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Abstract. Reinforcement learning (RL) has achieved broad and
successful application in cognitive science in part because of its gen-
eral formulation of the adaptive control problem as the maximiza-
tion of a scalar reward function. The computational RL framework
is motivated by correspondences to animal reward processes, but it
leaves the source and nature of the rewards unspecified. This paper
advances a general computational framework for reward that places
it in an evolutionary context, formulating a notion of an optimal re-
ward function given a fitness function and some distribution of envi-
ronments. Novel results from computational experiments show how
traditional notions of extrinsically and intrinsically motivated behav-
iors may emerge from such optimal reward functions. In the experi-
ments these rewards are discovered through automated search rather
than crafted by hand. The precise form of the optimal reward func-
tions need not bear a direct relationship to the fitness function, but
may nonetheless confer significant advantages over rewards based
only on fitness.

1 INTRODUCTION
In the computational RL framework [10], rewards—more specifi-
cally, reward functions—determine the problem the learning agent is
trying to solve. Properties of the reward function influence how easy
or hard the problem is, and how well an agent may do, but RL theory
and algorithms are completely insensitive to the source of rewards
(except requiring that their magnitude be bounded). This is a strength
of the framework because of the generality it confers, capable of
encompassing both homeostatic theories of motivation in which re-
wards are defined as drive reduction (as has been done in many moti-
vational systems for artificial agents [7]), and non-homeostatic theo-
ries that can account, for example, for the behavioral effects of elec-
trical brain stimulation and addictive drugs. But it is also a weakness
because it defers key questions about the nature of reward functions.

Motivating the computational RL framework are the following
correspondences to animal reward processes. Rewards in an RL sys-
tem correspond to primary rewards, i.e., rewards that in animals have
been hard-wired by the evolutionary process due to their relevance to
reproductive success. In computational RL, they are thought of as the
output of a “critic” that evaluates, the RL agent’s behavior. Further,
RL systems that form value functions, using, for example, Temporal
Difference (TD) algorithms, effectively create secondary or higher-
order reward processes whereby predictors of primary rewards act as
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Figure 1. Agent-environment interactions in reinforcement learning;
adapted from [1]. Left panel: Primary reward is supplied to the agent from
its environment. Right panel: An elaboration in which the environment is

factored into and internal and external environment, with all reward coming
form the former.

rewards themselves. The learned value function provides immediate
evaluations that are consistent with the infrequent evaluations of the
hard-wired critic.

The result is that the local landscape of a value function gives
direction to the system’s preferred behavior: decisions are made to
cause transitions to higher-valued states. A close parallel can be
drawn between the gradient of a value function and incentive mo-
tivation [3].

In the usual view of an RL agent interacting with an external envi-
ronment (left panel of Figure 1), the primary reward comes from the
external environment, being generated by a “critic” residing there.
But as Sutton and Barto [10] and Barto, Singh, and Chentanez [1]
point out, this is a seriously misleading view of RL if one wishes to
relate this framework to animal reward systems.

In a less misleading view of this interaction (right panel of Fig-
ure 1), the RL agent’s environment is divided into external and inter-
nal environments. For an animal, the internal environment consists
of the systems that are internal to the animal while still being parts
of the learning system’s environment. This view makes it clear that
reward signals are always generated within the animal, for example,
by its dopamine system. Therefore, all rewards are internal, and the
internal/external distinction is not a useful one (a point also empha-
sized by Oudeyer and Kaplan [5]). This is the viewpoint we adopt in
this paper.

But what of a distinction between intrinsic and extrinsic reward?
Psychologists distinguish between extrinsic motivation, which means
doing something because of some specific rewarding outcome, and
intrinsic motivation, which refers to “doing something because it is
inherently interesting or enjoyable” [6]. According to this view, in-
trinsic motivation leads organisms to engage in exploration, play, and
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other behavior driven by curiosity in the absence of explicit rein-
forcement or reward.

Barto et al. (2004) used the term intrinsic reward to refer to re-
wards that produce analogs of intrinsic motivation in RL agents, and
extrinisic reward to refer to rewards that define a specific task as in
standard RL applications. But the distinction between intrinsic and
extrinsic reward is difficult to make precise. Oudeyer and Kaplan
[5] provide a thoughtful typology. Space does not permit providing
more detail, except to point out that a wide body of data shows that
intrinsically motivated behavior does not occur because it had previ-
ously been paired with the satisfaction of a primary biological need
in the animal’s own experience [2]. That is, intrinsic reward is not
the same as secondary reward. It is likely that the evolutionary pro-
cess gave exploration, play, discovery, etc. positive hedonic valence
because these behaviors contributed to reproductive success through-
out evolution. Consequently, we regard intrinsic rewards in the RL
framework as primary rewards, hard-wired from the start. Like any
other primary rewards in RL, they come to be predicted by the value
system. These predictions can support secondary reinforcement so
that predictors of intrinsically rewarding events can acquire reward-
ing qualities just as predictors of extrinsically rewarding events can.

In short, once one takes the perspective that all rewards are internal
(Figure 1), it is clear that the RL framework naturally encompasses
and provides computational clarity to a wide range of reward types
and processes, and thus has the potential to be a source of great power
in explaining behavior across a range of domains. But fully realiz-
ing this scientific promise requires a computational framework for
reward itself—a principled framework with generative power. Our
main purpose here is to specify and illustrate a candidate for such a
framework with the following desired properties:

1.1 Criteria for a Framework for Reward
1. The framework is formally well-defined and computationally re-

alizable, providing clear answers to the questions of what makes
a good reward and how one may be derived.

2. The framework makes minimal changes to the existing RL frame-
work, thereby maintaining its generality.

3. The framework abstracts away from specific mechanisms associ-
ated with RL agents, such as whether their learning mechanisms
are model-based or model-free, whether they use options or other
kinds of richer internal structure, etc. But it is in principle power-
ful enough to exploit such agent structure when present.

4. The framework does not commit to specific search processes for
finding good reward functions, but it does define and give structure
to the search problem.

5. The framework derives rewards that capture both intrinsic and
extrinsic motivational processes.

Taken together, these features of our framework distinguish it from
other efforts aimed at deriving or specifying the form of reward
functions (e.g., [8, 9, 4]). While these computational approaches
are all valuable explorations of reward formulations, they still in-
corporate some notion of external reward, and are not concerned
with explaining how their internal rewards come about. Closer to
our aims is recent work by Uchibe and Doya [11] that proposes a
specific mechanism—embodied evolution—for evolving reward. But
this work is also still concerned with combining internal and exter-
nal rewards, depending on specialized RL algorithms for guarantee-
ing that the asymptotic policy does not differ from the one implied
by the external reward. The framework we propose here shares the

goal of providing an evolutionary basis, but dispenses with external
rewards and seeks maximum generality in its formulation.

2 OPTIMAL REWARDS

Adopting an evolutionary perspective leads naturally to an approach
in which adaptive agents, and therefore their internal reward func-
tions, are evaluated according to their expected fitness given an ex-
plicit fitness function and some distribution of environments of in-
terest. The fitness function maps trajectories of agent-environment
interactions to scalar goodness values, and may take any form (in-
cluding functions that are similar in form to discounted sums of ex-
ternal rewards).

2.1 Definition

More specifically we define the notion of optimal reward as follows.
For a given RL agent A, there is a space of reward functions IA that
map agent internal state to a scalar primary reward that drives rein-
forcement learning. The nature of the internal state depends on the
agent architecture. In general, A might include very specific commit-
ments to particular learning algorithms and parameters so that the
best IA is partially determined by properties of the agent-as-learner.
There is a distribution over Markov decision process (MDP; [10])5

environments in some set E in which we want our agents to perform
well (in expectation). A specific reward function iA ∈ IA and a sam-
pled environment E ∈ E produces h, the history of agent A adapting
to environment E using the reward function iA. A given fitness func-
tion G produces a scalar evaluation, G(h) for all such histories h. The
optimal reward function i∗A ∈ IA is the reward function that maximizes
the expected fitness over the distribution over environments.

The formulation is very general because the constraints on A, IA,
G, and E are minimal. A is constrained only to be an adaptive agent
that uses a reward function iA ∈ IA to drive its search for control
policies. G is constrained only to be a function that maps (finite or
infinite) histories of agent-environment interactions to scalar good-
ness values. And E is constrained only to be a set of MDPs, though
the Markov assumption can be easily relaxed (we leave this to future
work).

2.2 Regularies within and across enviroments

The above formulation essentially defines a search problem—the
search for i∗A. This search is for a primary reward function and is
to be contrasted with the search problem faced by an agent during its
lifetime, that of learning a good secondary reward function specific
to its environment. Thus, our concrete hypothesis is (1) the i∗A derived
from search will capture physical regularities across environments in
E as well as complex interactions between E and specific structural
properties of the agent A (note that the agent A is part of its environ-
ment and is constant across all environments in E), and (2) the value
functions learned by an agent during its lifetime will capture regular-
ities present within its specific environment that are not shared across
environments.

5 An MDP is a mathematical specification of agent-environment interaction
in which the environment can be in one of a fixed number of states, at
each time step the agent executes an action from a fixed set of actions,
and the action executed stochastically changes the state of the environment
according to fixed transition probabilities.
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3 TWO SETS OF COMPUTATIONAL
EXPERIMENTS

We now describe a set of computational experiments in which we
directly specify A, G, and E , and derive i∗A via exhaustive search.
These experiments are designed to serve three purposes. First, they
will provide concrete and transparent illustrations of the basic frame-
work above. Second, they will demonstrate the emergence of inter-
esting reward function properties that are not direct reflections of the
fitness function—including features that might be intuitively recog-
nizable as candidates for plausible intrinsic and extrinsic drives in
natural agents. Third, they will demonstrate the emergence of inter-
esting reward functions that capture regularities across environments,
and similarly demonstrate that value function learning by the agent
captures regularities within single environments.

3.1 Basic form of each experiment
Both experiments use a simulated physical space shown by the 6×6
gridworld in Figure 3 (the arrows in that figure will be explained
below). It consists of four subspaces (of size 3× 3). There are four
movement actions, North, South, East and West that if successful
move the agent probabilistically in the direction implied and if they
fail keep the agent in place. The thick black lines in the figure rep-
resent barriers that the agent cannot cross, so that the agent has to
navigate through gaps in the barriers to move to adjacent subspaces.
The agent lives continually for its lifetime, i.e., the interaction is not
episodic. Each experiment will introduce objects into the gridworld
such as food or water or boxes. The internal state of the agent in-
cludes its location in the grid as well as other features relevant to
each experiment. These features as well as other experiment-specific
aspects (e.g., the fitness functions used) will be described in the ap-
propriate sections below.

Our agent uses the ε-greedy Q-learning [12] algorithm to learn
how to act during its lifetime. This algorithm has three types of pa-
rameters: 1) Q0, the initial Q-value function (we will use Q0 = 0.0
throughout) that maps state-action pairs to their long-term utility, 2)
α, the learning rate, and 3) ε, the exploration parameter (at each time
step the agent executes a random action with probability ε and the
greedy action with respect to the current Q-value function with prob-
ability (1− ε)). At time step t, the current state is denoted st , the
current Q-value function is denoted Qt , the agent executes an action
at , and the Q-learning update is as follows:

Qt+1(st ,at) = (1.0−α)Qt(st ,at)+α[rt + γmax
b

(Qt(st+1,b)],

where rt is the reward specified by the internal reward function iA for
the state st+1, and γ is a discount factor that makes immediate reward
more valuable than later reward (we use γ = 0.99 throughout). It is
well known that the form of Q-learning used above will converge
asymptotically to the optimal Q-value function and hence the optimal
policy [12]. Thus, our agent uses its experience to continually adapt
its action selection policy to improve the amount of discounted sum
of reward it obtains in the future (remaining in its lifetime). Note that
the reward function is distinct from the fitness function G.

The psuedo-code below describes how the mean cumulative fitness
for a reward function iA and algorithm parameters (α,ε) is estimated
using simulations.

for i = 1 to N do
Sample an environment Ei from E .
In A, intialize Q-value function to zeros; set (α,ε)

Generate a history hi over lifetime T for A and Ei
Compute fitness G(hi)

end for
G(iA) = average of {G(h1), . . . ,G(hN)}

The fitness of a reward function iA is thus the maximum fitness re-
turned over all (α,ε) pairs6.

3.2 Hungry-Thirsty Domain: Emergent Extrinsic
Reward for Water

In this experiment, each sampled environment has two randomly
chosen special locations (held fixed throughout the lifetime of the
agent); one where there is always food available and one where there
is always water available. In addition to the movement actions, the
agent has two special actions available: eat, which has no effect any-
where but when the agent is at the food location in which it causes
the agent to consume food, and drink, which as no effect anywhere
but at the water location in which it causes the agent to consume wa-
ter. When the agent eats food it becomes not-hungry for one time
step and then become hungry again. When the agent drinks water it
becomes not-thirsty for a random period of time (when not-thirsty
it becomes thirsty with probability 0.1 at each time step). Each time
step the agent is not hungry, its fitness is incremented by one. There is
no fitness directly associated with water at all. However being thirsty
has a special effect; when the agent is thirsty its eat action fails. Thus
the agent cannot just hang out at the food location and keep eating
for at some point it will get thirsty and eating will fail. What is con-
stant across environments is that there is food and there is water,
that not-thirsty switches to thirsty with probability 0.1 and that be-
ing thirsty makes the agent incapable of eating. What varies across
environments is the location of food and water.

Figure 2 presents some of our results. The fitness-based rewards
assign a positive reward to the events that increment fitness (in this
case not being hungry) and zero to everything else. The first interest-
ing result (seen in the left panel) is that there are many reward func-
tions that outperform the fitness-based reward functions throughout
the lifetime (of 80,000 time steps) in terms of mean cumulative fit-
ness. Careful inspection of the left panel also shows that some reward
functions outperform the fitness-based reward functions early on in
the lifetime but then are worse later on in the agent’s life. We ex-
pect this to be a general phenomenon (and will study this in more
detail in future work). The best reward function in our search space
assigns a penalty of −0.2 to the agent being hungry and thirsty, a
smaller penalty of −0.1 to the agent being hungry but not thirsty, a
small positive reward of 0.1 to being not hungry but thirsty, and a
large reward of 1.0 to not being hungry and not being thirsty. It is
apparent that this reward function differentiates based on the thirst
status of the agent. Thus, the search procedure has encoded into the
reward function the emergent drive to drink water when thirsty. The
Q-learning performed by the agent during its lifetimes learns a pol-
icy specific to the location of the food and water and takes the agent
back and forth between food and water even though water does not
directly contribute to cumulative fitness. This can be seen by inspect-
ing Figure 3 that shows the policy learned by the agent (split into two
panels; the right panel showing the actions when the agent is hungry
6 Finding good reward functions for a given fitness function thus amounts

to a huge search problem. In this paper, we conduct the search (mostly)
exhaustively because our focus is on demonstrating the generality of our
framework and on the nature of the reward functions found. However, there
is structure to the space of reward functions (as we illustrate through our
experiments) that we will exploit in future work to gain computational effi-
ciency.
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Figure 2. Results from Hungry-Thirsty Domain. See text for an explanation.

and thirsty and the left panel showing the policy when it is hungry
and not thirsty)7.
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F

W
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W
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Figure 3. Policy for a single agent in Hungry-Thirsty Domain. See text for
an explanation.

The middle panel in Figure 2 plots the distributions of cumulative
fitness scores (at the end of the 80,000 time step lifetime) for 320
agents for each of four different reward functions (the two best re-
wards and the two fitness-based rewards). For all four rewards, the
high variance and the multi-modal structure of the distributions is
quite striking (and to us unexpected). The multimodal distribution of
cumulative fitness also clearly shows that the fitness-based rewards
do very poorly more than half the time.

Finally, the rightmost panel in Figure 2 shows how fitness is sensi-
tive to the magnitude of the penalty that the reward functions provide

7 We only show the policy in the two subspaces containing the food and water
because after learning the agent basically walks up and down the corridor
connecting food with water and only falls off it due to random exploration.
Thus the agent gets very little experience in the other subspaces and its
policy there is mostly random. The policy off the path in the two right-
subspaces is mostly correct (the exceptions are the three locations marked
with a star).

for being thirsty8. Each point along the horizontal axis corresponds to
a subspace of reward functions that assign a specific penalty to being
thirsty. The zero point on the horizontal therefore represents all those
rewards that do not discriminate based on thirst, and the point labeled
“best w/o thirst” indicates the fitness of the best-performing reward
in that subspace. This reward corresponds exactly to the reward la-
beled “Fitness-based Reward 2” in the other panels. The point at the
peak labeled “best with thirst” corresponds exactly to the reward la-
beled “Best reward found” in the other panels. This panel provides
just one simple way of viewing the fitness surface associated with the
reward space. It clearly indicates that not just any penalty for thirst
will work well—only a relatively narrow and sharply peaked region
of thirst penalty outperforms the best rewards that are insensitive to
thirst.

3.3 Boxes Domain: Emergent Intrinsic Reward for
Exploration and Manipulation

In this experiment, each sampled environment has two boxes placed
in randomly chosen special locations (held fixed throughout the life-
time of the agent). In addition to the usual movement actions, the
agent has two special actions: open, which opens a box if the agent
is at the location of the box and has no effect otherwise, and eat,
which has no effect unless the agent is at a box location, the box at
that location is open, and there happens to be food in that box, in
which case the agent consumes that food. An open box has 0.1 prob-
ability of closing at every time step. A closed box always has food.
An open box never has food except for one time step after being
opened from a closed state. Thus to consume food, the agent has to
find a closed box, open it, and eat immediately in the next time step.
When the agent consumes food it feels not hungry for one time step
and its fitness is incremented by one. In addition to the location, the
open/closed status of boxes is available to the agent as an observa-
tion at all times. The fitness based reward functions assign a positive
reward for the fitness-inducing event, i.e., for being not-hungry and

8 The thirst penalty for a given reward is simply the mean of the thirst penalty
when hungry (the difference of the reward for hungry-but-not-thirsty and
hungry-and-thirsty) and the thirst penalty when not hungry (the difference
of the reward for not-hungry-and-not-thirsty and not-hungry-but-thirsty).
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Figure 4. Results from Boxes Domain. See text for an explanation.

zero for everything else. What is unchanging across environments is
the presence of two boxes and the dynamics of their open to close sta-
tus. What changes across environments but held fixed within a single
environment is the location of the boxes. Once again, this sets up the
possibility for the search to hardwire across environment regularities
into the reward function and then Q-learning to learn environment
specific regularities.

In a different design from the first experiment, we ran this exper-
iment under two different conditions. The first, called the constant
condition, is one in which the food appears in closed boxes through-
out the agent lifetime of 10,000 steps. The second, called the step
condition, is one in which for the first half of the agent’s lifetime
there is never any food in any boxes and then after 5,000 time steps
food always appears in a closed box. So in the step condition, there
is no fitness to be obtained at all until after the 5,000th time step.
The step condition simulates (in extreme form) a developmental pro-
cess in which the agent is allowed to play in its environment for a
period of time without having any fitness-inducing events present (in
this case the fitness-events are good but in general there can also be
bad ones that risk physical harm). Thus a reward function that is able
to gain advantage through exposure to this first phase has to reward
events that are intrinsically-motivating because they are by definition
distal from any fitness-inducing events. Notice that this should hap-
pen in both the step and the constant conditions; it is just more stark
and apparent in the step condition.

The top row of Figure 4 shows the average cumulative fitness as
a function of time under the two conditions. As expected, in the step
condition, there is no fitness under any reward function for the first
5,000 time steps. The best reward function for the step condition is as
follows: not being hungry has a reward of 1.0, being hungry but with
both boxes open has a slight reward of 0.1, one box open and hun-
gry has a 0.0 reward, and both boxes closed and hungry has a slight
penalty of −0.1. Clearly, the best reward function in our reward space
has chosen to reward opening boxes. This makes the agent learn to
open boxes during the first half of the step condition so that when
the food appears in the second half the agent is immediately ready
to exploit that situation. This is reflected in the constant slope from
time 5,000 onwards of the average cumulative fitness curve of the
best reward function. In contrast, the curve for the fitness-based re-
ward function has a increasing slope because it has to learn to want

to open boxes from point 5,000 onwards. This difference is more
clearly seen in the rightmost panel where we plot the average cumu-
lative number of box openings for the different reward functions. The
best reward function clearly opens the boxes far more often than the
fitness-based reward function.

4 DISCUSSION AND CONCLUSIONS

We have outlined a general computational framework for reward that
complements existing reinforcement learning theory by placing it in
an evolutionary context—a context that clarifies and makes computa-
tionally precise the role of evolved reward functions in helping adap-
tive agents achieve fitness. We presented several computational ex-
periments that serve to draw out and provide empirical support for
two key properties of the framework.

First, multiple aspects of the domain may emerge to influence a
single reward function. The combination of these multiple aspects is
implicit in the form of the optimal reward function. Its precise prop-
erties are determined by the global goal of producing high fitness,
but the relationship between the optimal reward function and fitness
may be quite indirect. In the Hungry-Thirsty domain, two aspects
of reward emerged, one related to food and hunger (directly related
to fitness) and one related to thirst and water (not directly related to
fitness). Both aspects were combined in a single function that repre-
sented a delicate balance between the two (Figure 2). In the Boxes
domain, the optimal reward was related to food and hunger (directly
related to fitness), and curiosity and manipulation of boxes (not di-
rectly related to fitness). The latter aspect of the optimal reward pro-
duced distinct play and exploratory behavior that would be thought
of as intrinsically-motivated in the psychological sense. This was es-
pecially evident in the second condition of the Boxes experiment:
during the first half of the agent’s life time, no fitness-producing ac-
tivities are possible, but intrinsically rewarding activities are pursued
that have fitness payoff later.

The second key property of the framework is that two kinds of
adaptation are at work: the local adaptation of the RL agent within
a given environment, and the global adaptation of the reward func-
tion to both a population of environments and the structure of the
agent itself. The two kinds of adaptation are apparent in both exper-
iments. In the Hungry-Thirsty domain, each agent benefits from the
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regularity across environments that drinking water ultimately helps
it to achieve fitness—a regularity captured in the optimal (primary)
reward function. Each agent also learns the specific locations of wa-
ter and food sources in a given environment and good navigation
patterns between them—regularities captured in the value functions
learned by RL (Figure 3). Similarly, in the Boxes domain, each agent
benefits from the regularity across environments that food is to be
found in boxes, but also learns how to navigate to the specific loca-
tions of boxes in a given environment.

These are initial results in simple domains but they suggest sev-
eral promising parallel avenues for future research. It is especially
important to explore environments in which fitness selects for re-
wards that yield a diverse set of tasks and behaviors—environments
in which the traditional notion of an external reward function pro-
vides the least guidance. It is also clear that the search for good re-
ward functions represents a major computational challenge. Further
work is required to develop more efficient approximate search algo-
rithms that exploit the structure of this space, while still preserving
its potential richness.
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