in
the meanings, and that the representation is a structural homomorph of

the reality with respect to these relations. That is, the meanings of
configurations must exist in a space which is similar to the represen-
ting medium, and the syntactic relations which are displayed directly by
the symbol-configurations of the language, must mirror semantic relations
of the corresponding kind. The directness of a direct representation lies
in the nature of the relationship between the configurations and the reality
they represent (it is a relation of homomorphism rather than denotation).
A scheme is not direct because of any syntactic features (such as being 2-
dimensional) of its schemes, or because of any special qualities (such as
being continuous) of the worlds it describes.

It is possible to give formal grammars for simple maps, to emphasise
how this account fits the facts, along the lines of Rosenfeld's isotonic
grammars Ds . To emphasise again: map-making conventions are, in this
view, a language, of which the maps are expressions. The relationship of
these expressions to reality is that the primitive symbols denote features
of a terrain in a way defined by the map key, and the positional relation-
ships between symbols directly display corresponding relationships between
the denoted features.

In electrical circuit diagrams, lines joining symbols denoting
components directly denote, in their topological structure this time, the
electrical connectivities in the actual circuit. Another example is
provided by the simple narrative convention. In "He got up. He got
dressed. He went out. He walked to the shop ... ", we understand a time-
sequence which is directly denoted by the ordering of the (timeless)
separate propositions. This convention is also used in programming
languages and cartoon strips, with the same sort of semantics. A final
example is provided by networks. A network is a configuration which is a
relational structure, Web grammars are the appropriate parsing device.
The most obvious way of giving this a semantics is by declaring that a
model is any relational structure into whicn the network can ke hcmomor-
phically embedded. According to this semantics, a network has the same
meaning as tne conjunction of predicate calculus atoms corresponding to
the arcs of the network. (It is a straightforward exercise in system
programming to convert a list of such &omic assertions intc a network,
represented in the core-store medium by using 'addresses' as the direct
analog of 'is connected to', for efficient retrieval,) As we will see,
however, one can give a rather different semantics to networks, which makes
them more expressive in an important way.

Patrick J. haves

4 more complete and rigorous account of this wilil be published
elsewners. The major problem is to find a general precise characteri-
saticr of what is meaznt by "medium™ and "similar'. I am currently working
on an algebraic account (in wnich a medium is a category), but it is not
yet altogether satisfactory. <{(Suggestions are welcome.)

The importance of all this, apart from the intrinsic interest of the
subject, seems to me to lie ip three points. (1) It shows that direct
representations are not incompatible with linguistic representations, and
can be given a precise model theory along Tarskien lines (which supports
Sloman's view in [2Z]). (2) It suggests ways in which efficient deductive
systems may be generalised from work in computational logic, (3) The
notion of '"medium' captures tne idea of levels of representation mentioned
earlier, For a medium may not be physically drectly present, but may
itself be represented by configurations in some quite other medium, as in
the array example, Or again, consider a simulation language like SIMULA.

This provides a medium consisting of processes and events and certain
relations between them., This medium, taken in its own terms, gives a
direct representation of time which is often extremely useful. But if one
goes deeper, time is represented in a quite indirect way involving numerical
descriptions and long chains of inference. This 'looking-deeper' means
not treating SIMULA as a medium to be used to represent, but rather as a
Teality which is itself represented in some medium (say, FORTRAN or
assembly language). The choice of primitive relationships defines both
the medium and the level at which analysis will cease,

This shows, incidentally, that Sloman's arguments for the utility
of analogical representations, based on the idea that they are somehow
more efficient in use than Fregean representations, are fallacious., For
an analogical representation may be embedded in a medium which is itself
represented in a Fregean way in some other medium. Any discussion of
efficiency must take into account the computational properties of the
medium,

3. Exhaustiveness and plasticity

An important fact about schemes with Tarskian semantics is that a
configuration in such.a scheme is, in general, a partial description of
the environment. It constrains the form of a satisfying world, but does
not (in general) uniquely determine one. And even if it does uniquely
determine a world (is categorical, in the technical term), this fact can
only be determined by metamathematical analysis: there is no sense in
which one can say in the scheme itself, "this is a complete description"

Yow this means that one has the opportunity of adding information
ad 1lib, further specifying the world. (Hence the idea of conjunction
arises very naturally). The process of adding information ecan be arrested
only by the whole configuration becoming inconsistent, i.e. making an
assertion about the world which is so strong that no such world exists.
Different schemes will have different particular notions of consistency,
sut this general outline follows from the abstract properties of the
satisfaction relationship between configurations and worlds, This ability
to accept new pieces of information and to gradually accumulate knowledge
piecemeal is one of the most valuable aspects of Tarskian schemes. Thus,
the idea of a 'knowledge base' of separate pieces of information, to which
new pieces can be added freely without a need,in particular, to pay attention
to control flow or other organisational matters, is very familiar and
important,

This possibility of adding information is one aspect of a scheme's
lasticity, i.e. the ease with which changes can be made to configurations
in the scheme. Plasticity is essential for nontrivial learning, and for
any system working on limited information in an uncertain world.

However, there are times when one does want to be able to make a
claim of exhaustiveness in a representation. For example, we might want
to represent that all the relations of a certain kind, between the entities
represented in the configuration, are also represented in the configuration;
or, that all the facts about some entity, which are in some sense relevant
to some problem or task, are present in the configuration.

One important example of the need for this sort of assumption is the
well-known frame problem. Consider a traditional description of the
monkey-bananas problem, in natural English. How do you know there isn't
a rope from the box, over two pulleys, and down to the bananas (so that as
you move the box, the bananas ascend out of reach)?® Well, we assume that
the simple description has given us all the relevant information to do with
causal chains in the situation: we assume it is an exhaustive account of
the machinery of the room. Much of the difficulty of the frame problem
lies in the impossibility of expressing this assumption in the predicate
calculus. (Using the causal-connection theory developed in Eq , we could
say there was no causal connection between the box and the bananas; but
that is not strictly true: the monkey can throw one at the other, for
example. In any case it is unsatisfactory as a general solution.)

(Parenthetically, I would like to take this opportunity of suggesting
that we should stop talking about the frame problem. There are, it is
now clear, several independent difficulties bound up in the normal formu-
lation. One was just noted; another is the lack of a good representation
of the way in which causal chains follow trajectories determined by mecha-
nisms in the environment; another is the heuristic problem of organising
inferences involving causality. The presence of state-variables in the
language is not part of the problem, as some authors seem to have believedJ

Another, rather different, example of a claim of exhaustiveness is
provided by the sort of analogy reasoning epitomised by Evan's well-known
program, and formalised in the Merlin system Db]. This is normally
regarded as essentially non-deductive reasoning, but it can be regarded
as deductive reasoning from some rather strong hypotheses. Thus, suppose
we decide that a certain collection of properties of an individual, taken
together, constitutes an exhaustive description of it, from a certain
'point of view', For example, we might say that a man was a mammal with
a nose and feet. What could this mean? Well, it might mean that certain
facts about men can be established by the use of these pronrerties only:
that is, an essentially proof-theoretic assertion. Now, with this meaning,
if we replace the properties in the description with others (of the same
'type', in some sense: e.g. with corresponding sort structures in a multi-
sorted logic), then corresponding facts can be established relative to
the altermative properties. Thus, in the example of [16], if a pig is a
mammal with a snout and trotters, then we can regard a pig as a man with
a snout for a nose and trotters for feet, The existence of the 'analogy'
follows from the (presumed) sufficiency of the list of properties., It
follows deductively from the claims expressed in the putatively exhaustive
descriptionsof men and pigs.

*This example due to Alan Newell

Fatrook o, hayes

This account of analogy (which is related to Kling's ideas)
suggests natural explanation of {for example) the breakdown of an
analogy {(the claim of exhaustiveness fails: e.g. some property of men
needs other hypotneses than those of noses and feet), and naturally
relates ‘analogical! and 'deductive' reasoning.

low, there is a way in wnich a direct representation can be .
considered to be exhaustive, by a slight alteration to the semantic
rules. We may insist that the medium-defined relations of a configura-
tion completely mirror the corresponding relations in the reality: that
is, that a medium-defined relation holds between subconfigurations if
and only if the corresponding relation holds in the world between the
entities denoted by the subconfigurations. Let us call such a represen-
tation, strongly direct.

For example, a map is strongly direct in this sense: all the 2-
dimensional spatial relationships which hold between tewns, rivers, etc.
also hold in the map between the symbols denoting them. (They are also,
often, exhaustive in a stronger sense; that all the entities (towns,
rivers) present in the reality are denoted by symbols in the map. Thus
we say, of a map with a river missing, that it is wrong, not just incom-
plete. It misleads us because we assume that if a river isn't marked,
it isn't tnere.)

An example of a direct representation which isn't strongly direct
is provided by networks: a relation may well not be displayed in the
graph, However, we can also use networks as a strongly direct represen-
tation, if we consider the medium to be the algebra of relational
structures with a given signature. Thus we would insist that either all
or none of the instances of a certain relation are displayed in the network.
A family tree is a strongly direct representation in this sense, relative
to the relationships 'child of' and 'married', With this semantics,
(which can be specified algebraically) a network is no longer equivalent
in meaning to the simple conjunction of the atomic facts represented in it.
(If we call this conjunction C, it is equivalent to C with the added rule:
if CH~@ then 1@, for any atom @ in the appropriate vocabulary.) Winston's
use of networks to describe concepts [ié seems to be closer to this
latter semantics than to the former one, for example.

In unpublished work at Stanford, Arthur Thomas is developing a
different approach to combining exhaustiveness with a Tarskian semantics,
based on Hintikka's 'model sets'.

Strongly direct representations are less plastic than direct/Tarskian
representations, in that information cannot be accumulated piecemeal in
them. To add information to a strongly direct representation is to alter
the information expressed by it. Alterations, as opposed to mere additions,
raise problems of their own, ‘

The trouble with alterations is that the information being altered
may have been used earlier as a premis in a deduction of some kind., Thus,
other pieces of information which obtain their support in some sense, from
the altered information, are now endangered, and should probably be re-
examined. This seems to require the system to keep an explicit record of
aow it formed its beliefs: a aistory of its own thinking. And this seems
pronibitively expensive (of either space or time: one could recompute
rather than store), due to exponential factors in the amount of information
required,

Under some circumstances, it may be possible to re-evaluate &
pelief on criteris independent from its original derivation, as for
example in adjusting the fit of lines to a gray-level picture (this
observation due to Aaron Sloman), but in general I do not think cne
can avoid the problem.

This dilemma seems insoluble. There must be a clever series of
compromises which steer us between its horns, but I don't know of any
work in this direction.

More far-reaching alterations to a representation which one can
envisage include changes to the basic cntology, to the sorts of entity
to which it refers. The introduction of substances intc a scheme
oriented towards describing individuals is such a change, for example
(see section 6), Minsky and Papert Ilﬁ] give another rather simpler
example: the change from a two-place relation of support between objects
to a support relation between an object and a collection of objects,
needed to describe e.g. an archway or a table. As they remark, this
alteration seems to require a complete rebuilding of all knowledge about
support, for the actual logical grammar of the assertions has changed.
However, in this and similar cases one can see the general outlines of
how it might be done, The fundamental step is to introduce the new notion
of support as a new primitive idea (this is the really 'creative' act),
and then define the old notion in terms of the new one, i.e. regard the
old concept henceforth as an abbreviation for its definition in terms of
the new one. In the example, support (a,b) would be defined as
support (a,{b}). This preserves the old theory of support as a special
case of a new, more general, theory (which is yet to be defined). There
is, however, a strong constraint on the new theory, viz. that it'explains'
meddmmw.TM&SMQMMSMtanthy%RMunﬂneﬂa?
ments of the old theory must be derivable (in the new theory).

This corresponds to the idea that the alteration is somehow a
refinement of, or an improvement upon, the former representation. A
similar change, but in which the new concept completely replaced the
older concept, which was rejected as wrong or unusable, could not be
handled this way.

This whole issue of plasticity in representation is important not
only for learning, but also for everyday program development reasons, and
for debugging. For we must be able to modify and improve the representations
of knowledge in the programs we write, and this is often far from easy.

4, Evidential Reasoning

There is a continual need, especially in percepticn, to represent
information concerned with one belief being evidence for another. It
seems clear that one needs to make reasonings concerning such matters
explicit so that they can be properly related to other reasonings, and
can be adjusted in the light cf experience (see section 3). The problem
is how to adequately express the notion of cne knowledge-fragment (or
collection of fragmentsi being 'good evidence' for another.

There seem to be several notions of good evidence, but all can be
put intc a common framework: A is gocd evidence for B (under assumption
Th, say) if the conjunction (A & not B) is somehow unlikly or implausible
Tor: if this follows from Th)., Thus, for example, if A entails B then A
is ve£¥ good evidence for B, for then (A & not B) is impossible. 1In
Guzman's work [2] back-to~back 'T's are good evidence for occlusion of

71

Patrick J., haves

one body by another, since the former without the latter is an unlikely
coincidence. In a worid where lines of bricks were cemmon, batk-to back
'Tis would be weaker evidence since the conjunction of such an observation
with ¢he hypothesis of a single occluded bedy would be lass implausible:
the possibility of a line of bricks being occluded would be an alternative
explanation of the evidence.

This sort of observation suggests an account of ‘'plausible’ as
follows: {A & not B) is implamsible if B entails A (occluded body entails
back-to-back 'Tis) and no other B of the suitable sort {e.g. no other
hypothesiz about physical arramgements of bodies) entails A, If there
are several such explanations of A then A is evidence that one of them
holds, but it doesn't distinguish which one. This decision has to be made
on some other basis, for exampie by the use of Baye <theorem in a
probabilistic scheme, or by choosing the simplest hypothesis or the one most
compatible with other entrenched beliefs.

An important problem is how to discover the collection of possible
or likely explanations. (This point was emphasised to me by Aaron Sloman).
How many ways can back-to-back 'T's arise? I can think of three; and am
pretty convinced there aren't any more; but I have no idea where that
conviction comes from, or how I would prove it. The 'theory' of lighting
and perspective which is welded into Waltz's program has this nice
exhaustive character, expressed in effect as a collection of explicit
disjunctions. This works up to a point, but how could a program derive these
lists from a description of, for example, the lighting conditions and
geometry of the scene?

Involving the background theory of lighting, etc., in this way is
not just of academic interest. A vision system which could make hypotheses
about the lighting conditions, the sorts of reflectivity in the scene, etc.
would find it necessary to be explicit about the role of such assumptions
in interpreting pictorial phenomena. Thus we might have: if there is
strong unidirectional lighting then shadows have sharp edges and are dark;
so if this is the cormer of a shadow then it will have a dark interior:

Th > (B=>A); from which we may use corners with sharp edges and dark
interiors as evidence for shadows. Reasonings like this will be essential
in any system with the ability to percieve a range of scenes. (Similar
remarks apply to other perceptual situations, e.g. understanding speech,
handwriting, children's stories.)

5. Control

A system which makes inferences to generate new facts must control
its inference-making capabilities in some way. This control itself requires
the storing and using, by the system, of information about the deductive
process. That is: the system must represent and use knowledge about its
own deductive behaviour.

In conventional programming languages this information is sometimes
represented implicitly in, for example, the ordering of statements in the
body of a program (which is a strongly direct representation of the time-
order of control flow, provided jumps are forbidden) and sometimes
explicitly in, for example, the correspondence in names which relates
procedure calls to their corresponding procedure bodies. In PLANNER-like
languages, the latter representation breaks down since 'procedures’ are
called not by name but by pattern matching, and is replaced by the more
flexible device of advice lists. The ordering information is still
represented implicitly, however,

72

How, this metadeductive information needs to be made explicit and
separated from the factual information represented in the scheme, for
reasons of semantic clarity, plasticity and deductive power. For example,
the residue of PLAKNER upon separating out contrcl information is a logic
which resembles intuitionist predicate calculus . FResults like this
are important: they give us an inkling of how a semantic theory might be
put together. (Unfortunately, intuitionist logic itself has-a rather
murky semantics.) The control information which can be represented in
PLANNER is prather limited, as the CONNIVER authors emphasise [23]. Their
solution, to give the user access to the implementation primitives of
PLANNER, is however, something of a retrograde step {what are CONNIVER's
semantics?), although pragmatically useful and important in the short term.
A better soclution is to give the user access to a meaningful set of
primitive control abilities in an explicit representational scheme
concerned with deductive control. This is the basic idea of the GOLUX
project now underway at Essex DI].

The problem is to find a good set of control primitives., What is
control? One answer to this is to pick on a fixed mechanism (the inter-
preter) associated with the language, and to relate control to this
mechanism in, more or less, the way an order code relates to an actual
computer. But this tends to be inflexible and arbitrary. The GOLUX
answer is that control is a description of the behaviour of the interpreter.
The exact nature of the interpreter is not defined, only that it constructs
proofs according to some predefined structural rules. The descriptions in
control assertions constrain its behaviour more or less tightly. It is,

I believe, important that control information be represented in a scheme
compatible with the scheme used for 'factual' information, so that control
can be involved in inferences, added to, and changed.

Control primitives in GOLUX include predicates on, and relations
between, partly constructed proofs in the search space; descriptions of
collections of assertions; and primitives which describe temporal relations
between events such as the achievement of a goal (e.g. the construction of
a proof). The major source of difficulty is the tension between the

ressive power of these primitives and their implementability: it is
important that they be sufficiently simple that their truth can be rapidly
tested against the actual state.

GOLUX is based on recent ideas in computational logic []0,/23.
Other authors have also recently emphasised that computational logic pro-
vides a powerful theoretical framework for problem-solving and computational
processes []4,23,!1], although we are not in complete agreement as to which
is the best framework.

A common area of difficulty both here and in evidential reasoning is

to get a good notion of a 'theory': an organised body of knowledge about
some subject-area.

€. Substances, Parts and Assemblies

Every representational scheme known to me is based ultimately, like
predicate calculus, on the idea of separate individual entities and
relations between them,

But our introspective world-picture also has quite different 'stuff®,
viz. substances: water, clay, snow, steel, wood, Linguistically, these
are meanings of mass terms. Substances are fundamentally very different
frem individuals, and I know of no scheme which seems capable of satisfac~
torily handling them., I became aware of this problem from reading

73

Davidson [?;}.

We often speak 23 though substances were individuals having
properties and relations one to another and to more conventional
individuals: steel is dense, blood is thicker than water, his head is
made of wood. The relation "made of" seems particularly important.
But appearances are deceptive,

Does 'water is wet' mean the same as 'all samples of water are
wet'? I think it does: we certainly want to be able to infer from
'water is wet', that 'this sample of water is wet'. This suggests at
first sight that we should treat pieces of stuff as individuals, which
seems fairly acceptable. But these individuals are also rather strange,
especially for fluids., If you put together two pieces of water you get
one piece, not two: we have to speak of guantity (of stuff) before we
can use arithmetic. (It is significant that, as Piaget has shown,
children properly understand the concept of quantity cnly at quite a late
stage of development.) Moreover, we should distinguish properties which
a piece of stuff has by virtue of its being a piece (size, shape}, from
those which it has by virtue of its being made of stuff (density, hardness,
rigidity): for the former, but not the latter, can be easily altered by
physical manipulations. It really seems that we cannot get away from
substances no matter how hard we try.

Let me emphasise that this problem is not a by-product of a nomin-
list philosophical position, I have no objections to platonic, abstract,
non-physical individuals. That's not the difficulty. The difficulty is
*individuals' which appear and disappear, or merge one with another, at
the slightest provocation: for they play havoc with the model theory.

This seems to me to be one of the most difficult problems in repre-
sentation theory at present. The only way I can imagine handling
substances is by regarding each substance as a (special sort of) indivi-
dual, to which such properties as hardness, density, etc. are attributed.
These individuals can be regarded as platonic ideals, or alternatively as
the physical totality of all samples of the substance: you can take your
nominalism or leave it. We have the nafve axiom

Stuff(x) & madeof(y,x) & z(x). > z(y)
(e.g. : a lump of hard stuff is hard).

which transmits properties from substances to pieces of them, (Care is
needed: steel ships float, for example; a fact which often amazes young
children,) Notice this axiom is first-order (in a sugared syntax).
Quantity is now a function from (pieces)X(stuff) to some scale of measure-
ment, so we can express conservation of quantity through some physical
alteration Q by:

quantity(piece,stuff) = quantity(Q(piece),stuff),

And so on. This works up tc a point, but seems to me to be essentially
unsatisfactory.

There is a close analogy between being made of a substance, and being
made up of a number of parts. And a corresponding analogy between quantity
(of stuff) and number (of parts)., Sand and piles of small pebbles are
intermediate cases: and we often treat an assembly of individuals as a
fluid, e.g. as in "traffic flow", The major difference seems to be that
different scales of measurement are used in common-sense reasoning (but
not in physics, where quantity is number of atoms), as the "paradox of the

i

heap" shows, This runs as folleows: a heap with cne stone in it is small.
If you add just one stone to a small heap, it's still a small heap.

Hence by mathematical induction all heaps are small. The ‘paradox' comes
by switching from the informal quantity scaleof 'small-large’ to the
precise number scale. Induction is not valid in the former, which (for
example) exhibits hysteresis,

Things are often made up of parts joined or related in some way.
Obvious examples are physical objects made of pieces glued or assembled
together: cups, cars, steam engines, animals, But there are others: processes
made up of subprocesses; time-intervals made up of times, The idea of
organised collections of entities being regarded themselves as entities
permeates our thinking,

Now this fact strikes at the root of an 'individual-based' ontology
in the same sort of way that substances do. The only way of handling
collections is to count both the collection and its parts as individuals,
related by some sort of made of or has-as-part relation, But then these
assembled individuals behave in odd ways: they sometimes merge (two heaps
make one heap) like pieces of stuff: sometimes they can be disassembled,
cease to exist for a time and then perhaps be reassembled: is it the same
individual? (Our intuition says: yes, in most cases).

Modal logicians now have very elegant semantic theories which can
accommodate such odd behaviour in individuals, But these allow an
pattern of vanishing, reappearing and changing properties. The point is
to find a way of representing the fact that composite individuals have
this special way of vanishing (being taken apart), and to distinguish, for
example, those composites which cannot be reassembled (animals, cups) from
those that can (cars, steam engines): and to do all this in a framework
which assumes that things, by and large, don't just vanish and reappear
spontaneously., Composites are thus a different sort of individual, in a
very deep sense,

A related issue is how to state criteria upon which we reify a
collection into a composite individual. Physical compactness is sometimes
sufficient (a heap), but not always necessary (the wiring system of a house),
for example, Of course, one does not expect a single general answer, but
I do not know of any reasonable answers at all, even for special cases.

I have already remarked on the similarities between being made of
(stuff) and being made up of (parts). Is this anything more than a facile
analogy? Is there some common framework in which the fundamental ontologi-
cal notion, rather than existence, is space-occupancy? It might be useful
to strive for a representation which allowed the simultaneous expression
in different schemes of both 'existence' and 'space-occupancy'. (The
schemes would, 1 believe, have to be essentially different.) Indeed, in
a crude way one can see how it might be done directly by "arrays of facts":
the array subscripts give one access via spatial relationships to the local
presence of objects, which also partake of relationships (represented by
a network, say) between themselves and other, non-space-filling, indivi-
duals (such as colours)., Decomposability is indicated in the array alsc
by 'break lines' which separate the space into regions: different sorts
of connection could be fairly easily handled (glued, detachable ...).

But this is very crude and has several crucial drawbacks (notably plasticity:
imagine moving an object through the space, preserving its shape.)

-1
o

7. Some non-isaues

t.1L Irrelsvant classifications

#uch heat is generated by disputes based on classificetioms which
do not correspond with the facts, or which at least have outlived their
usefulness. Tow such are the “generality vs. supertise” debate and the
more recent "procedures ve, assertions” debate. Both of these arise from
a revulsion against & particular early naive idea about how to organise
intelligent programs, which ene could (perhaps unfalrly) call the general
problem-solver fallacy. (Seymour Papert calls it, the blinding white
light theory, }

This was the sarly insistence that probiem-solving methods had to
be wrapped up in black boxes called problem-solvers, whose {only} input
was a problem and whose (only) cutput a solution. Problem-solvers were
supposed to be &s powerful amd as general as possible, One had not %o
"cheat® by "giving" the problem~sclver the solution in any sense, e.g.
by reprogramming it or cleverly coding the problem in some way (this is
made explicit in [7), Unfortunately, of course, this collection of
rules means that there is ne way of getting subject-matter-dependent
knowledge into the black box; for it cannot be there a priori (violates
generality), and it cannot be put into the problem (cheating), and there
aren't any other inputs. This is a caricature, but not much of a carica-
ture, Much work in automatic theoremeproving was done with the implicit
idea that the theorem~provers were to be regarded as problem-solvers in
this sense (c.f. the widely felt 'need' for adequate criteria of relative
efficiency of theorem-provers: "my problem-solver is more powerful than
yours". (See [2,10] for a fuller discussion).

The MIT school have now succeeded admirably in destroying this idea,
but unfortunately have gotten it confused with some others. Surely we
need both generality and expertise: the fallacy is not the amphasis on
generality, but the insistence upon the black box and the "no cheating"
rules. The general mechanisms of means-end analysis, heuristic search
and computational logic should not be rejected, but rather incorporated
into more flexible systems, rather than wrapped up in closed ‘prohlem-
solving subroutines! or 'methods' or whatever. Thus, to reject conventional
uniform theorem-proving systems because they work with assertional rather
than 'procedural' languages, is to miss the point. (Whether a language is
considered to be a programming language et not, is largely a matter of
taste, in any case. LISP can be regarded as (an incomplete) higher-order
predicate calculus, or as a first-order applied predicate calculus:
predicate calculus can be regarded as a programming language, although by
itself not a very good one.) The force of the MIT criticism of computa-
tional logic is directed against the 'problem-solver' view and its conse-
quences, especially the lack of any accessible and manipulable {programmable)
control stucture in conventional theorem-proving systems. The GOLUX system
referred to earlier is an attempt to fill this lack directly with an
especially devised control language.

A more recent attack on conventional theorem-procving [jzl is that
it is too concerned with "machine oriented" logic, and not encugh with
“human oriented" logic. I confess to being guite unable to understand
what this could possibly mean.

7.2 Semantics

Some authors, usually concerned with comprehension of natural language,

76

use ‘semantic' as a vague term roughly synonymous with 'to do with
maenings®, whers this means the same as ‘not to do with grammars®.
This follows a long and honourable tradition in linguistics (c.f. the
use of such terms as "semantic markers" and the idea that linguistic
deep structure is semanties).

I wish to emphasise however that this is not the same usage as
that adopted here and in formal logic. And it Is, I believe, very
misleading., It militates against an understanding of the fundamental
point that the meanings of linguistic expressions are ultimately to be
found in extra-linguistic entities: chairs, people, emotions, fluids.....

As a recent example, Wilks' "semantic units" EWH are syntactic
objects in a scheme: nowhere does he tackle the difficult and vital
problem of describing exactly what sorts of extra-linguistic entities
his "semantic units" refer to. It is easy to say: we must have substances
and things and ... ; but what are these? There does seem to be the
beginnings of some sort of sketchy semantic theory behind Wilks' formulae
(actions have agents which are animate, etc.), but it is not articulated:
and if it were, all the problems I have discussed would promptly appear.
Similar remarks apply to Schank's work [20], and others.

I am not arguing that natural language should be given an exten-
sional semantics. I distinguish sharply between a natural language,
which is an informal and probably not even completely defined means of
communication in the real world (is "Eh?" a sentence? Eh?), and a
formal deductive scheme for representing knowledge. (It has been suggested
to me that the distinction may be related to Sassure's distinction between
Langue and Parole, but I have not investigated this.) I suspect that
those who deny the usefulness of extensional semantics would also deny
the validity of this distinction. That is probably a perfectly respectable
philosophical position: but I submit that it is bad engineering.

7.3 Fuzziness and Wooliness

Several authors have recently suggested that more exotic logics,
especially 'fuzzy logic', are necessary in order to capture the essentially
imprecise nature of human deduction, While agreeing that we have to look
beyond first-order logic, I find the usual arguments advanced for the use
of fuzzy logic most unconvincing.

Introspection does not suggest to me that intuitive reasonings are
essentially imprecise; still less that they are precise in terms of a
real-valued truth-value in the unit interval (which is what fuzzy logic
would have us accept). Even ignoring introspection, fuzzy logic does not
seem very useful, for where do all those numbers come from? (This is
McCarthy's point.)

The typical example brought forward to illustrate the need for fuzzy
lcgic concerns the everyday use of such words as 'large', 'small', 'old',
'expensive'. Now it seems to me that, when I say a heap is small, I mean
just that. If asked, "Is what you say true?", I will correctly answer
"yes", and become impatient with the protagonist, These are precise
words but they refer to vague measuring scales. As remarked earlier, for
example, the scale 'small-large' exhibits a different topology from the
integers or from real intervals: it is more like a tolerance space [?7
and it may have hysteresis (an intermediate heap will be considered small
if it began as small and grew, and considered large if it began as large
and shrank), and it may have gaps ki it, The point however is, that wve
should keep the vagueness of the scale localised into it, rather than

77

letting it infect the whols laferential system. This ensbles different
'fuzzy' weasuring scales to ssexist, which is important. We should
investigate what soris of messurement scales are useful for varicus
purposes.

The most drastic alteration to the actual logic which seems to be
needed to handle words like this is to move from a 2-valued to a 3I-valued
logic, and it is not absclutely clear that even this small step is really
necessary. .

The view expressed here is different from the one I held some years
ago, I have become more respectful, since then, of the unexplored
possibilities of predicate lsgic.

Acknowledgements

Many people have helped me with conversations, suggestions and
criticisms. I would like especially to thank John Laski (section 1);
Aaron Sloman (sections 2 and %); Harry Barrow (section 3); Jim Doran
(section 4); Bruce Anderson, Carl Hewitt, Johns Rulifson (section 5);
Seymour Papert, Gerald Sussman, Bruce Anderson (section 7.1). HMore
generally, I owe much to many conversations with Richard Bornat, Mike
Brady, Jim Doran and Bob Kowalski. Alan Bundy, Aaron Sloman and Yorick
Wilks made many useful criticisms on an earlier draft.

References

(1) S. Amarel. More on Representations of the Monkey Problem. Internal
Report, Carnegie-Mellon University (1966)

(2) D.B. Anderson & P.J. Hayes. The Logician's Folly. DCL Memo 5u,
Edinburgh University (1972)

(3) R. Balzer. A global View of Automatic Programming. 3rd IJCAI proc.
Stanford (1973) (see "Problem Acquisition", paragraphs 3&u4)

(4) E. Charniak. Jack & Janet in Search of a Theory of Knowledge. 3rd
IJCAI proc., Stanford University (1973)

(5) D. Davidson. Truth and Meaning. Synthese 17 (1967)

(6) M. van Emden & R. Kowalski. The Semantics of Predicate Logic as a
Programming Language.

(7) G. Ernst & A. Newell. Some Issues of Representation in a General
Problem-Solver. Proc. Spring Joint Comp. Conf. (1967)

(8) A. Guzman., Computer Recognition of Three-Dimensicnal Ubjects in a
Visual Scene. Report MAC-TR-53, MIT (1968)

(39) P.J. Hayes. A Logic of Actions. Machine Intelligence 6, Edinburgh
University Press (1971)

(10) P.J. Hayes. Semantic Trees. Ph.D. thesis, Edinburgh University, (1973)

(11) P.J. Hayes. Computation & Deduction. Proc. MFCS Symposium, Czech.
Academy of Sciences, (1973)

78

P.J. Hayes. Simple and Structural Redundancy in Hendeterministic
Computation. Research memorandum, Essex University (197u)

C, Hewitt. PLANNER, MIT AI Memo 258 (13972)
Loveland. A Hole in Goal Trees. Proc. 3rd IJCAI, Stanford (1373)
Minsky & S. Papert. Progress Report. AI Memo 252, MIT. (1972)

Moore & A. Newell. How can Merlin understand? Internal memo,
Carnegie-Mellon University (1973)

Nevins. A Human Oriented Logic for Automatic Theorem Proving.
MIT AI Lah. Memo 268 (1972)

Rosenfeld. Isotonic Grammars, Machine Intelligence 6, Edinburgh
University Press (1971)

Sandewall. Representing Natural Language Information in Predicate
Calculus. Machine Intelligence 6, Edinburgh (1371)

R. Schank, The Fourteen Primitive Actions and their Inferences,
Stanford AIM-183, Stanford University (1973)

Schank & Colby (eds)., Computer Models of thought and language.
Freeman (1974)

A. Sloman. Interactions between Philosophy and Artificial Intelligence.
Artificial Intelligence 2, (13971)

Sussman & D, McDermott. Why Conniving is Better than Planning,
MIT Al memo 255A, 1972

Wilks. Understanding Without Proofs. Proc, 3rd IJCAI, Stanford
(1973)

Winograd. Understanding Natural Language. Edinburgh University
Press (1371)

Winston. Learning Structural Descriptions from Examples. Ph.D.
Thesis, Report MAC-TR-76, MIT (1973)

Zeeman. Homology of Tolerance Spaces. Warwick University, 1967

. Kowalski. Predicate Calculus as a Programming Language. DCL
Memo 70, Edinburgh University (1973)

Sandewall. The conversion of Predicate~Calculus Axioms, Viewed
as Non-Deterministic Programs, to Corresponding Deterministic
Programs. Proc. 3rd IJCAI, Stanford (1373)

