
10.2 Robot results
In the following scale and speed correspond to the real settings.
The settings for the following were the four mazes from which one

or several logs had been drawn, and six extra (invented) mazes used
for testing purposes.

• The performances were not better in the “known” mazes than in
the invented mazes, showing that the strategies had really been
abstracted from their original settings.

• All tables had been explored after at most 11 minutes by robot 1.
After 10 minutes robot 2 had explored all tables in all but one
maze. That last maze had an isolated central table which robot 2
often bypassed in its exploration of the empty space.

• On average, 83% of the tables had been explored after 3 minutes
by robot 1 and 86% by robot 2.

• Dividing the ground in squares 20 pixels across12, which corre-
sponds to the average “width” of a subject as seen on the videos,
between 78% and 94% of all reachable squares (ground and ta-
bles) had been reached at least once after 10 minutes by robot 1,
and between 80% and 94% by robot 2, the actual average values
varying according to maze size and complexity. The improvement
mostly happened in complex mazes with many tables.

• These percentages increase with run duration.

The difference between the efficiency of robot 1 and of robot 2
might seem slight, but as performance improves each percent point
becomes harder to gain than the previous one. So the difference be-
tween 83% and 86% of the tables is more significant than would have
been a difference between 63% and 66% of the tables.

11 Conclusion
Closing the loop: As our robots move about in the mazes, their ob-
servable actions can be recorded. Thus the teacher/learner/teacher
loop, sometimes also refered to as the raw-data/trained-system/raw
data (or raw-data/learned-strategies/raw-data) loop, is closed because
new logs can be generated and learning can be achieved from these
new logs. These new logs are neither a better nor a worse model than
the originals, were the robot generating them to run for a sufficiently
long time and in a sufficiently complex maze for the randomness
to be overcome by statistical significance they would amount to the
same information.
H-CogAff validation: H-CogAff describes the functions of the

mind [22]. Our experiments only validate the H-CogAff model in
a severely limited and constrained context. They also validate the
global alarm system, with the same restrictions and more because a
single variable was used to trigger strategy changes, and this variable
was neither learnt nor even statistically determined but was chosen
by empirical reasoning. We can however say that an instant reac-
tion which resets every control variable upon a bump improves per-
formance, and that this seems to indicate that simulating a global
alarm system, hopefully in more advanced ways, in other robotic
controllers could be a promising line of research.
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G rounding Symbols: Learning and G rounding 2D 
Shapes using Cell Assemblies that emerge from fL I F 

Neurons 

Fawad Jamshed1 and C hr istian H uyck1  

 
Abstract. Symbols are the essence of a language and need to be 
grounded for effective information passing including interaction 
and perception. A language is grounded in a multimodal sensory 
motor experience with the physical world.  The system described 
in this paper acts in a simple virtual world. The system uses 
multimodal interaction by using vision and language, to interact 
with the outer world. Two simulations are given in which the 
system learns to categorise five basic shapes. In the second 
simulation, the system labels these categories, grounding them. 
Both simulations performed work perfectly on all tests.       1 

1 Introduction 
Although many aspects of human cognition and language are 
still a mystery, guidance can be taken from human processing 
where possible [1]. Infants ground their language by interaction 
with the physical world, associating speech patterns with objects 
and actions in the world [2]. An infant initially learns categories 
through observing the world. Humans use a very complex 
communication system. It is widely accepted, that the human 
communication system is symbolic, learnt, compositional and 
multimodal. Understanding the underlying principles of the 
human communication system requires an understanding of the 
mechanisms  with  which  the  words’  meanings  are  rooted  in 
reality.    

The system, whether it is human or artificial, must learn to 
categorize input into bins.  So, when an agent senses an item, it 
must categorise it as, for instance, a dog.  This allows the system 
to generalize its behaviour so that it can react similarly to 
different instances of that category.  One explanation of this 
process of category learning is provided by Hebb [3].  A cell 
assembly, a reverberating neural circuit, represents the category 
or concept.  The cell assembly is learned by modifying synaptic 
weights using a Hebbian learning rule, which states the synaptic 
weight between two co-firing neurons is increased.  The 
categories are formed in response to environmental stimuli.  
Thus, the reverberating circuits of cell assemblies are formed by 
groups of features that tend to travel around together.  That is, 
the cell assembly for dog is formed by a group of features that 
dogs tend to have.  When a dog is presented to the system, the 
dog cell assembly becomes active. This cell assembly formation 
is a form of sensory motor toil [4]. New categories are learned 
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formed through real time, feedback-corrected, trial and error; the 
agent uses senses and motion to develop those categories. 

These concepts are entirely subsymbolic.  They are formed in 
direct response to the environment, and can be formed by 
animals that do not process symbols.  However, humans do 
process symbols, and these symbols can be linked to the sub 
symbolic cell assemblies.  This process of labelling is essential 
for symbol grounding. 

A great deal of artificial intelligence concentrates on symbol 
processing, but no simple symbol processing system can be truly 
intelligent [5].  Instead, a host of implicit knowledge is needed, 
and that knowledge is stored in the underlying cell assemblies, 
and relations between cell assemblies.  Thus, a truly intelligent 
artificial system must have grounded symbols [6].  Once a 
system has some grounded symbols, it can then use symbols to 
learn new symbols and new categories [7].  This is the benefit of 
language, a person can learn from language without actually 
having to experience the environment.  An agent can learn where 
someone lives by being told their address.  This symbolic theft, 
based on the categories that have been derived via sensory motor 
toil, makes the system much more powerful. According to 
symbolic theft, new symbols are formed by combining already 
grounded symbols [4]. Some basic categories must still be 
learned by sensory motor toil, and then by using symbolic theft, 
new symbols can be acquired. 

Symbols are grounded by multimodal interaction with the 
world [8]. Multimodal communication can involve vision and 
language integration to ground mental concepts in the physical 
world [9]. This multimodal integration, between language and 
visual representation enables humans to acquire and use words in 
context and makes communication possible by establishing 
coherence between mental states and the physical world. Thus 
not only visual items need to be learned, they need to be labelled 
to ground them. 

In this paper, a system that learns to categorise visual objects 
by sensory toil is presented.  The system then labels these 
categories, providing the basic structure of symbol grounding.  
This system is implemented entirely in simulated neurons (see 
section 2.1).  Cell assemblies (see section 2.2) emerge from the 
system’s interaction with the environment.  The learning of these 
visual items is described and evaluated in section 3.  These items 
are then labelled; this process is described and evaluated in 
section 4.  Conclusions are then drawn and future work 
discussed.  
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2 Theoretical Background and Previous Work 
The system is based on a simple, but realistic, neural model.  
This model is the fatiguing Leaky Integrate and Fire neuron.  In 
response to environmental stimuli, these simulated neurons can 
form cell assemblies. The precise form of the response is 
governed by particular Hebbian learning rules. 

2.1 Fatigue L eaky Integrate and F ire Neurons  
The fatiguing Leaky Integrate and Fire (fLIF) neuron is a 
relatively simple, though accurate, model of biological neurons.  
The fLIF neuron is an extension of the more widely used LIF 
model [10].  This is, in turn, an extension of the integrate and 
fire model [11].   

The model used in this paper makes use of discrete cycles. A 
cursory description is provided and a fuller explanation can be 
found elsewhere [12]. Each neuron has some activation, which it 
receives from other neurons. If a neuron has enough activation at 
the end of a cycle, it will fire, spread activation to connected 
neurons, and lose all its energy. Neurons are connected to other 
neurons with unidirectional, weighted connections.  A firing 
neuron passes the activation of the weight of the connection.  If a 
neuron’s activation is less than the threshold, it will not fire but 
some the retained activation will leak away for the next cycle.  
This is modelled by calculating the activation as describe in 
equation 1. 

 
A(t) = A(t-1)/D + C. (Equation 1) 
 

Where A(t) is the activation at time t. It is the sum of the 
activation at time t-1, reduced by a decay constant D, and C, the 
sum of incoming activation of all active neurons that are 
connected to a given neuron and fired at time t-1. The value of C 
is determined by multiplying the incoming activation from other 
firing neurons at time t-1 with the associated weights of those 
links. 

fLIF neurons also fatigue just like biological neurons.  If a 
neuron fires regularly it becomes harder to fire.  This is modelled 
by increasing the threshold of a neuron when a neuron fires, then 
reducing it when the neuron does not fire. 

2.2 Cell Assemblies  
A Cell Assembly (CA) is the neural basis of a symbol [3].  It is a 
subset of neurons that have high mutual synaptic strength 
enabling neurons in the assembly to persistently fire after 
external stimulation ceases.  In the simulations discussed in this 
paper, a small subset of all the neurons represents a symbol.  If 
many of the neurons in it are firing, the symbol is active. 

Cell assemblies give a sound answer to the neural 
representation of two types of memory, long-term memory and 
short-term (or working) memory.  The firing of many neurons in 
an assembly is the neural implementation of short-term memory; 
this high frequency and persistent firing makes the cell assembly 
active.  

2.3 H ebbian L earning 
The basic learning mechanism used in these experiments is the 
compensatory learning rule that has been described elsewhere 
[13].  The overall rule is derived from a correlatory rule that 
combines Hebbian and anti-Hebbian mechanisms.  That is, the 
synaptic weight between two neurons increases when the 
neurons co-fire, and decreases when the pre-synaptic neuron 
fires and the post-synaptic neuron does not.  Over time, the 
synaptic weight reflects the likelihood that the post-synaptic 
neuron fires when the pre-synaptic neuron does.  This 
correlatory mechanism uses a modifier that forces that combined 
synaptic weight leaving a neuron toward a constant.  This is 
done by making the increases smaller and the decreases larger 
when the total synaptic weight of a neuron is greater than 
constant; and making the increases larger and the decreases 
smaller when the total synaptic weight is less than constant.  
This rule makes synaptic weight a resource. 

2.4 C ABot 
The simulations described in section 3 and section 4 are an 
extension of the first version of the Cell Assembly Robot 
(CABot1) [14].  The main aim of CABot is to develop an agent 
in simulated neurons, which can take natural language as input 
and interact with the environment without any external help. By 
interacting with the environment, it is hoped that it can learn the 
semantics of the environment sufficiently well to improve 
language processing.  

For CABot1, a virtual 3D environment was established based 
on the Crystal Space games engine. Two agents were placed in 
the environment, the first controlled by a user, and the second 
was the CABot1 agent.  All processing in CABot1 was done by a 
complex network of fLIF neurons, though it emitted symbolic 
commands to the Crystal Space stub.  

 

 
F igure1. Instances of pyramid 

A complete description of CABot1 is beyond the scope of this 
paper but further information can be found elsewhere [15].  A 
total of 21 sub-networks are used to subdivide the tasks of 
vision, natural language parsing, planning, action and system 
control. 
 

 
 F igure2. Instances of stalactite 
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The important subnets for the purposes of this paper are the 
vision nets and the word nets.  There are three vision subnets, a 
simulated retina, a primary visual (V1) cortex and a secondary 
visual cortex (V2).  These systems were hard coded, so there was 
no learning. Visual input was in the form of a bitmap 
representation  of  a  view  of  the  game  from  the  agent’s 
perspective.  In particular, the secondary visual cortex subnet 
was set to recognise pyramids and stalactites.  If one of these 
was present in the game, a CA in V2 ignited. There were several 
position and size dependent CAs associated with both pyramid 
and stalactite. Figure 1 and figure 2 shows instance of pyramid 
and stalactite respectively. 

Similarly, the parsing component had CAs for words.  In the 
game, the user issues natural language commands to tell the 
agent what to do.  There was a noun instance subnet to store 
semantic roles during parsing.   

3 L earning V isual Items 
Learning was introduced in to the system with the help of six 
visual sub nets. The five shapes used are: pyramid, stalactite, 
diamond, square and right angle triangle. Currently the vision 
system consists of six nets which are Input net, Retina net, V1 
net, V1A net, V2 net and V4 net. Each of these six sub nets 
performs a unique function, takes input only from the prior net 
(the environment for Input), and passes input to the subsequent 
net. 

The Input net displays the input from the environment 
whereas the Retina net is a series of OnOff and OffOn detector; 
these nets are unmodified from CABot1. The V1 net is position 
dependent and detects first order features of a solid shape in the 
picture.  These features included including oriented edges and 
angles, and several new angle detectors were added from 
CABot1.  The V1A net is a position independent model of the 
V1 net, merely showing the presence of the feature without 
location. The V2 net detects the second order features, a three 
way combination of edges and angles.  For example, it detects a 
horizontal edge, a right angle, and a vertical edge are all 
simultaneously present.  There were 13 such second order 
detectors. The V4 net identifies the shape of an object with the 
help of the second order features which are detected in the V2 
net. The detailed working of the vision system is defined below.  
 

   
F igure 3a. Right Triangle   F igure 3b. Pyramid      F igure 3c. Diamond  
     

   
F igure 3d. Square        F igure3e. Stalactite 

 
Figure 3a, 3b, 3c, 3d, and  3e shows the instances of  right angle 
triangle, pyramid, diamond, square and stalactite respectively. 

The Input net gets the input from the system in the shape of 
bits and displays it on the screen. The input is usually in the 
shape of pictures but shapes can be hard coded in the system. 

The Retina net is a biological plausible model of the OnOff and 
OffOn detectors that are found in biological systems; it gets the 
input from input net, and feeds its output to the V1 net. Three 
different types of OnOff and Off On detectors are used in the 
Retina net 3 by 3, 6 by 6 and 9 by 9 detectors. 

V1 is position dependent and gets the input from the OnOff 
detectors and identifies the first order features e.g. edges and 
angles of a solid shape in the picture. The V1 net responds to 
different types of edges and angles presented. The connections 
from the V1 net were made position independent by introducing 
the V1A net and making random connections from each V1 CA 
to the corresponding V1A CA. The V1A net has direct 
connections from the V1 net only. The neurons of the V1A net 
have a low decay rate of 1.01 to promote even a small firing of 
neurons in V1.  

The V1 net and the retina net used are modified versions of 
the V1net and the retina net of CABot1. More CAs are introduce 
in  the V1 net including vertical edge CAs ,and four types of 
right angle CA. Whereas theV2 net, the V4 net and the VT net 
(described below) were introduced for this experiment. 

The V2 net gets input from the V1A net, which is the position 
independent version of the V1 Net. When a three or four edged 
shape is presented, each CA of the V2 net gets three inputs from 
three CAs of the V1A net.  CAs of the V2 net are only ignited 
when all of three CAs in the V1A net is active when a shape is 
presented. The V2 net output is used as an input to the V4 net 
where final shape is determined.  

The V4 net is the final part of the vision system where all the 
shapes are discriminated.  The V4 net and the V2 net are fully 
connected which means each of the CAs in V2 net is connected 
with all CAs of V4 and vice versa.  Learning is carried out 
between V2 and V4 nets. 

The same topology was used within V1A net, V2 net and V4 
net. In this topology, twenty percent of the neurons used were 
inhibitory neurons while eighty percent of the neurons used were 
excitatory.  In the case of the V4 net, there are inhibitorier intra-
CA connections to promote winner takes all situations so that 
only one CA will eventually ignite.   

In order to prevent a CA from winning on two different 
shapes, a slow learning approach is used. Due to the low learning 
rate, the weights do not grow rapidly. Hence the V3 net CAs 
does not commit to the V4 net rapidly, but over a longer period, 
reducing the likelihood that they will form incorrect associations. 

3.1 Exper iment 
During the simulations, all five shaped are learned.  Instances of 
those shapes are presented to as visual input.  The input neurons 
are clamped on for 250 cycles.  Activation passes through the 
retina, V1, V1A and V2 subnets.  The activation then passes to 
the V4 net; as the weights from V2 to V4 are initially low, no V4 
CA ignites initially.  However, each of these nets slowly 
accumulates activation, and eventually one ignites, and persists.  
As it inhibits the other CAs, it is the only one that persists.  The 
winner takes all strategy prevents one shape being committed to 
more than one CA of theV4 net. During this phase of persistent 
firing, the weights from V2 and back to V2 are raised via 
Hebbian learning.   

An instance of each of the five shapes is presented to train the 
network.  It is then tested by presentation of other instances of 
the shapes.  Table 1 shows the result of a successful test when an 
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instance of visual  pyramid and of visual diamond are presented; 
the number of neurons firing in the corresponding CAs of V4 
show that specific CAs are committed to pyramid and diamond 
respectively, whereas the other CAs of the V4 net do not 
respond. The correct ignition of the CAs in the V4 net shows the 
system has learned these shapes.   

 
Table 1. No of neurons firing in the V4 net during testing phase 

Neurons 

Firing 

Pyramid  Stalactite  Square Diamond Triangle 

When 

pyramid is 

presented 

490 0 0 0 0 

When 

Diamond is 

presented 

0 0 0 479 0 

 
The simulation is termed successful when all of the five CAs 

of the V4 net are committed to the five different distinctive 
shapes, whereas the quality of the success is determined by how 
well these five shapes get learned CAs to respond when different 
shapes are presented. 

Graph 1. Example of winner takes all in this case its triangle 

 
Graph 1 shows a typical example of winner takes all strategy 

(in this case its triangle). Initially all the CA compete with each 
other but slowly one CA gets promoted which inhibits other CA 
neurons making them more harder to fire. 

The training runs for 1250 cycles where each of the five 
shapes was presented for 250 cycles. The system is reset at 250 
cycle intervals with all neural activation and fatigue reset to 0. 
The connections between the V2 net CAs and the corresponding 
V4 net CA are adjusted and learned using Hebbian learning. The 
learning is bi-directional with weights on connections from the 
V2 net to the V4 net and weights from the V4 net to V2 net 
being learned at the same time. 

The test runs for 2500 steps. During the testing part of the 
simulation, shapes were presented in a random order.  After 
presenting the complete set of five shapes in 1250 cycles, 

another set of shapes was presented, randomly again, for another 
1250 cycles.  

3.2 Results 

The test is fully automated and runs without human intervention. 
The test was conducted 28 times. The result is calculated using 
the correct numbers of corresponding CAs of the V4 net being 
fired when a shape is presented to the system.   

The success rate among three shapes diamond, square and 
rectangle is one hundred percent. Each of the shapes i.e. 
diamond, square and rectangle, gets committed to a different CA 
each time they are presented and during testing each of the 
committed CAs responds correctly to different shapes presented 
each time. Due to the very similar features, pyramid and 
stalactite shapes do get committed wrongly sometimes and the 
CA which is being committed to one of the shapes presented first 
also sometimes responds to the second shape presented 
afterwards. The success rate among the shapes of pyramid and 
stalactite is 75 percent. 

4 Labelling Items 

Labelling is a simple but crucial part of the symbol grounding 
problem and associates the correct labels with semantic 
categories [16]. This simulation shows how learned semantic 
categories for shapes get appropriate labels attached to them. 
These associations are then tested. The use of semantic CAs and 
label CAs is consistent with linguistic research where a word has 
a semantic pole and a phonological pole [17]. 

4.1 Experiment  
The system is presented with different pictures of instances of 
shapes and after detecting the appropriate first and second order 
features, the correct shapes are learned (as described in section 
3). These learned shapes are then associated with a label by 
presenting an instance of shapes and its label simultaneously. 
The connections are adjusted and learned using Hebbian 
learning.  

Learning is bi directional so the label can be used to retrieve 
the shape, and the shape can be used to retrieve the label. Each 
shape and label is represented by a CA of 500 neurons in the 
V4net and the label net respectively. Every 5th neuron in each of 
shape and label CAs has 3 random connections with the CAs of 
each label in the label net and with the CAs of each shape in the 
V4net. The values of other parameters used in the experiment are 
as shown in the table 2. 

 
Table 2. Values of the parameters used in the experiment 

Parameter Value 
Decay rate 1.45 

Learning rate 0.2 
Fatigue Rate 1.2 

Fatigue Recovery rate 1.4 
Activation threshold 4.2 

 
The correlatory learning rule is used to learn the connections. 

According to the correlatory learning rule, when pre-synaptic 
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and post-synaptic neurons fire, the weight is increased, and when 
the pre-synaptic neuron fires and the post-synaptic neuron does 
not fire the weight is decreased. Initial weights of connections 
between the shapes and the labels are set low (0.01) so the 
weight can be adjusted to the appropriate level.   

During testing, the semantic input to the system is turned off 
to check if the right semantic CA is ignited when a label is 
presented. Similarly to test the connections from the semantics to 
labels, input to the label net is turned off to see if the correct 
label ignites. 

During learning, each instance of shape and label was 
presented for 250 cycles. Each epoch of learning and testing for 
all the shapes and the labels lasted for 1250 cycles. After 4 
epochs of learning the system is tested for 4 epochs. In the first 2 
epochs of testing, the semantic input to the system is turned off 
to test the label to semantic connections. In the next 2 epochs of 
testing, the semantic input to the system is turned on but the 
input to the label net is turned off to test semantic to label 
connections.   

 
Table 3a. Visual pyramid is presented when Input to the label net is off. 

 
 
Table 3b. Label stalactite is presented when Input to the V4 net is cut 
off. 

 
Table 3a shows the result of a run when the input to the Label 

net is switched off and an instance of visual pyramid is presented 
to the system. When an input is presented in V2, a CA in the V4 
net is ignited, which, in turn, ignites the correct associated Label 
CA even though it has no external input.  Table 3b shows the 
results of a run when the visual input to the system is turned off 
and input is applied to the Label net. The CAs of the Label net 
also ignites the corresponding CAs of the V4 net even though 
there is no visual input to the V4 net. These tables clearly show 
the appropriate connections are being learned.  

4.2 Results 
The results were calculated by counting the number of neurons 
fired at 249th cycle of presenting a shape or label. During 
learning and testing different instances of the shapes were used.  
On all 10 tests that were carried out, all the right CAs ignited 

when the system is presented with the corresponding CAs. This 
correct ignition of the CAs shows the correct association 
between shape and label CAs is learned appropriately.  

5 Conclusions and Future Work 
As has been pointed out, to some extent the Symbol Grounding 
Problem has already been solved [18].  That is, artificial systems 
have learned categories and labelled them.  Of course, the 
problem still remains unsolved in that no artificial system 
currently grounds symbols nearly as effectively as a typical 
human does.   

This paper describes an early step toward symbol grounding.  
Like people, this system processes using neurons.  Also like 
people, this system learns new visual categories.  Finally, like 
people, this system labels those categories.   

As compared to other models (for example [19], [20], [21], 
[22]), our model uses biologically plausible neurons, and the 
system is more generic in nature (as it is not only bound to 
spoken words). The model described in this paper has the 
flexibility to be used with incremental learning and can use 
environmental feedback to create or readjust what is already 
learned [23]. 

This paper has shown progress on the symbol grounding 
problem.  The symbol grounding problem is clearly a problem 
that humans must solve, but little work in the study of natural 
cognition centres on this issue.  This is probably because this is 
so effortless for humans.  Humans learn new categories and 
instances constantly throughout life.  They do this implicitly and 
explicitly; those memories may be labelled or not; and the 
labelling is also usually effortless.  However, as greater 
understanding of natural cognition evolves, these complexities 
will be better understood. 

The promising results of these experiment shows that the 
technique and model used for these experiments can be used 
effectively to solve other aspects of the symbol grounding 
problem. Other aspects of that need to be addressed in order to 
solve the SGP are functional symbol grounding, symbolic theft, 
hooking, alignment and environmental feedback. Functional 
symbol grounding involves grounding a symbol in a given 
context. Symbolic theft involves grounding new categories from 
splitting or merging already grounded symbols. For example by 
combining stripes with horse, a new category, zebra, can be 
created and vice versa. Hooking is when a category can have 
more than one representation; for example a chair looks very 
different from the front and back. An intelligent agent should be 
able to ground all representations such that object is categorised 
regardless of the angle of input. Hooking also refers to 
synonymy [24] with multiple labels applying to a single object 
or category. Alignment involves coping with an unfamiliar 
symbol by using the information from already grounded 
symbols. For example if an agent has not seen an object before, 
using its already grounded symbols, the agent can infer the 
meaning of the new symbol. Environmental feedback means an 
agent should be able to learn or readjust already grounded 
symbols. 

Though, this list is not exhaustive, addressing these issues 
will yield an agent that can much more effectively ground 
symbols. Such an agent will be able to make its own decisions 
without little help from the outside world.  
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