Supervenience and Implementation: Virtual and
Physical Machines

Aaron Sloman

Abstract. How can a virtual machine X be implemented
in a physical machine Y? We know the answer as far as com-
pilers, editors, theorem-provers, operating systems are con-
cerned, at least insofar as we know how to produce these im-
plemented virtual machines, and no mysteries are involved.
This paper is about extrapolating from that knowledge to
the implementation of minds in brains. By linking the philoso-
pher’s concept of supervenience to the engineer’s concept of
implementation, we can illuminate both. In particular, by
showing how virtual machines can be implemented in causally
complete physical machines, and still have causal powers, we
remove some philosophical problems about how mental pro-
cesses can be real and can have real effects in the world even
if the underlying physical implementation has no causal gaps.
This requires a theory of ontological levels.?

1 Introduction

Consider these two questions:

(a) How can a virtual machine (X) be implemented in a phys-
ical machine (Y)?

(b) How can psychological processes (X), including conscious
and unconscious parts, be implemented in physical brains of
various kinds and possibly also computers and other future
types of machines (Y).

The answer to question (a) is well understood where X is
a software system, e.g. a word processor, the Prolog virtual
machine, an operating system, a theorem prover, or even the
internet, and Y is a computer or computer network. Regard-
ing (b), the answer is not known: and there is strong disagree-
ment as to whether X can be fully implemented in computers,
or any other physical machines (e.g. brains).

Both are questions about levels of processes: at one level
we have process Y which might involve only well understood
physical mechanisms whereas the intrinsic nature of high level
process X is very different. The ontology of X is not the
ontology of physics, and the laws of behaviour of X are not
physical laws.

Philosophers often refer to the relation between levels as
“supervenience” (e.g. asking whether minds supervene on

1 School of Computer Science, The University of Birmingham,
A.Sloman@cs.bham.ac.uk

2 This is an extract from a much longer, evolving, paper, in part
about the relation between mind and brain, and in part about the
more general question of how high level abstract kinds of struc-
tures, processes and mechanisms can depend for their existence
on lower level, more concrete kinds. For related work see [9, 8].

© 1998 A. Sloman
Submitted to ECAT 98
25 Jan 1998

1

brains). Chalmers in [1] argues that consciousness cannot su-
pervene entirely on physical processes. My claim is that such
arguments depend on both (i) incorrect analyses of our pre-
theoretic concepts of mind (including notions like “experi-
ence”, “consciousness”, and the more technical “qualia”) and
also (ii) a failure to understand how different ontological lev-
els can exist and interact causally even if ultimately they are
all implemented in physical mechanisms. For a more detailed
defence of (i) see [8]. The remainder of this paper is mainly
about point (ii).

Supervenience and implementation are closely related. Un-
fortunately many philosophers are not informed about how
implementations work, and consequently make unjustified as-
sumptions, which lead them to false conclusions (illustrated
below). The cases understood by engineers, however, (e.g.
compilers, word processors, robot control systems) are rel-
atively simple, and their knowledge about implementation is
mainly implicit practical know-how, whereas the cases stud-
ied by philosophers are far more complex, e.g. supervenience
of minds on brains. By starting from simple, well-understood,
kinds of implementations, and then (carefully) extrapolating
from them, we can develop better ways of thinking about the
latter, including different kinds of mental machines and differ-
ent kinds of implementation machines, e.g. minds of different
sorts of animals and humans in different cultures or differ-
ent stages of development, or suffering from different types
of brain injury or disease or degeneration. Any good theory
should encompass all of this diversity.

2 Types of supervenience

Several types of supervenience can be distinguished. The one
which is of importance here could be called mechanism super-
venience since it involves a relationship between mechanisms.
This is the kind of supervenience involved in the engineer’s no-
tion of smplementation. Other kinds of supervenience involve
relationships between patterns, or properties or mathemati-
cal structures, e.g. one mathematical structure modelled in
another.

Implementation without an implementor

Although we normally talk about implementations as pro-
duced by a designer or implementor, we can extend the rela-
tionship to cases where there is no designer, such as the rela-
tionship between minds and brains, just as people often talk
about designs without assuming there is a designer [2, 6] Any-
one worried about using “implementation” to refer to cases



where there is no implementor, can substitute “realisation”.
But I’ll assume the implementation relation between X and
Y does not presuppose any particular history.

Mechanism supervenience

“Mechanism supervenience” is the relation between X and Y’
if X and Y are mechanisms and X is implemented in Y. Be-
ing a mechanism involves having components and states and
processes that interact causally. Causal interaction is an intu-
itive but indispensable concept that pervades all our thinking
about processes, and I shall not attempt to analyse it here. It
is not restricted to physical causation, as shown by:

e poverty causing crime,

e illiteracy causing poverty,

e insertion of a word in a wordprocessor causing a line, and
possibly a page, to overflow,

a syntactic error in a program causing compilation to abort,
overloading an operating system causing it to thrash,
evolutionary pressures causing a gene pool to change,
remembering something causing a new desire to arise, which
then causes an emotion (e.g. anxiety),

e an intention causing a physical action to occur,

and many more.

Causation is one of many subtle concepts required in every-
day life linked to notions of “mechanism”, “what would hap-
pen if”, “control”, “existence”, etc., which philosophers have
tried to analyse for centuries. As these notions are normally
used their application is not restricted to purely physical phe-
nomena, and any such restriction would cripple much of our
everyday discourse and reasoning.

Implementation layers

Often there are several implementation levels between X and
Y. This is commonplace in computing systems where coexist-
ing virtual machines might include, for example, a theorem
proving machine implemented in a Prolog virtual machine,
implemented in a Sparc virtual machine, implemented in dig-
ital circuitry, implemented in physical mechanisms describ-
able in the language of quantum mechanics. Social systems
are partly implemented via the mental mechanisms of their
inhabitants, which in turn are partly implemented in their
physical brains. Besides such linear hierarchies there can be
implementation trees, with X and X’ implemented in Y, and
Y and Y’ implemented in Z, and so on.

It is even possible for implementation to be circular, e.g.
where low level interrupt mechanisms are designed to invoke
high level interrupt handlers to do their work, or where X
includes mechanisms to reduce dependency on some details of
Y e.g. using distortion reducing feedback and error-correcting
algorithms. In such cases events in the low level system can
cause events in the high level system, and vice versa: causation
is “circular”.

Is there a bottom level?

There is no clearly defined answer to the question whether
there is a “bottom” implementation level. It might be thought
that physical reality defines such a level. However, our idea of
what physical reality is changes with the advance of science,
and there’s no telling what future physicists will be saying.
Claiming that only the lowest level physical events can be
causes or have causes suggests that the ancients knew of no
causes, and perhaps we don't.

Supervenience

It is often assumed that the only real kind of causality is
physical causality, but that seems plainly false. In fact it is
not at all clear what sort of role causality plays in modern
physics. Our ordinary notions of causation get a grip only at
intermediate levels in the implementation layers of the uni-
verse. For instance there are economic causes, social causes,
mental causes, as well as physical causes, and we make use of
all of these types of causation in our everyday life. Whether
all causation is fully implemented in physical causation is a
separate question, not discussed here.

Full and partial implementation/supervenience
Supervenience, and implementation, may be full or partial de-
pending on whether the implementation depends only on Y
or whether something else is required. E.g. if some states of
a virtual machine X can be defined only in terms of a rela-
tionship with the environment, then if Y does not include the
environment, then X is not fully implemented in Y. Clearly
being the richest person alive is a relational state, and so can-
not be fully implemented in someone’s physiology. Likewise,
a clock’s telling the local time correctly involves an external
relationship and therefore cannot be fully implemented in the
internal mechanisms. Since time-zones are relevant, even po-
litical facts can make a difference.

For a computing system X to contain and use information
about towns in France, or parts of a chemical plant, involves
a relationship between X and parts of the world outside X.
No such relationship can be fully implemented in mechanisms
which are entirely in the machine. This will be true of all
virtual machines involving semantic content referring outside
the machine. (Remote reference is analysed in [10].)

Consequently most human mental states cannot be fully
implemented in, or fully supervenient on, their brain states,
since they refer explicitly or implicitly to the environment.
Likewise robots, office information systems, plant control sys-
tems. This leaves open whether it is possible to have an in-
telligent system whose mental states refer only to itself and
to abstract entities like numbers, sets, algorithms, etc. which
don’t require an environment. I see no reason to rule out the
possibility of a ‘disconnected’ pure mathematician (or philoso-
pher), but will not argue that here. See [4, 5] for a discussion
of reference within a computing system.

Limitations of current understanding

We understand many cases of X being implemented in Y,
insofar as we know how to create those cases (e.g. we imple-
ment a software virtual machine in a computer), and we know
how to use them, predict and explain their behaviour, debug
them when they go wrong, and apply them in solving real
practical problems. We also sometimes discover new ways of
implementing X using another machine Y’ which is cheaper,
or faster, or more widely used.

But that is practical know-how, not analytical knowledge
which answers philosophical questions about the general form
of implementation or supervenience relations in natural or ar-
tificial systems, and we do not yet have a systematic overview
of different types and their implications. There is not yet a
clear theory of the conditions under which an implementation
of X enables it to include semantic content (despite much dis-
cussion of Searle’s ‘Chinese room’ argument [3]).

A. Sloman



3 Other kinds of supervenience

Besides mechanism supervenience there are other kinds which
do not include causal mechanisms, such as property superve-
nience, e.g. where a family having an average height H super-
venes on the heights of individuals, and pattern supervenience
which occurs when there are observable patterns in a physical
system, e.g. patterns seen in stars on a clear night, or larger
patterns found in configurations of simpler patterns.

Properties and patterns do sometimes have causal powers,
when they occur in a system which can detect and respond
to them. (See below.)

Some related concepts

“Implementation” should not be confused with “instantia-
tion”, a relationship between a program or algorithm and a
sequence of states involved in executing the program. This is a
mathematical relationship between two structures, the struc-
ture of the algorithm and the structure of a process which
could be generated by the algorithm (a “trace”). Interesting
programs with choice points have many possible instantia-
tions, depending on their inputs, sometimes infinitely many.

Many of the theorems of computer science are about struc-
tural properties of instantiations of algorithms (e.g. theorems
about complexity, solvability, correctness of algorithms, etc.)
and have nothing to do with the key properties of mechanisms:
time and causation.

Similarly, when two types of machine M1 and M2 are de-
scribed formally and it is shown that machines of type M1
can be implemented or modelled in a machine of type M2,
this is also a relation between two mathematical structures,
which need not actually be instantiated. E.g. they could be
infinite machines.

Physically unimplementable machines

Given a specification of a type of virtual machine, (e.g. a type
of game playing machine, or problem solver) it is an empir-
ical question whether a physical implementation is possible.
That depends on whether there is a possible configuration of
physical objects, events and processes which constitutes an
implementation.

Not all virtual machines can be implemented physically,
e.g. a Turing machine with an infinite tape, or a type of ma-
chine which manipulates arbitrary infinite vectors, or which
can complete an infinite sequence of actions (e.g. finding all
the prime numbers) and then start another sequence, e.g. find-
ing all pairs of “twin” primes. Thus mathematical specifiabil-
ity does not imply physical implementability.

4 Ontological levels

When a virtual machine X is physically implemented in Y,
X may use an ontology which is not definable in terms of the
ontology of physics; and the laws of behaviour of X will not be
derivable from the laws of physics. (Similar comments apply
to any other implementation layer.)

Definability

Even though a chess playing virtual machine can be imple-
mented in a physical computer, the concepts of chess in-
volve notions like “pawn”, “rook”, “capture”, “threaten”,

“pin”, “win”, which cannot be defined in terms of concepts

Supervenience

of physics, for there is no particular physical implementation
required for a game of chess to occur: it could use wooden
pieces on a board, or messages transmitted electronically, or,
in the case of experts, their thoughts and verbal communica-
tions of their moves. Likewise most concepts used in everyday
life to think about causally related topics, e.g. family and so-
cial relationships, our jobs, crime, poverty, war, etc. cannot be
defined in terms of concepts of physics. (There is insufficient
space to justify this here.)

Some virtual machine concepts are precisely definable in
terms of the relationships which can hold between their in-
stances including the laws of behaviour within that ontology.
This is true of chess machines and numerical calculators. Oth-
ers not so definable will be discussed below.

Derivability vs sufficiency

The laws of X need not be derivable from those of Y. For in-
stance laws constraining movements of chess pieces in a chess
machine are internationally agreed rules of the game, which
can be changed without having to change the laws of physics.
Similarly, the conditions for guardianship of a person, or own-
ership of a piece of ground, depend on social, legal, political
facts, and these are not derivable from laws of physics because
they can change even though the laws of physics remain con-
stant.

If the concepts of X are not definable in terms Y’s ontol-
ogy, then the laws of X will not even be derivable from those
of Y together with a full description of ¥ expressed using the
ontology of Y. Such “definitional disconnection” underpins
many examples of “emergence”. No set of laws of physics to-
gether with the physical specification physical machine Y can
entail a statement such as “the pawns can never move back-
wards”. That would require bridging premisses linking the two
ontologies. (In a computing context this could involve specifi-
cation of a compiler or an interpreter, for instance.) These will
not be general laws of nature, but statements about how X
was implemented in Y in this case. In the case of a formally
specifiable virtual machine like a chess machine, a numeri-
cal calculator, or a Prolog virtual machine, it is possible to
confirm that the low-level implementation has the required
properties. Other cases, discussed below, are not so simple.

5 Types of equivalence

Because bridging premisses are required, the relationship be-
tween X and Y when Y is an implementation of X is not
purely mathematical or logical. In particular, not all mathe-
matically equivalent implementations are causally equivalent.
Mathematically there’s no difference between

(a) N programs running (synchronised) in parallel on N com-
puters, and

(b) a simulation of the N programs running in one program
on one computer.

No mathematical or logical problem can be solved by the
multi CPU system that cannot be solved by the single CPU
system.

Yet, for engineering purposes, multiple CPUs provide
greater reliability, and therefore the difference could be cru-
cial in a safety critical system. A firm may pay a lot of money
for the extra reliability, even if over its lifetime the multiple
CPU system behaves exactly like a single CPU system in the

A. Sloman



small firm down the road. The payment is for “what would
happen if...” even if it doesn’t actually happen. Le. the two
machines have different causal powers even if their behaviour
is actually the same over their lifetime.

Two implementations Y and Y’ of virtual machine X may
behave the same in all contexts which actually arise, yet be
importantly different, e.g. because one is more reliable than
the other. Some differences are describable at the level of X,
e.g. which range of problems X could solve, even if those which
actually occur are handled by both implementations. Other
differences are describable only at the level of Y and Y', e.g.
because one implementation can work in a wider range of
temperatures, or tolerate more component failures.

Specification-driven implementations

Some implementations make use of an explicit specification of
X. Subtle and complex legal, social and psychological mecha-
nisms allow an explicit specification of legal rules to produce
(more or less rigid) conformity to the rules. By contrast, a
word processor or chess machine may be created by a com-
piler, from an explicit specification, which thereafter has no
influence. Where an interpreter is used, the specification con-
trols behaviour at run-time, providing different causal poten-
tial, for instance ease of run-time modifiability or debugging,
and potential for high level code changes to change behaviour.
(Difference between interpreted and compiled implementa-
tions sometimes matter more to developers than “end users”.)

6 Implementing configurations

Whether a type of machine is implementable or not depends
on whether a configuration of physical components exists
which has appropriate properties to constitute an implemen-
tation of the machine. What that means is not easy to specify.
In particular, some of the requirements for supervenience of-
ten assumed by philosophers are definitely not requirements
for implementation of software virtual machines.

Mistaken assumptions
In particular suppose X is implemented in Y.

1. X need not be isomorphic to Y or part of Y. Lazy evalu-
ation (which allows components to be created ‘invisibly’ only
when needed) and sparse arrays are counter examples. A lazy
list or sparse array could have far more components than its
physical implementation.

2. There need not be correlations between components of
X and components of Y. Virtual memory systems and com-
pacting garbage collectors, constantly change the mapping be-
tween virtual machine components and physical components.
Such re-mapping in brains may be needed in ‘working’ mem-
ory. Correlation is neither necessary nor sufficient for imple-
mentation. A deeper causal connection is needed.

3. Part-whole relationships within X need not map into
those of Y. E.g. two Lisp lists can each be elements of each
other, whereas it is not possible for two physical components
each to be a part of the other.

4. Implemented systems need not inherit features and re-
strictions of their implementation. A machine Y based on
binary switches is often used to implement a virtual machine
X with all sorts of non-binary data-types, e.g. integers, indef-
inite precision ratios, floating point numbers, functions, etc.
A continuous virtual machine can be implemented in a digital

Supervenience

machine (to any required degree of approximation, if it is not
chaotic) by sampling its states at regular intervals. A discrete
array can be interpreted as sampling a continuous image, with
sub-pixel properties inferred when needed.

5. X can have causal powers, including the power to influ-
ence Y, even if the implementation level Y is causally com-
plete. Events in a word processor involving a page overflow-
ing can cause changes in the physical memory and on the
screen, even though there are no causal gaps in the under-
lying physics. Similarly, events in many naturally occurring
virtual machines can produce physical effects (e.g. political
processes causing bombs to explode).

Consequently a mind could have physical effects without
requiring quantum indeterminacy in brains.

The idea that if physics is causally complete then all non-
physical levels of causation are causally redundant is based
on an incorrect analysis of our ordinary notion of causation,
using a model involving something like mechanical linkages;
whereas our normal conception of causation is very abstract,
and linked to the notion of “what would happen if”, i.e. the
truth of conditional statements. The existence of true condi-
tional statements concerning the virtual machine X (includ-
ing counterfactual conditionals) is perfectly consistent with YV’
being causally complete. This is obviously the case in familiar
computational virtual machines.

6. It is a mistake to link criteria for identity of X to iden-
tity of components of Y. Even the ancients noticed that you
can step into the same river twice even though the water
has changed. Animals and plants constantly replace some
of their component atoms. Ocean waves move horizontally
whereas the water molecules in them oscillate vertically. Na-
tions and species survive the individuals that compose them.
Identity criteria for “high level” objects are often indetermi-
nate: there’s no clear number of components that have to be
replaced before you've replaced your computer.

7 Describing configurations

In some more general sense than logical derivability, the ex-
istence of a configuration of type Y may be sufficient for the
existence of a virtual machine of type X.

If X is implemented in a physical machine Y, then there
must be something about that particular configuration of el-
ements of Y, together with the laws of physics, which makes
Y an implementation of X. However, exactly what it is that
makes Y an implementation of X may not be describable at
the level of Y i.e. in physical terms. There are several reasons.

Infinite disjunctions

One possible reason may be that there are indefinitely many
physical configurations which will suffice, like all the ways of
implementing a chess machine, and no way of saying what
they have in common except by describing the machine X
which they all implement, which as explained above, involves
going beyond the concepts of physics.

Because the rules of chess and the functioning of a computer
are so precisely specified, the question whether a particular
computer implements a chess machine is objectively answer-
able in principle, even though it may be very hard in prac-
tice, when it involves decompiling machine code without even
knowing what sort of high level language was used. However,

A. Sloman



someone who has worked out what the language was, how it
was compiled or how it is interpreted, how the machine’s dig-
ital circuitry works, may be able to demonstrate, assuming
the laws of physics, that the machine will always play chess
correctly.

Thus certain physical systems are in principle demonstrably
implementations of a chess virtual machine. When X is part
of an autonomous agent, checking its presence may be more
difficult. One reason is that a person who knows how to play
chess, may have decided never to play again (e.g. for religious
reasons). Then it may be impossible to demonstrate that he
can, or to find which portions of the brain implement the
ability. But we’ll see that there are deeper obstacles, because
adaptive brains create their own categories.

Culturally defined categories

Consider how a culture implicitly defines a concept. What
makes something a letter of our alphabet depends in part on
what we regard as a font, and that can change over time with-
out the laws of physics changing. For instance, there is noth-
ing physical that is common between all the 2-D patterns that
we call instances of the letter “a”, including upper and lower
case, printed and handwritten text. There doesn’t have to be
any logic in the way we categorise shapes. It may just have
turned out over the centuries that in our culture we divided
the possible configurations of 2-D patterns in a certain way
to form an alphabet, and in another part of the world they
may have done it differently, so that if we go there we may at
first find it hard to read their texts. (Compare the problems
with handwritten “1” and “7” in different countries.) More-
over, the patterns accepted as particular letters need not be
fixed: they could be constantly, though slowly, changing even
within a culture. This may happen because the boundaries are
slightly fuzzy, with a probability distribution which changes
gradually.

Consider an adaptive machine which “tracks” the scripts
used in a particular culture, so that it can read the characters
humans read in that culture, and can follow changes in ac-
ceptable font styles, and which finds the same examples hard
to read as people do. The machine could use neural nets or
weighted rules modified by reinforcement learning.

That machine implements a character recogniser for written
texts in that culture though there is no physical definition of
what makes it such a recogniser. That is partly because the
precise physical requirements are not fixed: they change as the
culture changes. That in turn may depend on a particular set
of happenings such as the particular physical characteristics of
people who happen to be born in the culture, or the adoption
of a particular type of flourish which happened to be used
accidentally by someone and then was imitated by others.

An “autonomous” adaptive categoriser

Now consider a machine which has somehow developed cate-
gories of its own, for its own reasons. Pressure to categorise,
albeit in fuzzy ways, could arise out of learning and adaptive
mechanisms in an architecture which was not purely reactive
but included a deliberative layer (as described in [7]) that can
construct and evaluate plans for future action. Deliberation
requires a categorisation of reality into chunks that can enter
into learnt associations usable in planning (if I do A then B
will follow whereas if I do A’ them B’ will follow, etc.). Such

Supervenience

chunking could also be used for passive prediction: if event A
is observed in situation S then S’ will follow.

Which categories the machine develops and finds useful
could depend on the particular sequence of contexts and prob-
lems it encounters. In effect, it develops its own “culture” con-
taining a single individual. (Compare how human face recog-
nition is tuned to the individual’s environment. Getting to
know a pair of almost identical twins may force a new chunk-
ing to be developed.)

The effect is implementation of a new virtual machine
whose behaviour is accurately describable only by using the
concepts that machine has developed for itself. These concepts
need not be definable in terms of the concepts that were ad-
equate when the machine was first built.

The high level cognitive processes in such a machine would
be inherently incomprehensible to agents with different on-
tologies. (Consequently, social machines need cultural mech-
anisms to limit the amount of idiosyncratic adaptation.)

External observers may hypothesise that the machine is
making use of perceptual categories for planning and predic-
tion, but not know what those categories are. Checking pre-
cisely what is going on in the brains of such machines could
be very difficult, especially if finding out what categories they
use involves adopting a new set of concepts that is incompat-
ible with one’s existing set. This can be a serious problem for
anthropologists and psychologists studying children and other
animals.

For all these reasons it is to be expected that if intelligent
agents do include adaptive virtual machines involved in per-
ception, planning, goal formation, preferring, deciding, etc.
they may differ in subtle ways which makes it impossibly dif-
ficult for any of them to be fully understood “from outside”,
even by the original designer, since the designer may have no
conclusive way of telling precisely which ontology they have
developed. This does not mean that it is totally futile to try
to find out. It may be easier to check out general features of
the architecture than precise details.

8 Is being an implementation of X an
objective property?

Some people argue that attribution of virtual machine X to
physical machine Y is entirely in the eye of the beholder: it
is just a matter of subjective interpretation not a matter of
fact that machine X exists. I have tried to show that in some
cases (e.g. a calculator or chess machine in a computer) it is an
objective questions that may be settled by detailed analysis.
In other cases it may be very difficult, e.g. where the machine
is an autonomous agent which has decided never to perform
certain tasks, or where its perception and deliberation use an
ontology very different from that of the investigator.

The situation is made worse by the fact that the agent
being studied may continue changing, and the very process of
taking part in experiments to check out how it works could
also change it.

Nevertheless, there are real questions even if answers are
hard to check: which categories does the virtual machine use,
what is the information processing architecture, and how does
the system change itself? The mere fact that finding answers
is very difficult does not mean that it is all a matter of what
is in the eye of the beholder, like the preference for one style

A. Sloman



of painting over another, or the fact that a particular scene
reminds one of a happy childhood event.

Moreover, even if we don’t know precisely what sort of vir-
tual machine ontology is in a particular agent we can still
accept that events within that virtual machine have causal
powers, especially planning and deciding events which can
lead to actions being performed, and perceptual events which
help to control the fine detail of the actions, or even lead to
new desires which cause the original goal and its plan to be
abandoned.

9 Conclusion

I have tried to show that mental processes may involve causal
interactions with a complex self-modifying virtual machine ar-
chitecture, that such a virtual machine can be implemented in
a physical machine (possibly via several intermediate virtual
machines), that the virtual machine can have causal powers
even if the physical machine is causally complete, that the
properties of the virtual machine need not be definable in the
language of physics nor derivable from laws of physics or laws
together with physical descriptions of the implementation.

T’'ve also argued that whether a virtual machine of a par-
ticular sort is implemented in a particular physical system
is an objective question, though in the case of an adaptive
machine the question may be particularly difficult to answer,
for several different reasons, and moreover the answer may be
changing, and the change may be accelerated by attempting
to find the answer.

In previous papers I have tried to argue that within certain
types of information processing architecture, semantic content
will be associated with some of the structures by the agent,
not just observers, i.e. the agent can have what Haugeland
called “original (non-derivative) intentionality”, making the
symbol-grounding problem a non-problem.

I have also argued elsewhere, that if a robot has the right
sort of virtual machine, with appropriate perceptual, reac-
tive, deliberative, and self-monitoring, capabilities then noth-
ing more is needed for it to be conscious and have “qualia”
(see [8]). Some such machines may even discover this fact
about themselves and become embroiled in philosophical de-
bate about it. This supports one version of the Strong AI
thesis.

However, the discussion leaves open precisely what sorts of
physical machines are capable of implementing all that func-
tionality. Moreover it gives us reason to think that when we
have built truly intelligent machines we shall not be able to
understand them fully, any more than we understand each
other fully, even if we can observe and measure every smallest
detail of their physical functioning.

REFERENCES

[1] David J Chalmers, The Conscious Mind: In Search of
a Fundamental Theory, Oxford University Press, New
York, Oxford, 1996.

[2] Randall Davis, ‘What are intelligence? and why?’, AT
Magazine, (1998). (Presidential Address to AAAI98, to

appear).

Supervenience

[6]

[7]

(8]

[9]

[10]

John R Searle, ‘Minds brains and programs’, The
Behavioral and Brain Sciences,, 3(3), (1980). (With
commentaries and reply by Searle).

A. Sloman, ‘What enables a machine to understand?’,
in Proc 9th IJAI pp. 995-1001, Los Angeles, (1985).
A. Sloman, ‘Reference without causal links’, in
Advances in Artificial Intelligence - II, eds., J.B.H.

du Boulay, D.Hogg, and L.Steels, 369-381, North
Holland, Dordrecht, (1987). Originally in Proceedings
7th European Conference on Artificial Intelligence,
July 1986.

A. Sloman, ‘Explorations in design space’, in
Proceedings 11th European Conference on Al
Amsterdam, (1994).

A. Sloman, ‘What sort of architecture is required for a
human-like agent?’, in Foundations of Rational Agency,
eds., Michael Wooldridge and Anand Rao, Kluwer
Academic, (1998(forthcoming)). (Expanded version of
invited talk at Cognitive Modeling Workshop, AAAI96
Portland, Oregon, August 1996).

Aaron Sloman, ‘The evolution of what?’. Draft version
available online at
ftp://ftp.cs.bham.ac.uk/pub/groups/cog_affect/
Sloman.consciousness.evolution.ps, 1998(in
preparation).

Brian C Smith, On the Origin of Objects, MIT Press,
1996.

P. F. Strawson, Individuals: An essay in descriptive
metaphysics, Methuen, London, 1959.

A. Sloman



