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Abstract

Clearly we can solwe problemsby thinking about them.
Sometimesve have theimpressiorthatin doing sowe use
words, at other times diagramsor images. Often we use
both. Whatis going on whenwe use mentaldiagramsor
images?This questionis addressedh relationto the more
generalmulti-prongedquestion: what are representations,
whatarethey for, how mary differenttypesarethey, in how
mary differentwayscanthey be used,andwhatdifference
doesit make whetherthey are in the mind or on paper?
The questionis relatedto deepproblemsabouthow vision
and spatial manipulationwork. It is suggestedhat we
arefar from understandingvhat’s going on. In particular
we needto explain how peopleunderstandpatialstructure
and motion, and I'll try to suggesthat this is a problem
with hidden depths, since our grasp of spatial structure
is inherentlya graspof a comple rangeof possibilities
andtheir implications. Two classef examplesdiscussed
at length illustrate requirementsfor human visualisation
capabilities Oneis the problemof removing undegarments
without remaving outer garments. The other is thinking
aboutinfinite discretemathematicastructures.

We canthink with diagrams

Consider the trick performed by Mr Bean (actually
the actor Rowan Atkinson): removing his (stretchable)
underpantsvithout remaving his trousers: Is that really
pogsible? Think aboutit if you haven't previously done
SO:!

Isit possibleto removetheunderpantsvithoutremoving
the trousers(i.e. the waistbandof the trousersremains

IThefirst draftof this paperocatedMr Beanin alaunderette.
Toby Smith correctedme, pointing out that the shy Mr Bean
was on the beach,and wished to remave his underpantghen
put on his swimmingtrunks,bothwithout remaoving his trousers.
On 29th July 19951 postedMr Beans problemas a followup
to a discussionof achiezementsof Al in several internetnews
groups(comp.ai,comp.ai.philosophysci.logic,sci.cognitve) and
receved a number of interestingand entertainingcomments.
ChrisMalcolm pointedoutthe similarity with thebraandsweater
problem,i.e. remwving a brawithoutremaoving the sweatemworn
aboveit. Readersareinvited to reinventthejokesthatwerethen
posted,aboutwhich problemwas easierfor whom underwhich
conditions. In particular someonepointed out the distinction
betweerdifficulty dueto unfamiliarity vs difficulty dueto being
distracted.

2| have previously givenaudienceshetaskof finding outhow
mary possiblenumbersof intersection(or tangent)pointsthere
can be betweena triangle and a circle in the sameplane. It's
easierthanMr Beans problem,but mary peoplemissout some
casesinlessprompted.

constantly around the person$ waist), allowing only
continuous changes of shape of the body and the
underpantandtrousersg.g. stretchingpbending twisting,
but no separatiorof anything into disconnectegbarts,no
creationof new holes,etc.? Doesit matterwhetherthe
waistbandf the trouserds tight or not?

Many peoplecananswetthis questiorby thinking about
it andvisualisingthe processesequired,evenif they have
notseenRawanAtkinson’s performance.

Somequestions:

a. What sort of knowledgeenablespeopleto work out
the answer?(This subsumeshe deepquestion:what sort
of knawledgeenableghemto understandhe problem?)

b. How is that knowledgerepresentedn their brains?
How mary differentforms of representatiomo we have
availablefor suchknowledge?

c. Canthe information usedbe expressedn predicate
calculus?n first orderpredicatecalculus?

d. What would the knowledge actually look like if
expressedin someform of predicatecalculus, or other
logical system? (l.e. which predicatesfunctions, etc.
would be used? which axioms? How would the initial
stateand desiredend statebe described? Would modal
operatordbeneedede.g.to expresswvhich transformations
are possible? Would temporal operatorsbe neededto
expressthe notion of a processandthe constraintson the
process?How would the requirementhat the waistband
notbemovedbe expressed?)

e. What sort of logic enginewould be neededto find
the solution? What sortof searchspaces involved? How
couldthesearchbecontrolled?

f. Which alternatves to logical representationsand
manipulationsarepossible?

g. What sorts of reasoningmechanismsdo people
actuallyusefor this sort of problem?Canthey uselogic?
Do they everuselogic? Whatalternatvesareavailable?

h. Can some or all of the human competencebe
replicatedon computerbasednachines?

i. Which of theseabilities are sharedby which other
animals,e.g. a magpiebuilding a nestin a treetopout of
twigs of mary shapesandsizes,a squirrelworking out a
routeto the bagof nutshungup for birds, afemaleorang-
utangin atreeclutchingherinfantwith onehandandusing
the otherto weave a nestfor the night, out of branchesand
leaves?



A confession

| have beenthinking (and writing) aboutsuchquestions,
andabouthow humanandanimalvision works, for mary

years(seethe bibliography). But | remaindeeplypuzzled
since nothing | have thought of, or seenin Al, or in

psychology or brain science, seemsto come close to

explaininghuman(andanimal)visualandspatialreasoning
abilities.

Oftenanimplementatiorappearso be doingsomething
like humanvisualisation,but on closerexaminationlacks
the generality and power: give it a slightly different
problemandit cannotcope. The neuraltheoriestendto
identify locationswherelow level visual processesccut
but say little or nothing about higher level capabilities
or how visualisationmechanismsare usedin problem
solving. When attemptsare madeto formulate theories
| usually find that they do not describeanything that |
caninterpretasaworkabledesignwith explanatorypower.
E.g.talkingaboutmechanismsvhich “manipulateéimages”
explainsnothing. It merelyre-formulatesvhatneedso be
explained.

Somecommentson the problem

It makesa differencewhetheryou considetthe contortions
of postureMr Bean hasto go throughto producethe
appropriatesequencef changespr whetheryou merely
considetheunderpantbeingdistorted.lgnoringwhodoes
it andhow makesthe problemeasier Sofrom now on1'll
abstractaway from the problemof how the wearermakes
the transformationhappen: assumevarious changesof
shapeand locationoccurwithout consideringwho makes
themhappenpr how Mr Beancoulddo so.

Even with this abstractionthere are several different
ways of thinking aboutthe underpantgroblem. Some
use only topological relationshipspresered under all
continuoudransformationsincludingthosewhich change
size,shapeanddistances Someusemetricalrelationships
involving shapeandsize.

Thinking purelytopologicallyis quite hardto do, since
it involvesfindingthe mostgeneralway to characteris¢he
relationshipbetweenMr. Beanand his garmentsin the
initial andfinal statesandseeingthatin a sensethosetwo
statesare equivalent. Sothereis no problemfor Mr Bean
to solve.

Most peopledo not think like that. They conceptualise
the problemin a metrical fashionand considerways the
underpantsnightstretchandfold. We'll seethatit is useful
to combinedifferentabstractions.

How many distinct solutionsare there?

Informal enquiriessuggesthat mostpeopleseeonly two
symmetrically related solutions to the problem. One
involves stretchingthe left side of the underpantdown
throughthe left trouserleg, over the foot andbackup the
left leg, leaving only the right leg throughits hole. The
underpantganthenbe slid down theright leg andout. A
similar solutionstartswith theright side.

If the trousers’waistbandis not tight thereare several
morepairsof symmetricallyrelatedsolutions,e.g. sliding
onesideof the underpantsip over the headanddown the

other side and out throughthe leg, or sliding the central
partof the underpantslown insidea leg thenover thefoot
andup the sameleg on the outside thenout pastthe waist
band,over the headanddown the otherleg. It's easierto
visualisethanto describe!Anotherpair of solutionsstarts
the sameway, andendswith the underpantgoing off past
thehead.That'sfour pairsof solutionssofar. Buttheresat
leastonestill missing! (Or more,dependindhow solutions
arecounted.)

At first | saw only two solutions,anddid not think of
pulling the underpantsover the headuntil someoneelse
pointedout that possibility Much later | looked for more
solutionsandnoticedthatthe centralpartof theunderpants
could be moved first, leadingto underpantsaroundthe
waist. Still later, after further abstraction,followed by
somearithmetic, explainedbelow, | found nine different
solutions.

A spherical Bean

Thesolutionsoutlinedaboveall usedametricalrepresenta-
tion, in whichtheunderpantarestretchedverprotrusions
likelegsandheadsWe cande-emphasismetricalfeatures
(size, shape, distance)and focus more on topology if
we ernvisagethe body shrinkingto a sphere,or egg, as
in Figure 1, with the trousersand underpantgollowing
faithfully, so that eachbecomesa hemispherewith two
holes,while their waistbandsemainaroundthe equator

Whatkindsof cognitive medanismsenableusto grasp
thatif the problemstarting from a sphericalshapecan be
solved,socantheoriginal problem?

Consideringthe shrunlen Bean makes it “obvious”
(how?) that the underpantsan slide out throughone of
the holesin the trousers. Sincetherearetwo holesthere
areessentiallytwo symmetricallyrelatedsolutions.

Loosening the waistband permits another type of
solutionin which the underpantslide out pastthe band,
with thesphergpassinghroughoneof theleg holes.Since
there are two leg holes we have anothersymmetrically
relatedpair of solutions.

Anothersolutionhasthe underpantsliding out pastthe
waist band, without the spherepassingthrough the leg
holes.

Sowith thetrousersattachedndimpassablatthewaist,
therearetwo distinct solutions. Looseningthe waistband
enablesseveral more distinct solutions. Have we found
themall?

Holy spheres

We canthink of a two-holedhemispheresa spherewith
threeholes! Thenwe canervisageunderpantandtrousers
eachasthree-holedsphericalsheetsconcentricwith each
otherandwith the sphericalBean. The two sheetshave
their holesaligned,but we canignorethat.

What kind of cognitive processallows you to grasp
the three-holedsphereview? | didn’t until | directed
my attention to the task of looking for more general
characterisationsf the problemandthensaw thattalking
aboutthe loose waistbandwas a distraction. Onceit is

5 loosetheres just anotherhole in the trousers. Similarly



therewas all along just anotherhole in the underpants
correspondingo thewaist.

Thereseemto betwo waysof seeingthis. Oneinvolves
noticingthesimilarity in structureandfunctionbetweerthe
big hole at the top andthe two small holesat the bottom.
Ignoring differencedn sizeandlocation,they aresimilar
in function: somethingnside (the underpant®r trousers)
cancomeoutonly by goingthroughoneof thethreeholes.

Anotherway of seeingthe hemispheressthree-holed
spheress to ervisagea simplecontinuougdeformationj.e.
pulling themup overthe sphereturningtheminto spheres
with threesimilar holes.

I.e. you canseethe moreabstractharacterisatiorither
by noting commonaspectf the functional roles of the
holesdespitetheir differencein size, or by visualisinga
deformationwhich makesthemindistinguishableanyway.
Differentcognitvemechanismandskills wouldbeneeded
for thesetwo tasks.

So, assumingthe waist bandis loose,we now have a
configuratiormadeup of a solid spheresurroundedy and
concentricwith two spherical(rubber?) sheetsachwith
threeholes. Remawing the underpantgheninvolvestwo
steps:

(1) gettingMr Beanout of the underpantshroughone of
thethreeholesin theinnersheet.

(2) getting the underpants(the inner sheet)out of the
trouserghroughoneof thethreeholesin the outersheet.

Suddenlyit becomestlearthat thereare threeways of
doingstep(1) eachconsistentvith threewaysof doingstep
(2), sotheremustbe 3 * 3 = 9 differentsolutions covering
all possible combinations(at this level of abstraction,
whichignoresprotrusiondik e legsstickingoutthroughthe
holes).

| leave it asanexercisefor thereaderto work outwhy it
is thatif theproblemis viewedatthefully metricallevel it
may be possibleto do step(2) beforestep(1).

It's worth noting that the type of abstractiondentified
herewhich enablesus to reasonaboutthe combinations
of stepsdoesnot requireMr Beanandthe two garments
to have ary specific shape as long as the garments
are approximatelycorvex, or at leasthave a distinction
betweeninside and outside and three communication
ports betweenthem. I'll continueto talk of spheresbut
withoutassumingll themetricalpropertieof spherese.g.
smoothness;onstanturvature fixedradius,etc.

Yet more abstraction

A further abstractionis possible. The situationwith the
sphereand two stretchableenclosingspheresis clearly
equivalentto a spherewith two flat sheetseachwith two
holes.In thatcontet nothingis insideor outsideanything
else,andtheres thereforeno differencebetweertheinitial
andthefinal state.Sotheres no problemto solve!

Another way of making the same point is that the
configuration depicted in the figure is topologically
equivalent to one in which the three items are simply
separatedvertically, by moving the sphereup and the
trouserdown.

Only mathematicianseactto the original problemthat

way, concludingthatit’ s trivial. Onedid, whenl originally 3
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Figurel: Mr Beanwith tr ousersand underpants,before
and after being continuouslytransformedinto a sphere.

postedthe problem on the internet. Unfortunatelythat
doesnt helpMr Beangethis underpantsff.

When moving betweendifferent abstractionsve need
to know whereto stop. E.g. in analysingoptionsfor the
removal processt is usefulto go from the fully metrical
initial specification,wherethe detailedshapesand sizes
arerelevant, to the minimally metrical nearly topological
situationwhere only inside-outsiderelationsare relevant
(but still metrical becausebeing “inside” an object with
holesis a metricalproperty). Having enumerategossible
stratgjies at the minimally metrical level (where each
stratgyy involvesuseof oneholein theunderpantandone
in thetrousersyve canthenmoveto moredetailedplanning
andevaluationin the fully metricalrepresentationwhere
change®f shapeandlengtharerequired,.e. stretchingof
underpantsverthe heador down andunderthefoot.

Differ ent coexistingseaich spaces

We found that thereare nine differentsolutionswhenthe
problemis construedasinvolving threeconcentricspheres
(or, to be more precise,three spheregotally orderedby
an “encloses’relation). This discosery was not madeby
visualisationor simulationof the removal processhput by
usingthe generalinformationthat for somethingto move
from beinginsideaholedspherdo beingoutsideit mustgo
throughoneof the holes. How onegainsthat information
is anothemuestion.

Why was the full rangeof solutionsnot obvious with
the original configuration?The missingsolutionfrom the
previous section involves getting both leg holes of the
underpantgound to the top of Mr Beans head,so that
the underpantsreupsidedown, andthenpulling themoff
upwards. l.e. Mr Beanexits the underpantghroughthe
waisthole andthe underpantexit the trouserghroughthe
waist hole. Therearedifferentways of doing this which
are equialent at the currentlevel of abstractionthough
they involve differentcontortionsof Mr Beananddifferent
locationswherethe underpantsisk beingtorn.

Thus the searchspaceat the metric level is more
complex: there are more detailed options, with more
explosive combinatorics.Consequenthgettinga view of
the full rangeof routesis far more difficult, and at that



level the simpler structuregot by groupingtopologically
equivalentoptionsis notvisible.

This is just another illustration of the well known
fact that finding an abstractspatial representatiorand
combiningthat with someabstractnon-spatialarithmetic
or logical) reasoningcan give a deeperinsight into
the problem than simply using very concrete spatial
visualisationcapabilities.

Given enoughtime to explore visually all the possible
metricaltransformationsvould we eventuallydiscover all
nine possibilities? | suspectmost peoplewould not get
aroundto consideringsome of the options becausethe
more complex searchspaceprovides a more comple
book-keepingtask if the searchis to be systematicand
exhaustve. Humanarchitectureslon't copewell with deep
stacksor long queuesthoughtheseareeasyto implement
oncomputers.

Our limitations may arisein part from more complec
arraysof possibilitiescompetingin parallelfor attention.
When consideringary spatial structurethere are indefi-
nitely mary changesof size, shape,orientation, colour,
etc. thatwe can ervisageif we think of them (Sloman
1996a).Al cannotyet matchthis. Part of the price of our
flexibility is unmanageableombinatoricavhensearching
for a sequenceof changesto solve a problem. This is
sometimesalleviated by using more abstractpatternsto
control the search. Could this explain the achiezements
of the more successfukchimpanzeesn Kohler's famous
experiments?

What makesus fail?

What can causea personto fail to visualisean action or
change,or fail to draw an inference— even in contets
wherefailureis costly?

We need to distinguish (i) inadequatearchitecture
(e.g. ability to constructonly simple structures Jlimited
possibilitiesfor modifying structures|imited possibilities
for analysingstructures,limited possibilitiesfor storing
sequencef maodifications), (i) wrong or incomplete
stored information (e.g. about changespossiblein a
physical system, about consequencesf changes),(iii)
inadequatenechanism$or monitoringeffectsof changes
in order to infer consequences(iv) lack of meta-
level know-how and architectural support required for
systematicallyexploring all the availableinformationand
all the available transformations(v) not using available
know-how e.g. becauseof an attention problem or a
motivational problem or some kind of “fixation” on a
differentinadequatestratayy.

Points (i) to (v) are merelyillustrative of the require-
mentsfor asystemableto explainor modelhumansability.
Somefailuresmay involve transientdysfunctionssuchas
distractedattention,or forgetfulness Theremay be others
producedby brain damage geneticbrain malformations,
drugs,chemicaldisordersgetc. Sometasksmay cometoo
earlyfor a developingarchitecturein childhood.

External and internal diagrams

Our discussionshavs that a diagramon paperis not
necessarilya good model for what is graspedwhen

someoneisualisesa spatialstructure.

One personlooking at the diagrammay seeonly the
more detailed, metrically specific configurationwhereas
another can see (“grasp”? “comprehend”?) in the
samediagrama more abstractstructurein which metrical
relationshipgplay areducedole. Soevenif they bothhad
aninternallyinspectable-D diagramthey might still view
it quitedifferently.

Moreover, having both views of the diagram (or the
original 3-D scenario)xanhelpin the procesof solvinga
problem,i.e. planninga detailedsequencef actions.This
is just anothercaseof the well known factthatmulti-level
plannerswhichform meta-plangn oneor moreabstraction
spaces(e.g. ABSTRIPS,NOAH) can sometimeswork
betterthan“flat” singlelevel plannerqe.g.STRIPS).

A dominantthemein the history of mathematics,is
the constantdevelopmentof new forms of abstraction
and techniquesfor relating and combining different
abstractions. A similar theme can be found in child
developmen{Karmiloff-Smith, 1996).

Representationsand transformations

All of the different ways of thinking about Mr Beans
problem require not only some way of representing
the original configuration, but also a grasp of the
possibletransformation®f thatconfigurationa capability
discussednorefully in (Sloman,1996a).

We've seenthat differenttransformationsare possible
at differentlevels of abstraction. At one level thereare
mary detailedchange®f shapeas Mr Beanpulls part of
theunderpantslown his trousereg, overthefoot andthen
backup again. At the higherlevel of abstractiorthat’s a
non-operationthe spheres still in the underpantsasif a
protrusionfrom the sphere(the leg) hasbeensquashedh,
leaving the underpantdreerto rotatearoundthe sphere:a
maminal gain.

Sothe visual experience®f looking at the diagramare
differentat differentlevelsof abstractiorandthey differin
(amongotherthings) the possibilitiesfor change that are
grasped. Similarly, visualisingthe situationwithout the
help of an externaldiagrammustalsoinvolve assembling
thosepossibilitiesfor changeso thatthey canbe usedin
thinking abouta solutionto theproblem.Thisis oneof the
skills developedby a mathematicatraining, thoughother
sortsof trainingdevelopmorespecialised/ersions.

For instancegaining experienceas a software engineer
involves gaining facility in grasping configurationsof
data-structuresalong with procedureswhich transform
them, and understandingthe consequence®f those
transformations. Likewise, being a composer painter
mechanicakngineer dressmakr, etc., involvesacquiring
specialisedabilities to grasp structuresalong with rich
classesof transformationsthat are possible for those
structures. (I think | learnta greatdeal by playing with
Meccanacsets,asachild.)

Differentstructuresn thesamegeneratlasscansupport
very different numbersof possibletransformations. A
simple line drawing with few lines supportsfar fewer
transformationshanmorecomple line dravingswith far
more lines, junctions,regionsetc. Thusas you visualise



a structue changing the requirementdor graspingwhich
further changes are possible may also be constantly
changing How?

Thinking with qualia

All this is relatedto ongoing disputesaboutthe nature
of consciousnesdncluding the questionwhetherqualia
aresimply unanalysablgivensor whetherthey areto be
understoodas crucial partsof the functioningof aninfor-
mationprocessingystemasarguedin along,incomplete,
still expandingpaper availablefor commentandcriticism
in the file ftp://ftp.cs.bham.ac.uk/pub/gups/cogaffect/
Sloman.consciousnesgadution.ps Compare Chalmers
(1996)

The connectiorwith the presentliscussionis thatvisual
gualia,e.g.seeingaredpatch,arenotunanalysablgivens.
They have rich “internal” differencesdependingon what
sortsof possibilitiesfor changethe experienceiis capable
of handling.Changeouldincludechange®f shapesize,
orientation,location, splitting into two or more patches,
andmary waysof acquiringnew colouredsub-rejions(e.g
abluepatchin themiddleor agreenline traversingthered
patch,etc.)

Wittgensteinsummedthis up thus: “The substratum
of this experience is the mastery of a technique”
(Wittgenstein, 1953,p208). A full accountof visualisation
(andthinkingwith diagramsor even3-D spatialstructures)
would requireusto analysethe hugevariety of techniques
implicit in even the simplesthumanexperiencesthereby
uncovering the implicit compleity in apparentlysimple
qualia.

Otheranimalsmayhave muchsimplerqualia,especially
those born or hatchedwith genetically formed visual
mechanismgeady for use, e.g. chickens, deer horses.
Altricial birds, hunting or tree climbing animals and
humansarebornmorehelplessandgrow their brainswhile
interactingin simplerwayswith the environment.Perhaps
this producesa muchricher graspof structureandmotion
thancaneasilybeencodedn genes.

Visualisinginfinite structures

How do we visualiseinfinite structures?The answerwill
dependnthetypeof infinite structure Whenwe visualise
continuousobjectsor continuouschangeshis involvesthe
possibilityof “zoomingin” to smallerandsmallerportions
of the objector motion, without limit. That's partof what
is implied by beingcontinuous.It alsounderliessomeof
Zenosparadoxs.

Mr.  Beans problem involves continuous change
(stretchingpbending,moving), but our graspof continuous
motion neednot play a significantrole in thinking about
the problem. The differencebetweencontinuouschange
anda finite successiorof discretestateswould not make
ary differenceto our previousdiscussion.In facta useful
way to tame a probleminvolving continuouschangeis
to identify a small number of key states, and ignore
intermediatestates.That's how we found 9 solutions.

We canalsothink aboutinfinite discretestructureslike
the setof integersor the setof proofsin someformalism.

Clearly we cannot create somethinginfinite inside our 5

heads. So visualisationin this case(and probablyin all
the othercasegoo!) doesnotinvolve actualcreationand
inspectionof the structurevisualised.Somethingar more
subtlehappens:whenyou visualisea spatialstructureor
processthere neednot be any actual spatial structureor
procesghatis inspectednor anythingisomorphicwith the
structureor process.

Therecould be only a representationof inspectingthe
structureor process.If donewell, that could fool usinto
thinking we aredoing somethinghatwe arent. But being
fooleddoesnt matteraslongastheprocessvhichproduces
the illusion is exactly what is neededto implementa
powerful reasoneror problemsolver: i.e. it's a good
biological solution, like being fooled into thinking tables
aresmooth,solid, continuousandrigid, becausehey look
andfeelasif they are.

Infinite “images” involving numbers

Let's consideisomeexamplesof infinite structuressuchas
thesequencé of naturalnumbers, 1, 2, .... etc. Thisis
easilyvisualisedgoingoff into the distanceaway from us,
orfrom left toright for instance N satisfiedPeanas axioms
for arithmetic. (i) Theres an initial element. (i) Every
elementhasa uniquesuccessor (iii) The initial element
hasno predecessor(iv) Every non-initial elementhasa
uniquepredecessofv) Theaxiomof induction: properties
which are possessetly theinitial elementandpossessed
by the successoof ary possessoarepossessely all the
elements.

Any sequencesatisfying those axioms is a Peano
structure,e.g. an infinite row of dots. It is clear that
therearemary visualisablesubsetf N which arePeano
structures,e.g. the even numbers,2, 4, 6, ...., or the
numbersstarting from 999 and continuing indefinitely:
999,1000,1001,....

Graspingherelationshipbetweertheaxiomaticcharac-
terisationand the visualisedstructureis non trivial. For
hundredgthousands?)f yearsbeforePeanacameup with
his axioms, peoplethoughtaboutand usednumbersand
were able to visualisethe infinite sequenceof numbers.
Kantdiscussedomeof theissuesn 1781.

What cognitive mechanism&nabledPeanoto find the
axioms? Considerthe different roles of the axiomsin
characterisingthe required set. (i) and (ii) guarantee
that the setisn't empty and that you can go on along
the sequencdorever, with no choice points (becauseof
the word “unique”). (iii) preventsyou going backwards
beyond the initial element. (iv) implies that you can go
back from ary non-initial element,and again the word
“unique” rules out choice points, therebypreventing the
sequencealoubling back and rejoining itself, as this one
does: 0,1,2,3,4,5,6,3,4,63,456.... l.e. it prevents3
having both 2 and 6 as predecessors(v) is more subtle,
andpreventssequencewhichgo onforever, andthenhave
moreitemsbeyondthat,like S1definedbelow.

We caneasilyinfer somepropertief avisualised”eano
structure. E.g. given ary two distinct elementsin the
structure, there must be a chain of successorlements
startingwith one of themand endingwith the other So
the elementsomprisea total ordering. This is notso easy



to prove by logic from theaxioms.

Mor e complexinfinite structures

We canalsovisualisestructuresviolating Peanas axioms.
For example imaginetheevenandoddnumbersseparated
out, into two sequenced), 2, 4, .... and1, 3,5, .... We can
visualisetheseconcatenateéh a structureS1 with all the
even numbersggoing from left to right, followedby all the
oddnumbergyoingfrom left to right.

S1 has a successorrelation just as N did, but it is
“obvious” that Peanas axiomsare no longer satisfiedin
S1 First, notevery non-initialnumberhasa predecessan
the new configuration.(Theres oneexception.) Secondly
the axiom of inductionno longerholds: propertieswhich
arepossessetbly theinitial number andpossessety the
successoof ary possessoareno longerpossessedy all
theintegersin this new organisation An exampleis being
even

We can visualise a different infinite series S2 by
reversing the odd numbersand adding them all before
the even numbers. That producesa structurelike the
set of positve and negative integerswhich is infinite in
both directions. Thereis no longer ary item without a
predecessof52hassymmetrylackingin Peancstructures.

Moreover, if we start from the fact that there are
infinitely mary prime numbers(which is provable alge-
braically, though not so easily proved visually), we can
form infinitely mary Peanostructuresand concatenate
them. Starting from any prime numberwe can form
a Peano structure consisting of all its powers, e.g.
21,22 23 ..31,32, 33, ....5%, 52,52, ... It is thennot hard
to visualiseall of thesesequencesoncatenatedo form
S3 atotally orderedsetof numberswhich hasinfinitely
mary elementsviolating axiom (iv) becausehey have no
predecessor This can either be proved formally from a
logical specificatiorof theconstructiorof S3 or intuitively
by visualisingthe processof constructionand seeingthat
eachtime anew setof powersis addedits first elementhas
no predecessor

Well-ordered structures

The original sequenceN is easily seento be “well-
ordered”,i.e. every subsebf N containsa“least” element,
one which has no predecessoin the subsetand which
precedesall the othersin the subset. This is connected
with the factthat N is inherentlyasymmetric. It is built
by startingwith aninitial elementndgoingonindefinitely
addingelementspneat atime, on onesideonly. Proving
logically that every Peanostructureis well-orderedis
harderthanseeinghatit is.

It is not hard to see that the structure S3 got by
concatenatingnfinitely mary Peanostructures,is also
well-ordered.

This would not be true if we reversedsomeof the sub-
sequences.g. if all the powersof 13 wereincludedin
reverseorder Thatwould violatewell-orderingsincethere
would bea subsetwith nofirst element.

Justifying Peanos axioms

Having notedthatit is easyto visualisestructureslike S1,
S2 S3 whichviolatetheaxiomsin differentways,we can

seethatoneway to “justify” Peanaos axiomsis usingthem
to rule out thosestructures.| have no ideaif this is how
Peanaarrivedat his axioms.

Whetherthoseaxiomssufice to determineuniquelythe
“intended” intuitive modelis a controversialtopic which
will notbediscussedhere.See(Sloman,1992).

A Peanostructurewhether specifiedaxiomatically or
visually is asymmetric. Moving alongit in onedirection
always leads to the least element, whereasthe other
directiongoesonforever, whichwe oftenrepresenby“....”
Being“well-ordered”is anothertype of asymmetry:every
subsetasafirst elementthoughnotnecessarilyalastone.

How do we grasp an infinite ordered sequence?

It may be that part of what makesthe visualisedinfinite
naturalnumbersequence&vhatit is ratherthananon-Peano
structureis an information processingmplementationof
theasymmetryalongwith somethingcloselyrelatedto the
axiomof induction.l don’t know how to make this precise.
Two aspectsof such an implementationcould be (1) a
mechanisnfor expandinganincompletesequencéon the
right” asoftenasrequired,and(2) areasoningnechanism
that implicitly assumesthat properties propagatedto
successorare propagatedto everything further along.
This sort of mechanismis not inherently connectedwith
numbers.

Anyone who can visualisean infinite row of vertical
dominoegyoingoff to theright, andthenvisualisethewave
of activation that occurswhenthe first dominofalls over
causingthe secondoneto fall over, etc. andwho finds it
“obvious” that they will all (eventually) end up knocked
over, is usingthe equivalentof the axiom of induction. |
have noideahow thatis implementedn humanbrains.lt is
probablypartof alargesuiteof operationgor manipulating
finite andinfinite discretestructureswhichwill bedifferent
in detailfrom thosefor continuousstructuresbut mayhave
someoverlap,e.g. the ability to concatenatstructurespr
to “move” somethingalonga structure.

What makes something a visualisation of a Peano
structureratherthanadifferentsortof structuresuchasS1,
S2 or S3 dependn the applicability everywhereof this
local property-transmittefTheinfinite detailneedneverbe
constructedjust availablewithout restrictionwhenneeded
(asin lazily evaluateddata structures). This is partly
analogousto whatever makes it possibleindefinitely to
zoomin to continuousstructures For Peancstructuresve
usesomethinglik e an ability indefinitely to “zoom to the
right”.

It would be interestingto explore whenandhow young
childrendevelop this ability, and also how it might have
evolved.

Visualising proofsand refutations

It’'s easyto visualisecounterexampledo the claim thatall
orderedstructuresare Peanostructures,or that they are
all well-ordered. It is not so easyto usevisualisationto
prove generalisationssuch as that any concatenatiorof
a well-orderedset of well-orderedstructureswill alsobe
well-ordered. That's much easierto prove by reasoning
logically from definitionsthanto demonstratéy somehav
visualisingall possibleconcatenationsf well-orderedsets.



In generalit is easierto visualisea casethat refutesa
generalisationthanto visualiseall possibleinstanceof a
generalisatiorin a reliableway. Sometimeghat can be
done by visualising a sort of patternor templatewhich
covers all the possibilities. Mateja Jamniks work on
verifying diagrammatigroofs,reportedat this conference,
includesthe useof diagramgo reasonover aninfinite set
of finite structuresge.g. in proving that for every N the
sumof thefirst N odd numbersis N2. This dependson
acommonpatternsharedoy all the structuressothatthey
canbevisualisedn a uniformway.

A muchhardervisualisationof an infinite structure(or
process)s requiredto provethe CantorBernsteirtheorem,
which saysthatif therearetwo setsA andB eachof which
is in oneto onecorrespondenceith a subsebf the other,
thentheres a oneto one mappingbetweenA andB. The
proofinvolvesconstructinghe new mappingfrom thetwo
givenones,andit is helpful when thinking aboutthis to
visualisesomethindik e a pair of mirrorsfacingeachother
with raysbouncingbackandforth indefinitely.

How dowedoit?

What is going on when we visualise these infinite
structuresVe obviously don’t constructinfinite physical
structuressince our brains are finite. However, it may
be accurateto say that infinite structuresare constructed
in some sort of virtual machine, like the familiar
virtual machinesthat support sparsearrays or infinite
lazily evaluatedlists, constructabléen someprogramming
languages.It's not hardto createin a computera sparse
array with more locationsthan there are electronsin the
universe,as long as we leave most locationscontaining
the default value. Perhapsbrains use similar tricks for
representingxtremelylarge,or eveninfinite, structures.

It might be temptingto think thatwhatwe do whenwe
visualisean infinite structureis constructa very large set
andusethat asan approximationto the infinite set, since
afterall averyverylargevisualisedcollectionof dots,like
a starrysky, might aswell be infinite if we cannottake in
thewholelot andseehow mary there.

But that won't do. If you visualisethe structureS1,
with ALL the even numbersfollowed by ALL the odd
numbers,then no very large finite subsetof the even
numberswill do as an approximationto ALL of them.
For example, the structureSlviolatesPeancs axioms,as
explainedabove, whereasf thereare only finitely mary
even numbersprecedingthe odd numbersthenthe axiom
thatevery numberhasa uniquepredecessowill nolonger
be violated, for the first odd numberwill now have a
predecessothe lastevennumber Moreover the axiom of
inductionwill againhold. l.e. if we replacethe infinite
sequenceof even numberswith a finite subsetthis will
transformS1linto a Peanostructure. So a large finite row
of evennumberscannotmodeltherequiredinfinite row in
this context.

Somethingdeep goes on when we visualisethe two
infinite setsasbeingconcatenatedPerhapgheimportant
point is that what we experienceas pure visualisationis
actually a combinationof visualisationand unconscious
but explicit specificationof rulesfor indefinite expansion

andrulesfor inference?E.g. we may have somethindike
the previously mentionednechanisnfor continuingto the
right waiting in the wingsto preventary interpretationof
thesetof evensasafinite set,howeverlarge. That'safairly
abstractand sophisticatedind of visualisation,on a par
with thedomino/inductiormechanisnthatwaspreviously
waiting in the wingsto propagatepropertiesalongall the
naturalnumbersequence(Alas, all thisis still toovague.)

How mary other sorts of visualisationsinvolve such
a mixture of implicit rules or axioms or mechanisms
alongwith somethindike a spatialstructure?One of the
requirementdor a mechanisnof the sort discussedere
is that whetherthe visualisedspatialstructureis finite or
infinite, discreteor continuousthevisualisatioris possible
only insofar as it implicitly involves the availability of
a large numberof possiblechangesin the structure,as
previously discussed What exactly is visualiseddepends
on exactlywhichtransformationgareavailable.

Visualisingis not lik e seeing

From the discussionso far, it is clear that whatever
visualisationof a structureis, it cannotbe somethingvery
similar to seeingeven if it feelssimilar That's because
the kind of graspingof a spatial structureinvolved in
visualisingis part of whathappensn seeingthe structure.
Hence if visualising involved seeingthen visualisation
would be part of visualising and we'd have an infinite
regress.

Also we cannotsee an infinite structurebut we can
visualiseone. And it is arguablethat whenwe visualise
thekind of abstractopologicalstructurethatwe previously
discussedthatcannotelik e seeingoecausseeingalways
involves specific metrical structuresand relationships
which aremissingin theabstracvisualisations.

We needa new way of thinking about the problem,
other than proposingthat the brain creates2-D or 3-
D arraysand then “looks at” or “inspects” them, for if
the looking at or inspectioninvolves understandinghe
spatial structurewe are going round in circles chasing
a non-&istent homunculus. There must be a way of
understandingpatialstructure(or more generally)a way
of understandingwhich is notto be explainedin termsof
understandingnotherstructure!

It must, however, be something like a type of
information-rich control state,i.e. a statewhich affects
what the systemcan or will do next. Elsevhere |’ ve
arguedthat we needto view minds primarily as control
systemsand representationsas control substateswith
syntax, pragmaticsand in some casessemantics,e.g.
(Sloman,1993a;Sloman,1993b;Sloman,1996b).

What sort of control state? How doesgraspingsome
structureaffectwhatyou cando? Notethat“what you can
do” doesnot refer only to externalbehaiour. It includes
the sorts of internal processingwhich becomeavailable
whenwe graspsomestructure.

Other problemsinvolving visualisation

Mr Beanstaskis justoneof mary problemswhich people
seemto be ableto solve by visualisingtransformation®f
astructure.



Somearemucheasier:e.g. if a penry with the “head”
on top is turnedover threetimeswill the heador the tail
beontop? Thatoneis easyto do eitherby visualisingthe
procesgsimulatingit mentally)or by reasoningboutit. If
we modify the problemto onein whichthepenry is turned
over threethousandandfive times, it is mucheasier(and
farmorereliable)to reasoraboutthanto visualise.

Here the more sophisticatedorocess,using meta-level
knowledge about the nature of the less sophisticated
processis easielandfasterto dothanthelesssophisticated
processwhich blindly goes through the stepsto get
from the start state to the end state. Being able to
discover new waysof solvingold problemsandbeingable
to selectbetweenalternatve approachesequires“meta-
level” knowledge,i.e. the ability to reflecton andreason
aboutknowledgeandproblemsolving. Oneof the earliest
interestingexamplesof thiswasSussmars Haclker (1975),
which delhuggeditself by watchingitself at work, thoughit
dealtonly with a tiny fragmentof the problem,like most
modelssofar.

Being ableto understandhe possibility of looking for
andusing “easy” shortcutsrequiresa more sophisticated
processingarchitecturethan a typical problem solver
or planner It requiresan architecturewhich supports
mechanismsfor observing, analysing, evaluating, and
noticingpatternsn internalprocesses.

However, having an architecturesupportingsuchmeta-
level abilities does not guaranteegeneral meta-level
competence. It seemsthat humanshave to learnto be
reflective in different domains. E.g. someonewho is
goodat noticing opportunitiesfor improving his software
designsmay fail to notice opportunitiesfor improving
communicatiorandrelationshipswith otherpeople.

Much mathematicahbility seemgo dependn grasping
patternsaandstructuresn one’s own thinkingandreasoning
processeslike noticing that the outcomeof a counting
processdoesnot dependon the orderin which itemsare
counted,or noticing that repetitve processcan continue
indefinitely | suspectthat our ability to visualise
infinite structuresis relatedto the ability to graspand
reflect on properties of repetitve processes,and our
ability to manipulatethem by performingoperationdike
concatenationor reasoningabout subsetsdependson
noticing analogiesbetweeninfinite structuresand finite
structures.

Childrendon’t seemto startoff with theseabilities, but,
unlessdamagedy teacherqor parents?)they someha
manageto bootstrapthe more sophisticatedarchitecture
andto applyit in differentdomains (For somespeculations
aboutthis in connectionwith learningaboutnumberssee
chapter8 of (Sloman,1978). CompareKarmiloff-Smith
(1996).)

Spatial vslogical: what's the difference?

Introspectvely, mary peopleare corvincedthat theres a
deepdifferencebetweensolving problemsby reasoning
logically (or verbally) and solving them by visualising

and transforming spatial structures. Whether such 8

introspectionsrereliableis amatterof dispute However,
it's not socommonlynoticedthatboth sortshave muchin
common,andwhatthey havein commonis probablymore
importantandharderto accounfor, thanthedifferences'

Wheneer we reason, whether with pictures words,
imagined movements,or arything else, processe®ccur
in which structuresare createdand manipulated. If you
reasonlogically or algebraicallyusing pencil and paper
you'll normally createa sequenceof spatial structures,
wherethe transitionfrom one elementof the sequencé¢o
thenext correspond® astepin thereasoning(Thisis why
visualisationof sequenceplayssuchanimportantrole in
alot of meta-mathematicakasoning.)

Problemsin Euclideangeometrycan often be solved
without a spatialsequenceinsteadwe modify a diagram
in situ. (SeeNelson(1993).) Moderntechnologysupports
this and also allows direct transformationof a single
logical or algebraic structure presentedon the screen
without having to producea sequencef spatiallyseparate
structures,as happenswhen we reasonwith sentences,
equationslogical formulae.Perhapdrainsgot therefirst?

The collection of structure-manipulationgossiblein a
classof structureglefinesa generalisedhotion of “syntax”
for suchstructures. We can also generalisea notion of
“pragmatics” from linguistics, to refer to the functional
rolesof informationstructuresn larger systems.In some
casesherewill alsobe“semantics’insofarasthestructures
are usedto describe,summarise plan, other internal or
externalstructuresactions,or goals.

We need a better grasp of the types of structure-
manipulationmechanismghere are and the mary ways
in which different possibilitiesfor further manipulation
are actvely madeavailable by the current contentsof a
particularstructure. This may enableus to comeup with
better theoriesof how brains do all this. That would
require,yet again,re-inventingideasdiscoseredlong ago
by evolution, andin the courseof doingsowe’ll probably
have to discardmary of our cherishedlistinctions.

Conclusion

I’ve tried to draw attentionto someunexplainedfeatures
of our ability to think and to visualise. All suchcases
(whetherdiagrammaticor not) seemto involve the ability
to createstructures— not necessarilythe structureswe
think we are visualising, and not necessarilyphysical
structuressincethey canbe structuresn virtual machines
(the “physical symbol systemhypothesis’taken literally
is a huge red herring). They also involve the ability
to have readily available a collection of mechanismdor
manipulatingthosestructureswvhich somehav implement
our grasp of the possibilities for changeinherentin a
structure. The possibilitiesfor changedeterminehow the

3Someof thedifferencedetweertFregean”(applicatie) and
“analogical” representationsvere analysedin Sloman (1971).
Thedifferencesareoftenmisdescribed.

4I've previously arguedthattherearenot only two cateyories,
but awide rangeof significantlydifferenttypesof representation,
e.g. in (Sloman,1971; Sloman,1975; Sloman,1996b). Similar
stricturesapplyto otherallegeddichotomies.g. betweernimplicit
andexplicit, computationahndnon-computationamnechanisms,
procedurabnddeclaratie representationgtc.



structureis graspedor understoodand provide the basis
for its pragmaticandsemantidunctions.

Whatconstitutes graspof somethingpatialasopposed
to algebraic, or continuousas opposedto discrete, or
finite as opposedo infinite, or linear as opposedto tree
structured, or planar as opposedto three dimensional,
etc. will dependin part on the collection of types of
transformationsand inferencesavailable and readyto be
appliedto the structure.

In some casesthe samestructuremay be viewed or
understoodh differentwaysby makingdifferentclasse®f
transformationsr inferenceswvailable,asin thedifference
betweena metrical and a topologicalunderstandingf a
spatialconfiguration.

Using such a graspin solving a problem or making
a plan involves somehav being able to orchestratethe
collection of possiblechangesin sucha way asto find
sequencesf changesvhich satisfysomecondition.When
thesituationrepresentets continuouscontinuoushanges
canbe visualised. Whetherwe canactuallyproducesuch
changer only corvincing representationsf themis not
clear

Beingintelligentofteninvolvessimultaneouslyiewing
somethingin two or more ways and relating the sets
of possiblechangesin the different views. What does
and does not work hasto be learnt separatelyin the
context of differentclassesf structuresdifferentclasses
of manipulationsanddifferentclassef problemswhich
is why theres no suchthing astotally generalintelligence.

How all this canbeimplementedn brainsor computers
remainsan openproblem. If we studylots more special
caseswve may eventually understandvhat sort of general
architectureeanaccommodatéhemall, alongwith closely
related capabilitiessuch as vision and motor control. |
don't think this will be easyto do, not leastbecauseve
probablystill don’t understandvhatthe problemis.

Acknowledgementsand Apologies
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