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Abstract. Biologically inspired robotics is a well known approach
for the design of autonomous intelligent robot systems. Very often
it is assumed that biologically inspired models successfully imple-
mented on robots offer new scientific knowledge for biology too. In
other words, robots experiments serving as a replacement for the bio-
logical system under investigation are assumed to provide new scien-
tific knowledge for biology. This article is a critical investigation of
this assumption. We begin by clarifying what we mean by “new sci-
entific knowledge.” Following Karl Popper’s work the The Logic of
Scientific Discovery we conclude that in general robotic experiments
serving as replacement for biological systems can never directly de-
liver any new scientific knowledge for biology. We further argue that
there is no formal guideline which defines the level of “biological
plausibility” for biologically inspired robot implementations. There-
fore, there is no reason to prefer some kind of robotic setup before
others. Any claimed relevance for biology, however, is only justified
if results from robotic experiments are translated back into new mod-
els and hypotheses amenable to experimental tests within the domain
of biology. This translation “back” into biology is very often missing
and we will discuss popular robotics frameworks in the context of
Brain Research, Cognitive Science and Developmental Robotics in
order to highlight this issue. Nonetheless, such frameworks are valu-
able and important, like pure mathematics, because they might lead
to new formalisms and methods which in future might be essential
for gaining new scientific knowledge if applied in biology. No one
can tell, if and which of the current robotics frameworks will provide
these new scientific tools. What we can already say–the main mes-
sage of this article–is that robot systems serving as a replacement
for biological systems won’t be sufficient for the test of biological
models, i.e. gaining new scientific knowledge in biology.

1 Introduction

Nature has been an inexhaustible and illuminating source of inspi-
ration for scientists and engineers through all disciplines and it will
continue to be so without any doubt. When engineering reaches its
limits, nature might have good ideas how to proceed. In the area of
autonomous and intelligent robot systems living beings outperform
current engineering by far. Therefore not surprisingly a whole body
of work in this field is entitled “biologically inspired robotics” where
research is focused on copying biological systems. The hope is that
this might lead to novel technologies which will help to close the
current gap between natural and artificial intelligence. Whether or
not this kind of biological inspiration has truly led to better robot
systems shall not be the scope of this paper. We rather ask whether
an implementation of a biologically inspired model on a robot sys-
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tem can have any scientific value for biology. In other words, can
biologists gain new scientific knowledge from biological models im-
plemented on robots? This is the guiding question of this article.

The answer can have interesting implications. If the answer is pos-
itive then robotics or computer science in general could be seen as a
discipline which provides scientific knowledge about biological phe-
nomena. Hence, computer science would be part of the empirical
sciences, which is in fact an “old dream” of Artificial Intelligence
[24].

Once the far reaching consequences of this question has been ac-
knowledged we must carefully proceed in our search for an answer.
The objective of this article is to provide some solid ground which
might also be a starting point for future and more comprehensive
studies of this issue. We begin by explicitly defining what we gener-
ally mean by “gaining new scientific knowledge.” As the reader will
see, the Philosophy of Science and Karl Popper’s work The Logic of
Scientific Discovery [18] in particular will provide a coherent defi-
nition (Section 2). Applying this definition in the context of biology
and robotics, we will come to the conclusion that robotic experiments
can never directly deliver any scientific knowledge for biology (Sec-
tion 3). However, there are frameworks claiming to be of “biological
relevance.” We will critically discuss this issue in Section 3 where
outline the difference between “new insights” and “new scientific
knowledge”. We argue that the relevance of robotic systems for new
scientific knowledge in biology can only lie in the potential future
impact on biology by developing new formalisms, paradigms and
scientific tools leading to advanced studies of biological phenomena.
This is explained in Section 4 by concrete examples from Brain Re-
search and Cognitive Science followed by a case study outlining our
work in Developmental Robotics (Section 5).

2 Karl Popper’s Logic of Scientific Discovery

Since ancient times philosophers have been puzzled by the problem
of how human beings are able to gain knowledge about the world
if there is no logical justification that observations made in the past
will occur in the future. Therefore, any theory or general law derived
from past observations (inductive reasoning) is logically not valid. As
a consequence, the truth of a theory inferred by inductive reasoning
can not be proven, thus, the truth of such a theory is not ensured. This
is called the problem of induction [22].

The problem of induction is addressed by Karl Popper in his main
work The Logic of Scientific Discovery [18] where he rejects induc-
tive reasoning as a method for theory-building. According to Karl
Popper a logically valid foundation for knowledge discoveries in em-
pirical sciences can only be provided by the process of falsification.
The statements or hypotheses derived from a theory via deduction
can be tested empirically by conducting experiments. If the predic-
tions inferred from a hypothesis do not match with the outcome of



the experiment, then the theory must be refuted because it obviously
leads to a wrong statement. And a theory which allows the deduction
of wrong statements cannot provide a logically valid description of
the phenomena under investigation. On the other hand, if the exper-
imental outcome matches with the predictions of the theory then the
theory is validated. Nonetheless, a validation does not tell us any-
thing about the outcome of future experiments. Therefore, the truth
of the theory remains questionable no matter how many times it has
been validated, and moreover, validations not even make them more
probable.

Karl Popper points out that scientific knowledge is gained through
falsification only. Falsification is the only logically valid way that
drives the development of new theories because falsification usually
does not lead to the refutation of the theory as a whole. It rather
guides a careful revision of it which will lead to a better theory. Ac-
cording to Popper, scientists therefore shall be aiming for experi-
ments that falsify their theories rather than just validate them.

Notice, the origins of a theory, i.e. how human beings develop
axioms or formal expression of general laws, is not the subject of
Karl Popper’s analysis. He even understands this issue as not relevant
for the logical foundations of empirical sciences.

Without going into much detail, we have to clarify some terminol-
ogy first before we can go on discussing Popper’s view in the context
of robotics and biology. Modern logic defines a theory as a set of
sentences of a formal language. A model is an interpretation of the
theory that makes all sentences of the theory true.

In empirical sciences models are understood to be interpretations
of general laws. These laws are expressed in a form of calculus, like
the equations of Newton’s three laws of motion [10]. Taking the ex-
ample from classical physics given in [10] one can say, general laws
“are applied to a particular system, e.g. a pendulum, by choosing a
special force function, making assumptions about the mass distribu-
tion of the pendulum etc. The resulting model then is an interpreta-
tion (or realization) of the general law.”

Nowadays, the majority of discoveries in empirical sciences are
presented as models. As long as a model is derived from an inter-
pretation of a theory (a set of sentences of a formal language) then
this model allows the deduction of hypotheses. Thus, models can be
subject of a formal falsification process as Popper proposes it.
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Figure 1. Schema of of model-building and testing after Karl Popper [18]

Figure 1 presents a schema describing the process of testing mod-
els after Popper [18]. Interested in providing an explanation of some
phenomena in a specific domain, scientists derive a model which is
grounded in some formal framework. Every model comes with an
abstraction of the target phenomena [20]. The level of abstraction is
determined by the scientific question as well as by the formal frame-
work (mathematical theory or axiomatic system). A hypothesis can
be deduced from the model, which is a logically valid procedure. The
derived hypothesis will provide predictions that might be amenable
to experiments. If predictions of the model are confirmed by the ex-
periments the model is verified. If not, the model is falsified and must
be refuted as an explanation of the targeted phenomena. The latter
outcome will lead to a revised and hopefully better model, in other
words scientific knowledge will be gained by falsification.

It is important to note that in empirical sciences the experimen-
tal tests of a hypothesis are conducted in the same domain as the
phenomena under investigations. Hypotheses about a biological sys-
tem are tested by experiments with this biological system. Models
of brain phenomena must be tested against data measured from real
brains. If experiments are conducted not in the original domain of the
target phenomena, then we cannot refer to such experiments as a test
of the model for the original phenomena.

3 Robotics in Biology
3.1 The problem of using robots for testing

biological models
Regarding the usage of robot systems in biology we understand a
robot system as an experimental device where the essential parts are
assumed to be a realization or interpretation of a general law or a
formal model. The aim of this realization is the experimental tests of
a biological model. We assume models as a formal description which
allows the deduction of hypotheses. Therefore, the robot system itself
is not a model as often proclaimed. It is, including the computational
processes running on it, part of an experimental setup. Similar to the
example of the pendulum above, a robot is a device to generate data
that helps to test the model it instantiates.

In addition we now stress the issue of the experimental domain.
Recognising a robot as an experimental device, we have to ask in
which domain the experimental data are generated. In other words,
where does the data come from? It must be admitted that robot ex-
periments serving as replacement of the biological system under in-
vestigation do not generate data in original domain of the biological
phenomena. Hence, testing a hypothesis derived from a biological
model, i.e. targeting biological phenomena, by exclusively using a
robot system is not a logically valid test in the sense of Popper’s
Logic of Scientific Discovery. Experimenting with a robotic system
introduces a new domain, that in general is totally different to the
original biological domain of the target phenomena. Thus, any data
derived from such robot experiments do not allow any conclusion
about the explanational power of the model with respect to the bi-
ological phenomena. In summary, robotic systems do not provide a
logically valid test of a hypothesis about biological systems because
the original biological domain is lost. In consequence, from the point
of gaining logically valid scientific knowledge in biology, the use of
robot systems cannot be sufficient.

Notice, we do not argue that the change of domain is due to the
use of technical equipment. Nowadays, probably any experiment in
empirical sciences is in need of sophisticated technical apparatus in
order to create controlled conditions and guarantee good measure-
ments. Nevertheless, such devices still generate the requested data



out of the interaction with the target phenomena. This is not the case
for a robot system that replaces the biological system. All the data
generated by such a robot replacement are totally decoupled and iso-
lated from the domain of the phenomenon a biological model is in-
tended to address. This is what we call the loss of the original do-
main. Fig. 2 shows an attempt to illustrate this issue.

Leaving the domain B of biological phenomena when testing a hy-
pothesis B derived from the original model has serious consequences.
Applying Popper’s framework, the predictions of hypothesis B turn
into the target phenomena in a robotic domain R. This domain is
grounded in a different formal theory which is determined by the
computational paradigm, the technology and specific requirements.
As a result a new model will be developed which might provide a
similar level of abstraction and similar predictions but the test, the
experiment, is done in a pure robotic domain. Hence, the loss of the
original domain does not provide any conclusions about the explana-
tional power of model B or R for the phenomena in domain B.

3.2 Why robots at all?
The problem of losing the original domain when performing experi-
ments with robots obviously questions the role of robot experiments
in the context of biology. The usage of autonomous robots as scien-
tific method in biology has been an object of debate since their very
first appearance in the literature of brain research. Most famous is
Grey Walter’s book The living brain [27], where he introduces robots
performing tropisms and even learning tasks. More recently the topic
has been raised in articles by Barbara Webb [28, 29]. She proposes
seven categories (called dimensions) that are intended to provide a
guideline for the evaluation of the relevance of “robot models” for
biological phenomena. In her 2009 article [29] she goes even further
arguing that the only proof of biological relevance of “robot models”
is the proposal of a new hypothesis that can be tested with the real
biological systems. The latter statement is much in line with the con-
clusions in this work. However, in contrast to our argumentation she
is not addressing the role of validation and falsification. This lack,
it seems to us, might muddy the general demarcation between the
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Figure 2. The loss of domain.

robotic domain and the world of biological phenomena. We deny
any logically valid relations between biology and robot experiments,
therefore, in general no robot experiment can provide logical valid
falsification or validation of a model aimed at biological phenom-
ena. In this respect our claims are much more strict because we say,
independent of Webb’s seven dimensions (Relevance, Level, Gener-
ality, Abstraction, Structural accuracy, Performance match, Medium
[28]) models, hypotheses and experiments in the robot domain do
not provide any new scientific knowledge for biology. Consequently,
Webb’s seven dimensions fail in their attempt to provide guidelines
for what “good robot models” for biological phenomena are sup-
posed to be.

Only the translation from robotics back into biological experi-
ments allows validation or falsification, and thus, logical valid sci-
entific knowledge. Thus any robot experiment can become a source
of formal or informal inspiration that might be translated into the
biological domain where it can be tested. Hence, what seems to be
quite strict or limiting, i.e. no logical relation between robot domain
and biology, provides in fact a much more relaxed view about the
tools and methods used to “get inspiration” for good biological mod-
els. Since there is no logical relation between the domain of biology
and robots, there is no need to introduce limitations in the robotic
domain for the sake of its legitimation for biological phenomena.
Whether it be a physical robot or a simulation, a detailed high-
dimensional model of a specific brain structure or a very abstract
and low-dimensional implementation of a dynamical system, they all
have their value, if, in the short or the long run, models will be pro-
posed which can be experimentally tested with the biological system
under investigation. It is this point where our conclusion from Pop-
per’s Logic of Scientific Discovery opposes Barbara Webb’s stand
for the seven dimensions [28]. We argue, according to the The Logic
of Scientific Discovery Webb’s seven dimension cannot determine the
biological relevance of a robot system.

In the following we briefly discuss common strategies used to
justify or defend the biological relevance of specific robotic frame-
works. Similar issues and many more are discussed in [29], but the
reader will see that our proposal lets them appear in a different light.

3.2.1 Biologically inspired only

Biologically inspired robotics refers to robotic experiments where
specific computational paradigms, novel algorithms or optimization
processes copy mechanisms observed in biological systems. Some-
times it is claimed that the scientific value of the work is given in
terms of a validation of a biological model [3].

According to Popper’s framework, however, a validation does not
provide any new scientific knowledge. Consequently and without
even considering the loss of the biological domain, a successful robot
implementation of a biological model does not provide any logically
valid statement that this model is to be preferred to any other model
targeting the same phenomena.

When presenting biologically inspired robot implementations
only, in the best case this can only serve engineering by promot-
ing more efficient methods for new tasks, domains or application; a
scientific value for biology is not given.

An interesting question occurs when assuming a biological model
confirming a hypothesis which is not confirmed when implemented
as a robot model. Apart from the fact that we are not aware of any
published work of this kind, the question needs to be addressed. Can
biologically inspired robotics experiments serve as a valid falsifica-
tion of the model for the biological phenomena? We argue that they



cannot. Assume a hypothesis derived from a biological model which
is tested in the biological domain as well as it is tested in a setup
where a robot replaces the biological system. Given that in the first
case the hypothesis is validated while it is falsified in the robotic ex-
periment, then the robotic experiment would hardly be accepted as
a falsification of the model. The reason is obviously that a robotic
implementation raises a lot of concerns about being a valid represen-
tation of the biological system. In other words, the loss of the domain
does not allow robotics to be test bed for the falsification of models
intended to address biological phenomena.

3.2.2 Proof of concept

A proof of concept, also called an existence proof, is usually intro-
duced in order to overcome paradigms that are believed to be the only
valid explanation of certain phenomena. As an example the general
law: “There is no I without S” can be countered by showing: “There
is an I without S”. The most famous example in Artificial Intelli-
gence for this kind of counter example is Rodney Brooks’ article
Intelligence without representation [5], where he targeted the domi-
nance of the symbolic information processing hypothesis by demon-
strating that advanced robot behaviours can be generated without the
application of the symbolic information processing paradigm. How-
ever, Brooks never said: “All intelligence without symbolic represen-
tation.”

With respect to the relevance of existence proofs for an under-
standing of biological systems we have to recognise that a robotic
experiment introduced as an existence proof in a specific robotic do-
main does not provide any more than the implementation of a biolog-
ically inspired model (see discussion above). Hence, in the best case
an existence proof serves engineering but not empirical sciences.

3.2.3 Demonstrations of principles

W. G. Walter’s robot system were already mentioned. Interestingly,
these robot systems were promoted as “part of a mirror of the brain”
[27] because they demonstrate principles that must be considered
when investigating real brains. In Cybernetics such a principle is
the “feedback loop in which the environment is a component.” In
this context, robots or machines are seen as a valid and illuminating
“mimicry of life”.

Obviously, Walter presented his robots as devices for the valida-
tion of a biological model. As we argue this is questionable since
the biological domain is lost. However, the issue of “demonstration”
includes an additional quality. Demonstrating a principle in a very
abstract form gives evidence about the involvement of mechanisms
that might be an essential part of many phenomena in different do-
mains. These mechanisms might therefore be worth studying in a
formal way, i.e. mathematical framework for their own sake, without
the need to refer back to the biological target phenomena.

Whether or not the results of these studies are in the short or the
long term helpful to understand specific phenomena of biological
systems, this can only be answered by “explicitly translating” the
results back into models, hypotheses and experimental tests in the bi-
ological domain. Walter (and others) often pursued such model trans-
lation exercises as they were primarily interested in neuroscience.

3.2.4 Support the development of new theoretical
frameworks, paradigms, and tools

The aspect of robots as demonstrators of principles is closely cou-
pled with the development of new theoretical frameworks. Studying

principles, like feedback loops, in a purely formal framework bears
the danger that formalisms are evolved which lose any match with
real systems. Using robot systems can serve as a first kind of real-
ity check. Demonstrating the outcome of new formalisms on a robot
system gives insights about the constraints and valid boundary condi-
tions of a formalism. In this respect we understand Webb’s statement
that robot experiments provide insights “by working on real prob-
lems in real environment” [28]. Notice, we understand new insights
as different from new scientific knowledge. Only if insights gained
from robotics experiments are translated back into biological models
and tested in the biological domain, they can become new scientific
knowledge in biology.

3.2.5 Robots as tools for the development of new
hypotheses amenable to experimental test

The best way to motivate a new formalism or theory for the old un-
solved problems is the ability to infer new models which allow the
deduction of already known and new predictions that can be tested
experimentally. Real robots, simulations or even a set of equations
are promoted as tools that help us to provide new testable hypothe-
ses. Indeed, robots interacting within unconstrained environments or
computer simulations often produce unforeseen but reproducible re-
sults. These unexpected experimental outcomes might be seen as
an inevitable consequences of the model applied and therefore are
claimed to be new predictions or hypotheses. Nevertheless, only the
experimental test of these predictions in the biological domain allows
conclusions whether or not “the new hypothesis” is just a superficial
effect of the non-biological domain.

Moreover, the test of a new hypothesis for biological systems de-
rived from experiments in non-biological domains involves an ad-
ditional problem. If the “new hypothesis” cannot be derived from
the biological model in a logically valid way–e.g. without computer
simulations or experiments in the robotics domain–then the “new hy-
pothesis” is not a logically valid deduction. Consequently, an exper-
imental test of such a hypothesis makes no sense at all because one
does not know whether this hypothesis is a logical consequence of
the biological model.

4 Current robotic frameworks in brain research
and cognitive science

In the following we examine popular robotic frameworks in brain
research and cognitive science where we briefly discuss how they
match with our five “categories of justification of biological rele-
vance.”

4.1 Brain Based Devices
Following specific design principles a brain-based device, introduced
and promoted by G. M. Edelman [9], is a physical robot system inter-
acting autonomously with its environment. The control structure of
the system is provided by “simulated nervous systems”, in fact large-
scale artificial neural networks. In order to allow comparison with
real brain-data the design of the artificial neural networks tries to
“reflect the brain’s anatomy and physiology” [14]. A series of robot
experiments demonstrating a variety of adaptation tasks driven by
neural group selection principles is for instance given in [14] where
it is stated that brain-based devices serve as “a heuristic for testing
theories of brain function.” With respect to “testing” it must be ad-
mitted that although the hypotheses and predictions are formulated



in the terminology of brain science they are experimental tested with
robot systems only. In this sense the experiments presented have pri-
marily the character of a validation of a robotic model.

Regarding the validation of a biological model it is claimed that
the results of the robot experiments are in accordance with brain data
from literature. These data, however, were published over ten years
earlier. Thus, it is hard to see how the introduced robotic experiments
have led to a new hypothesis.

Although strictly designed in relation to a specific level of abstrac-
tion in brain science, the experiments of the brain-based devices re-
main in the robotics domain. Moreover, experiments have the charac-
ter of validation. It is for instance shown that the “binding problem”
can be solved in a particular robot-environment system by synchro-
nisation mechanisms. But as long as these results are not transfered
into models and new testable hypotheses for real brains, the scientific
value for brain research remains questionable.

From an engineering perspective brain-based devices might of-
fer alternatives to symbolic information processing strategies for the
development of advanced robot systems. As the authors emphasis
brain-base devices “provide groundwork for the development of in-
telligent machines that follow neurobiological rather than computa-
tional principles in their construction” [14].

In conclusion brain-based devices can be seen as tools for the vali-
dation of biologically inspired models of neural information process-
ing and the demonstration of principles (like synchronisation). An
explicit formulation of biological models leading to new hypotheses
testable in real brains has not been shown yet.

4.2 Conceptual neural evolution

Understanding the complexity of the human brain by investigating
how this complexity is rooted in “simpler complexities” of “our evo-
lutionary cousins” is proposed by M. A. Arbib as the framework of
conceptual neural evolution. This approach emphasises the principle
of “evolutionary refinement” where new behavioural competences
emerge from the modulation of already given but simpler behaviours
[1]. Arbib states explicitly that the models developed in this frame-
work are derived from and tested with data from real animals. Hence,
biologically inspired robot systems are a side effect of this research
which “will advance the design principles for a new generation of bi-
ologically inspired robots” [1]. One example, a computational model
for path planing [2], is explicitly mentioned as a source of inspira-
tion for behaviour-based robotics [1]. Hence, within conceptual neu-
ral evolution Arbib sees robot systems as demonstrators of principles
of “evolutionary refinement” only. As a source of inspiration for the
development of brain models robotics plays no part.

4.3 Evolving Minimal Cognitive Agents

Within the context of cognitive science the application of evolution-
ary algorithms to generate robot behaviour for real or simulated robot
systems is motivated as the evolution of “minimally cognitive be-
haviour” [4]. Such experiments are meant to be a step towards ab-
stracting general principles of cognition that can be explicitly ex-
pressed within the formalism of Dynamical Systems Theory [26].
Since the process of artificial evolution allows the generation of low-
dimensional neural circuits, the resulting control structures can be
analytically investigated in a reasonable depth.

Scientists in this area, like Randal Beer, admit that the evolution
of minimally cognitive behaviour is a result of an abstraction process

which allows no comparison with or empirical predictions for bio-
logical phenomena. Thus, the main contribution of this framework
is to provide concrete examples within the specific formalisms of
Dynamical Systems Theory, because “only by working through the
details of tractable concrete examples of the cognitive phenomena
of interest that we can begin to glimpse whatever general theoretical
principles may exist and whatever mathematical and computational
tools will be necessary to formulate them” [4].

Consequently, this approach fits into the category which we have
introduced above as the “support of the development of new theoreti-
cal frameworks, paradigms and tools.” Once it is explicitly stated that
the “evolution of minimally cognitive behaviour” is totally decoupled
from the biological phenomena, we are comfortable with following
Beer’s argumentation about the possible biological relevance of such
studies in the near or far future.

5 A case study from Developmental Robotics

Among psychologists there is a longstanding controversy regarding
the origins of many brain functions and observed behaviours. On one
hand, the nativists argue that much basic function is innate and is thus
specified genetically and becomes hardwired during neural matura-
tion. On the other side, the empiricists claim that much apparently
innate competence is instead formed through experience or interac-
tion with the environment and hence involves some kind of adap-
tation or learning. Much of this debate centres on infant develop-
ment, particularly the early growth of sensory-motor skills and cog-
nition. Some behaviours, such as the early reflexes, are clearly innate
because they have no opportunity for learning and are immediately
available. Other functions, such as smiling and responding to faces,
are less easily analysed and there are arguments on both sides for
their emergence and growth. We now discuss a model of eye move-
ment that illustrates how robotic models may shed some light on the
general principles involved in one small aspect of this general prob-
lem. It is important to note that our model is not able to comment
on the biological structure and validate or falsify particular features,
but it is possible to expose some principles of logical necessity that
must be present (or absent) in both the robot model and the biological
system.

The human newborn is helpless at birth but has available a range
of automatic sensory-motor reflex behaviours and also some primi-
tive but potentially fundamental competences that are precursors for
cognitive growth. These include basic head orientation to audio stim-
uli [16] and saccading with the eyes to look at a visual stimulus [21].
Because newborns are able to saccade immediately (they do not have
smooth pursuit eye control) this has often been taken as evidence
that this is an innate function. We have built a robot system that very
quickly learns how to saccade and this demonstrates the possibility
that the fundamental process of visual saccading to a peripheral stim-
ulus could be learned rather than innate. If such rapid learning does
occur it would be quite difficult to detect but it could be very signifi-
cant evidence for the empiricist stance [25].

In computer vision or robotics, if a camera (robot “eye”) is to be
moved in order to bring an object on the periphery of the image to-
wards the centre then this is usually achieved by complex calcula-
tions involving knowledge of the geometry of the camera location,
the scene structure and the parameters of the optical setup [30]. Even
in systems that try to minimise the engineering of this task there is
the need to calibrate the geometric and optical configuration [8].

As part of our work in Developmental Robotics we have built
a model that does not need any prior information and is self-



calibrating. Through a process of learning the model essentially per-
forms a kind of continuous calibration in which the mapping between
image movement and eye movement is learned. The details are de-
scribed elsewhere [7] but the method is straightforward. Our robot
eye is implemented as two sensory functions: image processing soft-
ware is used to simulate a periphery sensor and a centre or foveal sen-
sor. The periphery sensor detects the position of any phasic changes
in the visual periphery area. The centre sensor analyses any objects
(i.e. colour blobs) in the foveal region of the visual field. This config-
uration is similar to the human vision system which drives saccades
towards peripheral stimuli in order to fixate the foveal processing
machinery onto targets that attract attention. The main control issue
for this ocular-motor system is a sensory-motor coordination prob-
lem: what are the necessary motor variables to drive the eye so that
a specific sensed region in the image is moved to the centre of the
image? This means a transform must be known for converting image
space displacement vectors into eye gaze space movement vectors.
We designed a simple algorithm that can learn this transform as a
mapping between the spaces. Local spatial correspondences are es-
tablished on the basis of experience and are entered into the mapping
in a continuous, cumulative and incremental process. The underlying
assumptions are that (a) the mapping may not be a simple or linear
relationship and (b) the position of the eyeball can not be related to
image data until after birth (as vision is ineffective in the womb [23])
and therefore learning should start from zero prior knowledge.

If we start with no prior information then when the first periph-
eral target appears there will be no appropriate motor values known
and some spontaneous movement must be made in order to gain
some experience. When eventually the eye finds the foveal region
then the parameters can be recorded in the mapping (initial periph-
eral location and final angle of gaze) for future reference. After a
while sufficient regions become mapped so that only a few move-
ments are needed before finding the target, and eventually the map
becomes fully populated so that any target can be brought to the cen-
tre in a one step saccade. We observed three distinct qualitatively
different behaviours emerge during this learning process: at first ran-
dom Brownian-like wandering appeared, followed by more directed
multi-step paths that appear to involve corrections, and finally single
accurate saccades straight to the centre. These behavioural patterns
emerged successively although not in completely strict sequence.

The most significant results from this experiment are: the system
learns very rapidly; it does not require any calibration process or
prior knowledge; it continuously adapts to correct errors; and dis-
plays qualitatively different stages in its behaviour which emerge
during learning. Perhaps the most important result is the extremely
fast learning speed – which was much faster than current neural net-
work based approaches. The simplicity of the method is important in
this regard, as the requirement for fast performance, in both saccad-
ing and learning, rules out complex computations and the speed of
neural processes limits the number of steps that can be involved [17].
We found that some 200 saccade attempts were sufficient to build a
near complete mapping, and if this is converted into infant activity
the figures show that a saccade map might be built in a matter of
hours, or at the most a few days.

Other results from our model show compatibility with the known
data on early infant eye activity. Specific infant data on the size,
eccentricity and average number of saccades, corroborate the be-
haviours observed [21, 11]. The accuracy of saccades with our model
is a good match with reported infant accuracy [15, 13]. The average
error in saccading to a given image location is 0.35 of the tolerance
spacing between points in the mapping.

To return to the role of such models, we now see that it is logically
possible that newborn saccadic eye behaviour could be learned rather
than innate. This learning could be so rapid that it might not be easy
to detect and the onus is now on psychology and neuroscience to
investigate for new evidence. Others have reported similar fast learn-
ing in infants across a range of activities [19] and it has been sug-
gested that the preference of newborns to orient towards faces could
be learned very rapidly, even in the first six minutes of life [6]. Face
orientation is another behaviour that is generally believed to be in-
nate.

With this new viewpoint we can now reflect that it is quite difficult
to see how accurate saccades could be created pre-wired before birth.
The concrete and specific information needed to coordinate eyeball
movement with movement on the image (i.e. movement of the im-
age with movement within the image) depends upon the physical and
optical properties of each particular eye and individual differences
in anatomy and geometry. While the proprioceptive feedback from
eyeball muscles can be calibrated in the womb, there are no detailed
visual signals available prenatally for similar calibration of the im-
age space [23]. And so it seems inconceivable that all the necessary
information could be pre-compiled before birth.

Of course, just because we have similarity in results we do not
claim that our, rather abstract, robot mechanism is the same or even
similar to that which drives the human eye; there can be very many
mechanisms that could produce the same behaviour. But what we
have shown is that it is possible to learn the necessary information for
driving eye saccades very rapidly, and this general principle under-
mines the natavist assumption that newborn saccading is innate. This
means the nativists are obliged to revisit their assumptions and pro-
vide better evidence for their stance. The new hypothesis that new-
born infants may perform, as yet undetected, rapid learning also of-
fers motivation for biological and psychological investigation to find
evidence to either support or refute the idea.

Another aspect concerns the difficulty of observing learning be-
haviour. Because saccades are such fast movements there is no time
for (neural) feedback, and therefore the control must be a forward
model [12]. Harris has argued that in this situation “motor babbling”
is not just random “neural noise” but is “spontaneous information-
gathering action”. We notice that the accurate, learned saccades are
often mixed in with more exploratory movements (as gaps in the map
are found and filled in). This makes the “motor babbling” much less
obvious and it will require careful investigation to discern such learn-
ing from behavioural data alone.

Finally, another implication from our model shows the value of
proposed mechanisms that may transfer between domains. It is well
known that, for saccade errors, undershoot is more common than
overshoots. An hypothesis has been proposed [12] that this is an
optimum strategy to minimise the total flight-time, because the to-
tal flight-time is less with corrective saccades that undershoot as
compared with those that overshoot. This effect also occurs in our
method: fields near the fovea are predominant among the first to de-
velop because most moves end in such a field, and so when a neigh-
bour is selected it is more likely to be on the near side than the far
side of the target. We analysed the data for a run of fixations and
found that undershoot occurred in 75% of the cases. Further investi-
gation, with both robotic and biological models may shed some light
on the nature of such error patterns and the underlying mechanisms.



6 Conclusion
Facing the problem of induction in empirical sciences we followed
Karl Popper’s Logic of Scientific Discovery where a clear distinc-
tion is made between experimental validation and falsification and
their role in gaining new and logically valid scientific knowledge. We
have outlined how Popper’s Logic of Scientific Discovery helps us to
understand the fundamental problems when robotic experiments are
motivated as a test beds for biological models.

The first of our conclusions was that a robot (simulated or real)
is not a model. It is an experimental device to test models empir-
ically. Moreover, when asking what kind of models can be tested
with robot systems, we had to recognize the loss of the biological
domain. The problem of losing the original biological domain means
that, under any circumstances, experiments within a robotic domain
cannot count as falsification or validation of biological models target-
ing biological phenomena. Thus, robotics does not directly provide
new scientific knowledge for biology. As a consequence robot exper-
iments can only be seen as an inspiration for new biological models
and hypotheses. However, we only can accept the robot experiments
as biologically relevant if they are explicitly translated back into the
biological domain leading to new models and experimental tests. It
is exactly this last step which is usually missing when robot experi-
ments are motivated as biologically relevant.

In addition we must admit that there is obviously no formal way
for transforming the results from robotics experiments into a biolog-
ical model and corresponding experimental tests. Thus, robotics will
always have a hard time to underline its scientific contribution to bi-
ology. In contrast to Barbara Webb we are not interested in tackling
this problem by providing guidelines for “good robot models” that
lead to “good biological models” [28]. These guidelines can only
blur the general demarcation between robotics and biology. This de-
marcation can hardly be overemphasised since it forces scientists to
translate results from robotics experiments back into new biological
models and hypothesis amenable for tests in the original biological
domain before they can claim that robots experiments are essential
part of gaining new scientific knowledge in biology.

In the absence of clearly stated examples of “robotics inspired bi-
ology” we have asked for other qualities that provide indirect scien-
tific value for biology. In addition to the obvious quality “Developing
new hypotheses and experimental tests”, we have stated the follow-
ing four:

• Biologically inspired implementations
• Proof of concept
• Demonstrations of general principles
• Support of the development of new formalisms, paradigms, and

tools

We have seen that any robot implementation of biologically in-
spired models can only count as a contribution to engineering but not
to biology. The very same holds for the so called “existence proofs”
or “proofs of concept” in robotics.

The two other qualities serve the development of new formalisms
which are believed to provide the more powerful tools for the phe-
nomena not yet understood. However, as long as these tools are not
developed yet in such a way that they lead to new hypotheses and ex-
periments they are of course subject of debate and must be carefully
motivated [29].

We have discussed four different research activities or programs,
namely

• Brain-based devices,
• Conceptual neural evolution,
• Evolving minimal cognitive agents, and
• Developmental robotics.

All these examples have shown that our criticism about the missing
“direct biological relevance” is valid. Brain-based devices in partic-
ular are motivated as tools that help us to understand how the hu-
man brain works. The published results, however, stop at a level
where it is claimed that a specific results from the robotic experi-
ments suggest that a certain mechanism “might also be a common
property of the neural networks of living animals” [9]. But, this re-
mains an open question no matter how many robotic experiments are
performed. Hence, according to our argument, biological relevance
of brain-based devices remains open as well.

On the other hand, we have seen that the framework of artificial
evolution of minimally cognitive agents is an example for the devel-
opment of very abstract formalisms without even trying to generate
new testable predictions for biological phenomena. As for pure math-
ematics, no one can tell yet whether this approach will lead to useful
tools helping us to gain deeper understanding of biological phenom-
ena. Only time can tell.

It is interesting to notice Arbib’s strict view that the models in
the framework of “conceptual neural evolution” are not inspired by
any approach in robotics, but “will advance the design principles”
for intelligent robots [1]. In this sense one could get the impression
that Arbib primarily motivates his approach to Brain Research by the
current limitations in engineering.

Finally, the extended case study of the learning of a robotic ocular-
motor coordination has illustrated the demonstration of two princi-
ples. Firstly, the self-calibration of eye saccade movements is nec-
essary and secondly, fast self-calibration is possible. These results
gave evidence that saccadic eye behaviour of newborns could be
learned rather than innate. Furthermore, with respect to the charac-
teristic saccade errors observed in biological systems a similar dom-
inance of undershooting saccades was found for in our robotic setup.
Hence, the dominance of undershoots could be caused by mecha-
nisms present in both systems, human eye and robot. The robotic
system allows a formal description of the underlying processes lead-
ing to a comprehensive explanation of the characteristic dominance
of undershoots. This in turn might help to derive a model explain-
ing this phenomena for biological systems and leading to predictions
which are amenable to experimental tests of the biological system.
However, as long as this last step (models amenable to experimental
test) is missing, we cannot claim biological relevance for our robotics
experiments even if the resulting behaviours show similar character-
istics.

At this point we conclude this article by stating that computer
science or robotics do not belong to empirical sciences because we
have shown that in general a robotic experiment can not provide new
scientific knowledge about a biological phenomenon. We hope the
reader will understand this as good news, since there is no need to
limit the design of intelligent information processing systems by spe-
cific paradigms or levels of abstraction dictated by biology. The value
of robotics and computer science for biology can only become mani-
fested in the demonstration of general principles or the development
of new formalisms, paradigms and/or tools. The assumption that bi-
ologically motivated robotic implementations directly provide new
scientific knowledge for biological phenomena is logically not valid.
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