
A Framework

Experiments

Why this
might matter

The Adaptive Nature of Reward

Richard L. Lewis1

Satinder Singh2 Jonathan Sorg2 Andrew G. Barto3

1Department of Psychology
University of Michigan

2Department of Computer Science and Engineering
University of Michigan

3Department of Computer Science
University of Massachusetts

1 April 2010



A Framework

Experiments

Why this
might matter

Views of mind and brain

Mind/brain is . . .

a complex dynamical system
a Bayesian inference engine
a parallel constraint-satisfaction system
an emotion operating system
a physical symbol system

an adaptive control system.



A Framework

Experiments

Why this
might matter

Views of mind and brain

Mind/brain is . . .

a complex dynamical system
a Bayesian inference engine
a parallel constraint-satisfaction system
an emotion operating system
a physical symbol system

an adaptive control system.



A Framework

Experiments

Why this
might matter

Boundedly optimal bats (BOB)
(n = 6)

(Boundedly) optimal sonar-aiming strategies in echolocating
Egyptian fruit bats (Yovel et al, 2010, Science)
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Major claim of this talk

Reinforcement learning is a powerful framework for
understanding adaptive control as motivated by reward. But it
leaves unspecified the nature and source of reward.

We can investigate the reward itself as a locus of
adaptation—understanding how reward is shaped
by fitness pressures, organism constraints, and
environment.

This perspective may offer new ways to explain the
(adaptive) behavior exhibited by (extremely)
computationally limited organisms.
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1 A Framework for Reward

2 Computational Experiments
Emergent extrinsic and Intrinsic drives (“playing”)
Mitigating learning bounds (“fishing”)
Mitigating state and planning bounds (“foraging”)

3 Why this might matter: Bounded optimality in biology
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Reinforcement learning

The RL computational framework formulates the problem (and
candidate solutions) of building learning agents that adapt their
behavior to maximize reward in local environments.
(Sutton & Barto, 1998)

A

Agent

Environment

StatesActions

Rewards

Critic

B

Agent

Internal Environment

Rewards

Critic

External Environment

Sensations

StatesDecisions

Actions

"Organism"

Fig. 1. Agent-Environment Interaction in Reinforcement Learning. A: Reward is supplied to the agent from a “critic” in its environment. B: An

elaboration of Panel A in which the environment is factored into an internal and an external environment, with reward coming form the former. The

shaded box corresponds to what we would think of as the “organism.”

from the environment to the agent that provides at each mo-

ment of time a scalar reward value. The component of the

environment providing the reward signal is usually called

the “critic” (Fig. 1A). The agent learns how to increase the

total amount of reward it receives over time from the critic.

With appropriate mathematical assumptions, the problem

faced by the learning agent is that of approximating an

optimal policy for a Markov decision process (MDP).

Sutton and Barto [19] point out that the scheme in Fig. 1A

is very abstract, and that one should not identify this agent

with an entire animal or robot. An animal’s reward signals

are determined by processes within its brain that monitor

not only external events through exteroceptive systems but

also the animal’s internal state, which includes informa-

tion pertaining to critical system variables (e.g., blood-

sugar level, core temperature, etc.) as well as memories

and accumulated knowledge. The critic is in an animal’s

head. Fig. 1B makes this more explicit by factoring the

environment of Fig. 1A into an external environment and an

internal environment, the latter of which contains the critic

responsible for generating primary reward. Notice that this

scheme still includes cases in which reward can be thought

of as an external stimulus (e.g., a pat on the head or a

word of praise). These are stimuli transduced by the internal

environment so as to generate appropriate reward signals.

Because Fig. 1B is a refinement of Fig. 1A (that is, it

is the result of adding structure rather than changing it),

the standard RL framework already encompasses intrinsic

reward. In fact, according to this model, all reward is

intrinsic.

C. Problem-Independent Rewards and Competence

If we accept Fig. 1B and the view that all rewards are in-

trinsically generated, then what do we mean by intrinsically-

motivated RL? Our view is that the key distinction is

between problem-specific and problem-independent reward

functions. We define extrinsic reward to be the result of

a problem-specific reward function. By designing such a

function, we can “motivate” an RL system to learn how to

solve a particular problem, such as how to play backgam-

mon, how to dispatch elevators, etc. Intrinsic reward, on

the other hand, is reward generated by a reward function—

an intrinsic reward function—designed to facilitate learning

a wide class of problems instead of a particular one.

Intrinsic rewards can motivate efficient exploration, efficient

model building, efficient hypothesis formation and testing,

and other behaviors that are generally useful for acquiring

knowledge needed to solve a range of specific problems.

Indeed, the very act of learning itself might be intrinsically

rewarding, as suggested by a number of researchers (e.g.,

[10]).

Whenever intrinsic and extrinsic reward functions are

simultaneously in force it is important to consider how they

interact. Intrinsic rewards can disrupt learning to extrinsic

rewards because they effectively re-define the problem that

the learning agent is trying to solve. An agent may pursue its

intrinsic goals at the expense of achieving its extrinsically

defined goals One way to address this problem is to make

sure that intrinsic rewards are transient so that the problem

eventually reverts to the extrinsically specified one. A

related approach is to separate learning into a developmental

phase during which only intrinsic rewards are generated,

and a mature phase during which only extrinsic rewards

are generated. While a strict separation is neither realistic

nor necessary, it provides a simple framework in which to

study intrinsic reward systems.

We are guided by White’s classic paper [21] where it

is argued that intrinsically-motivated behavior is essential

for an organism to gain the competence necessary for

autonomy. A system that is competent in this sense has a

broad set of reusable skills for controlling its environment.

The activity through which these broad skills are learned

is motivated by an intrinsic reward system that favors

the development of broad competence rather than being

directed to more specific externally-directed goals. These

skills act as the “building blocks” out of which an agent

can form solutions to specific problems that arise over its

lifetime. Instead of facing each new challenge by trying

to create a solution out of low-level primitives, it can

focus on combining and adjusting higher-level skills, greatly

increasing the efficiency of learning to solve new problems.

Environment state space S

Agent action space A

Rewards R : S → scalars

Policies: S → A
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The power, generality, and incompleteness of
reinforcement learning

Why is RL powerful?

Reward functions permit the specification of what the
agent is to do, independently of how it is to do it.

RL theory and algorithms are insensitive to the source of
rewards—hence their generality.

But this generality also defers questions about the nature of
the reward functions: RL is focused on post-reward algorithms.
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adaptive agents: they are a mechanism for converting
distal pressures on fitness into proximal pressures on
behavior.

2 It is possible to precisely formulate this adaptation
problem as a search over possible reward functions, in
which reward functions are evaluated in terms of their
fitness-conferring abilities.

Thus reward is not fitness—reward captures fitness pressures,
but is simultaneously a locus of information about interactions
of environment regularities and agent structure.
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Definition of optimal reward

A Framework for Reward

A a reinforcment learning agent

RA a space of reward functions mapping agent internal state
to a scalar reward

P(E) a distribution over a set E of environments

H a set of possible histories—an agent A, a reward function
r ∈ RA and an environment e ∈ E produces an h ∈ H, a
history of agent A adapting to e using reward function r

F a fitness function producing a scalar evaluation F (h) for
all histories h ∈ H

r∗ = arg max
i∈RA

E (F |r) The optimal reward maximizes expected
fitness over the environment distribution.
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Overview and goals of experiments

We now describe experiments that specify A, F , and P(E) and
derive r∗ (via search).

optimal reward

(bounded) 
optimization

Environments

Agent structure

Fitness function

P (E)

A

F

r∗ BEHAVIOR
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Mitigating state and planning bounds (“foraging”)

3 Why this might matter: Bounded optimality in biology
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Experiment #1: Boxes World (emergent
intrinsic drives)

E : Each environment has two
boxes in random locations

Agent A has movement actions
plus open and eat

An open box closes with
probability p = 0.1

Closed box always has food, but
food escapes in one time step
after opening

Consumed food makes agent be
not-hungry for one time step

Greedy Policy at Step 1000000

when Not Hungry, Box1 open, Box2 open

Fitness F (h): fitness incremented by one when agent
not-hungry.
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Two conditions of experiment

1 Constant condition: Food appears in closed boxes
throughout the agent lifetime of 10,000 steps.

2 Step condition: No food in boxes for first half of agent’s
life, but then food appears in second half (after 5,000
steps). So no fitness can be obtained in the first half of
agent’s life in the step condition.
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The reward space and adaptive reward
question

State for reward and for q-learning includes binary hungry
feature, and features coding open/closed status of boxes. We
now ask:

What is the best reward function to give this agent,
to maximize fitness?

Remember, the reward defines the task for the agent, but
reward is not fitness. Should we give the agent something
other than a simple fitness-based reward?
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Boxes-World results

10,000 time steps, ∼300 sampled environments for each of
54,000 different reward functions.
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Emergent intrinsically motivated behavior

Plotting the amount of time both boxes are open shows the key

difference between the best internal reward and the simple

fitness-based reward.

Best reward:

not-hungry, two boxes
open= 0.5

not-hungry, one box open
= 0.3

hungry, one box just
opened = -0.01

hungry = -0.05
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Lessons learned from Experiment #1

Emergent “extrinsic” drives (food/hunger)

Emergent “intrinsic” drives (play with boxes)

Reward captures invariants across environments (boxes
might have food)

RL can adapt agent to specific environment via
value-function (secondary reward) learning (specific
locations of boxes)

Small changes in internal reward lead to large changes in
behavior (and thus large changes in fitness)
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1 A Framework for Reward

2 Computational Experiments
Emergent extrinsic and Intrinsic drives (“playing”)
Mitigating learning bounds (“fishing”)
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Experiment #2: Fish-or-bait world

E : Fixed location for fish and bait

Agent A actions: eat, carry

Agent A observes: location; food,
bait when at those locations;
hunger-level; carrying-status

Bait can be carried or eaten

Fish can be eaten only if bait is
carried

Eat fish → not-hungry for 1 step

Eat bait → med-hungry for 1 step

else hungry

Fitness: F (h) increment of 1.0 for eating fish, 0.04 for eating
bait



A Framework

Experiments

Playing

Fishing

Foraging

Why this
might matter

Good rewards depend on agent lifetime

Two lifetimes, two rewards
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Good rewards are adapted to agent structure
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The cross-over point of the
optimal reward is sensitive to
the exploration parameter
(“epsilon” in greedy-epsilon)—
when agent explores more, it
takes longer to make learning
to fish worthwhile.
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Lessons learned

Good rewards adapt to properties of agent-as-learner
(lifetime bounds, learning parameters, limitations of
algorithm).

Good rewards need not bear a simple relationship to
fitness — even violating monotonicity (reversing state
preferences)

Good rewards help mitigate limitations of learning—again,
best rewards outperform fitness-based reward.
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Experiment #3a: Foraging with limited state

E : Worm when eaten disappears.
new worm appears at random
location

Agent A actions: movement, eat

Agent A observes: location,
whether it is hungry, but not where
worm is unless at worm loc

A is not-hungry for 1-step on
eating worm

Model-based learning agent: builds
MDP model from observation
experience and always acts greedily
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Mitigating agent memory/state bounds

Bound: Agent has limited state
information

Contrary to most RL tasks, the
agent has to persistently explore
(not converge to a policy)

Reward space: linear function of
two features

1 Inverse-Recency, i.e., inverse of
how long ago did agent execute
action last in state (real valued
feature)

2 Hunger-level (binary feature)
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Mitigating agent memory/state bounds

The agent with the best internal reward exploits recency to
outperform both the random agent and the agent with
fitness-based reward, mitigating the gap to the Bayes-optimal
explorer.

Reward type βhunger βrecency Asymptotic fitness

Random 98
Fitness 1 0 0.16
Best agent 0.0123 0.999 754
Bayes-optimal 1543
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Experiment #3b: Foraging with limited
depth planning

Same foraging domain

Agent can see worm’s location (thus
no state boundedness)

But agent can only do depth-limited
planning

Different experiments for different
depth limits
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Mitigating agent planning bounds
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Summary: Key properties and implications of
the framework

1 Fitness and reward are distinct. Fitness is external to the

agent, reward is an aspect of the agent and helps it to achieve

fitness. The standard conception of reward in RL conflates

specification of what agent is to learn with how it is to learn it.

2 Both extrinsic and intrinsic drives may emerge as part of
optimal reward. There is no hard-and-fast computational
distinction; rather one of degree.

3 Optimal rewards depends on the internal structure of
the agent (hence are boundedly optimal) as well as the
external structure of the environment (distribution).

4 Bounded optimal rewards need not lead to optimal
policies.

5 Good reward functions mitigate (and are adapted to)
the computational bounds of agents.
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Why might this matter to cognitive science
and biology?

Provides evolutionarily grounded, computational basis
for theory of motivated learning.

New way to think about innate “knowledge”.

New kinds of explanations for behavior/phenomena
Theories can take form of hypotheses about shaping
environments + agent capacities
New way to derive predictions/explain behavior:
environments, agent structure → reward → behavior
Example: Opportunity for new models of foraging that
derive (boundedly optimal rewards) to drive (boundedly
optimal1) behavior.

1For more on boundedly optimal behavior in humans, see Howes, Lewis
& Vera (2009) Psych. Review.
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