A Hybrid Trainable Rule-based System

Riccardo Poli and Mike Brayshaw

School of Computer Science
The University of Birmingham
Birmingham B15 2TT
United Kingdom
E-mail: {R.Poli,M.C.Brayshaw}@cs.bham.ac.uk

Technical Report: CSRP-95-3
March 1995

Abstract

In this paper we introduce a new formalism for rule specification
that extends the behaviour of a traditional rule based system and al-
lows the natural development of hybrid trainable systems.

The formalism in itself allows a simple and concise specification
of rules and lends itself to the introduction of symbolic rule induction
mechanisms (example-based knowledge acquisition) as well as artificial
neural networks.

In the paper we describe such a formalism and four increasingly
powerful mechanisms for rule induction. The first one is based on a
truth-table representation; the second is based on a form of example
based learning; the third on feed-forward artificial neural nets; the
fourth on genetic algorithms.

Examples of systems based on these hybrid paradigms are presen-
ted and their advantages with respect to traditional approaches are
discussed.

1 Introduction

Since the re-emergence of neural networks in the early 1980’s there has been
a great debate about neural versus symbolic approaches to modelling the
mind. From the cognitive perspective, some have tried to tell the story
solely in terms of one technique (e.g. connectionist systems that implement
symbolic accounts at higher levels of explanation [11], or wholly symbolic-
ally [2]). Others have argued for a hybrid approach with appropriate virtual
machines at various levels of a hierarchy (e.g. [1]). Such hierarchies typ-
ically allow low-level and motor functions as well as long-term associative
memories to be implemented by networks whilst high level things like logical
reasoning and mental models are implemented symbolically.

From an engineering perspective, in symbolic Al the value of the integ-
ration of heterogeneous inference methods is already well understood, e.g.

CAKE [7] and KEATS [4]. Therefore, it seems natural to try and combine
symbolic inference techniques with non-symbolic models. One possibility is
to implement symbol systems using neural networks (e.g. [9, 13, 5]). This
has the advantage of producing massively parallel, fault-tolerant systems
that have the functionality typically associated with symbolic AI. However,
in these systems, extensions often require retraining the nets or changing
their topology, so that the symbol systems implemented may not be readily
changeable. Another approach is to use different technologies for different
parts of the system. In general a neural network is used for pre-processing
tasks, such as pattern recognition/classification, while a traditional inference
system performs the higher-level tasks, such as reasoning. Schreinmakers [§]
provides a good example of this sort. However, this weak integration of the
two technologies does not allow the exploitation of their joint power within
the same module.

An alternative approach to hybridisation is to develop techniques which
allow a more tight and natural integration between symbolic and neural
systems. This would allow the learning, generalisation, fault-tolerance and
noise-rejection properties of neural networks to be integrated with the in-
ference power of symbolic systems. In this paper we present a truly hybrid
system that has been developed according to this approach.

The paper is organised as follows. We first describe our formalism for rule
specification. Then, we present four increasingly powerful techniques for rule
induction: one based on a truth-table representation, a second one based on
a form of example based learning, a third one based on artificial neural nets
and a fourth one based on genetic algorithms. Finally, we report on some
experimental results using such techniques and draw some conclusions.

2 Rule Formalism

We are all familiar with rules having the following format (see for example

[14])

Rule <rule name>:
IF <condition 1> AND <condition2> AND <condition N>
THEN <list of actions>.

According to this syntax the rule is fired only if all the conditions are satis-

fied.

We propose the following syntax:

Rule <rule name>:

IF <condition 1>, <condition2>, <condition N>
SATISFY <predicate>
THEN <list of actions>

where <predicate> is a predicate with arity N. Every time a rule with this
format is considered by the interpreter, the pattern of the truth and falsity
values of the conditions (we call it the condition-pattern) is used as argument
for <predicate>. If the predicates is true, the rule is fired.

This syntax allows for the definition of more general rules, thus leading
to a reduction of the number and size of the rules in the system and to an
easier maintenability of the knowledge base. Let us consider some examples.

First, it is worth noting that if <predicate> is the standard AND predic-
ate (or any more complex combination of AND, OR and NOT), the proposed
system behaves exactly as a classical rule-based system having the same
conditions and actions.

However, let us suppose that <predicate> is the MAJORITY predicate (it
is true if the majority of the conditions are true). Now, we can see that it
is not so simple to write a set of rules equivalent to the rule:

Rule <rule name>:
IF <condition 1>, <condition2>, <condition N>
SATISFY MAJORITY
THEN <list of actions>

If N=3 the task may be manageable, as we should write only the following
four rules:

Rule <rule namel>:

IF <condition 1> AND <condition 2> THEN <list of actions>
Rule <rule name2>:

IF <condition 1> AND <condition 3> THEN <list of actions>
Rule <rule name4>:

IF <condition 2> AND <condition 3> THEN <list of actions>
Rule <rule namel>:

IF <condition 1> AND <condition 2> AND <condition 3>

THEN <list of actions>

but for larger N the task is quite tedious and potentially error prone (for
any N about 2V~! classical IF-THEN rules are required). This happens
because the decision on whether the actions have to be performed depends
on properties (the number of true conditions in this case) of the conditions
as a whole, as opposed to the truth or falsity of known logical combinations.
Other examples of this kind of rule-control regimes include even and odd
parity, all-but-one, and multiplexing.

Other situations in which the proposed rule format can be quite useful
may arise when the conditions record the current values of sensory trans-
ducers (e.g. in the control system for an industrial plant or a robot) and
the actions depend on some non-Boolean combination of such values. In
such cases, the calculations needed to make a decision could naturally be
performed in <predicate>.

3 Rule Induction

Thanks to the presence of the <predicate> part, a simple form of con-
strained rule induction/knowledge acquisition can be performed. Others
have obtained rule induction by decision trees (e.g. [6]) or statistical meth-
ods (e.g. [12]). We here obtain rule induction as a result of <predicate>
induction.

3.1 Trainable Truth-table-based Predicates

As any Boolean function can be implemented via a truth table, this can also
be done for <predicate>. This suggests a simple (though limited) form of

rule induction from examples.

Let us imagine that the truth table of <predicate> is (maybe partially)
unspecified at the beginning of the use of our rule-based system. For ex-
ample, the <predicate> of a rule such as

Rule <rule name>:
IF <condition 1>, <condition2>, <condition 3>
SATISFY <predicate>
THEN <list of actions>

could be represented by the truth table shown in Table 1, where FIREABLE
is a value that represents the “output” of the <predicate> (i.e. if the
rule can or cannot be fired). Then, every time the rule is considered by
the interpreter the condition-pattern (e.g. the pattern [False,True,False]
obtained by checking the conditions <condition 1>, <condition 2>
and <condition 3> of the previous rule) is looked up in the truth table
and the related FIREABLE value is considered. If such a value is True or
False it is used to make <predicate> succeed or fail, respectively, if it
is Unknown the user (at first probably the expert) is asked to provide a
value for FIREABLE. Such a value is then stored in the truth table and used
thereafter.

| <condition 1> | <condition 2> | <condition 3> || FIREABLE |

False False False True
False False True False
False True False Unknown
False True True Unknown
True False False True
True False True True
True True False Unknown
True True True Unknown

Table 1: Truth-table-based predicate implementation.

It can be argued that for applications such as real-time control or medical
systems, it is much safer to have a system asking for advice in the presence
of a new/unexpected situations than a system that simply ignores such
situations. This mechanism can thus be thought of as an extra validation
trap to catch cases that may have accidentally been missed out. If the rule
base designer specifically doesn’t wish to prompt the user then they are free
to program the rulebase in a conventional manner.

3.2 Trainable Collection-based Predicates

The previous idea can be extended by considering predicates that instead
of being implemented with a truth-table are implemented as a collection of
pattern/value pairs.

Each pair includes an input pattern representing a possible set of truth
and falsity values for the conditions of the rule, i.e. a possible condition-
pattern, and an output value in the range [0,1] termed the FIREABILITY of
the rule. The FIREABILITY value represents the level of confidence about the
fact that the rule should be fired in the presence of a given condition-pattern.

Every time a rule is considered by the interpreter the actual condition-
pattern is searched in the collection of pattern/value pairs. If a pair whose
pattern is equal to the condition-pattern is found then the related FIREABILITY
value is used to evaluate the FIREABLE value through the following formula:

FIREABLE = {True if FIREABILITY > P,

False otherwise.

where P is a parameter in the range [0, 1], termed the prudence of the system.
Once known, FIREABLE is used to make <predicate> succeed or fail as with
the truth-table method. Therefore, the prudence parameter P can be used
to modify the behaviour of the rules and, therefore, of the system: the
greater the prudence, the more confidence (FIREABILITY) is required for an
induced rule to be fired.

As in the previous method, if the condition-pattern is not found among
the stored pattern-conditions, the user is asked to provide a value for FIREABILITY.
An example of reasonable options and the related meanings is shown in
Table 2.1

| FIREABILITY | Meaning |
1 “I’'m sure the rule should be fired”
0.75 “Probably the rule should be fired”
0.5 “I’m not sure the rule should be fired”
0.25 “Probably the rule should NOT be fired”
0 “I'm sure the rule should NOT be fired”

Table 2: A possible set of meanings for the FIREABILITY value.

The condition-pattern plus the FIREABILITY-value provided by the user
can then be stored in the collection as a new pattern/value pair and used
as described previously.

3.3 Artificial-Neural-Network-based Predicates

The pattern/value pairs collected to implement a collection-based predicate
can be easily used to implement artificial-neural-network-based predicates,
so as to obtain hybrid symbolic/sub-symbolic systems.

! An alternative view is that of considering the FIREABILITY of a rule as a value quanti-
fying the percentage of cases in which such rule is true, i.e. the reliability of the rule (e.g.
1 could mean “always valid”, 0.75 “often”, 0.5 “sometimes”, 0.25 “seldom”, 0 “never”).
In such a case if the prudence P is high the system uses only rules that are always valid, if
P is low the system also uses rules of thumb and short-cuts that are often valid and lead
to quicker (though less certain) conclusions (default reasoning).

The idea is as follows. If the pattern parts of the collected pattern/value
pairs are transformed into binary vectors (False—0, True—1), then such
pairs can be used as examples for a neural network. The weights and bias
of the network can be adapted via a learning mechanism (e.g. the back-
propagation rule) so that the network learns to behave according to the
examples. Afterwards, in the presence of a given condition-pattern the out-
put of the network can be taken to be the FIREABILITY of the rule and used
accordingly.

It should be noted that in cases where one can rely on the properties of
generalisation, noise rejection, input rectification, etc. of a neural network,
the network-based predicate would behave sensibly also in the presence of
new or partially inconsistent condition-patterns, without requiring the in-
tervention of the user.

This kind of approach lends itself to several extensions. Firstly, if an
example that exactly matches the condition-pattern is present, the related
values could be used instead of using the neural network, so as to exactly
behave like the user/expert in known cases. Secondly, the user could still
be asked to provide an answer whenever the FIREABILITY value provided
by the network is in an intermediate range such as [0.4,0.6], so as to make
the system maximally reliable. Third, floating-point certainty values in the
range [0,1] could be associated with the conditions, instead of True and False
values only, for instance reflecting uncertainty of beliefs, or values of sens-
ory devices. A neural network could learn the (possibly complex) relations
between the resulting real-valued condition-pattern and the corresponding
FIREABILITY values. Rules including this kind of mechanism could (learn
to) treat uncertainty in a simple and natural way.

3.4 Vector Predicates and Extended Syntax

In the previous sections we have seen how our predicate-based rule-syntax
allows for a considerable reduction of the number of rules when several
(classical) rules share the same list of actions.

However, it is quite common when writing a set of rules, that several
of them share the same conditions (although combined via different sets
of AND, OR and NOT operators, in the classical formalism, or different
predicates in our formalism) but have different actions. It would be desirable
to be able to represent such rules with a single rule. In addition quite
often the knowledge engineer wants that only one rule of the set fires (e.g.
because the actions are mutually exclusive): this can be handled only with
procedural hand coding or clever conflict-resolution mechanisms. A more
natural distributed conflict resolution mechanism would be desirable.

Even if it is quite simple to solve the problem of mutually exclusive rules
with the previously described syntax (e.g. by using mutually related predic-
ates), representing more concisely rules with the same conditions requires an
extension to the formalism. Fortunately, this is quite a natural extension.

The extended syntax is the following:

Rule <rule name>:
IF <condition 1>, <condition2>, <condition N>

SATISFY <vector predicate>
THEN <list of actions 1>, ...,<list of actions M>

where <vector predicate> is a vector extension of the concept of predic-
ate, i.e. it is a function that transforms the domain {True, False} into the
domain {True, False}. The previous rule has to be interpreted as follows.
Given a condition-pattern, <vector predicate> is invoked. It returns a
list, called action-pattern, containing M True or False values. The lists of
actions for which a True value has been returned are added to the list of
fireable actions to be considered by the conflict resolution mechanism; the
other lists of actions are ignored. It should be noted that with this formal-
ism it is quite easy to represent a large number of rules with a single one,
and to implement any form of distributed conflict resolution.

All the methods of predicate induction described in the previous sections
can be extended for vector predicates. For truth-table based predicates it
is sufficient to include as many FIREABLE columns as the number of lists of
actions M. Likewise we can extend collection-based and artificial-neural-
network-based predicates. In all cases, during the training (or example-
collection) phases, the user will be asked to provide a vector of M FIREABLE
or FIREABILITY values.

3.5 Predicate Induction without User Interaction

The previous mechanisms for inducing the <predicate> of a rule from ex-
amples, require the interaction with the user or the expert(s). Sometimes,
it might be desirable not to. For example, there may be situations in which
it is known that a certain set of conditions are relevant to undertake an
action or to assert a conclusion but there is no easy way of deciding if, for
a given sub-set of conditions that are true, the rule should be fired. This
can happen when such a decision requires performing boring or complex
calculations, visual comparisons, or expensive consultations with experts.
In such cases, an alternative, although computationally expensive, predicate-

induction mechanism not requiring rule-by-rule examples is possible. It is
based on well-known optimisation techniques known as Genetic Algorithms

(GAs) [3].
Let us consider for the sake of simplicity only the problem of finding the
truth tables needed for a set of K rules each one including N;, ¢ =1,---, K,

conditions and M, actions. Fach truth table includes 2V x M, FIREABLE
entries, that can be represented as a bit string provided that we assign the
value 1 to True and 0 to False (or vice versa). By chaining the bit strings
that represent all the K truth tables we obtain a longer bit string including
5. 2N x M; bits. Each instance of such a bit string represents a different
set of rules and therefore a different behaviour of the rule-based system.

If we define an objective (or fitness) function that scores each possible
instance of the strings representing different rule-based systems, we can then
easily apply a GA for finding the best rule base according to the scoring
criterion. One possible fitness function could be, for example,

F(R) = [A(D;) + A x C(D;)]

J

R being a given rule-base, D; a database of facts, C'(D;) the computation
required to reach a conclusion for database D;, A(D;) the accuracy of the
conclusions obtained with database D; and A a constant factor (computation
and accuracy need an operative definition which is problem dependent).

Extensions of this method to the other predicate-induction paradigms
are straightforward. For example it is easy to encode the weights and the
biases of a neural net into the bit strings that undergo genetic optimisation
so as to induce neural-network-based predicates.

4 Experimental Results

We have implemented and used the previously described formalism and the
related rule induction mechanisms in several experiments, some of which
are described in the following subsections. The first set of experiments
(Section 4.1) has been performed merely to provide the reader with simple
examples that show some of the features of our approach; the others (Sec-
tions 4.2 and 4.3) are more complicated examples that show the advantages
of our approach in practical applications.

4.1 Animal Classification

In this subsection we report on some basic experimental results obtained
with the well-known rule base for feature-based recognition of animals de-
scribed in [14, pages 121-124]. The rule-base is summarised in Table 3.
From the set of facts shown in Table 4(a) which describes an animal, the
rules are capable of inferring that the animal is a giraffe (via rules 1, 8 and
11).

Writing the previous set of rules requires that a clear, complete know-
ledge on how to classify an animal is available. In more complex situ-
ations/domains it might happen that only partial knowledge is available.
For example, even if it is known that certain conditions are relevant to draw
a given conclusion, it might be difficult to list all the combinations of con-
ditions for which such a conclusion can be drawn (e.g. because it is usually
drawn on the grounds of the experience of the expert). This would make
writing rules with the standard formalism quite difficult.

To show how similar situations can be handled by our system, let us
consider the animal classification problem and suppose that when the rule
base was compiled it was not completely clear how to classify an animal
as a bird, a carnivore or an ungulate even if all the relevant information
that might be important for doing so were known. In such a case we could
write the rule base shown in Table 5 where Predicate-A, Predicate-B and
Predicate-C are three trainable predicates.

4.1.1 Truth-table-based Predicate Induction

Let us first consider a run of the system with the set of facts listed in
Table 4(a) when a truth-table-based implementation of the trainable pre-

| Rule # | Conditions | Conclusion |

1 Has hair Is a mammal

2 Gives milk Is a mammal

3 Has feathers Is a bird

4 Flies AND Lays eggs Is a bird

5 Is a mammal AND Eats meat Is a carnivore

6 Is a mammal AND Has pointed teeth AND Has | Is a carnivore
claws AND Has forward pointing eyes

7 Is a mammal AND Has hoofs Is an ungulate

8 Is a mammal AND Chews cud Is an ungulate

9 Is a carnivore AND Has tawny colour AND Has | Is a cheetah
dark spots

10 Is a carnivore AND Has tawny colour AND Has | Is a tiger
black stripes

11 Is an ungulate AND Has long legs AND Has long | Is a giraffe
neck AND Has tawny colour AND Has dark spots

12 Is an ungulate AND Has white colour AND Has | Is a zebra
black stripes

13 Is a bird AND Does not fly AND Has long legs | Is an ostrich
AND Has long neck AND Is black and white

14 Is a bird AND Does not fly AND Swims AND Is | Is a penguin
black and white

15 Is a bird AND Is a good flyer Is an albatross

Table 3: Winston’s rule base for animal classification.

dicates is used. The predicates have not been trained at all in advance. The
following events take place:?

1.

5.

Rule 1 is fired and the fact that the animal “is a mammal” is added
to working memory.

. Rule 2 is tested. Its three conditions are all False, so that Predicate-

A is invoked with the condition-pattern [False,False ,False]. As the
related FIREABLE value is unknown, the user is asked to provide such
a value. As there is no evidence that the animal is a bird, the user
replies False, Predicate-A fails and the rule is not fired.

Rule 3 is tested. The condition-pattern is [True,False,False,False,False].
However, as the fact that an animal is a mammal does not necessarily
mean that it is a carnivore, the user provides again a False for the
related FIREABLE value, Predicate-B fails and the rule is not fired.

. Rule 4 is tested. The condition-pattern is [True,False, True]. The user

in this case provides a True FIREABLE value, Predicate-C succeeds, the
rule is fired and the fact that the animal “is ungulate” is added to the
working memory.

Rules 5 and 6 are considered but not be fired.

2For the sake of simplicity no conflict resolution mechanism is considered in this ex-
ample: the rules are considered in their order, and all the fireable rules are fired.

Facts - Facts Facts
Has hair -
Does not fly Has hair
Chews cud
Has 1 1 Has tawny colour Has tawny colour
as long 1egs Has black strips Has dark spots
Has a long neck .
Eats meat Has pointed teeth
Has tawny colour Has hair Has claws
Has dark spots
@) (b) (<)

Table 4: Some possible initial working memories.

| Rule # | Conditions | Predicate | Conclusion

1 Has hair, Gives milk OR Is a mammal

2 Has feathers, Flies, Lays eggs Predicate-A | Is a bird

3 Is a mammal, Eats meat, Has pointed | Predicate-B | Is a carnivore
teeth, Has claws, Has forward pointing
eyes

4 Is a mammal, Has hoofs, Chews cud Predicate-C | Is an ungulate

) Is a carnivore, Has tawny colour, Has dark | AND Is a cheetah
spots

6 Is a carnivore, Has tawny colour, Has | AND Is a tiger
black strips

7 Is an ungulate, Has long legs , Has long | AND Is a giraffe
neck, Has tawny colour, Has dark spots

8 Is an ungulate, Has white colour, Has | AND Is a zebra
black stripes

9 Is a bird, Does not fly, Has long legs, Has | AND Is an ostrich
long neck, Is black and white

10 Is a bird, Does not fly, Swims, Is black | AND Is a penguin
and white

11 Is a bird, Is a good flyer AND Is an albatross

Table 5: A rulebase for animal classification.

6. Rule 7 is fired and the animal is classified as a giraffe.

After this first run the system has acquired some experience on when
rules 2, 3 and 4 should be fired, so that running the system again with the
same working memory would result in a completely automated answer (i.e.
without user interaction). In order to complete the elicitation of the know-
ledge needed to fire rules 2, 3 and 4 other examples are needed. However, the
more the cases presented to the system, the lower the number of subsequent
interactions with the user.

For example, if after the previous run, the system is run again with the
working memory shown in Table 4(b), then the following set of events take
place: rule 1 fired, rule 2 checked (no user interaction), rule 3 checked (user
interaction) and fired, rule 4 checked (user interaction), rule 5 checked, rule
6 fired. In this case the animal is classified (correctly) as a tiger with only
two user interactions.

10

4.1.2 Collection-based Predicate Induction

In order to show some of the properties of collection-based predicates, let us
run the previous rule base, with the initial set of facts shown in Table 4(c)
that forms a partial description of a cheetah (the fact “Has forward point-
ing eyes” is lacking). However, let us hypothesise that now Predicate-A,
Predicate-B and Predicate-C are implemented via a collection of condition-
pattern/FIREABILITY-value pairs. In addition, let us set the prudence P =
0.99, so that only if FIREABILITY is near 1 can trainable-predicate-based
rules be fired.

The following events take place:

1. Rule 1 is fired and the fact that the animal “is a mammal” is added
to the working memory.

2. Rule 2 is tested. The condition-pattern is [False,False,False]. As no
example is present in the collection, the user is asked to provide a
FIREABILITY value. As there is no evidence that the animal is a bird,
the user provides a 0, Predicate-A fails and the rule is not fired.

3. Rule 3 is tested. The condition-pattern is [True,False,True,True,False].
In this case the user is quite confident that the rule should be fired
as the animal has most of the features of a carnivore. However, as a
condition “Has forward pointing eyes” is lacking, the user provides a
0.8 for the FIREABILITY. As P = 0.99, Predicate-B fails and the rule
is not fired.

4. Rule 4 is tested. The condition-pattern is [True,False, True]. The user
in this case is not sure: the fact that an animal is a mammal does not
necessarily mean that it is an ungulate. So the user provides a 0.5,
Predicate-C fails and the rule is not fired.

5. None of the remaining rules can be fired and therefore no conclusions
about the species of the animal can be drawn.

The failure to reach a conclusion in this example is due to the incomplete
information available about the animal.

Let us now suppose to reduce the prudence of the system to the value
P = 0.7, and run the system again. The sequence of events is the same
apart from the following facts: a) no user interaction is now required, b)
rule 4 is now fired so that the fact “Is a carnivore” is added to the working
memory, c) thanks to this additional information rule 5 can fire and the
(correct) conclusion “Is a cheetah” is reached.

Reducing further the prudence of the system in general can lead to con-
clusions that are alternative to each other (multiple solutions, multiple an-
swers). For example, by setting P = 0.4 the conclusions that the animal “Is
an ungulate” and “Is a carnivore” are both drawn. This is not a mistake: in
the lack of additional information they should be interpreted as two reason-
able hypotheses about the animal. In this example this behaviour does not
produce any final misclassification. In other cases it might lead to multiple
classifications.

11

4.2 Robot Motor Control

In order to show the advantages of using predicates based on artificial neural
networks we now consider a more complex example. The problem consists of
designing a set of rules that allow a robot to react properly in the presence
of obstacles.

The robot has engines and wheels that allow it to move in (at least) four
main directions: forward, backward, left and right. It has eight proximity
sensors that reveal the presence of obstacles at 0°, 45°, 90°, ... 315° (clock-
wise with respect to its current heading). As 2 or more sensors can detect
the presence of obstacles for any given position (e.g. because the robot is in
a corner or in a tight corridor), writing a set of rules for the four possible
motor actions could be relatively difficult with a non-trainable rule-based

system.
Instead, with our formalism, we need only the following rule

Rule Obstacle-Avoidance:

IF Obstacle at 0 degrees, Obstacle at 45 degrees,
Obstacle at 90 degrees, Obstacle at 135 degrees,
Obstacle at 180 degrees, Obstacle at 225 degrees,
Obstacle at 270 degrees, Obstacle at 315 degrees

SATISFY Obstacle-Predicate

THEN Go forward, Go backward, Go left, Go right

where Obstacle-Predicate is a vector predicate implemented via a neural
network plus a winner-takes-all output filter that prevents more than one
True value being present in the action-pattern (the output of the vector
predicate).

Before learning, each time the vector predicate is called an example
is collected including the present condition-pattern and four FIREABILITY
values, one for each action. After enough examples have been collected the
network is trained and thereafter used. In this experiment we have used as
the training set 8 condition-patterns including only one True value (only one
sensor has detected a collision) and 17 condition-patterns including two True
values (a total of 25 examples out of the 256 possible condition-patterns).

After learning, as soon as the predicate is invoked the network is used
to evaluate the four FIREABILITY values needed to compute the action-
pattern. If the maximum FIREABILITY is greater then the prudence P of
the system the predicate succeeds and an action-pattern with a single True
item is provided; otherwise the predicate fails.

Figure 1 reports on some experimental results with this scenario. The
lower part of the figure shows six different situations, labeled (a)-(f), in
which the robot (represented as an octagon) can collide with obstacles. The
table in the upper part of the figure reports the sensory conditions for each
situation and the correspondingly selected action. The local conflict res-
olution implemented via the winner-takes-all filter prevents more than one
action being fireable. The generalisation properties of the neural net provide
the correct behaviour even in the presence of new condition-patterns con-
taining two or more True values (situations (c¢)—(f)). A variant of this rule
(with a different syntax which is functionally equivalent to the one presented

12

in this paper) has been used as a behaviour sub-system for the subsumptive
architecture of a simulated robot, as described in [10].

Conditions Actions

Exp. | 0° [45° | 90° | 135° [180° [225° [270° | 315° || Forward | Backward [Left | Right
(a) X X

(b) | x X X

(c) X X X X

(d) | x X X X X

(e) X X X X X X

(f) X X X X X

(d) © ®

Figure 1: Experimental results for robot obstacle avoidance.

4.3 Inter-Agent Communication

The GA-based rule induction mechanism described in Section 3.5 has been
(and it is currently) used, in more complicated experiments, for the devel-
opment of communication between agents. In the following we describe the
simplest of these experiments (the experiment has been implemented using
the toolkit for building and running agents described in [10]).

The experiment involves two agents: a blind agent and a lazy one. The
blind agent can move in the world (the 2-D Cartesian plane) and can receive
messages from the other agent, but is not capable of “visually” perceiving
it. The lazy agent can perceive the (roughly quantised) relative position of
the blind agent and can send messages, but cannot move. Both agents are
implemented via a small set of rules the most important of which are:

Rule Lazy-Message-Transmission:
IF Blind is north, Blind is south, Blind is east, Blind is west
SATISFY Lazy-GA-predicate
THEN Send message 1, Send message 2, Send message 3, Send message 4

13

Rule Blind-Message-Interpretation:
IF Received message 1, Received message 2,
Received message 3, Received message 4
SATISFY Blind-GA-predicate
THEN Go east, Go west, Go north, Go south

where Lazy-GA-predicate and Blind-GA-predicate are two vector pre-
dicates implemented via truth tables. The objective of the experiment is
to induce such predicates (by means of a genetic algorithm) so as to obtain
a cooperation (via communication) between the two agents that results in
the blind agent moving towards and finally reaching the lazy one, for any
possible initial mutual positions.

In the simulation message sending and position perception are obtained
by a scheduler that repeatedly runs the rulebase of each agent and changes
the database of each one so as to include new sensory data or new messages
(clean-up rules remove the old data from each database).

In order to represent the truth tables of the aforementioned rules bit
strings including 128 bits are needed. Each of such bit strings represents
a possible rule-base R. We associate to each R a fitness value f(R) which
is the negative of the sum of the distances between the blind and the lazy
agents measured at the end of four different runs of the simulation. In each
run the lazy and the blind agents start in different relative locations (the
furthest corners of a square).

The truth tables induced by running a GA with a population of 20
rule-sets (bit strings) for 50 iterations are shown in Tables 6 and 7.> The
corresponding rules provide the two agents with the required behaviour, i.e.
they meet each other within a minimum number of steps. An example of
such a behaviour is shown in Figure 2. The figure is a graphical repres-
entation of a run (not included in the training set) in which the lazy agent
(the circle marked with a dot) was at (0.2,0.3) and the blind one started
from (0.9,0.7). Note how the blind agent finds the shortest route to the lazy
agent.

5 Conclusions

In this paper we have presented a formalism for rule representation that
lends itself to rule induction and the development of hybrid systems in which
neural networks and symbolic techniques cooperate tightly to produce ro-
bust, flexible, trainable and efficient architectures.

On the grounds of the experimental results, we believe that the proposed
model is not “yet-another-rule-based system” but offers new powerful solu-
tions for problems in which knowledge is uncertain, inconsistent, incomplete
or variable.

*Not all the entries of these truth tables are meaningful as not all the combinations of
conditions can actually occur (e.g. the blind agent cannot be north and south of the lazy
one at the same time).

14

Conditions Actions
Blind Blind Blind Blind Send Send Send Send
is north | is south | is east | is west || message 1 | message 2 | message 3 | message 4
X X
X X X
X X X
X X X X X
X X X X
X X X
X X X
X X X X X
X X X
X X X X X
X X X
X X X X
X X X X
X X X X X X
X X X X X X
X X X X X X
Table 6: Truth table representing Lazy-GA-predicate.
Acknowledgements

The authors wish to thank Professor Aaron Sloman and the Cognition and
Affect Group of the School of Computer Science, The University of Birm-
ingham, for useful suggestions and help in developing the system described
in this paper.

References

[1] A. Clark. Microcognition. MIT Press, 1989.

[2] J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive archi-
tecture: a critical analysis. In S. Pinker and J. Mehler, editors, Con-
nections and Symbolcs, pages 3-71, Cambridge:MA, 1988. The MIT
Press.

[3] David E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, Reading, Massachusetts, 1989.

[4] E. Motta, M. Eisenstadt, M. West, K. Pitman, and R. Evertsz. Keats:
The knowledge engineers assistant. Fzpert Systems: The International

Journal of Knowledge Fngineering, 1988.

[5] R. Poli, S. Cagnoni, R. Livi, G. Coppini, and G. Valli. A neural net-
work expert system for diagnosing and treating hypertension. IFEF

Computer, 24(3):64-71, 1991.

15

Conditions Actions
Received Received Received Received Go Go Go Go
message 1 | message 2 | message 3 | message 4 east | west | north | south
X X
X X X
X X X
X X X X
X X X
X X X
X X X X X X
X X X X X
X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X
X X X X X
X X X X X X

Table 7: Truth table representing Blind-GA-predicate.

[6] J. R. Quinlan. Discovering rules by induction from large collections
of examples. In D. Michie, editor, Fxpert systems in micro-electronics
age. Edinburgh University Press, Edinburgh, Scotland, 1979.

[7] C. Rich. Cake: An implemented hybrid knowledge representation and
limited reasoning system. SIGART Bulletin, 2(3):120-127, 1991.

[8] J. F. Schreinmakers. Pattern Recognition and Symbolic Approaches to
Diagnosis. Eburon:Delft, The Netherlands, 1991.

[9] L. Shastri. A connectionist approach to knowledge representation and
limited inference. Cognitive Science, pages 331-392, 1988.

[10] A. Sloman and R. Poli. SIM_AGENT: A toolkit for building agents.
Technical report, School of Computer Science, The University of Birm-
ingham, 1995.

[11] P. Smolensky. Connectionist AI, symbolic AL, and the brain. Al Review,
1990.

[12] P. Smyth and R. M. Goodman. An information theoretic approach to
rule induction from databases. IEEFE Transaction on Knowledge and
Data Engineering, 4(4):301-316, 1992.

[13] D.S. Touretzky and G. E. Hinton. A distributed connectionist produc-
tion system. Cognilive Science, 1988.

[14] P. H. Winston. Artificial Intelligence. Addison-Wesley, third edition,
1992.

16

Figure 2: A run of the communication induction experiment.

17

