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Abstract

In this paper we present Minimal Polynomial Logic (MPL), a gener-
alisation of classical propositional logic which allows truth values in the
continuous interval [0,1] and in which propositions are represented by
multi-variate polynomials with integer coefficients.

The truth values in MPL are suited to represent the probability of an
assertion being true, as in Nilsson’s Probabilistic Logic, but can also be
interpreted as the degree of truth of that assertion, as in Fuzzy Logic.
However, unlike fuzzy logic MPL respects all logical equivalences, and un-
like probabilistic logic it does not require explicit manipulation of possible
worlds.

In the paper we describe the derivation and the properties of this
new form of logic and we apply it to solve and better understand several
practical problems in classical logic, such as satisfiability.

1 Introduction

There are many proposals in the literature for extending logic beyond the simple
truth values {false, true} or {0, 1} to truth values in the interval [0, 1]. Two well-
known such extensions are fuzzy logic and probabilistic logic.

Fuzzy logic [1] is motivated by the wish to express degrees of truth /falsity of
propositions. For example, as the property of being tall admits of degrees, fuzzy
logic allows the truth value of the sentence ‘John is tall’ to be some number
in the interval [0,1] depending on how tall John is relative to the ambient
population. Although fuzzy logic has several important applications, one of
its weaknesses is that it does not respect some logical equivalences such as
—(x1 A —xe) = 22 V (-1 A o) in the presence of non-binary variables [3].

Nilsson’s probabilistic logic [8, 9], on the other hand, is not concerned with
inherent degrees of truth, but with the fact that we may have only partial
knowledge about the truth or falsity of sentences. In probabilistic logic, a ‘truth
value’ in [0, 1] is taken to be the probability that the sentence is true. From
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the perspective of probabilistic logic, ‘John 1is tall’ is either true or 1t is false,
but we may have only partial information about his size and on that basis we
may assign to the sentence a number in [0, 1] representing the probability that
it is true. Despite its clear and precise definition, Nilsson’s probabilistic logic
requires the explicit computation of the truth or falsity of a proposition in all
possible worlds (see section 4 for more details).

In this paper we present a generalisation of classical propositional logic,
called Minimal Polynomial Logic (MPL), initially developed to facilitate in-
cremental searching for solutions to logical problems; which allows handling
continuous truth values in the range [0,1]. The properties of MPL which we
will describe suggest that the most suitable interpretation of such truth values
is the probability of the assertion being true, as in Nilsson’s probabilistic logic.
However, unlike probabilistic logic MPL does not require explicit manipulation
of all possible worlds.

Despite this probabilistic orientation, for specific applications in which a
logic which respects all logical equivalences is required, the truth values of MPL
could also represent the degree of truth of the assertion, as in fuzzy logic or fuzzy
control. Unfortunately, when this interpretation is adopted, some identities that
are universally considered fundamental in fuzzy logic (but not in fuzzy control)
do not hold.

The paper is organised as follows. In Section 2 we introduce Polynomial
Logics (PLs), which are simple generalisations of classical predicate logic in
which propositions are represented by multi-variate polynomials. The simplest
form of polynomial logic, which we will denote as PLy, is the precursor of MPL
which is described (Section 3). Some applications of these two types of logic as
well as their relations with fuzzy logic and probabilistic logic are discussed in
Section 4. We make some final remarks in Section 5.

2 Polynomial Logics

In classic logic the variables z; which are present in a proposition e can only
take two values, 0 and 1. Given the standard definitions of the connectives A,
Vand = (e.g. 1 Awe = 1iff 21 = x5 = 1), the same is true of the values taken
by e. One way of generalising this kind of binary (or Boolean) logic would be
to consider expressions with variables that can take continuous values between
0 (false) and 1 (true) and to generalise the ordinary logic connectives.

A natural way of generalising such connectives is to consider functions that
can fit the datapoints represented by the truth tables of the ordinary connect-
ives. For example, if we want to generalise the V function, z; V x2, we have
to select a function o(x1, #2) such that 0(0,0) = 0, 0(0,1) = 1, o(1,0) = 1 and
o(1,1)=1.

A simple form of such functions is obtained by using polynomials that can fit
the truth tables of the ordinary logic connectives. For example, the polynomials
a(zy, x2) = %xlxz(l + )1 + 22), olxr,22) = 1 —a(l —21, 1 —20) = 1 —
%(1 —21)(1 —22)(2 — 21)(2 — ®2) and n(x1) = (1 — 21)(1 + 1) generalise the
logical connectives A, V and -, respectively.! There are infinitely many such
generalisations.

Having defined a set of generalised connectives any ordinary logic expression
e can be generalised by simply replacing the ordinary connectives with the
generalised ones. With polynomial connectives an entire class of polynomial
propositional logics, PL, can thus be defined.

1Other connectives such as — and < can be obtained likewise using standard equivalences.



The lowest degree polynomials that can fit the truth-table entries of the
ordinary logic connectives,

o(x1,22) = a1 Var=1—(1—u1)(1—1x2),
a(xi,x0) = x1 AXy =122, (1)
n(ry) = -wp=1-—u,

define the most parsimonious (lowest-degree) polynomial logic which we will
denote with the symbol PLy. More formally:

Definition1. Given a propositional formula e, its PLg version e, is the polyno-
mial obtained by replacing the ordinary connectives with those given in Eq. 1.

Frample 1. Consider the expression e = (21 V (22 A—a3)) A (21 — x2). The PLg
version of it 1s:

(1= (T =z)(1 = (22(1 = 23))))(1 = 21(1 — 22))

= Ql‘ll‘zl‘g—l‘12$2l‘3—|—l‘12l‘22l‘3—21‘1l‘2—|—21‘12l‘2—

€p

2,2 2 2 2
—L17X2" — X3 — X231+ X1 — 21T + T2+ X127

PLy and classical logic give the same truth values when the propositional
variables take the values 0 and 1.

Theorem2. Va; € {0,1}, e =¢,.

Proof. Since the polynomials o(x1, #2), a(x1, z2) and n(x), when evaluated with
z; € {0, 1}, take the same values of their discrete (binary/Boolean) counterparts,
this is also true for the expression e,. a

Frample 2. Tf the original expression e is in conjunctive normal form (CNF), i.e.
a conjunction (A) of disjunctions (V) of literals (variables or negated variables)
of the form

M [k,
e = \/ li]' s (2)
i=1 \j=1
where l;; € {#1,---, &N, 721, -+, ~&n}, then its PLy version is given by:
M K,
=11 1-T]C-ti) ], (3)
i=1 j=1

where I, ;; € {z1,---,2n,(1 — 1),---,(1 — n)}. The fact that e, = 1 iff
Vidj i l.;; = 1 clarifies the equivalence between e and e, in the case of binary
variables.

3 Minimal Polynomial Logic

In the previous section we have introduced the notion of polynomial logics in
general and described PLg in particular. In this section we will obtain from PLg
a new form of continuous logic that we call Minimal Polynomial Logic (MPL).

Definition 3. Given a propositional formula e, its MPL version e,, is obtained
from the PLy version e, by distributing + over x throughout and then substi-
tuting subexpressions of the form ¥ (with k > 1) with z;. This substitution
will be sometimes be denoted with (),



Frample 3. Let us consider the exclusive or function: e = (x1 A—x2) V(-2 Aza).

Its PLg and MPL versions are e, = x1 + 2 — 32122 + x%xz + xlxg — x%x% and

em = T1 + X3 — 2w, respectively.

This simple substitution is one of the main ideas in this paper. As will be
seen, it has significant consequences (e.g. Thm. 5).
As before this logic agrees with classical logic on the Boolean truth values:

Theorem4. Ve, € {0,1}, ¢, =€, = €.

Proof. If #; € {0,1} then xF = x; (k > 1), therefore the substitution given in
Def. 3 does not change the value of ¢,. e, = e follows from Thm. 2. ad

However, MPL has an important property which distinguishes it from other
PLs:

Theorem 5. Two propositions ¢ and €' are logically equivalent iff their MPL
versions ey, and el are the same polynomial.

Proof. < If e,, = ¢}, then, in particular, Ya; € {0,1} e,, = e},. Thus, by
Thm.4e=¢.
= Suppose e, Z €, then there exist some coefficients ¢; # 0 such that

/
em — € = CLAp1 - T oot epxpp - xEp .
m m 121 kil—i— +cpryp k2

Let ¢, be the coefficient of any term of minimal degree. Set the variables which
occur in that term to 1 and all the other variables occurring either in e, or e/,
to 0. Then ey, — e/, = ¢ # 0, s0 by Thm. 4 e # ¢’ for that assignment. O

Corollary 6. 1. e is satisfiable iff e, 0. Moreover, the second part of the
proof of Thm § gives an assignment making e true.

2. e is a tautology iff eny = 1. Moreover, if ey, £ 1 then the second part of
the proof of Thm & gives an assignment making e false.

Frample 4. Let us consider again the expression e = (21V(z2A—23))A (21 — 22).
The MPL version of it is:

€m = 1Tz — oLz + Ta.

The lowest degree term of e, is xs, therefore, according to the procedure out-
lined in the proof of Theorem 5, the assignment 1 = 0, 3 = 1, 3 = 0 satisfies
e. This is correct, as

e=(0VIA-0)AO—=1=0V(IALYALI=(0VI)ALl=1A1=1.

Frample 5. Let us now consider the expression e = 1 A z2 A (-1 V —2). The
PLgy version of it is:

2.2
ep = 122(1 — x120) = B2y — 272,
while its MPL version is
€m = T1&s — 2122 =0

which shows that e is unsatisfiable. This is correct as can be readily seen by
rewriting e = e’ A —e’ with ¢’ = z1 A zs.



This result gives a new and interesting way of checking entailment between
propositional formulas:

Corollary 7. e =€’ iff e = (emeiy)m-

Proof. ezl iffe — ' =T iff (1 —en(l —el,))m = 1iff e, = (emel,)m- m|

Frample 6. Let us consider the expressions e = (x1 V x2) A (-2 V 23) and
e/ =z, Vx3. We want to check if e entails ¢/. As e,,, = z223 + 21 — z122 and
el = x1 + &3 — r1x3, simple calculations can show that e, = (epmel, )m-

The next two lemmas are used for the following decomposition theorem 10

and Thm. 17.
Lemma8. Let Py, Py be polynomials.

L (Pi4+ Po)m = (P1)m + (P2)m-

2. (P1P3)m = (P1)m(P2)m if Py and Ps have no variables in common.
Proof. 1. Suppose z¥ is a subexpression in P; + Ps, then it is a subexpression in
Py or Py or both, and so will be reduced to #; in (Py)m + (P2)m. 2. Suppose Py

and P have no variables in common and zf is a subexpression in P; Ps, then it
is a subexpression in Py or Ps, and so will be reduced to z; in (P1)m(P2)m. O

Lemma9. e, = z1(e[T/21])m + (1 — z1)(e[—/21])m-
Proof. First note that e = (z1 A e[T/x1]) V (mx1 A e[—/21]) therefore:

€m

(x1 ANe[T/e )V (mx1 Ae[—/21]))m Thm. 5
L= (L= e[ T/ea]p)(1 = (1 = z1)e[—/21]p))m
(@re[T/aa]p + (L — 1 )e[— /1]y

H(z1 (1 — z)e[T/x1]pe[—/21]p)m Lemma 8
= z(e[T/z]p)m + (1 — z1)(e[—/21]p)m Lemma 8
z1does not occur in e[-/21]

(x1(1—21)m =0

zre[T/zi]m + (1 — z1)e[—/21]m
0

The following theorem shows how an MPL expression can be decomposed
as a linear combination of orthogonal basis of MPL expressions.

N

Theorem10. ¢,, = 2?21 yi(€i)m, where

y1. = X1x2 - -TN,
y2 = (l—a1)xs 2w,
ys = zi(l—x) - 2w,
yor = (I—2z)(1—22) (1 —an),

are an orthogonal basis for MPL with the scalar product {y;, y;) = (yiyj)m and

er = e[T/ay, T/ag, ..., T/an],
es = e[—/au1, T/ag, ..., T/an],
es = e[T/ay,—/aa, ..., T/an],
eon = e[—/x1,— [, ..., —/TN].



Proof. Apply Lemma 9 recursively to all the variables in e. a

Using the results just introduced, we are now able to give an alternative
characterisation of entailment:

Theorem11. ¢ E ¢’ iff e,, <el,, Va; € [0, 1].

Proof. <= immediate.
= em = ey = 3 wil{e)m — (D) < 0 a5 (€0)m < (D 0

4 Applications and Relations with Other Logics

4.1 Use and Interpretations of PLg

In addition of being the precursor of MPL, PLy can have practical applications
on its own.

4.1.1 Algebraic Logical Calculus.

As a first application, PLy can be used to study or to teach classical logic by
using only (or mostly) familiar algebraic techniques. The two theorems and the
corollary given in this section are an example of this.?

The following definition and lemma are required for the next two theorems.

Definition12. The dual é of e is the expression obtained by exchanging A with
V and — with T in e.

Lemma 13. ¢ is unsatisfiable iff its dual é s a tautology

Proof. The duality theorem [11, p.26] states that any two expressions e and ¢’
are logically equivalent iff their duals ¢ and e’ are logically equivalent. Therefore,
e 1s unsatisfiable iff e = — iff e = T. ad

Theorem 14. Let e be a proposition in CNF such as Equation 2. e is unsatis-

fiable iff V(z1, ..., 2n) € {0, 1}V, 3iVjl; = 1.
Proof. If ¢ is the dual of e, 1.e. é = \/f‘il (/\K’ lij), then

j=1

M K;
=TT (- 11

i=1 ji=1

By Lemma and Thm. 2, e is unsatisfiable iff V(z1,...,zn) € {0,1}V ¢, = 1 iff
Y(wr, . oen) €40, Y, 30 [T72) gy = 1iffV(xr, ... 2y) € {0, 1}, 3iV) 1 =
1. O

Corollary 15. Let e be a proposition in CNF.
1. IfVi3j such that l;; € {—x1, -, —zn} then e is satisfiable.
2. IfVi3j such that l;; € {m1, -+, 2.} then e is satisfiable.
Proof. For 1. (x1,...,25)=(0,...,0) and for 2. (z1,...,z2nx)=(1,...,1). O

Theorem 16. Let e be a proposition in Disjunctive Normal Form (DNF), i.e.
e = \/f‘il (/\]K:’1 lij). e is unsatisfiable iff V(x1, ..., 2n) € {0, 1}V, ViTjl; = 1.

Proof. The PLg version of the dual é of ¢ is €, = Hf\il (1 — HK’ (1- lc,z’j))

ji=1

V(l‘l,...,l‘N) S {0,1}Nép =1 iﬁV($1,...,xN) S {0,1}N,VZE|_]I” =1. (]

20f course, there are direct proofs based on classical logic only for the results obtained

with PLg.



4.1.2 Relations with Probability.

If we interpret the variables occurring in the polynomial e, as probabilities of
being true of the corresponding atomic propositions in e, then the value taken
by e, can be interpreted as the probability that e is true.

To illustrate this, let us consider the expression e = x; V z» and imagine
that x1, #9 and consequently e are stochastic binary variables. If we denote
with P(z1), P(x2) and P(e) the probability of the events {x; = 1}, {z2 = 1}
and {e = 1}, then on the hypothesis that #; and 5 are independent variables
we can write:

Ple) = Pr{ie=1}

Pr{z; Va, =1}

Pr{z; = 1} 4+ Pr{ay = 1} — Pr{e; = 1}Pr{z, = 1}
P(l‘l) + P(l‘z) - P(l‘l)P(l‘z)

= 1= =P(x1))(1 —P(x2))

This expression is formally identical to the PLg form of e, namely e, =1 — (1 —
21)(1 — x3), provided that e,, 21 and x, are interpreted as the probability of
being true of the related binary counterparts. The same observation is valid for
the = and A polynomial functions.

However, as already mentioned in this example, the probabilistic interpret-
ation of the polynomial connectives is correct only on the hypothesis of inde-
pendent arguments. As a result, the probabilistic interpretation of ¢, is correct
if no variable occurs more than once in e. Nonetheless, in many cases e, can be
considered as a reasonable approximation of the exact probability and therefore
used for many practical purposes. An example of this is given is in the following
subsection.

Towards an explanation for GSAT. The problem of deciding if a proposi-
tion is satisfiable is a well known NP-complete problem for which time required
for exact solutions is an exponential function of the number of variables [2].
This imposes a serious limit to the number of variables of the expression to
be checked. For example, it is reported in the literature that one of the best
known exact algorithms for satisfiability checking, the Davis-Putnam proced-
ure [2], cannot practically handle expressions with more than a few hundred of
variables [10].

Recently a new, very promising approach to the solution of hard satisfiability
problems has been proposed which is based on greedy local search procedures
(GSAT) [10, 5]. Given an expression e in CNF such as Eq. 2, GSAT works as
follows:

1. Randomly initialise the variables in e.
2. If e = T then return(T).

3. Select a variable such that a change in its truth assignment gives the
largest increase in the total number of clauses of e that are satisfied and
reverse its assignment.

4. Iterate steps 2-3 for Ngips times.
5. Iterate steps 1-4 for Nies times.

This procedure allows finding solutions for satisfiability problems including sev-
eral hundred (or even thousands) of variables. Although a theoretical analysis



of the the algorithm has been undertaken [5], the reason why the simple op-
timisation of the number of true clauses in an expression leads so frequently to
finding an assignment that satisfies such an expression is actually not completely
understood. PLg provides a possible explanation for this.

If e, is the PLy version of an expression e in CNF such as Eq. 2, then

M K,
log(ep) = Zlog \/ li;
i=1 ji=1

P

Note that log (\/]K:’1 lij) € [0, —o0]. However, to understand GSAT we imagine
»

that log(0) = — K, for some suitably large number K. On this hypothesis, given
any (binary) assignment of the variables,

log(ep) = —K x My = K x (Mt — M),

M+ and M being the number of true and false clauses in e, respectively. Being
the logarithm a monotonic increasing function, the probabilistic interpretation
of this equation is: mazimising the number of true clauses in e (e.g. using
the GSAT algorithm) is equivalent to mazimising an approzimation (e, ) of the
probability of being true of e in the corners of the hypercube [0,1]". Searching
for the maxima of ¢, moving only on the corners of the hypercube is overcon-
straining, and GSAT can therefore be generalised and improved by using any
optimisation procedure (e.g. gradient ascent or a genetic algorithm) working in

[0, 1.

4.1.3 Relations with Fuzzy Logic.

If we interpret the variables occurring in the polynomial e, as the degree of truth
of the corresponding atomic propositions in e, then the value taken by e, can be
interpreted as the degree of truth of e. In this sense, PLg is actually equivalent
to a well-known form of fuzzy logic which is often used in fuzzy control [6].
The disadvantages of PLgy are: a) unlike min/max-based fuzzy logic, it does not
respect idempotency properties (z1 A #y = 21 and #; V 21 = z1), b) like fuzzy
logic, it fails to respect some other logical equivalences such as

1-— l‘l(l — l‘z)
1—2y — x4+ 20129 —1—1‘3 — xlxg

(l‘z vV ("l‘l A ﬁl‘z))p.

(=(z1 A =z2))p

Ut

An advantage of PLy as a fuzzy logic is that it is minimally sensitive to errors
in the estimation of the degrees of truth of atomic sentences [7].

4.2 Use and Interpretations of MPL

The examples given in Section 3 show how MPL can be used to effectively and
naturally answer questions about satisfiability and entailment in classical logic
by using algebraic manipulations.

As in the case of MPL, the variables in e,, can be interpreted either as
probabilities or fuzzy truth values. In the following we will show how in the
first case MPL overcomes all the independency requirements of PLg, while in
the second case it further departs from the usual features of min/max fuzzy
logic.



4.2.1 Relations with Probability.

The probabilistic interpretation of MPL requires additional work carried out in
the following theorem.

Theorem 17. P(e) = e [P(x;) /2]

Proof. Induction on the number of variables in e.

Base case: 0 variables. Trivial.

Inductive case: Suppose there are k variables in e and the theorem holds for all
expressions with &£ — 1 variables. Let xy be any variable.

Ple) = Pr{z;=1}Pr{e=1|z =1}
+Pr{z; =0}Pr{e=1]2; =0}
= P(x)P(e[T/z1]) + (1 = P(a1))P(e[—/21])
= Plo)(e[T/w1])m[P(x:)/i]
+(1=P(x ))([ /e )m[P(xi)/ i Ind. Hyp.
= (mle[—l—/xl] (1—1‘1)[ /931] )[ (xz)/xz]
= em[P(x;)/ 2] Lemma 9

Frample 7. If ¢ = (21 V (22 A —23)) A (x1 — x2), then the probability of
e being true is Ple) = en[P(x;)/xi] = (v12223 — xaws + x2)[P(x;)/2;] =
P(x1)P(z2)P(x3) — P(z2)P(z3) + Plx2).

As clarified by the previous results, MPL yields the correct probability of an
expression being true, even in the case of dependent subexpressions (i.e. reused
variables).

4.2.2 Relations with Nilsson’s Probabilistic Logic.

In probabilistic logic, each world w; is an assignment for the variables present
in a proposition e to which a probability p; of being the case 1s associated. The
probability of e being true is then represented by

Pr{e =1} = Zpiwi(e), (4)

where w;(e) is the result of evaluating e in w;. This expression shows that
Nilsson’s probabilistic logic requires the explicit computation of the truth or
falsity of a proposition in all possible worlds.

The relation between probabilistic logic and (the probabilistic interpretation
of) MPL is clarified by the following

Corollary 18. P(e) = 222:1 Yi[P(as) /2] (e))m where y; and e; are defined as
m Thm. 10.

Proof. Apply Thm. 17 to e,, expressed as in Thm. 10. a

By considering for example that y;[P(z;)/2;] = Pz Aza A...Aay) =
Pr{z; =T, ,z2=T,...,an = T}, it can be easily understood that y;[P(z;)/x;] =
Pr{w;} = p;. On the other hand (e;), = w;(e), and therefore the last corollary

can be reformulated as
2]\7
= piwi(e)
i=1

which is exactly the same expressions as in Eq. 4.

This clarifies how (the probabilistic interpretation of ) MPL generalises prob-
abilistic logic as the atoms it adopts are are not entire worlds but the sentences
composing such worlds.



4.2.3 Relations with Fuzzy Logic.

Let us now reconsider the interpretation of MPL as fuzzy logic. Thm. 5 guar-
antees that MPL respects logical equivalence. For example, (21 A 21)m = 21 =
(21)m, (21 V 21)m = 21 = (21)m,

(_'(l‘l/\_'l‘z))m = 1—l‘1—|—l‘1l‘2
= (l‘z\/("l‘l/\_'l‘z))m,

(x1 A=21)m =0 = (—)m and (21 V—21)m = 1 = (T)m. Note that the last three
equivalences are not valid in the various forms of fuzzy logic.

However, while on the one hand the fuzzy interpretation of MPL seems to
have better properties than fuzzy logic, on the other hand it departs even more
than PLg from the behaviour of the standard min/max fuzzy logic. An example
of this is the expression 21 A—z; which evaluates to something in [0.5, 1] in fuzzy
logic, to something in [0,0.5] in PLy, and to 0 in MPL. This would certainly be
considered an anomalous result if the expression represents the degree of truth
of the fact that some property is partly present and partly not present at the
same time.

5 Conclusions

In this paper we have presented minimal polynomial logic, a generalisation of
classical propositional logic which allows continuous truth values.

In its non-minimal form PLg, our logic can be used either as a fuzzy logic or
as an approximate probabilistic logic. We have used this form of logic to prove
some results about classical logic, which are transparent in MPL. The proofs of
such results are based on a natural integration of calculus and standard logical
techniques. In addition, with a simple logarithm transformation PLgy provides
a long-sought explanation for the enigmatic GSAT algorithm [4].

MPL has all these properties but it also respects logical equivalence (The-
orem 5). This means that whatever we can prove to be true for MPL, for
example using calculus, is true in classical logic and vice versa. An application
of this theorem, Corollary 6, provides a new way of checking the satisfiability
of a proposition based only on algebraic manipulations. Thanks to Cor. 7 and
Thm. 11, the same 1s also true for checking entailment.

Finally, the probabilistic interpretation of MPL, supported by Thm. 17, gives
the probability of a proposition being true even in the case in which there are re-
peated variables. This does not require the explicit evaluation of the expression
in all possible worlds needed by Nilsson’s probabilistic logic. However, Thm.10
guarantees that the probabilities computed with MPL and probabilistic logic
are the same.
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