
Design Spaces, Niche Spaces and the \Hard" Problem

Aaron Sloman

School of Computer Science & Cognitive Science Research Centre

The University of Birmingham, B15 2TT, England

A.Sloman@cs.bham.ac.uk, http://www.cs.bham.ac.uk/~axs

Abstract

This is an attempt to characterise a new

unifying generalisation of the practice of software

engineers, AI designers, developers of evolu-

tionary forms of computation, etc. This topic

overlaps with theoretical biology, developmental

psychology and perhaps some aspects of social

theory (yet to be developed!). Much of

theoretical computer science follows the lead

of engineering intuitions and tries to formalise

them. Likewise there are important emerging

high level cross disciplinary ideas about processes

and architectures found in nature that can be

uni�ed and formalised, extending work done in

Alife and evolutionary computation. This paper

attempts to provide a conceptual framework for

thinking about the tasks. Within this framework

we can also �nd a new approach to the so-called

hard problem of consciousness, based on virtual

machine functionalism, and �nd a new defence

for a version of the \Strong AI" thesis.

Introduction

Robin Milner claims (Milner 1996) that much of

theoretical computer science follows the lead of

engineering intuitions and tries to formalise them.

Since the intuitions are often very subtle and complex

the process of formalisation can lag very far behind.

This is just another example of the problem frequently

encountered in AI: formalisation and mechanisation of

powerful human capabilities can be very di�cult.

This paper puts forward a related idea, namely that

the processes of biological evolution have developed

what can be thought of as a collection of engineering

skills, methods, resources, and re-usable designs and

design techniques. These too can be the subject

of attempts to automate and formalise, and indeed

this is one view of what is going on in arti�cial life,

theoretical biology and the current surge of activity

in connection with evolutionary computation including

genetic algorithms, genetic programming, classi�er

systems and no doubt others not known to this author.

The notion that evolution is something like a

designer is not new, and neither is the idea that the

biosphere is itself a sort of organism which is struggling

to develop itself against the potentially destructive

and disruptive forces of nature (and perhaps human

activities). These ideas may seem far fetched and

totally unworthy of scienti�c consideration. However,

I suggest that they may provide a framework for im-

portant new multi-disciplinary scienti�c investigations

if handled correctly.

There are a number of key ideas which need to be

combined in presenting this viewpoint. One which is

familiar to computer scientists and software engineers

1

is the idea of a virtual machine, such as the Lisp

virtual machine or a Prolog virtual machine, or the

virtual machine in a multi-function word processor or

operating system or even the internet. These virtual

machines have functional architectures; events and

processes with causal powers occur in them; and they

can in
uence and be in
uenced by events in other sorts

of machines, including both the physical environment

and the underlying physical machines in which they are

implemented. The relation between a virtual machine

and its underlying implementation is not unlike the

philosophers' notion of \supervenience" which is often

used in discussing the relation between mind and

brain e.g. in (Chalmers 1996). We propose that

virtual machines can be found everywhere, in social

systems (e.g. the link between poverty and crime),

organisations, ecosystems, and animal's information

processing architecture.

The second key idea is a generalisation of the main

theme of the presidential address by Randall Davis at

AAAI96 (Davis 1998) which presented a view of AI as

exploration of \design spaces" of intelligence. (See also

(Sloman 1995).) This is based on the fairly familiar

space of possible designs (where the notion of \design"

does not presuppose any designer: a design is simply

an abstract speci�cation which can be instantiated in

working systems that �t the design).

The generalisation of this idea has two features. The

�rst is that there are two linked spaces inhabited by

behaving systems, design space and the space of sets of

requirements, which can be named \niche space", since

1

Though some disagree with the use of this notion to

extend the ontology of physics. There is no space to

marshal all the arguments here.



it is possible to view the biologist's notion of a niche as

close to the engineer's notion of a set of requirements

and constraints. Both are abstract spaces. E.g. two

insects or two plants in the same physical location

can be in totally di�erent niches, so niches are not

determined by physical location. Neither are they

simply in the eye of a beholder: niche-pressure can

in
uence evolution of design traits through natural

selection. Instances of niches and designs interact

causally.

Niches can interact with one another by in
uencing

adaptive designs satisfying those niches, e.g. as in co-

evolution of organisms. Thus there are many di�erent

sorts of causal relations: within an architecture,

between architectures, between architectures and

niches, between niches. A niche that in
uences

a design can be thought of as an attractor in a

phase space. That's a special case insofar as phase

spaces typically have a uniform topology, e.g. �xed

dimensionality.

Just as designs don't presuppose a designer, so

in principle requirements (niches) don't presuppose a

requirer. There are di�erent ways actual requirements

can be generated: e.g. engineering goals vs biological

needs and pressures.

Dynamics of niches and designs

Since niches and designs interact dynamically, we

can regard these spaces as corresponding to virtual

machines in the biosphere consisting of a host of

control mechanisms, feedback loops, and information

structures (including gene pools). All of these

are ultimately implemented in, and supervenient on

physics and chemistry, but real enough in their causal

interactions.

This suggests a view of the biosphere as a very

complex abstract dynamical system, which itself is

composed of many smaller dynamical systems. Some of

the sub-systems are evanescent (e.g. tornados), some

enduring but changing over diverse time scales (e.g.

fruit 
ies, oak trees, species, ecosystems). Many of

the subsystems impose constraints and requirements

to be met or overcome by other subsystems. Thus

one component's design is part of another component's

niche. Through a host of pressures, forces and

more abstract causal relations, including transfer of

factual information and control information, systems

at various levels are constantly adjusting themselves

or being adjusted or modi�ed. We therefore have a

network of designs and niches interacting concurrently

at various levels of abstraction, producing a host

of changes of many sorts, some continuous, some

discontinuous.

Some of the changes may be highly creative, includ-

ing evolution of new forms of evolution, and discovery

of powerful reusable modules, and mechanisms for

copying and later modifying modules to extend a

design. It is conjectured below that this accounts

MAPPINGS BETWEEN DESIGN SPACE AND NICHE SPACE

NICHE SPACE

DESIGN SPACE

Figure 1: Design space and niche space

for the evolution of human information processing

architectures.

These may seem to be outrageously wild ideas. The

claim is that by exploring them we may come to see

them as natural extensions of ideas already accepted

by many scientists and engineers, e.g. (Cohen &

Stewart 1994), de�ning a vast new domain for multi-

disciplinary exploration.

Discontinuities and inhomogeneities

Both design space and niche space have very complex

topologies, including many discontinuities, some small

(e.g. adding a bit more memory to a design, adding

a new step in a plan) some large (adding a new

architectural layer, or a new formalism).

E.g. I suspect a major discontinuity in niche

space occurs somewhere between systems that are able

merely to perform certain tasks, and others which also

have and can use information on how they did it, or

why they did it, or why they used one method rather

than another. The hybrid architectures described

below might combine such capabilities. What sorts

of niche pressures might lead to these design features

in nature is an interesting biological question, separate

from how the systems function after they have evolved.

Both are profoundly inhomogeneous spaces: the

local topology varies depending on the location in

the space, since the minimal changes possible at

various locations in the same space can be very

di�erent in type and number. This is partly a

function of complexity. Even if designs of di�erent

complexity are in the same space, there are typically

more ways and more complex ways, of altering a

complex design than a simple design. So they have

2



neighbourhoods of di�erent structures. By contrast, in

most multi-dimensional spaces considered by scientists

and engineers (e.g. phase spaces), each point has the

same number of dimensions, i.e. the same number and

the same types of changes are possible at all points.

(Equations de�ning permitted trajectories in a high

dimensional phase space may, however, make the space

inhomogeneous.)

Both design space and niche space are \layered"

in that regions within then can be described at

di�erent levels of abstraction and for each such region

signi�cantly di�erent less abstract \specialisations"

exist. Some specialisations of designs are called im-

plementations. As suggested above, the philosopher's

notion of \supervenience" and the engineer's notion of

\implementation" (or realisation) seem to be closely

linked, if not identical (as argued in (Sloman 1998in

preparation)).

Composition of niches and designs

Two (or more) niches in di�erent sub-spaces can be

combined to yield a niche in a more complex space:

requirements for editing programs and requirements

for editing latex source �les can be combined with

each other and with requirements for reading and

posting email and net news. Some designs for text

editors (especially programmable editors like Emacs)

can satisfy the composite niche, others not.

It is not in general necessary to combine two separate

designs to get a new design that satis�es two separate

niches. Often designs have intrinsic generality or multi-

functionality: a powerful example is the architecture of

a typical modern CPU, or a programming language.

It some cases it may not be clear whether we are

dealing with one niche-space with enormous internal

complexity or simply a collection of di�erent niche-

spaces, some of which are compositions of others.

It is very likely that humans, for instance, cannot

be thought of as instantiating a single design �tting

a single niche, but rather multiple designs related

to multiple (internal and external) niches (a view

consistent with (Minsky 1987)). Both designs and

niches change over the lifetime of an individual, as

explained below, and may vary considerably from one

culture to another.

Mappings between the spaces

Relationships between a design space and a niche space

also have a very complex form: e.g. two regions of

design space may be mapped to the same region of

niche space, via a \satisfaction" mapping with di�erent

dimensions, and di�erent degrees of satisfaction in

those dimensions. i.e. trade-o�s. The di�erent styles

of arrows in Figure 1 are intended to indicate this.

Similarly two di�erent niches may be satis�ed (to

some extent) by the same design, for instance providing

shelter from cold and protection from predators. When

that happens the design also satis�es a composite

niche, as mentioned above.

Satisfaction thus described is more like a relation

than a function.

The notion of a relation is not general enough,

however, for a relation either holds or does not hold

between two things. It would be more accurate to

regard satisfaction as a function from a composite

design and a composite niche to a partially ordered

set of descriptions of the type and kind of satisfaction:

\good protection from predators but mediocre winter

shelter".

Like designs and niches, these descriptions of

\�tness" can vary in complexity, and their partial

ordering will correspond to the notion of one design

being \better" than another, which is generally a

partial ordering (Sloman 1969; Logan & Sloman 1997).

By contrast, genetic algorithms and other forms of

evolutionary computation normally assume the \�t-

ness function" produces a simple numerical measure

of goodness, i.e. a total ordering with a metric. We

can now see that as a special case.

Intertwining spaces

Design space and niche space seem to \include" parts

of each other insofar as a design may include a complex

architecture where part of the architecture is a sub-

architecture which \inhabits" a niche determined in

part by the requirement to �t in with the rest of the

architecture, and serve its needs.

Likewise a complex niche may include as one of

its sub-requirements, a requirement to accommodate

something with a particular architecture, e.g. provide

maintenance for it. So a niche, i.e. a set of

requirements can include reference to a design.

Trajectories and dynamics

There is a dynamics of niches and designs, since

processes can occur involving trajectories in both

spaces. E.g. besides the behaviours of a particular

design instance when it does its job, there are also

self-modifying behaviours which involve following a

trajectory in design space, enabling new types of jobs

to be performed.

A system which develops, learns or adapts changes

its design. The most familiar (and dramatic)

examples are biological: e.g. a fertilised egg

transforming itself into an embryo and then a neonate.

Other examples include self-adapting communication

networks, adaptive interfaces, AI \learning" systems,

and socio-economic systems.

In many animals, including humans, the information

processing architecture seems to continue being

transformed long after birth, and after the main

physiological structures have been established: new

forms of control of attention, learning, thinking,

deliberating, develop after birth. Humans follow a very

complex trajectory in design space throughout their

3



lives. A good educational system can be viewed as

providing a trajectory through niche space which will

induce a trajectory in design space in self-modifying

brains. A culture provides a set of developmental

trajectories.

In general, following a trajectory in design space

also involves a trajectory in niche space: the niches

for an unborn foetus, for a newborn infant, a

schoolchild, a parent, a professor, etc. are all

di�erent. Moreover, an instance can instantiate more

than one design, satisfying more than one niche: e.g.

protector and provider, or parent and professor. Thus

development of multi-functional designs can involve

multiple concurrent trajectories in design space and

niche space. The evolution of such systems may have

facilitated production of animals able to cope with

varied environments and problems without requiring

all the required information to be pre-stored in genes.

Compare the genetic information load of animals, like

deer, which need to be able to run with the herd soon

after birth and animals, like primates, which can learn

to see, manipulate things, and move about, whilst

under parental care. Compare genetically determined

forms of representation with those developed through

interaction with an environment, including peers.

Possible and impossible trajectories: i-

e- and r-trajectories

Some regions of design space are not linked by possible

trajectories for individual development. An acorn can

transform itself into an oak tree, and by controlling its

environment you can slightly modify what sort of oak

tree (e.g. how big). But no matter how you try to

train or coax it by modifying the environment, it will

never grow into a gira�e.

Trajectories that can be followed by a self-modifying

individual can be called i-trajectories.

If two designs that cannot be part of the same i-

trajectory, are instantiated in a larger ecology includ-

ing Darwinian reproductive mechanisms operating on

collections of designs, then trajectories may be possible

over generations of individuals that are not possible

within an individual e.g. development of humans

from much simpler organisms and genetic algorithms

modifying software. Trajectories in design space that

are not i-trajectories but are enabled by Darwinian

evolutionary processes can be called e-trajectories.

There may be some trajectories that are impossible

both for individual development and for Darwinian

evolution, but can be achieved by external interven-

tion. Plausible examples are repairing certain kinds of

physically damaged system, and �xing certain kinds of

bugs in software. Trajectories requiring such external

\repair" can be called r-trajectories. It is not clear

how useful these distinctions will turn out to be.

From a di�erent view point e- and r-trajectories may

be i-trajectories for a species, or an ecology, or the

biosphere.

Trajectories for virtual machines

Whether a similar distinction between i-trajectories

and e-trajectories can be made for individuals inhab-

iting software virtual machines depends on whether

the impossibility of certain trajectories depends on the

individuals being implemented in physics or whether

they are logical impossibilities. E.g. the acorn (1)

lacks information needed by a gira�e, (2) lacks the

architecture to absorb the information, no matter how

the information is presented by the environment, and

(3) lacks the architecture required to modify itself into

an architecture that can absorb the information.

Similar limitations may be found in some software

systems. A word processor which adapts itself to

di�erent users may be incapable of turning itself into

a compiler. Whether an e-trajectory from its design

could lead to a Prolog compiler depends on (a) whether

there is a principled way of mapping its features and

the features of compilers onto a class of structures

which can be used to recreate design instances via

an instantiation function, such that (b) the structures

can be manipulated by processes like crossover and

mutation, so as to traverse a trajectory in what might

be called \gene space" which induces a trajectory

in design space via the instantiation function. It's

a separate question whether some sort of evaluation

function or niche pressure can cause the traversal to

occur { a search control problem (Poli & Logan 1996).

Virtual machine architectures

Milner's paper progresses towards an important

concept in design space, namely \architecture" in

the sense in which software, a sonnet, a sonata,

a house, or a commercial organisation can have

an architecture. A system with an architecture is

\nearly decomposable" into a collection of coexisting

smaller interacting systems. In particular, networks of

coexisting interacting processes form architectures.

Milner's PI calculus represents systems with chang-

ing architectures, described in terms of processing

nodes and the links between them. Many software

architectures change at run time. E.g. Unix and

other operating systems allow the creation of new

processes and killing of old ones, and also creation of

new links and deletion of old ones (e.g. sockets). More

interesting cases would be integrated systems with a

coherence not normally found in a collection of Unix

processes.

In order to describe regions of design space

containing architectures for integrated intelligent

systems we'll need to use a collection of higher order

architectural concepts, including concepts concerned

with high level self-modi�cation (e.g. the ability to

remember and return to un�nished tasks, seems to be

missing at �rst in human children).

There are concepts referring to functional roles

within control systems of many types, e.g. monitoring,

positive and negative feedback, adaptation, growth,

4



TOWARDS DELIBERATIVE AGENTS

Variable
threshold
attention
filter

Motive
activation

Long
term
memory

perception action

THE ENVIRONMENT

REACTIVE PROCESSES

DELIBERATIVE PROCESSES

(Planning, deciding,
scheduling, etc.)

Figure 2: A hybrid reactive and deliberative

architecture

record keeping, sensing the environment, repair,

extension of functionality, etc. These architectural

ideas need to be extended, to include mechanisms for

motive generation, motive evaluation, motive selection

(intention formation).

Towards human-like architectures

We have argued in (Sloman 1994a) and elsewhere that

(contra Dennett's \intentional stance") many familiar

mental concepts presuppose an information processing

architecture. We conjecture that this involves several

di�erent sorts of coexisting, concurrently active,

layers, including an evolutionarily old \reactive"

layer involving dedicated highly parallel mechanisms

each responding in a �xed way to its inputs.

These may come from sensors or other internal

components, and its outputs may go to motors or other

internal components. Some reactive systems have a

�xed architecture except insofar as weights on links

change through processes like reinforcement learning.

Insects appear to have purely reactive architectures

implementing a large collection of evolved behaviours.

A hybrid architecture, as shown in Figure 2, could

combine a reactive layer with a \deliberative" layer

which includes the ability to create new temporary

structures representing alternative possibilities for

complex future actions, which it can then compare and

evaluate, using further temporary structures describ-

ing similarities and di�erences. This plan-construction

requires a long term memory associating actions in

contexts with consequences. The deliberative system

may choose one of the structures, execute it as a

plan, and then discard it, or possibly modify itself

permanently by saving some or all of the structure

REACTIVE AND DELIBERATIVE MECHANISMS
with alarms

Variable
threshold
attention
filter

Motive
activation

Long
term
memory

perception action

THE ENVIRONMENT

DELIBERATIVE PROCESSES

(Planning, deciding,
scheduling, etc.)

ALARMS

REACTIVE PROCESSES

Figure 3: A hybrid architecture with global alarms

for future re-use. In humans the reactive architecture

seems to be extendable in this fashion, e.g. learning

car driving or language comprehension.

Evidence suggests that there is also a global \alarm"

mechanism implemented in the limbic system, as

indicated in Figure 3, capable of interrupting and

redirecting other subsystems (e.g. freezing, 
eeing,

attacking, attending).

For reasons discussed elsewhere, a deliberative

mechanism will (normally) be discrete, serial, and

therefore relatively slow, whereas a reactive mechanism

can be highly parallel and therefore very fast, and

may include some continuous (analog) mechanisms,

possibly using thresholds. Resource limits in

deliberative mechanisms may generate a need for an

attention �lter of some kind, limiting the ability of

reactive and alarm mechanisms to interrupt high level

processing.

2

2

The general notion of a reactive system can be

implemented in many di�erent ways. E.g. both neural

nets and parallel condition-action rules can both be seen

as reactive systems. A neural net, with or without

feedback, can be viewed as a highly parallel collection

of condition-action rules where the conditions are some

function of the inputs (e.g. a thresholded, weighted,

sum) and the actions involve simultaneous broadcasts to

other nodes in the network. Likewise there are many

ways of implementing deliberative mechanisms, including

neural nets with an appropriate architecture. As many

philosophers have pointed out, at the lowest level, even

deliberative architectures must have mechanisms that do

not deliberate, but simply act.

5



Tradeo�s in design and niche space

By analysing tradeo�s we may be able to understand

how niche-pressures can lead to development of

combined concurrently active deliberative and reactive

architectures in organisms, and also why global

\alarm" mechanisms are needed.

Everything that can be done by a hybrid architecture

could in principle be done by a suitably complex

reactive architecture e.g. a huge, pre-compiled lookup

table matching every possible history of sensory inputs

with a particular combination of outputs (perhaps

a probabilistically weighted selection from a set of

possibilities).

However, some of the pre-requisites for such an

implementation may be prohibitive: much longer evo-

lution, with more varied evolutionary environments,

to pre-program all the reactive behaviours, and far

more storage to contain them, etc. For certain agents

the universe may be neither old and varied enough

for such development nor big enough to store all

the combinations required to match a deliberative

equivalent with generative power.

We conjecture that the requirements of a delibera-

tive mechanism change the \niche" for perceptual and

motor mechanisms, generating pressures for them to

develop new layers of abstraction, as indicated in the

�gures. Likewise, development of new, higher level,

abstractions in perceptual and motor systems change

the niches for more central mechanisms, e.g. providing

new opportunities for learning and simpli�ed planning

and decision making.

Towards \self-conscious" machines

Re
ection on and retrospective evaluation of actions

can often lead to future improvements. This is also true

of internal actions. Thus besides abilities to perceive

the environment and how external actions change

it, there is a use also for internal self-monitoring,

self-evaluation, self-modi�cation (self-control) applied

to internal states and processes. Depending on

the tradeo�s, this may lead to special mechanisms

supporting a third architectural layer, as indicated in

Figure 4.

A basis for sensory \qualia" can be found

in self-monitoring mechanisms which give access

to intermediate sensory information structures not

normally attended to. Di�erent kinds of sensory

qualia would depend on di�erent abstraction layers

within perceptual mechanisms. This provides self-

knowledge in a manner which is distinct from

normal perception providing knowledge about the

environment. Such \meta-management" capabilities

can provide other sorts of qualia related to thinking

processes, deliberation, desires, etc.

The future need to support similar non-intrusive

observation of part of a system by another part may

require new developments in hardware and operating

system features.

TOWARDS AN ARCHITECTURE FOR MOTIVATED AGENTS

Variable
threshold
attention
filter

perception action

Motive
activation

Long
term
memory

DELIBERATIVE PROCESSES

(Planning, deciding,
scheduling, etc.)

META-MANAGEMENT

processes
(reflective)

THE ENVIRONMENT

REACTIVE PROCESSES

Figure 4: Adding a meta-management layer for self

monitoring, self-evaluation, etc. (Alarms not shown,

to save clutter.)

Robots built with this sort of functionality might

begin to wonder about the nature of their own

mental processes and how they are related to their

physical implementation, just as human philosophers

do. Some of them, not fully understanding the notion

of virtual machine functionality and the varieties of

forms of supervenience, might even produce spurious

but convincing arguments that they have conscious

processes which cannot be explained by or fully

implemented in physical processes. They may wonder

whether humans are actually zombies with all the

behavioural capabilities of conscious robots, but

lacking their consciousness. For more on these issues,

and the supposedly \hard" problem of explaining

how physical machines can produce consciousness, see

(Chalmers 1996). (Some earlier work exploring these

ideas can be found in (Sloman 1993; 1994a; 1994b;

1996; 1997; 1998forthcoming) )

Designs for social systems

Such agents (with a combination of reactive, delib-

erative and self-management sub-architectures) may

combine to form much larger social systems. Questions

about trajectories in design space and niche space arise

for social systems also.

All this seems to point to a type of theory which

6



uni�es computer science, theoretical biology, AI, some

aspects of psychology, brain science, anthropology,

sociology, etc. This is still very vague, and may be

too complex to reason about precisely. Yet good

software engineers are beginning to develop many

relevant intuitions about some of these things and it

should be possible to �nd mathematical constructs

that capture those intuitions, a process not unlike the

development of theoretical concepts from programming

intuitions described in Milner's paper.

Further work

We need to �nd ways of describing architectures

and niches which correspond to the high level

concepts used only intuitively at present. This will

involve abstracting from domain speci�c details, so

as to replace empirical concepts with mathematical

concepts, eventually allowing mathematical analysis of

relations between designs and niches.

For example, at present the requirement that a

system be \user-friendly" uses an inherently empirical

concept de�ned in terms of how humans (typical

humans? all humans? humans in a particular culture?

novices? experienced users?) react to a system.

In order to replace this with a non-empirical concept

of user-friendliness we'll have to identify a class

of agents with various perceptual, cognitive, and

motivational capabilities. We can then de�ne the

various types of load a system imposes on that sort of

agent, e.g. learning time required, short term memory

problems, visual parsing problems, planning problems,

attention control problems, etc.

Only when we have such a structural and functional

characterisation of user-friendliness for a class of agents

is there any hope of a deep theoretical analysis of the

sort of architecture for a system that will make it user-

friendly for that class of agents.

Similar ideas may enable the intuitive notion of

niche, genotype and phenotype in biology to be

made su�ciently precise to enable us to understand

precisely the relationships between niches and designs

for organisms, and perhaps give a better understanding

of the dynamics and trajectories in biological evolution,

including the evolution of evolvability.

Understanding the precise variety of types of

functional architectures in design space and the virtual

machine processes they support, will enable us to say

precisely which subsets of human mental capabilities

they have and which they lack. We shall also have

precise new ways of thinking about human variability

and the e�ects of brain damage, senile dementia, etc.

Then instead of arguing about which animals, which

machines, and which brain damaged humans have

consciousness, we can �nd out precisely which sorts

of consciousness they actually have.

References

Chalmers, D. J. 1996. The Conscious Mind: In

Search of a Fundamental Theory. New York, Oxford:

Oxford University Press.

Cohen, J., and Stewart, I. 1994. The collapse of

chaos. New York: Penguin Books.

Davis, R. 1998. Presidential address to aaai98. AI

Magazine. (To appear).

Logan, B., and Sloman, A. 1997. Agent route

planning in complex terrains. Technical Report

CSRP-97-30, University of Birmingham, School of

Computer Science.

Milner, R. 1996. Semantic ideas in computing.

In Wand, I., and Milner, R., eds., Computing

Tomorrow: Future research directions in computer

science. Cambridge University Press. 246{283.

Minsky, M. L. 1987. The Society of Mind. London:

William Heinemann Ltd.

Poli, R., and Logan, B. 1996. On the

relations between search and evolutionary algorithms.

Technical Report CSRP-96-07, School of Computer

Science, The University of Birmingham.

Sloman, A. 1969. How to derive \better" from \is".

American Phil. Quarterly, 6:43{52.

Sloman, A. 1993. The mind as a control system. In

Hookway, C., and Peterson, D., eds., Philosophy and

the Cognitive Sciences. Cambridge University Press.

69{110.

Sloman, A. 1994a. Explorations in design space. In

Proceedings 11th European Conference on AI.

Sloman, A. 1994b. Semantics in an intelligent

control system. Philosophical Transactions of the

Royal Society: Physical Sciences and Engineering

349(1689):43{58.

Sloman, A. 1995. Exploring design space and niche

space. In Proceedings 5th Scandinavian Conference

on AI, Trondheim. Amsterdam: IOS Press.

Sloman, A. 1996. Towards a general theory

of representations. In D.M.Peterson., ed., Forms

of representation: an interdisciplinary theme for

cognitive science. Exeter, U.K.: Intellect Books.

ISBN: 1-871516-34-X.

Sloman, A. 1997. What sort of control system

is able to have a personality. In Trappl, R., and

Petta, P., eds., Creating Personalities for Synthetic

Actors: Towards Autonomous Personality Agents.

Berlin: Springer (Lecture notes in AI). 166{208.

(Originally presented at Workshop on Designing

personalities for synthetic actors, Vienna, June 1995).

Sloman, A. 1998(forthcoming). What sort of

architecture is required for a human-like agent? In

Wooldridge, M., and Rao, A., eds., Foundations

of Rational Agency. Kluwer Academic. (Expanded

version of invited talk at Cognitive Modeling

Workshop, AAAI96 Portland, Oregon, August 1996).

Sloman, A. 1998(in preparation). Supervenience and

implementation. Draft version available online at

http://www.cs.bham.ac.uk/~axs/misc/supervenience.

7


