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Abstract. There is much work in AI that is inspired by natural
intelligence, whether in humans, other animals or evolutionary
processes. In most of that work the main aim is to solve
some practical problem, whether the design of useful robots,
planning/scheduling systems, natural language interfaces, medical
diagnosis systems or others. Since the beginning of AI there has
also been an interest in the scientific study of intelligence, including
general principles relevant to the design of machines with various
sorts of intelligence, whether biologically inspired or not. The first
explicit champion of that approach to AI was John McCarthy, though
many others have contributed, explicitly or implicitly, including Alan
Turing, Herbert Simon, Marvin Minsky, Ada Lovelace a century
earlier, and others. A third kind of interest in AI, which is at least
as old, and arguably older, is concerned with attempting to search
for explanations of how biological systems work, including humans,
where the explanations are sufficiently deep and detailed to be
capable of inspiring working designs. That design-based attempt to
understand natural intelligence, in part by analysing requirements for
replicating it, is partly like and partly unlike the older mathematics-
based attempt to understand physical phenomena, insofar as there is
no requirement for an adequate mathematical model to be capable
of replicating the phenomena to be explained: Newton’s equations
did not produce a new solar system, though they helped to explain
and predict observed behaviours in the old one. This paper attempts
to explain some of the main features of the design-based approach
to understanding natural intelligence, many of them already well
known, though not all. The design based approach makes heavy use
of what we have learnt about computation since Ada Lovelace. But
it should not be restricted to forms of computation that we already
understand and which can be implemented on modern computers.
We need an open mind as to what sorts of information-processing
systems can exist and which varieties were produced by biological
evolution.
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1 How to describe humans and other animals

When scientists attempt to explain observations of behaviour in
humans and other animals, they often use language that evolved
for informal discourse among people engaged in every day social
interaction, like this:
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• What does the infant/child/adult/chimp/crow (etc)
perceive/understand/learn/intend (etc)?

• What is he/she/it conscious of?

• What does he/she/it experience/enjoy/desire?

• What does he/she/it find interesting/boring?

• What is he/she/it attending to?

• What kinds of events surprise him/her/it ?

• Why did he/she/it do X, start Xing, stop Xing, speed up Xing... ?

• Does he/she/it know that ...?

• What did/does he/she/it expect will happen, if...?

Similar comments can be made about the terminology used in
many philosophical discussions about minds, cognition, language,
and the relationships between evolution and learning.

These forms of description and explanation treat the whole person
or animal (as opposed to functional sub-systems) as the subject
of all the verbs (of perceiving, doing, thinking, feeling, deciding,
etc.). They make use of a collection of theoretical assumptions and
strategies similar to what Dennett called “the intentional stance”
and Newell called “the knowledge level” ([4, 14] the differences
need not concern us now). That “whole animal” approach treats all
those whose behaviour is being explained, whether animals, infants,
toddlers, and in some cases people with serious psychiatric disorders,
as if they were all basically like normal human adults in the way they
operate, taking decisions and acting on the basis of what they know,
what they perceive, what concepts they have, what goals, preferences
and attitudes they have, and how they reason, deliberate and plan.
Sometimes we can also invoke ways of being irrational, for example
when experiencing strong and disastrous emotions, though it is not
clear that that would be included in Dennett’s “Intentional stance”.

There is nothing wrong with such modes of expression if the aim
is to entertain, speculate, educate in a general way, generate interest,
make excuses, gossip, influence the behaviour of others, or write
novels or plays. However, a different approach is needed if the aim is
to provide scientific understanding: the kind of understanding of how
humans and other animals work that could enable us to explain what
they can and cannot do, how they learn and develop, or how their
development can go wrong, and if we wish to gain insights into how
they evolved, the relationships between evolution and development,
and how deliberate external intervention can influence the processes
(e.g. educational or therapeutic strategies).

Such scientific understanding is also necessary if we wish
to adopt good, reliable, strategies for educating children and



helping people badly affected by mental abnormalities. Otherwise
politicians, educators, therapists and the general public risk
being influenced too much by transient fashions and misleading
evidence, e.g. evidence based on statistical correlations rather than
understanding of mechanisms. (There are “romantic” objections
to this approach, based on a dislike of mechanistic explanations,
computers, reductionism, or removal of mystery concerning human
minds, e.g. [27]. This is not the place to deal with such objections,
though they need to be countered.)

2 What is the design-based approach
(“designer-stance”)?

Going beyond “common sense” descriptions and “correlational”
explanations of animal2 behaviours and competences requires us to
formulate theories about the mechanisms within the animal that play
a role in producing the behaviours, or that produce the competences
and dispositions that produce the behaviours, just as explaining how
a clock works requires us to identify components which do things
that contribute to the clock’s functionality, e.g. providing the energy
to keep it going, controlling its speed, detecting when to chime, or
turn on an alarm sound, etc.

If we are explaining the behaviour of car or clock, we think
the parts that are relevant to explaining what happens are physical
components that can be identified separately from other components,
and which do specific things they were designed to do. If we
wish to explain what happens when a volcano erupts, or chemicals
react, or a plant grows we also refer to interacting physical parts,
though without assuming they were designed by humans or any other
intelligent designer to do to anything.

That strategy of explaining in terms of interacting physical parts
is very successful in the physical sciences, and in many branches
of engineering (including explaining malfunctions in machinery as
well as how things work). Physicists and chemists have learnt a lot
about the items involved in physical and chemical interactions, and
engineers often know a lot about what the parts of the machines they
build can do in various circumstances. Many researchers hope that if
only we study physical mechanisms and their connections in brains
we shall achieve theories with similar explanatory power. So there
is a strong temptation to look for physical parts to explain human
and animal competences and behaviours, and typically that involves
trying to find which bits of brains are relevant, along with which bits
of bodies (sensors and effectors).

However brains are far more complex and obscure in their
operation than most of the complex systems studied by physicists
and chemists or the machines designed (so far) by engineers. It isn’t
even clear what most of the functioning components of brains are
or what their functions are, though large numbers of fragmentary
discoveries are being made about which bits seem to be involved
in which processes, and about how the parts interact physically and
chemically.3

So, on the one hand we get neuroscientists describing components
whose ability to produce processes like perceiving, deciding,
learning, hypothesising, planning, wanting, evaluating is doubtful
and unproven, and on the other hand we get behavioural and
cognitive scientists, and even AI theorists, listing hypothesised
components that are often described using familiar common sense
concepts, like perceiving, deciding, learning, ... evaluating where

2 By default read “animal” as including “humans.
3 See http://news.bbc.co.uk/1/hi/7443534.stm reporting recent research on

the previously unsuspected complexity of individual synapses in mammals.

(a) nobody knows how brain mechanisms could constitute such
components and (b) the concepts are too loosely defined for use in a
scientific explanatory context (though not for ordinary conversation).
The use of such concepts in explanations is often circular because the
concepts presuppose that these systems have capabilities of the sorts
we want to explain.

It’s as if someone tried to explain how a car engine works by listing
and labelling parts, without indicating how any of the parts work or
how they interact, e.g. by saying, this is the bit that starts the car,
this is the bit that makes the car go faster, this is the bit that makes
the car slow down, etc., leaving to others the task of specifying more
precisely what exactly the parts do and explaining how they do it.

Unfortunately, when AI researchers meet the challenge by trying
to specify in constructive terms how the components of intelligent
systems (sensory interpreters, memory makers of various kinds,
planners, choosers, emotion components, etc.) could be built,
they sometimes end up using familiar labels (e.g. “emotion”,
“perception”) for components whose functionality is at best a tiny
fragment of what the pre-scientific uses of the labels imply – e.g.
robots described as having emotions because they can smile, shake
or nod their heads, etc., or described as learning because they
change associative weights, or modify rules or databases. McDermott
strongly criticised similar tendencies in early AI theorists [8]. The
tendency re-emerges with each new wave of fashion in AI.

There have recently been attempts at trying to get beyond this
vagueness and circularity by giving the robots physical bodies
and sensors or motors that match some features of the biological
examples. But that emphasis on embodiment is often too closely tied
to attempts to replicate the rather gross morphology of the organisms,
both ignoring details like the number of sensors in a mammal’s limbs,
tongue, lips, etc., and ignoring what humans are able to do if their
limbs and some sensors are damaged or missing, like humans born
blind, or lacking limbs [24].

3 What sorts of mechanism do we need?

For traditional clocks, all the parts are physically separable parts,
whereas we have learnt in the last half century that in the case
of complex information-processing systems we need to be able to
refer to more abstract concurrently active parts, namely, information-
processing sub-systems i.e. pieces of so-called “virtual machinery”
that are not physical, though their existence and their operation
depends crucially on physical components. There need not be a one-
to-one mapping between the VM components and the physical parts.
(For more on the complex web of relationships between running
virtual machines and the underlying physical machines see [20].)

Figure 1. Difference in grain and causal powers between virtual machinery
and physical machinery. We also need multiple layers of relative virtuality.



These pieces of virtual machinery are sometimes confused with
programs: but programs whether printed on paper or recorded in
a computer’s memory, are static structures that do nothing, on
their own. Something quite different comes into existence when
programs run: active, enduring processes in which things get done.
For example, games are played, problems are solved, machines are
controlled, sensory input is interpreted, things are learnt, goals are
considered and selected, plans are constructed, other processes are
initiated, suspended, terminated, or in some way modified, e.g. on
the basis of information about their progress or new developments in
the environment.

The connection between processes and programs is not simple,
since different processes can use the same program, invoked
with different parameters, or running in different contexts – e.g.
simultaneously sorting lists of different kinds.

When all that happens, there are very many physical changes in
the computer scattered around the memory, the long term file store,
registers in the central computer(s), switches in attached interfaces
to various external devices, and so on. But the physical processes are
not the only processes: things go on in computers (but not physically
inside them as the transistors are) that are best described in a different
language from the language(s) of the physical sciences: e.g. a running
virtual machine can consider certain options, investigate some of
them, discover that some actions lead to threats and dangers, modify
or reorder its goals and preferences, and perhaps find one action that
either wins the game or moves closer towards winning. Molecules,
rocks, planets, electrical circuits, and, arguably, neurons cannot do
those things although processes running on electrical circuits can and
presumably processes running on neural, and perhaps sub-neural,
mechanisms can also.

AI research has shown how to produce running virtual machines
that merit such “high level” descriptions (at least to a first
approximation) because of the more detailed descriptions we can
give of how they acquire, manipulate, analyse, combine, derive and
use various kinds of information and the (internal and external)
dispositions they produce and maintain, for example, a disposition
to modify a plan to achieve one or more goals in a different way,
or to achieve a different goal, if new information turns up during
execution.

Some philosophers argue about what is or is not “constitutive”
of having an experience or a plan. When we understand, as a result
of AI explorations, the space of possible designs and the variety of
states and processes that can occur in each design, the importance
of much discussed philosophical problems of finding necessary
or “constitutive” conditions for something being an example
of some pre-theoretic concept becomes utterly insignificant in
comparison with the task of exploring that variety, and understanding
the implications of the differences. For example, analysing, or
experimenting with, working designs to find out which ones can
produce systems that have various kinds of experience replaces
disputes about binary divisions with far more useful analysis of a
rich variety of cases.

Understanding diversity in a uniform way is a core goal of biology,
and until now Darwinian evolutionary theory (and its more recent
ramifications) provides the major example. However a different, but
related study of diversity is required for understanding the variety
of control systems and the variety of states and processes that can
occur in them, including all the things we currently loosely label
perception, learning, wanting, experiencing, deciding, disliking, etc.

4 Conceptual tools for explanation designers

Producing such working models depends on, among other things,
constructing information-bearers of various kinds that express
information (for the system using them), and mechanisms for
operating on them, for combining, analysing, comparing, storing,
searching for and using the information. These information-bearers
at the lowest level of virtual machinery in computers are bit-patterns,
but at higher levels can be lists of symbols, trees, graphs, arrays,
equations, linked collections of changing numerals, sets of rules,
running processes, and many more. Moreover these information-
bearers, henceforth called “representations”,4 can have different
roles in different contexts: the same representation (e.g. a logical
expression) could be taken to describe a state of affairs that exists, a
state of affairs to be brought about, a state of affairs to be prevented,
or a goal to determine whether the state of affairs exists or not.
In other words, the operation of virtual machinery in computers is
concerned both with semantic content and with control functions of
many kinds of representation.

The notion that representations “stand for” or “stand in for”
what they represent (e.g. see [26]) is a serious error, since the
uses of representations are typically very different from the uses of
the things they represent. You cannot climb, or paint, information
about the Eiffel Tower. For more on what information is and what
representations are, see [21].

At first sight, the chemical and physical structures and processes
in brains do not seem to have the power to produce mental states
and processes, just as transistors, metallic connections, spinning
magnetic discs and the like in themselves do not seem to have the
power to play chess, correct spelling, produce goals, beliefs, or plans,
nor to take decisions, control inferences, make recommendations,
etc. In the latter case (computing systems) we have recently learnt
how to give them the powers they seem intrinsically incapable of
having (though it is not a simple matter at all to do this: as half a
century of research and development has shown – in particular we
need far more complex systems than Turing machines). Presumably
we shall eventually also learn how the far more complex physical
components found in brains (see Note 3) can also be used to support
a disparate range of representations and mechanisms, with many
different semantic and control functions.

NB: At present, we don’t know how neural mechanisms can
encode information about complex changing and enduring 3-
D structures and relations in the environment, or differences
between different kinds of “stuff” that a child learns about, or
causal interactions between structures in the environment, or the
information used in logical and mathematical processes of reasoning.
We also don’t know how neural mechanisms represent “meta-
semantic” information about things having thoughts, percepts,
preferences, emotions, intentions, or information containing gaps.
(For more information on the problems, if not the solutions see [25].)

Making progress will require us to develop a deep understanding
of the intermediate-level virtual machine functionality that specifies
what sorts of information processing is going on in brains, before we
can produce good theories as to how the physical components do it.
Just looking at the physical and chemical structures and processes
found in brains, or even tracing their connections and patterns of
activity, can fail to inform us as to what the higher level functions
are.

So one important way in which AI may inform biological research

4 This seems to be the most common use of the word “representation” in
scientific contexts.



is by suggesting kinds of intermediate level information-processing
functionality that may, one day, suffice to explain the observed
competences (and incompetences) in various sorts of animals. Using
ideas about such functionality to produce workable explanations at
that level may then drive further research into how such mechanisms
could be implemented in neural systems, and also research into ways
in which they can go wrong, how they develop in individuals, how
they differ across species, and how they might have evolved.

Making advances that increase explanatory power of our theories
at the intermediate levels is very hard, however – in part, because it
is hard to identify the requirements to be met, as decades of over-
simplified goals adopted by AI researchers have shown.

5 Whole organism explanations
Often, scientists (or philosophers) attempt to produce explanations
of the phenomena observed, or hypothesised, by describing what
is going on inside the person or animal, but the ways they
have of doing that derive from concepts used in everyday
conversation for describing human mental states and processes,
such as noticing, seeing, expecting, deciding, comparing, choosing,
learning, hypothesising, wanting, preferring, and many more. One
characteristic of the above concepts is that they normally refer to
what a whole person is doing, e.g. it is you that notices something,
not some portion of your brain, or mind, or one of your eyes or
ears. What we need are more fine-grained process descriptions, but
with the power to explain, and also contradict and refine, our more
coarse-grained common sense descriptions. (The corrections would
be analogous to corrections of everyday categories in that occurred
in previous branches of science: e.g. there isn’t a kind of “bad air”
that causes illness and whales are not fish.)

Many scientists have tried to avoid those common-sense categories
of states, actions and processes, when constructing explanatory
theories. Some attempted to use only concepts defined in terms of
observable behaviour with consequencs criticised by (among others)
Chomsky in [2]. Others, as explained above, try instead to refer to
physical parts of a person or animal which are assumed to have the
required explanatory power. (So-called “mirror neurons” illustrate
this move).

A third group refer to hypothesised non-physical parts labelled
in terms of their cognitive functions, and sometimes represented
in diagrams of boxes and arrows, whose operations are supposed
to explain what happens. Often there is no specification of how
they produce those operations, how to make the components, how
to test what they do, or how to vary them, unlike parts of a
grandfather clock, which can be made in a factory, given changeable
weights or linked in various ways with other parts, and unlike
parts of an information-processing system assembled from various
hardware and software computing mechanisms that can be combined
in different ways to produce different competences.

6 A designer’s explanatory requirements
We can build a clock that conforms to a suggested explanation and
see if it works like the one that puzzled us – empirical testing. Or
we can use our knowledge of geometry, mechanics, dynamics and
mathematics to work out what behaviours the proposed structure
could produce – analytical/mathematical testing of a theory. But
mostly we cannot do either for commonly hypothesised parts of
minds, because the specifications are generally too loose – e.g. being
surprised, attending, noticing, wanting, learning, remembering, etc.

If all we can say to describe hypothesised parts is that they explain
the phenomena they were constructed to explain (this bit does seeing,
that bit does deciding, another bit does learning, ....) then it is not
clear that we are explaining anything.

However, there is another alternative to explanations in terms of
categories from behaviourism, physics, chemistry or physiology, that
avoids such explanatory vagueness, indicated in previous sections.
As a result of decades of research in AI, building on research of other
kinds that have steadily extended the powers of computing systems,
we have begun to learn how to give explanations of mental processes,
and the behaviours they produce, in terms of information-processing
mechanisms and architectures that are described at a higher level of
abstraction than brain mechanisms and at a lower level than common-
sense descriptions.

So the vagueness characteristic of many psychological
explanations can be reduced, and explanatory power can be
increased, by using parts at a lower level of information-processing
machinery that we have previously demonstrated in working systems
can do the sort of thing we are talking about. This is like going
from kinds of matter (water, air, salt, mud, wood, etc.) to kinds of
molecules in the history of physics and chemistry. An important
feature of this approach is that it assumes that the intermediate level
mental mechanisms, states, events and processes are not just useful
fictions (as some of Dennett’s wording suggests), but actually do
cause things to happen, including other mental processes and also
physical processes, such as changes in brain states and external
actions, just as software engineers assume, with good reason, that
the calculations and rule applications that go in a computer system
can cause both other calculations and rule applications, and also
changes in internal physical states as well as on external computer
screens and other attached physical devices. This contrasts, for
example, with Dennett’s “intentional stance” [4] and with “mind-
brain identity” theories5. For more on the causal states of virtual
machinery see [20].

7 Developing a better explanatory ontology

What sorts of parts/components should be referred to in adequate
explanations is not easy to understand – and unfortunately there
are ill-judged fashions at work. As explained in Section 3, there is
a mode of explanation of how complex systems work that is very
different both from describing their physical, chemical, electrical,
or mechanical parts and operations and from describing them using
common mentalistic language. It is based on what we have learnt
about designing complex information processing systems of many
kinds, none of which come near the specific kinds of sophistication
that we wish to explain in humans (young and old) and other more or
less intelligent animals, though there are promising signs of progress,
as computer-based systems do more and more things that previously
could only be done by humans and other animals.6 The particular
forms of explanation that have been developed refer to such things as

• The kinds of information that the organism acquires and uses.
• How the information is acquired (including which features of the

environment make it available and how the sensory and perceptual
mechanisms acquire it.

5 http://plato.stanford.edu/entries/mind-identity/
6 A particularly impressive robot with a subset of insect-like intelligence is

Boston Dynamic’s BigDog http://en.wikipedia.org/wiki/BigDog.



• The various ways in which the information can be manipulated,
analysed, recombined, derived, or used in planning and problem
solving.

• The forms of representation used to encode that information and
the mechanisms that operate on those forms of information.

• The ontologies that constitute the basic information structures
used, from which more complex information is constructable.

• The architectures in which those various capabilities,
mechanisms, and information structures are combined.

• How different processes can run concurrently within an
architecture, with or without conflicts, and how conflicts can arise,
how they can be detected and how they can (in some cases)
resolved.

• What sorts of self-monitoring and self-control mechanisms can
operate, monitoring and controlling different subsystems.

• How all the items listed above (kinds of information, forms
of representation, mechanisms, architectures, etc.) are initially
constructed and how they continue to grow and develop over
extended periods in some organisms (e.g. humans).

• The kinds of information, forms of representation, mechanisms
and architectures that need to exist at a very early stage to support
(bootstrap) all those developments.

• The ways in which the nature of the environment constrains the
types of information that are available to the organisms and poses
problems that the information needs to be used to solve. (For
two different species living in the same location, the role of
the environment can be very different, because of the effects of
their different evolutionary past, producing different bodily forms,
different needs, different goals, different forms of information-
processing, different forms of reproduction, etc.)

In talking about a mind we are talking about a complex system
with many concurrently active parts, whose workings need to be
explained in terms that can help to bridge the gap between their
functions and the underlying physical mechanisms that make it
possible to have such functions and which limit and shape those
functions. We also need an explanation of how those parts interact,
harmoniously most of the time, and what happens when they come
into conflict.

These parts are organised in an information-processing
architecture that maps onto brain mechanisms in complex, indirect
ways that are not well understood.

So, when studying some human (or animal) psychological
capability or limitation, we should ask questions like this if we
wish to acquire a deep scientific understanding (as opposed to close
human-to-human empathetic understanding for example):

• Which parts of the information-processing architecture are
involved in the capability or deficiency?

• What are their functions?

• What kinds of information do they acquire and use?

• How do they do this?

• What is the total architecture in which the various parts function?

• How is the information represented?
(It could be represented differently in different sub-systems for
different purposes).

• What kinds of manipulations and uses of the information occur?

• What mechanisms make those processes possible?

• How are the internal and external behaviours selected/
controlled/modulated/coordinated?

• How many different virtual machine levels are involved and how
are they related (e.g. physical, chemical, neural, subsymbolic,
symbolic, cognitive,...)?

For example, a parrot can use one foot to balance on a perch
while at the same time alternately holding a walnut in its beak or
the other foot, as it rotates it trying to find a good place to bite into
it. A particular robot could be built that does nothing but produce
that behaviour, though only with a very specific shape of perch and
a very limited range of sizes and shapes of walnut. But a robot built
using contemporary AI techniques would not be able to work out
how to do such things starting from a reportoire of competences
that could be used for a wide variety of purposes, e.g. alternately
using beak and feet while climbing. (Some of the problems, but
not all, are due to limitations of current mechanical and electronic
engineering, including power weight ratios, strength weight ratios,
sensor limitations, etc.)

8 Limitations and common errors in current AI

Of course, where current AI researchers and their models use
flawed assumptions, theories or designs, biologists need to resist
being inspired by them! For example, the switch from common-
sense descriptions to descriptions that have been useful in designing
working computational models is not always an improvement, since
sometimes the ontology available to AI designers is too restrictive.

A simple example concerns the type of programming language
used. Some programming languages, especially the earliest
ones, were aimed almost exclusively at specifying numerical
computations, whereas from the beginnings of AI it was clear that
computers would have to manipulate non-numerical information
structures, including sentences, logical expressions, grammars, parse
trees, plans, equations, and various structures built from those.
AI languages like Lisp, Pop-11, Prolog, Scheme and others were
designed accordingly.

However there are many AI/Robotics researchers who are
unfamiliar with such languages and whose programming skills
are mostly geared to numerical computations. As a result such
designers develop systems in which all information about sensory
input, about structures and processes in the environment, about
motivation, and about control of actions is expressed in numerical
form, including, for example, the use of a global cartesian coordinate
system to represent spatial locations, orientations, distances, sizes,
and relationships – a practice criticised in this presentation [19].

An issue that some AI designers do not face up to is whether
to think of all software components of an intelligent system as
running on a single processor, or as using multiple concurrently
active processors. Very often the only development environment
available to AI researchers assumes either one or a very small
number of processors, and uses programming technology that
does not easily support development of asynchronous concurrently
active subsystems. A result of this is that such researchers have
to work on techniques for interleaving different activities, and
strategies for optimising the allocation of processing resources
between them. An example is a great deal of work involving
addition of metacognitive capabilities to intelligent systems, which
has addressed the need to optimise the sharing of resources between
cognitive and metacognitive processes, and possibly other processes.

All that effort is wasted in the context of modelling natural
cognition, if brains have different subsystems running in parallel
performing the different tasks. An extreme version of the error



is the widely accepted assumption that intelligent robots need to
make use of a repeated cycle of cognitive phases such as this:

sense→think→decide→act
In contrast, our own work has assumed that many processing
components of biologically inspired robot can, and need
to, run in parallel, as indicated in our work on the
CogAff architecture scheme and its H-Cogaff special case
(http://www.cs.bham.ac.uk/research/projects/cogaff/#schema).

There have been some bad theories either developed or
adopted by AI, researchers, e.g. symbol grounding theory,
criticised in [23], and bad theories about emotions, criticised
in http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#cafe04
and theories that all motivation has to be reward based, criticised in
[18]. Another restrictive influence can be the assumption that existing
information processing architectures or other existing techniques are
adequate to the task of building explanatory models, when what
is badly needed is new deep requirements analysis: examining the
biological phenomena (e.g. animal behaviours, or studies of brain
mechanisms) with very great care to see whether something can be
learnt that improves the way in which AI can serve biology.

9 Different requirements and different designs
It is important that in studying those questions we remember that
humans (and other animals) evolved to function in a particular type
of environment found on this planet. Moreover there are difficult
solutions to different subsets of the problems of surviving in such
an environment. A deep understanding of one design would include
being able to compare and contrast it with other designs and
with different sets of requirements and constraints imposed by the
environment (including other animals).

Much writing in philosophy and psychology falls into the trap of
assuming there is only one way of perceiving, wanting, believing,
deciding, and being conscious – the human way. In trying to describe
the human way they often make the mistake of forgetting that we are
products of evolution and there were many different distinct designs
in our precursors. If we can find theoretical or empirical evidence
for some alternative possible requirements and designs, we’ll be in a
far better position to understand the costs and benefits of the actual
designs found in humans.

We need to understand different sets of requirements (niches)
different designs, and the many complex ways designs can relate to
requirements (not just in terms of numerical fitness functions). We
also need to understand the many kinds of trajectories through niche
space and design space that can occur in evolution, in individual
development, in cultural evolution, and so on. Dennett’s little book
on “Kinds of minds” [5] illustrates this, but using very “broad brush”
categories.

10 Kinds of requirements

When presenting theories about cognitive functions and the
mechanisms that explain them it is very important to try to
be clear about the precise collection of requirements which the
proposed mechanisms are supposed to meet. In particular, we need
to distinguish at least the following, though far more fine-grained
distinctions between requirements will be needed.

• Producing behaviour in real time that is suited to the precise
configurations of things in the environment that define the goals,
and the positive and negative affordances.

• Thinking, reasoning, explaining or making plans concerning
actions that are not currently being performed but which could
be performed in the future, or were performed in the past (by the
person or animal concerned).

• Perceiving thinking, reasoning about, perceived processes
occurring in the environment not caused by the individual, but
which may or may not affect the individual (proto-affordances),
or may be relevant to the goals or actions of another individual
(vicarious affordances).

• Perceiving thinking, reasoning about, the percepts, thoughts,
desires, plans and actions of another intelligent agent, as opposed
to something like wind, water or gravity that can cause things to
happen without using any cognitive mechanisms. Being able to
perceive, think, reason, or deliberate about other individuals with
similar powers requires meta-semantic competences, which not
all organisms seem to have.

• Being able to use “self-directed” meta-semantic competences
applied to one’s own thinking, reasoning, perceiving, etc., for
instance finding and repairing flaws in one’s planning strategy.

11 Kinds of Observations Needed

A task on which more thought is required is how the research goals
listed here can influence choice of biological experiments and the
observations required. (See the paper by Chappell and Thorpe in
these proceedings.)

One implication that is rarely noticed is that insofar as different
individuals have different combinations of knowledge, concepts,
forms of representation and possibly also architectures (e.g. if they
are at different stages of development), important information may
be lost by focusing on averages across collections of experimental
subjects, as opposed to adopting a “clinical” approach and trying to
describe in detail what exactly different individuals do and what that
implies regarding differences in how they do things.

This can also be important in making studies of development more
fine-grained than is common when averages across populations in
a species or in an age group are used, often without even paying
attention to the variance! (I see many presentations where graphs
show changes in averages without showing any of the variance, alas,
indicating a deep flaw in our education of scientists.)

12 A consequence of adopting this approach

If we think of features of humans and other animals such as
consciousness, intelligence, attention, memory, emotions, autonomy
in this ‘design-based’ way (adopting what John McCarthy now calls
‘the designer stance’, in [7]) the sorts of questions we can ask and the
sorts of theories we can consider are expanded in an important way.



A design for a working system (microbe, ant, chimpanzee, human,
robot) will specify a complex virtual machine with many coexisting,
interacting information-processing components.7

Since there are many components, it is possible to consider
different designs for working system that use different combinations
of such components, and different versions of the components. This
sort of variation in designs is evident in the products of biological
evolution.

A corollary is that where we are naturally inclined to think of
a binary division such as a division between animals that do and
do not have some feature X (consciousness, creativity, autonomy,
emotions, planning capability, free-will, etc.) the design based
approach replaces the binary division by much richer spaces of
possibilities, including taxonomies or generative grammars. We
should not assume that the only alternative to a binary division is a
linear continuum (differences of degree). Biological changes, insofar
as they are based on molecular changes and other structural changes
(e.g. duplication of a component) are inherently discontinuous. Our
theories of the spaces involved must accommodate this.

13 An example, from AI

Many people (including the author years ago) assume that there
is a binary division between reactive and deliberative control
mechanisms. After hearing several presentations and reading several
documents making use of these labels in confusingly different ways,
I eventually realised that people were interpreting the division in
different ways because the space of possible designs had a kind
of complexity that had not been studied properly and people were
basing the distinction on different ‘cracks’ in the space.

For example, some people were using ‘deliberative’ to refer
to any system that could, in some sense, evaluate alternative
action possibilities and select one, whereas others used the label
to refer to more complex systems that can plan more than one
step ahead when taking decisions. Looking closely revealed several
more important sub-divisions between different sorts of deliberative
competence, documented in [22]. I don’t claim that the analysis of
that document is complete: there are additional important sub-cases
to be distinguished, especially if we are to understand the stages in
the evolution of the more complex competences.

When considering any competence or mechanism of type X and
asking which animals have X, how X evolved, what X’s costs are,
what Xs benefits are, which neural or other mechanisms are involved
in X, etc. a good heuristic is to ask

• How many varieties of X are there?

• what sorts of distinct components, that might have evolved
separately, are involved in different varieties of X?

And that generally has the result of replacing a binary divide
between things that do and do not have X with a sometimes large
collection of varieties of X, and a large collection of intermediate
cases between not having a particular sort of X and having it.

This idea was used in an analysis of the notion of ‘free will’
originally posted to a ‘usenet’ news group, now available in [15].
Similar ideas are in [3] and [6].

7 As explained in this talk on “Why robot designers need to be philosophers
– and vice versa”
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#talk51

14 Relevance to ontology/ontologies

The previous section pointed out a consequence of this study of
varieties of architecture that might have been designed or might
have evolved in response to explicit or implicit requirements such as
the pressures of an ecological niche, namely that we usually need a
richer ontology of types of design than can be expressed using binary
distinctions normally assumed.

Another consequence of the approach is that the process of
designing a complex working architecture, testing it and finding
problems that need to be addressed by improvements in the design,
often teaches us that there is a much richer variety of possible internal
states than we might have considered possible in advance.

Systems with complex virtual machines [20] that include
concurrently active interacting sub-systems, including some sub-
systems that monitor and control others, can have a richer variety of
internal states and processes than can be defined in terms of varieties
of external behaviour, or even relations between inputs and outputs.
For example, a system can run internally and have no connections
with output signals most of the time, even though it occasionally is
linked to inputs and outputs.

A simple example could be a complex virtual machine that is
capable of playing many different games, and at any time practices
some of those games internally by playing itself, e.g. at chess, or
draughts (checkers), as a result of which its competence in those
games increases, though there is no external sign of those changes
unless it engages in a game with an external player, which may never
actually happen. Its input and output channels may have capacity
limits that limit the total number of games that the system plays with
other individuals in its lifetime, and that limit may be significantly
lower than the number of different games it has the competence to
play.

By studying the variety of internal states that the architectural
design (the information-processing architecture) of some organism
makes possible we may find that to understand and explain how
the organism works we need a much richer ontology of states
and processes than would be suggested merely by watching its
behaviours and trying to classify them.

This is particularly rue of humans: there is no reason to suppose
that the ontology expressed in our ordinary language concepts
for talking about mental processes, or even the extensions to that
ontology developed by psychologists and psychiatrists as a result
of interacting with and experimenting on humans is rich enough
to account for all the important phenomena of human life: instead
we need a much richer ontology of states and processes derived
from a good theory of how the system works. This is similar to the
way our understanding of the variety of types of material substance
had to be substantially revised when we discovered the underlying
architecture of matter, as composed of atoms of various sorts that
can combine to form molecules of various sorts that can be arranged
in configurations of various sorts – none of which was dreamt of prior
to the development of modern physics and chemistry.

15 Logical geography vs logical topography

The issues raised here are pursued further in different ways in
different online papers produced as part of the Cognition and
Affect project and the CoSy Robot project. One of the papers,
[16]. discusses relationships between philosophy and science in
the context of an attempt to clarify Ryle’s notion of ‘Logical
Geography’, showing that there is a deeper type of investigation,



which I called the study of ‘Logical Topography’, which identifies
aspects of some portion of reality that allow various possible kinds
of concepts to be developed, in contrast with the study of the concepts
that are actually in use constituting Ryle’s ‘Logical Geography’.

The difference emerges in two ways: The study of logical
geography assumes (a) that there is one collection of concepts
whose relationships can be charted and (b) that this will answer
philosophical questions definitively. The study of logical topography
reveals (a) that the relevant aspect of reality can be divided up
in different ways, leading to different logical geographies, and
(b) that that reality may itself may have unnoticed complexity of
structure, which, when explored in depth, shows possibilities that
were not exposed by the original philosophical investigations nor
taken account of in prior sets of concepts.

On the basis of those ideas, we can see that philosophical
theory building has much in common with scientific theory-building
(including the ability to introduce extensions to our ontology), and
which uses abduction. However, for philosophers and researchers
studying natural intelligence, to ignore the advances in the logical
topography of information processing systems would be analogous
to chemists continuing, like the old alchemists, to find and use laws
of how different kinds of stuff interact without attempting to move
to a deeper level of explanation, as emerged in the atomic and sub-
atomic theory of matter.

16 Conclusion?
There is no conclusion, because we are still in the early stages of
a very rich and deep exploration whose implications are potentially
profoundly important not only for the biological sciences, but also for
our understanding of ourselves. A revised, extended version of this
paper will be written after the symposium, possibly with co-authored
sections.
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