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1 Abstract

Thereare many approachesto the study of mind, and much ambiguity in the useof words like
‘emotion’and‘consciousness’.Thispaperadoptsthedesignstanceandattemptsto understandhuman
minds as information processingvirtual machineswith a complex multi-level architecturewhose
componentsevolvedat differenttimesandperformdifferentsortsof functions.A multi-disciplinary
perspective combining ideasfrom engineeringas well as several scienceshelps to constrainthe
proposedarchitecture.Variationsin thearchitectureshouldaccommodateinfantsandadults,normal
andpathologicalcases,andalsoanimals.An analysisof statesandprocessesthateacharchitecture
supportsprovidesanew framework for systematicallygeneratingconceptsof variouskindsof mental
phenomena.This framework canbeusedto refineandextendfamiliar conceptsof mind, providing
a new, richer, moreprecisetheory-basedcollectionof concepts.Within this unifying framework we
hopeto explainthediversityof definitionsandtheoriesandmovetowardsdeeperexplanatorytheories
andmorepowerful andrealisticartificial models,for usein many applications,includingeducation
andentertainment.

2 Approachesto the study of mind

Therearemany approachesto thestudyof mind. Experimentalapproachesinvolvesearching
for patternsin datafrom laboratories,questionnaires,etc. Philosopherstry to analysethe
conceptswe usein thinking aboutminds, or try to work out generalrequirementsfor a
mind. Minds can be regardedas biological phenomenaandattemptsmadeto tracetheir
evolution. Somephysicistsclaim that mentality is implicated in the basic mechanisms
of quantummechanicsand try to derive therefromexplanationsof more familiar mental
phenomena.Socialscientistsview mindsasproductsof cultureconstitutedlargely by their
socialcontext. AI researchersandsomecognitive scientistsandbrain scientistsattemptto
build computationalmodels.

Thereareseveraltypesof computationalapproachesto mind,whichproducetheoriesand
modelsof varyingdepth.At oneextreme,researchersareconcernedentirelywith practical
goals,suchastrying to producerobotsor softwareagentswhichare‘believable’andproduce�
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appropriatereactions(suchassympathy)in humans,or which areadequatefor somepracti-
cal purpose,suchascontrollinga factory. Often,shallow simulationsachievesuchpractical
goalswithoutexplainingverymuch.Whenthemainresearchobjectiveis toproduceaccurate
explanationsandmodelsof naturallyoccurringintelligent systemsmorecomplex theories
arerequired.Thesemayinvolvedifferentlevelsof abstraction.For example,sometheorists
strive to producerealisticexplanationsby modellingknown neuralstructuresandprocesses.
Othersaim for amoreabstractlevel of modelling.

Our approachis to explorevirtual machine informationprocessingarchitectureswhich
mightexplainhumanmentalphenomena.Weoperateatanintermediatelevel,expectingthat
later work will move ‘downwards’ from the architectureto connectit with more realistic
implementationscloserto biologicaldetailsand‘upwards’by showing how thearchitecture
canexplain a wide rangeof phenomenaarisingout of mechanismsandprocessestherein,
includingsocialphenomena.

Thereis a huge spaceof potentiallyrelevantarchitecturesalthoughresearchershave so
farstudiedonly atiny subset,soany theoriesproducedin thenearfuturemustbeprovisional,
andsubjectto revisionaswe learnmore.

3 Constraining the architecture

Thereareindefinitelymany virtual machinearchitecturesthatcouldin principleproduceany
observedbehavioursof anorganism,evenif theorganismis observedover its lifetime. How
canthesearchfor explanatoryarchitecturesbecontrolled?Thereis no guaranteedmethod
of success,hereor in any otherareaof science.At bestwe canusegeneralguidelines.For
instance,thefollowing kindsof informationcanhelpto constrainor guidethesearchfor an
explanatorytheory:
(1) Informationaboutthephysicaldesignof thesystem.Studyingbrainmechanismsprovides
suchinformation. Brain structuresandmechanismsconstrainthe typesof virtual machine
(VM) they cansupport,thoughonly in subtleandindirectways.For instancethenumberof
possiblestatesof thebrainlimits thenumberof distinctstatesin theVM, thoughthemapping
betweenphysicalandVM levels is complicatedby suchthingsasuseof sparsearrays,or
informationimplicit in axiomsor rulesfrom which consequencescanbederivedasneeded,
so that information‘in’ the systemneednot be explicitly mappedonto particularphysical
components.
(2) Informationaboutthe designhistory. If somesub-systemwithin anorganismevolved,
then the mechanismsof biological evolution will constrainthe design,e.g. becausepre-
cursorsof the organismmustbe completeviable organisms,unlike partially built artificial
systems.Thinkingabouttrajectoriesin evolutionarydesignspacemayhelpusfind explana-
tory mechanisms,for instancebasedonthenotionthatevolutionfrequentlymodifiesadesign
by producinganextra copy of somecomponentthenmodifying thatcomponentto perform
new functions.By contrast,for certainartificial systems,designsarepossiblethatcouldnot
have evolvedin naturebecausetheprocessof creationrequiresproductionof complex sub-
mechanismswhichwouldnotbeviableasindependentagents.Similarly if theVM is partly
bootstrappedvia a learningor developmentprocessthenthingswe know aboutcapabilities
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of variousformsof learningor developmentcanconstrainour theories.
(3) Observedbehaviour. Informationaboutwhat the systemdoes,whetherin a ‘natural’
environmentor in variouslaboratoryor field-testcontexts,helpto provideinformationabout
themachine’s capabilities(subjectto many qualificationsabouthow misleadingsuchinfor-
mationcanbe). For example,humanscandeceive us abouttheir abilities, or they canbe
tired,temporarilyforgetful,distractedor misledby ambiguousinstructionsor questions,and
so on. Moreover somebehaviours may be constrainedby the currentculture, not by the
intrinsiccapabilitiesof theVM.
(4) Introspection. Whentrying to build theoriesaboutyour own virtual machine,you also
have accessto introspective informationotherpeopledo not have: e.g. I know that a few
minutesagoI waswonderingwhetherI shouldreply to amessageor markastudent’sessay,
andnobodyelsecould have told by observingme that that wasgoing on insideme. So I
know thingsaboutmy VM which do not comefrom observation of behaviour. (Whether
measurementsof brainactivity couldever provide suchinformationis anopenquestion:it
will beevenharderthan‘decompiling’ machinecodeon computers.)
(5) Broken parts. A powerful sourceof informationis to tamperwith bits of the physical
machineryandseehow thataffectsthecapabilitiesof thesystem(which is oftennot at all
obvious,andposesits ownproblems).Thiscanprovideevidencethatthevirtual machinehas
anunexpectedmodularstructure,sincedifferentkindsof damageleave differentpreviously
unnoticedcapabilitiesintact.Damagecausedby strokesor injuries,andgeneticbraindefects
canall contributesuchinformation.
(6) Commonknowledge. Explicit or implicit commonsenseknowledgeincludessuchthings
asknowledgethatpeoplecansometimesbe jealousor angrywithout beingawarethat they
are, and that certainemotionalstatesdisrupt thinking and attention,that deepemotions
are sometimesexternally visible and sometimeshiddenfrom others,that many emotions
andmotiveshave rich semanticcontent(e.g. beingangrythat someonehasbetrayedyour
friendship).Evenif many widely heldbeliefsaboutmindsareerroneous,it doesnot follow
thatall arefalse.
(7) Informationfrom other disciplines. Combiningknowledgefrom many disciplinesalso
helps. For instance:philosophyprovidestechniquesfor revealingsurprisingaspectsof fa-
miliar concepts;psychologyandbrainscienceprovidemany factsthatneedto beexplained;
ethologyrevealsthe diversity of animalminds; evolutionarybiology helpsus understand
possibleroutesfrom simpleto complex brainsandthefunctionsof variousaspectsof mind;
computerscienceand software engineeringteachus about importantgeneralcharacteris-
tics of informationprocessingmechanismsandarchitectures;mathematicsprovidesprecise
analysisof someof thepropertiesof thosemechanisms;andAI hasprovideduswith much
experienceaboutspecificvarietiesof virtual machinesandwhat they areandarenot good
for, andthe tradeoffs betweendesignoptions. ComputerengineeringandAI alsoprovide
toolsfor testingideasin workingmodels.We learnbothfrom theprocessof implementation
andfrom the limitations of the systemswe build. (Like the disappointingperformanceof
mostcurrentrobots!)
(8) Unifying explanations. Aiming for a unified explanationof many phenomenahelpsto
constraintheories. Too often theoristsstudy only normalhumans. Besidesnormal adult
humanminds, we shouldconsiderinfants,peoplewith brain damageor disease,insects,
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chimpanzeesandotheranimals.

Thefollowing additionalcriteriaareusefulin selectingbetweenrival theories.
(9) Analogies. Whentrying to understanda particularlycomplex system,observableanalo-
gieswith systemsaboutwhich we alreadyhave moreinformationincluding thosewe have
designedourselves, may give clues, thoughanalogiesshouldalways be usedwith great
caution.
(10) Whatwe havelearnt in AI and software engineering. We have learnta lot aboutthe
sortsof designswhich areandarenot capableof producingvariouskindsof functionality,
andaboutthe trade-offs involved in choosingbetweenoptions. This canhelp us rule out
unworkablealternativesandavoid prematurecommitmentto particulardesigns.However,
westill havemuchto learnunderthis heading.
(11) Selectamongcompetingtheories. A standardmethodin scienceis to compareall the
availableexplanatorytheoriesandtry to decidewhich oneis best(in termsof explanatory
depth,predictive precision,predictive coverage,consistency with known evidence,coher-
encewith other good theories,etc. etc.). As Popperalways stressed(e.g. in his 1976
book),suchselectionsarealwaysprovisionalconjectures,andexplorationof alternativesto
‘accepted’theoriesshouldalwaysbeallowed.Nothingis everfinal in science.

4 Ar chitectural decomposition

Using theseconstraintsandsourcesof informationasinspiration,we have beenexploring
virtual machineinformation processingarchitectureswhich might explain humanmental
phenomena.

Oneapproachwhich we have foundfruitful canbeexplained(approximately)by super-
imposingtwo commonlyusedarchitecturaldecompositions,a ‘vertical’ anda ‘horizontal’
decompositionillustratedin Figure 1 (a) and (b) respectively. The first correspondsto a
view of theflow of informationthrougha systemandthesecondcorrespondsto a view of
an organismashaving levels of control, or, alternatively, ashaving layersthat evolved at
differentstages.

4.1 Three towers

The‘threetower’ model(Nilson,1998)shown with verticaldivisionsin Figure1(a),is often
implicit. Therearedifferentversionsof this model,dependingon thesophisticationof the
perceptual,centralandmotorsubsystems.For examplesimpleversionstreattheperceptual
mechanismssimply asphysicaltransducers.More sophisticatedmodelsincludecomplex
perceptualprocessessuchassegmentation,recognition,interpretation,anddirectionof at-
tention,with variousintermediateinformationstoresusedto recordpartial results.Another
kind of variationconcernsthekindsanddegreesof controlof perceptionby thecentraltower.
Somearchitecturessupportexplanatoryconceptsreferringto theseintermediateinformation
storesor to centralcontrolof perception,whereasothersdo not (Sloman,1989).

Likewise, the actioncomponentmight, at oneextreme,be regardedasa collectionof
transducerssendingsignalsto motors,or in moresophisticatedcasesasa complex hierar-



4 ARCHITECTURAL DECOMPOSITION 5

Central
Processing

Perception Action
Meta-management

(reflective processes)
(newest)

Deliberative reasoning
("what if" mechanisms)

(older)

Reactive mechanisms
(oldest)

Figure1: (a) (b)
Thediagramsshowtwo waysof partitioning the architecture. In (a) informationflow through the
systemvia sensory, central andmotormechanismsis emphasised,where each ‘tower’ maycomprise
simple transducers or may have extremely sophisticatedmulti-functional layered mechanisms.
Diagram (b) emphasisesdifferencesin degreeandtypeof sophisticationof processinglayers in the
architecture which evolvedat different times.Processingin differentsub-systemsmaybeconcurrent
andasynchronous.

chical control mechanismwhich translateshigh level instructionsinto detailedpatternsof
actionby motorsor muscles.Examplescanbe found in (Johnson-Laird1993)and(Albus
1981,Ch 7), andmany studiesof action. Action systemsmay alsovary in the amountof
feedbackthey includeeitherwithin themselves(e.g.proprioceptivefeedback)or theextentto
whichthey work in closecoordinationwith perceptualmechanisms,for instancein hand-eye
coordination.Again, themorecomplex andsophisticatedactionmechanismswill supporta
wider rangeof descriptiveconceptsreferringto differenttypesof controlof actions.

Thuswecanhave‘thin’ or ‘f at’ perceptionor actiontowerswith variouskindsof internal
layeringandvariouskindsof informationflow in differentdirections.

Additional typesof variationdependon whetherthe systemis physicallyembodiedor
consistsentirely of software,wheresensorsandmotorsarevirtual machinesobservingor
actingon asoftwareenvironment.

Yet anothercomplicationconcernsthe ontologicallevel of the model. A threetower
modelcould refer to just thephysicalarchitecture.Alternatively it could refer to themore
abstractvirtual machinefunctionality involved in processinginformationof variouskinds
in variousways,evenif theunderlyingphysical(or physiological)implementationdoesnot
have clearboundaries.It seemsto be the casethat in humansmuchthinking (e.g. some
mathematicalreasoning,andvisualisinga rearrangementof furniture) makesuseof parts
of thebrainrelatedto vision (representingandprocessingspatialstructure).It maybethat
thesamephysicalcomponentimplementsbothpartof theperceptualtower andpartof the
centraltower.
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4.2 Three layers

The‘threelayer’ model,depictedcrudelyin Figure1(b)attemptsto accountfor theexistence
of avarietyof moreor lesssophisticatedformsof informationprocessingandcontrolwhich
canoperateconcurrently. Theversiondiscussedhere,1 postulatesthreeconcurrentlyactive
layerswhich evolved at different timesandarefound in differentbiological species.The
threelayersaccountfor differentsortsof processes,foundin differentkindsof animalsand
will be shown below to provide a framework for distinguishingthreedifferentconceptsof
‘emotion’.

The first layer containsreactivemechanismswhich automaticallytake action assoon
as appropriateconditionsare satisfied. The seconddeliberative layer provides ‘what if ’
reasoningcapabilities,requiredfor planning, predicting and explaining. Relatively few
organismshave this, and againthe forms can vary widely. The meta-managementlayer
providestheability to monitor, evaluate,andpartlycontrol,internalprocessesandstrategies.

Roughly, within the reactive layer, whenconditionsaresatisfiedactionsareperformed
immediately: they may be external or internal actions. A reactive systemmay include
both analogcomponents,in which statesvary continuously, and digital components,e.g.
implementingcondition-actionrules,or variouskindsof neuralnets,oftenwith ahighdegree
of parallelism.

By contrast,thedeliberative layer, insteadof alwaysactingimmediatelyin responseto
conditions,cancontemplatepossibleactions,comparethem,evaluatethemandselectamong
them. At leastin humans,chainsof possibleactionscanbeconsideredin advance,though
thereare individual differencesin suchcapabilities. The humandeliberative systemcan
alsoconsiderhypotheticalpastor futuresituationsnot reachableby chainsof actionsfrom
thecurrentsituation,andcanreasonabouttheir implications.As explainedelsewhere(e.g.
(Sloman2000))physicallyimplementablemechanismsrequiredfor suchsophistication,in-
cludinga long termassociative memoryandespeciallya re-usableshorttermmemory, will
causethedeliberativesystemto bediscreteandserial,andto proceedin muchslower steps
thana reactivesystemcan.

A meta-managementsystemcanact, in a reactive or deliberative fashion,on someof
theinternalprocessesinvolvedin thereactiveor deliberative(or meta-management)system.
This includesmonitoring,evaluatingandredirectingsuchinternalprocesses,andpossibly
reflectingon themafter theevent in orderto analysewhatwentwrongor how successwas
achieved.Like thedeliberative layer, it will beresource-limited.

Wesuspectthatresearchersandtherapistswhoreferto ‘executivefunction’ in humansare
often unawarethat they arediscussingmechanismswhich combinedeliberative andmeta-
managementcapabilities.That suchcapabilitiesarefunctionally differentis shown by the
fact that therearemany AI systemsthat have deliberative capabilities,insofar asthey can
make plans,executethem, revise them when executiongoeswrong, etc, but lack meta-
managementcapabilities. So they may not have the ability to notice that their planning
processesarewastefulor that it might be betterto abandonthecurrentgoal in the light of

1Partly inspiredby Simon (1967) , and elaboratedin our previous papers(Sloman& Croucher1981,
Beaudoin1994,Sloman1994,Sloman& Poli 1996,Sloman1997,Sloman1998,Sloman2000,Sloman&
Logan1999)
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somenew information.
Variousformsof reactivemechanismsarefoundin all organismsandsomeof themmust

have developedvery early in biological evolution. Deliberative mechanismsevolved later
andarefound in fewer organisms,thoughwe do not know exactly which oneshave them.
Can a bumble beeor even a rat wonderwhat would have happenedif...? It seemsfrom
Kohler’s work that at leastchimpanzeescanthink ahead.Meta-managementmechanisms
evolved last of all and it is not clear how many organismshave this, apartfrom humans
(thougheven they may not have it at birth). Perhapschimpanzeesandotheranimalshave
lesssophisticatedversionsof meta-management.

How the layersevolved must be largely a matterof speculation. We conjecturethat
oneof the importantfeaturesof biologicalevolution makingthis possibleis theprocessof
producingtwo copiesof anold structure,afterwhich oneof themdevelopsa new function.
In (MaynardSmith & Szathma´ry 1999)this is referredto as‘duplication anddivergence.’
E.g. mechanismswhich at first storedusefulreactive condition-actionpatternsmight later
becopiedandmodifiedto form alongtermassociativememorythatcanbeusedin ‘what-if ’
reasoning.

Of course,all the different layersmust ultimately be implementedin purely reactive
mechanisms,otherwisenothingwould ever happen.This commonimplementationfeature
is consistentwith greatfunctionaldiversity within the layers,just asa commoncomputer
architecturecansupportverydifferentoperatingsystemsandsoftwarepackages.

5 Relatedtheories

Theideaof a layeredarchitectureis quiteold in neuroscience,includingversionssimilar to
thearchitecturewe propose.E.g. Albus (1981,page184) presentsthenotionof a layered
‘triune’ brainwith areptilianlowestlevel andtwo morerecentlyevolved(old andnew mam-
malian)levelsabove that, includinghierarchicalperceptualandactionsystems(chapter7).
Freud’s distinctionbetweenid, ego andsuper-ego seemsto bea relatedidea.AI researchers
have beenexploring a numberof variants,of varying sophisticationand plausibility, and
varyingkinds of control relationsbetweenlayers. The ‘subsumptionhierarchy’ in Brooks
(1991) is oneof many examples. CompareMinsky (1987)andNilsson(1998). Johnson-
Laird’s discussion(1993)of consciousnessasdependingon a high level ‘operatingsystem’
is relatedto our third layer. A multi-level architectureis proposedfor storyunderstandingin
(Okada& Endo1992).

In sometheoriespresentinglayeredarchitectures,it is assumedthat assensoryinfor-
mationcomesin, increasinglyabstractinterpretationsor summariesarepassedup through
variouslayersuntil at thehighestlevel it maytriggerprocesseswhich causeinstructionsto
act to trickle down throughthe layers.By contrast,in our hypothesisedarchitectureall the
layersgetinformation(of differentdegreesof abstraction)in parallelandprocessit in parallel
andmayproduceactionsignals(of differentdegreesof abstraction)in parallel.An example
might be walking with a friend andsimultaneouslydiscussingphilosophy, while digesting
food,controllingposture,admiringtheview, etc. Most of theprocessesareunconscious,of
course.
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6 Combining models,to form a grid

Central
Processing

Perception Action

Meta-management
(reflective processes)

(newest)

Deliberative reasoning
("what if" mechanisms)

(older)

Reactive mechanisms
(oldest)

ALARMS

Central
Processing

Perception Action

Meta-management
(reflective processes)

Deliberative
reasoning

Reactive mechanisms

Figure2: (a) (b)
Thefirstfigureservesasa mnemonicindicatingsimultaneouslythetriple towerandtriple layerviews,
where the variouscomponentsin the boxeswill havefunctionsdefinedby their relationshipswith
otherpartsof thesystem.In (b) a globalalarmsystemis indicated,receivinginputsfromall themain
componentsof thesystemandcapableof sendingcontrol signalsto all thecomponents.Sincesuch
alarmsystemsneedto operatequickly whenthereareimpendingdangersor short-livedopportunities,
they cannotmakeuseof elaborateinferencingmechanisms,andmustbepatternbased.Globalalarm
mechanismsare likely therefore to make mistakesat times,thoughthey maybetrainable.

Whenthe horizontalandvertical subdivisionsaresuperimposedwe obtainthe schema
outlinedin Figure:2(a). In Figure:2(b) we make explicit the role of global alarm mecha-
nisms, which receive informationfrom all componentsof the systemandareableto send
interruptsandredirectionsignalsto all partsof the system.The ideaof this sort of global
alarmmechanismwaspartly inspiredby considerationof engineeringrequirements,partly
by thediscussionof interruptsin Simon(1967)andpartlyby studiesof thebrain,especially
therole of thelimbic system,e.g.seeAlbus(1981)andLeDoux(1996).

If processingof information in any of the layersis likely to take too long in relation
to the urgency of someneedprovoked by the environment,for instanceif thereis a large
object coming rapidly towardsyou, or a fast-moving edible object flying pastyou when
you arevery hungry, thenit maybenecessaryfor ‘normal’ processesto be interruptedand
redirected.This could be achieved by the additionwithin the reactive mechanismsof one
or moremodulesreceiving informationfrom sensorsor otherpartsof thesystemandusing
fastandgeneralpattern-recognitiontechniquesto decideto interrupteverythingandredirect
thewholesystemtowardsan appropriateresponse,e.g. runningaway, freezing,pouncing,
attendingto aparticularobjectin theenvironment,andsoon.

Whetherthis requiresaspecialmechanismor cansimplybepartof thenormalfunction-
ing of areactivesystem,dependsontherelativespeedsof variouskindsof processing.There
is no needto interruptandredirecta systemtowardsa particularactionif it wasaboutto do
thatanyway, andjustasquickly.
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A numberof additionalmechanisms,listedbriefly in Figure3(a),enablethevariouslay-
ersto function,andtheir shortcomings(e.g. limited processingcapacityof thedeliberative
layer)to becompensatedfor. TheveryclutteredFigure3(b) impressionisticallyportraysthe
resultof puttingvariouspiecestogether, includingthealarmmechanism.

7 Moti vegenerators

Long term associative memories

personae (variable personalities)

moods (global processing states)

motive generators (Frijda’s "concerns")

skill-compilerattention filter

motives motive comparators
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THE ENVIRONMENT
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Motive
activation

Long
term
memory

Figure3: (a) (b)
In (a) we list someadditional componentsrequired to support processingof motives,‘what if ’
reasoningcapabilitiesin the deliberative layer, and aspectsof self-control. It is conjectured that
there is a store of different, culturally influenced,‘personae’which take control of the top layer at
different times,e.g. whena person is at homewith family, whendriving a car, wheninteracting
with subordinatesin the office, in the pub with friends, etc. In (b) the relationsbetweensomeof
thecomponentsare shownalongwith a global alarm system,receivinginputsfromeverywhere and
sendinginterrupt and redirectionsignalseverywhere. It also showsa variable-thresholdinterrupt
filter, which partly protectsresource-limited deliberative and reflectiveprocessesfrom excessive
diversionandredirection.

Both in a sophisticatedreactive systemandin a deliberative systemwith planningca-
pabilities thereis often a needfor motiveswhich representa stateor goal to be achieved
or avoided. In simpleorganismstheremay be a fixed setof driveswhich merelychange
their level of activationdependingon thecurrentstateof thesystem.In moresophisticated
systemsnot all motivesarepermanentlypresent,sothereis a needfor motivegenerators to
createnew goalspossiblyby instantiatingsomegeneralgoalcategory (eatsomething) with
a particularcase(eat that foal). Thesegeneratorsaresimilar to thedispositional‘concerns’
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in Frijda’s theory. Beaudoin’s andWright’s PhDthesesdiscussvarioustypesof generators
or ‘generactivators’andrelatedimplementationissues.

Theability to manipulategoals,andto planactions,or tailor actionsto currentcontexts,
requiresvariouskindsof representationalmechanisms.In particular, reasoningaboutwhich
actionsare possiblenow or in hypotheticalfuture situations,or about the consequences
of thoseactions,requiresone or more powerful long term associative memories,whose
form will be relatedto the form of representationusedfor goals,situationsand actions.
Thesewill not necessarilymapdirectly ontosensoryinput (e.g. theperceivableaffordances
discussedby Gibson(1979),suchas‘somethingedible’or ‘a support’mayhaveenormously
variedsensorymanifestations)and that may inducea needboth for moreabstractcentral
representationalcapabilitiesandalsofor moresophisticatedprocessingof perceptualinput
in order to provide informationat the appropriatelevel of abstractionfor the deliberative
mechanism.While this happensthe visual systemmight simultaneouslybe sendingmore
‘primiti ve’ sensoryinformationto otherpartsof thesystem,e.g.for posturecontrol.

It is importantthat noneof the threelayershastotal control: they areall concurrently
active andcaninfluenceoneanother. Thedegreeandtypeof influencewill vary from time
to time. In particular, all threelayerscanbedisruptedby theglobalalarmmechanisms.

8 Dynamic filters and moods

Sincethedifferentlayers,thesensorysystemsandthealarms,operateconcurrently, it is pos-
siblefor new informationthatrequiresattentionto reachadeliberativeor meta-management
sub-systemwhile it is busyon sometask. Becauseof the resourcelimits mentionedprevi-
ously, it may be unableto evaluatethe new informationwhile continuingwith the current
task.But it wouldbeunsafeto ignoreall new informationuntil thecurrenttaskis complete.
Sonew informationneedsto beableto interruptdeliberativeprocessing.

Understressfulconditions,deliberative mechanismswith limited processingor tempo-
rary storagecapacitycanbecomeoverloadedby frequentinterrupts.We have arguedelse-
where(e.g. (Beaudoin& Sloman1993))thatvariable-thresholdattentionfilters canreduce
this problem.Settingthethresholdat a high level whenthecurrenttaskis urgent,important
andintricate,canproducea globalstateof ‘concentration’on that task. (Malfunctioningof
this mechanismmayproducea typeof attentiondisorder(Beaudoin1994).)

Variationsin the externalcontext andthe individual’s needsandresourceswill require
morecoarse-grainedglobal control mechanisms.This may accountfor somemoods. For
example,whentheenvironmentcanbeclassifiedas‘friendly’ becausemostgoalsarerela-
tivelyeasilyachieved,aconfidentoptimisticmodeof behaviour maybefruitful. Whenthings
oftengowrong,andpredatorsabound,amorecautious,evenpessimisticdemeanourmaybe
muchsafer. More subtleandcomplex changesof moodmaybetriggeredby recognitionof
sociallysignificantcontexts. Therearesomeglobalstatechangesproducedby pathologies,
e.g. depression,manic states. Much more researchis neededto help us understandthe
architecturalbasisof awide varietyof typesof globalstatechanges,including,for instance,
thenatureof sleep.
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9 Ar chitecture-basedconcepts

The model outlined above (like many similar models)allows us to generatesystemsof
cognitive and affective conceptswhich are groundedin the virtual machineinformation
processingarchitectureof agents.Sucharchitecture-basedconceptsmayprove superiorto
thosewecurrentlyuseto formulateresearchquestionsandour theories.

We often think we know exactly what consciousness,experience,emotions,etc. are,
becausewe experiencethemdirectly. This is mistaken. We may experiencesimultaneity
‘directly’ sometimes,but that doesnot guaranteea cleargraspof the concept,asEinstein
showed. Oneway to deepenour understandingof theseconcepts,and, wherenecessary,
repairtheirdeficiencies,is to seekanexplanatoryarchitectureandthenuseit asaframework
for systematicallygeneratingconcepts,just asthe theoryof the sub-atomicarchitectureof
mattergeneratedconceptsof kindsof elements,kindsof chemicalcompoundsandprocesses,
etc.Therelationbetweentheperiodictableof elementsandmodernideasaboutthearchitec-
tureof matterillustratehow anunderlyingarchitecturecangive new clarity andcoherence
to a family of concepts.Thenew conceptsdonot replaceourold ones,but extendandrefine
them,for instanceaddingconceptsof isotopesto old ideasof chemicalelements,andadding
new ideasaboutvalency to old ideasaboutchemicalprocesses.

10 Ar chitecture-basedemotionconcepts

In our previouswork we have attemptedto show how the threelayersmight supportstates
andprocesseswhich correspondto someof our pre-scientificconceptsof ‘emotion’. Such
processesalsoexplain a commondistinctionbetween‘primary’ and‘secondary’emotions
(e.g. found in Damasio,1994;Picard,1997)andsuggesta needfor anadditionalcategory
of ‘tertiary’ emotions.

Thereactive layeraccountsfor primary emotions(e.g. beingstartled).Thedeliberative
layer explainssecondaryemotionswith greatersemanticcontentand lessdependenceon
eventsin theperceivedenvironment(e.g.apprehensionconcerningwhatmighthappenwhen
a risky plan is executedand relief concerningwhat did not happen). Variousprocesses
impingingonthemeta-managementproducingpartiallossof controlof attentionandthought
processesaccountfor tertiary emotions,statesin which peoplemayfind it hardto redirect
their attentionor hardto maintaina focusof attention,or wherevariouskinds of thoughts
(‘Did shereally likeme?’ ‘How canI havemy revenge?’‘Why won’t hechangehismind?’,
etc.) constantlyintrudedespitedecisionsto ignorethemandconcentrateon importantand
urgenttasks.Thesetertiaryemotionssuchashumiliation,jealousy, andthrilled anticipation,
areprobablyuniqueto humans,thoughperhapssimplified versionscanbe found in some
otheranimals.

It is well known thatdefinitionsof ‘emotion’ vary widely (Oatley & Jenkins1996).We
expectthat furtherwork on varietiesof architecture-basedconceptswill reveala still wider
rangeof architecture-basedconceptsof emotion,alongwith new, moreprecise,architecture-
basedconceptscorrespondingto old ideasaboutmood, motivation, attitude,personality,
perception,learning,andso on. This sort of modelprovidesa unifying framework which
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helpsus explain the diversity of definitions,causedby different researchers(unwittingly)
focusingondifferentpartsof thesamearchitecture.

11 Multiple personalities

In humansit seemsthat themeta-managementlayerdoesnot have a rigidly fixedmodeof
operation.Ratherit is asif differentpersonalities,usingdifferentevaluations,preferences
andcontrol strategies,caninhabit/controlthe meta-managementsystemat differenttimes.
E.g. the samepersonmay have differentpersonalitieswhenat home,whendriving on a
motorwayandwhendealingwith subordinatesat theoffice. Switchingcontrolto a different
personalityinvolvesturningonalargecollectionof skills, stylesof thoughtandaction,types
of evaluations,decision-makingstrategies,reactive dispositions,associations,andpossibly
many otherthings.

For sucha thing to be possible,it seemsthat the architecturewill requiresomething
like a storeof ‘personalities’,mechanismsfor acquiringnew ones(e.g. via varioussocial
processes),mechanismsfor storingnew personalitiesandmodifying or extendingold ones,
and mechanismswhich can be triggeredby external context to ‘switch control’ between
personalities.

If sucha systemcango wrong, that could be part of the explanationof somekinds of
multiplepersonalitydisorders.

It is probablyalso relatedto mechanismsof social control. E.g. if a social system
or culturecaninfluencethe meta-managementprocessesthat determinehow an individual
represents,categorises,evaluatesand controlshis own deliberative processes,this might
provide a mechanismwherebythe individual learnsthingsasa resultof the experienceof
others,or mechanismswherebyindividualsarecontrolledandmadeto conformto socially
approved patternsof thoughtand behaviour. An examplewould be a form of religious
indoctrinationwhich makes peopledisapprove of certain motives, thoughtsor attitudes,
leadingto redirectionof deliberationin more‘socially acceptable’directions.

12 An ecologyof mind

Wehave indicatedhow duringevolution thechangingneedsof thecentralprocessingmech-
anismsmight leadto developmentsof higherlevel layersin theperceptualandmotormech-
anisms.For instance,developmentof a deliberative layer leadsto a requirementfor more
sophisticatedandabstractinput from the sensorysystems(‘chunking’ at higher levels of
abstraction,to provide knowledgerelevant to generalplanningcapabilities). It can also
producepressurefor evolutionof higherlevel controlmechanismswithin theactionsubsys-
tems,includingtheability to performsocialactions,suchasgreeting,performingrituals,or
cooperatingon complex skilled tasksrequiringgoodcoordination.If hierarchicalcontrolof
actioncanbe devolved to a sophisticatedactionsystemthis releasescentralresourcesfor
othertasks.

All this suggeststhat we can think about the boxes on the grid, and the additional
components,asforminganecologyin whichsub-organismsco-evolvesothatdevelopments
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in someof themgenerateneedsandopportunitiesfor theothers.Suchco-evolution involves
a family of parallel trajectoriesthrough both ‘design space’and ‘niche space’(Sloman
1998). Although thecomponentsclearlyarenot separateorganisms,they do co-exist, per-
forming different tasks,makinguseof different information,sometimesco-operatingand
sometimescompetingwith oneanother. Justasdifferentorganismsin thesamepartof the
forestmayanalysetheir sensoryinputsin differentwaysandencodeinformationaboutthe
environmentusing different ontologiesand possiblydifferent forms of representation,so
alsomay differentsub-componentsof a singlecomplex organism. For instanceincoming
visual information, as mentionedpreviously, may be processedto producea variety of
differentdescriptionsaboutaffordancesusedin parallelby reactivemechanisms,deliberative
mechanismsandmeta-managementlevels,almostasif they hadtheir own eyes. Similarly,
differentinternalstatemonitoringprocessesmayusedifferentontologiesin recordingevents,
generatinggoals,etc.

In somewaysall this is reminiscentof Minsky’s ideason a ‘societyof mind’ (Minsky
1987)thoughperhapsthe phrase‘ecology of mind’ is moreapt if we think of the various
componentsashaving co-evolvedto meetdifferentpressuresandopportunitiesprovidedby
theothercomponents.

This is of courseonly ametaphor, andsomeof thedifferencesfrom morecommonforms
of co-evolution may help us to understandthe strengthsandweaknessesof the metaphor.
Very often co-evolution of whole organismsinvolves competition. But often it involves
cooperation,suchas evolution of the shapeof a flower and evolution of the shapeand
behaviour of insectsor birds that obtain nectarfrom the flower. Co-evolution within an
organismis morelikely tobeof thecooperativeform, thoughtherecouldalsobecompetition,
e.g. competitionfor resources,suchasinformation,bloodsupplies,etc. (SeealsoCh 8 of
MaynardSmithandSzathḿary (1999)).

The main differenceis thatnormalbiological co-evolution involvesorganismsthat can
replicateindependently, whereaspartsof a singleorganismcannot. Neverthelessjust asa
mutationthat changesa type of flower may produceopportunitiesfor changein a bee,so
a mutationthat altersthe capabilitiesof a perceptualsub-mechanismmight producenew
opportunitiesfor usefulchangesin amorecentralcomponent.

It is not possiblefor reproductivefitnessof onecomponentto increaseor decreaseinde-
pendentlyof fitnessof another, sincethey reproducetogetherwhentheorganismreproduces.
However, differentpartsor featuresof an individual maybe thoughtof ashaving different
degreesof ‘fitness’ accordingto how fastthey spreadthrougha population.This is clearly
relatedto the notion that differentgeneswithin a genomemay have differentreproductive
fitness.

Althoughthenotionof an‘ecology’ mustnotbetakentooliterally, nevertheless,trying to
understandprocessesof incrementalchangesin differentpartsof thearchitecturemayhelp
usunderstandhow thewholesystemevolved,andhow that systemworks. Our discussion
is closely relatedto Popper’s proposal(1976,p. 173) to distinguishexternaland internal
selectionpressures.For instancehe suggeststhat sometimesin biological evolution new
preferencesevolve, e.g. if having thosepreferencesaidssurvival andreproduction. This
in turn can producea new ‘niche’ in which thereis pressurefor certainskills to evolve.
Thusorganismswill befavouredby naturalselectionif they developskills whichservethose
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preferences.This in turncanproduceapressureswhichfavourcertainanatomicalchangesif
they supportthoseskills. Thosechangesmaythensupporttheevolutionof new preferences,
e.g.if they serve theneedsof thenew anatomicalmechanisms.

13 Someconjectures

It is conjecturedthatthethreelayerscanbeusedto explaindifferentsortsof consciousness,
rangingfrom simple sentienceto full reflective self-awarenessandpossessionof ‘qualia’
(Sloman2000),thoughthereis nospaceto elaborateon this here.

Likewise it is conjecturedthat this sortof architecturecouldgive a robotmany human-
likementalprocesses– includingfalling into philosophicalconfusionsaboutconsciousness.

Of course,somerobots,likemany animals,youngchildren,or evenbraindamagedadult
humans,will have only partsof thesystempresent,andtheir cognitiveandotherstateswill
becorrespondinglylimited.

Similar commentscanbemadeaboutsoftwareagents.

14 Conclusion

As science,muchof this is conjectural– many detailsstill have to be filled in andconse-
quencesdeveloped(both of which cancomepartly from building working models,partly
from multi-disciplinaryempiricalinvestigations).

An architecture-basedontologycanbringsomeorderinto themorassof studiesof affect.
We have begun to illustrate this by showing how different conceptsof emotionrelateto
processesarisingin differentpartsof acomplex architecture,thoughthereis still muchwork
to bedone.This partly helpsto explain why therearediversedefinitionsof emotionin the
literature:differentresearchersunwittingly focuson differentsubsetsof thephenomenawe
havereferredto asprimary, secondaryandtertiaryemotions.It shouldalreadybeclearfrom
our discussionof theproposedarchitecturethatthis is a crudeandinadequateclassification:
additionalimportantsubdivisionsbetweentypesof emotionsandotheraffective statescan
be basedon the differencesin mechanismsinvolved in generatingthemand the different
waysthey develop,subside,aresuppressed,trigger furtheremotions,etc. (Wright, Sloman
& Beaudoin1996).

Another featureof the architecture,pointedout in (Sloman1989), is that it predicts
thatperceptualinformationfollows many differentroutesthroughthebrain,supportingand
triggeringdiverseprocesseswithin the mentalecology. This may accountfor phenomena
foundby (Goodale& Milner 1992)andothersinvolving differentvisualpathways.However
ourarchitecturalproposalssuggestthatfarmorefunctionallydistinctsensorypathwaysexist
thanhave beendiscoveredso far. We shouldalsonot be surprisedto find that sometimes
connectionsgowrongproducingphenomenasuchassynaesthesiain whichdifferentsensory
modalitiesbecomeentangled.

It is veryunlikely thatnewbornhumansarebornwith suchanarchitecturefully formed,
thoughsimplerorganismsmayhavetheirarchitectureslargelydeterminedinnately. Weneed
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moreresearchonhow architecturesarebootstrappedbothin altricial species(whereindivid-
ualsarebornor hatchedin a relatively helplessandundevelopedstate,likehumans,hunting
mammals,andbirdsof prey) andprecocialspecies(whereindividualsarebornor hatchedfar
moreableto look afterthemselves,e.g.sheep,deer, grazingmammals,chickens,andmany
aquaticanimals). Suchresearchmight lead to deepinsights in comparative psychology,
developmentalpsychology(e.g. if muchof thearchitecturedevelopsafterbirth in humans).
This shouldalsoprovide an improvedconceptualframework for studiesof effectsof brain
damageanddisease,by enablingusto classifyfarmorepreciselythanbeforethemany ways
in which thingscango wrong. It will alsopoint to a muchricher classificationof typesof
developmentandlearningwithin individuals: the morecomplex the architecturethe more
varietiesof possiblechangeanddevelopmentthereare,at leastin principle.

By comparingand contrastingarchitecturesrequiredfor embodiedanimalsand those
that suffice for software agentswe can producean improved conceptualframework for
classifyingtypesof emotionsthat canarisein softwareagents,for instancethosethat lack
thereactivemechanismsrequiredfor controllingaphysicalbody.

Thereareimplicationsfor engineeringaswell asscience.Designersof complex systems
needto understandtheissuesdiscussedhere:
(a) if they wantto modelhumanaffectiveprocesses,
(b) if they wish to designsystemswhich engagefruitfully with humanaffective processes,
e.g.reallyconvincing syntheticcharactersin computerentertainments,
(c) if they wishto produceteaching/trainingpackagesfor would-becounsellors,psychother-
apists,psychologists.

Thereis alreadyrecognitionof the importanceof modellingaffective processesin syn-
theticagentsamongorganisationsandresearchersinvolvedin theentertainmentandgames
industry. Our introductionpointedout thatsomeof this work canusevery shallow models.
However, as the requirementsfor realismbecomemore demandingit could turn out that
simulationsin computergamesandentertainmentswill have the sideeffect of leadingto
verydeepadvancesin psychologyandphilosophy.
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