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Abstract

For many autonomous agents, such as mobile robots, autarsorebicles and
Computer Generated Forces, route planning in complexitega critical task, as
many of the agent’s higher-level goals can only be accomgtisf the agent is in
the right place at the right time. The route planning probieroften formulated
as one of finding aninimum-costoute between two locations in a digitised map
which represents a complex terrain of variable altitudeemgtthe cost of a route
is an indication of its quality. However route planners vwhattempt to optimise
a single measure of plan quality are difficult to integrate ithe architecture of
an agent, and the composite cost functions on which they agedoare difficult
to devise or justify. In this paper, we present a new apprdaatoute planning
in complex terrains based on a novel constraint-based ls@aocedure A* with
bounded costs (ABC), which generalises the single critedptimisation prob-
lem solved by conventional route planners and describe hplaraner based on
this approach has been integrated into the architecturesiohple agent. This ap-
proach provides a means of more clearly specifying ageks &@sd more precisely
evaluating the resulting plans as a basis for action.

1 Introduction

Autonomous agents must make decisions in complex, dynamic and un@saion-
ments in pursuit of multiple, possibly conflicting, goals. For manyonomous agents,
such as mobile robots, autonomous vehicles and Computer Generated Foutes, r
planning in complex terrain is a critical task, as many of the agent’s hilglvet goals
can only be accomplished if the agent is in the right place at the right #ioethese
agents, the route planning task provides a useful framework in whighvestigate
many of the issues which affect the design of the agent’s architecture, iimghutien
to plan, what sorts of plans are required and what to do when plans go wiidrey
resulting problems of trading off current and future advantage are canmimmany
forms of deliberation, including inference, belief revision and predicthe behaviour
of other agents, and solutions to these problems are an essential elemetibimad’
agent architecture. [1]

In our work we are exploring architectures for agents which play variahtseo
game of ‘hide-and-seek’ in complex terrains. Our hide-and-seek agents epegt
dynamic simulated environment containing synthetic or real terrain dsiaiidg hills,
valleys, impassable areas etc. and must act on the basis of incomplete oauncert
information. Each agent is initialised with one or more goals, for eanto find



the other agents or to remain concealed from them, and can acquire additional goals
as a result of its interactions with other agents and its environment. aA@m be
characterised as a relationship between the agent and the terrain, for exampie: bei
at the point4; being able to observd; being hidden from an observer dt and so

on. Often these goals or the plans to achieve them are subject to additimistaints,

for example that the agent should be at polnat or before a certain time, or that the
route to pointA should be concealed from one or more opposing agents. Moreover,
the amount of time an agent can afford to spend on planning depends on it cur
situation: uncertainty about the terrain, the positions of oppanetet may mean that

it is not worth developing a detailed plan. It is therefore desirabthéfplanner can
quickly return a partial plan, or a crude plan only the first segmenthatiwhas been
developed in detail, as a basis for immediate action.

In this paper we present a new approach to real-time route planning inleomp
terrains based on a novel constraint-based search procedure and describddroven p
based on this approach has been integrated into the architecture of a simpie lag
the next section we briefly outline some of the problems with comveatapproaches
to route planning based a#*. In subsequent sections we present a new approach to
route planning which generalises the single criterion optimisatioblpm solved by
conventional route planners and describe our approach to real-time pdaminich uses
meta-management rules to control the planner, allowing the agent to dyphicnitor
the progress of the planner to determine when a satisfactory plan has heeh) fo
relax or re-order the constraints when the planner is not making pro@messnterrupt
the planner if the situation changes. We conclude by arguing that caristfaim an
appropriate interface between the higher-level components of the agentenate
and its basic planning abilities, by providing a means of more cleadgifpng the
agent’s tasks and more precisely evaluating the resulting plans as adyasgitidn.

2 Route planning with A*

The route planning problem is often formulated as one of findingramum-costor
low-cost) route between two locations in a digitised map which represecasplex
terrain of variable altitude, where the cost of a route is an indicatiatsafuality. In
this approach, planning is seen as a search problem in space of partial pansall
many of the classic search algorithms to be applied. A number of routagiaim the
literature are based on th& algorithm [5] or variants such a4’ [11]. For example,
A* has been used in a number of Computer Generated Forces systems as the basis of
their planning component, to plan road routes [2], avoid movingauiss [6], avoid
static obstacles [7] and to plan concealed routes [10].

However, while such planners are complete and optimal (or optimal te omund
€), it can be difficult to formulate the planning task in terms of mirsimg a single
criterion (cost function). It is rarely the case that we are searching fdaatpat is
optimal on a single criterion, and it is often more natural to expresgptoblem re-
guirements in terms afonstraintson the plan. For example, our hide-and-seek agents
must generate plans which satisfy a number of criteria, such as the lenityh rafute,
whether it is concealed from their opponents, the amount of time or ‘ehergyired
to execute the plan and so on. In many cases an acceptable plan will be constrained t
attain some level on one or more of the criteria; for example, if one agémintercept
another agent, it must be in a given position at or before a particular idfien there
is a preference ordering over such constraints; we may wish to specify thetraints



relating to the feasibility of the plan, such as the requirement thatldreghould not
include any ‘no-go’ cells (cells which exceed the maximum gradient nedetigtthe

agent), may be preferred to constraints which specify desirable attrilsutels,as the
requirement that the plan should take no more théimesteps to execute.

One approach to incorporating multiple criteria into the plannirgepss is to de-
fine a cost function for each criterion and use, e.g. a weighted sum of thaest@ofis
as the function to be minimised. For example, we can define a ‘vigitwbst’ for
being exposed and combine this with cost functions for the lengtheoptan or the
time required to execute the plan, to form a composite function whictbearsed to
evaluate alternative plans. However if one or more of the individust ftmctions is
non-linear, using weights to determine the relative importance &réifit constraints
is not straightforward, because when the magnitudes of costs changefeitis ef
weights vary. The relationship between the weights and the behavithe pfanner is
complex, and it is often not clear how the different cost functions shbelcombined
to give the desired behaviour across all magnitude ranges for the dddssmakes it
hard to specify what kinds of plans the planner should produce and hpredict what
the planner will do in any given situation. Small changes in the weigbtefcriterion
can result in large changes in the plans generated by the planner. Similamgiob
the cost function for a particular criterion involves changing not ahly weight for
that cost, but the weights for all the other costs as well. In additfalifferent criteria
are more or less important in different situations, we need to find $et®ights for
each situation.

Even if it were possible to specify a cost function which represents thsti@nts
on the plan and their relative importance, current planners basdd are incapable of
‘trading off’ slack on one constraint to satisfy another, less importamnstraint, since
they retain only a single plan to a given poidt! retains only the (estimated) cheapest
solution through a given poind* collapses all costs into a single value which is used
to determine both the preference ordering and whether one plan dominatesrano
The resulting loss of information means we cannot d&do trade one constraint off
against another.

3 Route planning with ordered constraints

In this section we describe a new approach which involves planning &fysati or-
dered set of constraints rather than attempting to find the lowest costpbhieve
a goal [9]. Instead of using a cost functionefarguments (one for each criterion)
which computes e.g. a weighted sum of its inputs, we use a list of redmtst where
the position of the constraint in the list reflects its importance. factfwe replace
the optimisation problem solved by the planner with a satisficing ostaint satis-
faction problem that allows optimisation as a special caser example, rather than
finding the least cost path on the basis of both the time required to texgeu plan
and the visibility, we might specify a route that takes time less thamd is at least
50% concealed, or that takes time less thaand minimises visibility (subject to the
time constraintf. This approach provides a means of more clearly specifying agent
tasks and more precisely evaluating the resulting plans: a plan can be chsealchsr

1t is difficult to formulate this problem as a constraint sittion problem [8] given the number of states
(> 100, 000), the length of the plang> 500 stepg, and the softness of the constraints (see below).

2The notion of ‘constraint’ developed below is closer to thaFox [4] than that of e.g. O-Plan [16] or
UMCP [3], though in both cases there are significant diffeesn



satisfying certain constraints and only partially satisfying or nasgang others. For
example, a particular plan might satisfy the requirement that the tines fad less than
x, but violate the requirement that the plan be at least 50% concealed.

In the case of the hide-and-seek agents, there are three main tyfiet-ofder
constraints:

1. requirements that certain parts of the terrain should be visited ddedve.g.
that the route should not be visible from a given position, aatoid no-go (i.e.
impassable) areas (simple predicates write or falsevalues);

2. limits on some property of the plan such as the time required to exesegree
of visibility etc. (functions with values constrained to fall in soméerval); and

3. optimisation constraints such as the requirement that the plandshewas short
as possible (functions with values to be minimised or maximisedydiad), for
example, a value being as close as possible to some constant).

and also someecond-ordeconstraints, for example constraints on the planning pro-
cess itself, e.g. that the planner should should take lessittiaresteps to find a plan,
but these are the concern of the meta-level planning rules which congrpldinning
process, see below.

We represent constraints as bounds on costsogtis a measure of plan quality
relative to some criterion, and can be anything for which an ordering celatn be
defined: numbers, booleans etccést functioris a function from a plan and a model
to a cost. Different cost functions use different abstractions of thie b@sographic
model. For example, the no-go cost of a plan may be computed using adlted
maximum gradient map, a visibility cost may be computed using a litgitnap which
represents the degree to which each cell in the model can be seen by opposisg agent
and so on. Aconstraintis a relation between a cost and a set of acceptable values
for the cost, for example the boolean valtri&, a (possibly open) interval such as
‘< 10°, = 100", or ‘< O, + € (i.e. within € of the estimated optimum valu@,, a
minimisation constraint). Costs are used to determine if a plan satiafconstraint,
whereas constraints are used to control backtracking.

3.1 \Valid Plans

A (possibly partial) plan which satisfies all the constraints is tervedil. The con-
cept of validity is complicated by the difficulty of evaluating a partiamphgainst the
constraints. Constraints are typically properties of a complete plaarmnabot directly
applicable to the partial plans produced by the planner. We thereforewsalar cri-
terion which allows us to evaluate partial plans: if some completionpdréial plan
satisfies the constraints, then the partial plan is deemed to be acceptable. thi¢here
constraint bounds a monotonically increasing function of the plan aad¢ime or dis-
tance travelled, this is relatively straightforward. For exampleéf pfan should take
less thanr timesteps to execute and a partial plan takes 1 timesteps, then it is
clear that no extension of the partial plan can ever satisfy the constraimtevér in
other cases we can’t tell until the plan is complete whether the constraiatisdied.
Optimisation constraints introduce further difficulties in that timum is usually
not known when planning begins; we can only estimate the optimumtbynpting
to produce a plan, and the current best estimate of the optimum is aalyimevised
throughout the planning process.



In general, demonstrating that it is possible to complete a partial plas ®© satisfy
the constraints is of course equivalent to the original planninglprobTo avoid this
problem, we use the following optimistic policy: if it is nobgsible to prove that a
partial plan cannot satisfy the constraints, we make the assumptioththatanner
will be able to find a completion of the plan which does satisfy the camgs. Each
constraint is associated withheeuristic functionwhich returns an estimate of the cost
of completing a partial plan. Together with the cost function, the lséarfiunction can
be used to derive an estimated total cost for a plan. By comparing the tetagainst
the constraint, we can get an idea of whether some completion of the péatiaisp
likely to satisfy the constraint.

If the constraints aradmissiblee.qg. if the associated cost function always returns
an underestimate of the true cost for an upper bound or minimisaticstredmt, then
we can guarantee that if a partial plan fails to satisfy a constraint, all grtenof that
plan will also fail to satisfy the constraint, since the cost of the glamonly increase
as the plan is extended. Conversely, we don’t want the cost functioith gheatly
underestimate the true cost of the plan, as this will result in thenglabeing overly
optimistic about a plan which will never satisfy the constraint. M/lidmissible cost
functions are desirable, they are not necessary. It is enough that theunosbhs
generallyunderestimate the true cost of a plan to limit the amount of effortedash
plans which can never satisfy a constraint. If the cost functions are nussaithle, we
lose any guarantee of optimality, but given our emphasis on satisftbilsdgs not really
a concern.

3.2 Plan ordering

The planner uses an ordering over plans to direct the search and control baoktrack
Plans are ordered on the basis of the number of important constraigtsakisfy.
We compare the value of each constraint in the constraint list in tuihweatfind a
constraint which is satisfied by only one of the plans, preferring ke which satisfies
the constraint. This is essentially lexicographic ordering on fixegtlehoolean strings

in which true is preferred tdfalse For the purposes of comparison, we view the goal
as the @h constraint, i.e. a complete plan which fails to satisfy some of the mint

is preferred to a valid partial plan. (It is clear that, in the general case, téying
cannot be produced using a weighted sum cost function.)

The total ordering on constraints is used to order partial plans intiva&gace
classes, with those which satisfy all the constraints in the first atprice class, those
that satisfy all but the last constraint in the second equivalence class amd Ry
definition, all plans which satisfy a constraint are equally acceptable. Hayiéthe
heuristic functions are admissible, the estimated cost of a partial platypically
increase as the plan gets longer. We therefore prefer plans which over Ha¢isfyn-
straints, i.e. where there is some ‘slack’ between the cost of the plamamdnstraint.
We associate each constraint with amlering relationwhich defines a partial order
over the estimated total costs for that constraint, depending on howheedloist ‘sat-
isfies’ the constraint. For exampledfis a cost value and,, k, are constants, the
following constraints could have the associated orderings:



Form of constraint on cost Cost ordering

v = predicatéplan) true < false
v< O, +e€ <
v < k1 <
v > ky >
v =k |ky — v
ki <v <k |((k]+k2)/2)—’l)|

This allows us to sub-order plans within an equivalence class, i.e. howttveeplan
satisfies the constraint or how close it is to satisfying the constr&ewvouring plans
which over-satisfy the constraint reduces the likelihood that the piirvielate the
constraint as the length of the plan increases, reducing the amount of dukifgy.
Conversely, for violated constraints, the sub-ordering favouaaglvhich are closer
to satisfying the constraint. This can be useful in the case of ‘softstaints, where
minor violations are acceptable. Moreover, plans which have more slackianenbre
robust in the face of unexpected problems during execution.

Several ordering strategies are possible. For example we could osleqthva-
lence classes using the costs for the most important constraint orghéocthe most
important violated constraint. In our work to date, we have used adgxaphic order-
ing over costs to sub-order the equivalence classes.

3.3 A* with Bounded Costs

The search strategy used by the planner is similattd We use two lists, a®PEN
list of unexpanded partial plans, andcaoseb list which records all non-dominated
plans to each point visited by the planner. At each cycle, we expand the plathei
greatest slack in the first non-empty equivalence class. If this is a vdlil@oand
all the constraints are admissible we return the plan and stop. Oeewd generate
all the successors of this plan, and for each successor we cost it and detdemine i
equivalence class. We remove frawsrENandcLOSEDall paths dominated by any of
the successors of the plan and discard any successor which is dominated bgrany p
on OPENOr CLOSED. One planp, dominatesanother plarp, if both plans terminate
in the same point, and there is at least one ¢pstuch thatf;(p,) < fi(ps) and there
is no costf; such thatf; (p.) > f;(ps). We add any remaining successor ®eN, in
order, and recurse (see Figure 1).

In addition, the planner retains a pointer to the best plan found to déieh is
returned if the planner is interrupted by a timer or after some pre-datedmumber
of expansions have been performed before a complete, valid plan has bedn foun
the constraints are not admissible, we can never be sure we have faubddt plan
without an exhaustive search: even if we have a plan which satisfies abtistraints,
there may be another plan with greater slack. In this case it is up the agenétméhe
if the best plan found so far constitutes an acceptable solution in thentuwontext
(see below).

As might be expected, the additional flexibility 43 involves a certain overhead
compared withA*. The lexicographic ordering of plans requires the comparisan of
constraint values for each pair of plans. If we sort within equivalence classes
must also perform an additionklg m comparisons, where is the number of plans

3ABC is a strict generalisation ol *; with a single admissible optimisation constraint its hébar is
identical toA*.



OPEN « [start]
CLOSED « []

r epeat
if OPEN is enpty return fal se

renmove n, the |east menber of the first non-enpty
equi val ence class, from orPeEN and place it on CLOSED

if nis a solution then return n
ot herwi se for every successor, n/, of n
cost n' and deternine its equival ence cl ass
renove from oPEN and cLOSeD all paths dom nated by n’

if n' is donminated by any path on OPEN or CLOSED,
di scard n’

otherwi se add n’ to oPeEN, in order

Figure 1: TheABC algorithm

in the equivalence class. In total, we use three orderings: a prefereneengron
constraints, a preference ordering on costs and subsumption orderitasts which
is used to compute the set of non-dominated paths to each state. In adaéiorust
update the constraint values of the plans in d®eN list when we obtain a better
estimate of the optimum value for an optimisation constraint. Itiberistic functions
are admissible, any improvement in the estimate of the optimum can merigase it,
and any plan that satisfied a constraint will still do so. Similarly, angrovement in
the estimate of the optimum can only increase the amount of slack, as aifilae w
closer to the optimum than before. However, plans which didn’t satiefy}constraint
may come to do so, thereby moving from one equivalence class to another.

There is also a storage overhead associated with this approach. For each plan we
must now holdk constraint values in addition to thiecosts from which the constraint
values are derived. More importantly, we must remember all the nonvdded plans
from the start point to each point visited by the planner rather thartfigstminimum
cost plan as withA* since: (a) it may be necessary to ‘trade off’ slack on a more
important constraint to satisfy another, less important constraimt;(ahit may not
be possible to satisfy all the constraints, in which case we must laagkto a plan
in a lower equivalence class. (Unlik&*, thecLosEDIist contains all non-dominated
paths to a state, rather than the least cost path to each expanded state.) Nor can we
discard plans after they have been expanded as otherwise we can’t check ®rlioop
some cases remembering all the non-dominated plans can be a significant overhead
However, there are a number of ways round this problem, including imbelligent
initial processing of the constraints and discretising the ParetacairfFor example
we can require that the planner retain no more thgrlans to any given point, by
discarding any plan which is sufficiently similar to an existing planhat tpoint. (In
the limit, this reduces tel* where we only remember one plan to each point.)



4 Controlling the planner

The architecture of the hide-and-seek agents is based on the general agent arehitect
described in [14], and consists of three layers: a reactive layer, a delikelater and

a reflective or ‘meta-management’ layer (see Figure 2). The reactive layer contain
automatic or pre-attentive processes such as reflexes and the generatiors af geal
sponse to changes in the agent or its environment. For example colis@mdance
and simple perceptual processing, including object identification and tigycidie im-
plemented at the reactive layer. The deliberative layer contains knowledgefyased
cesses in which options are explicitly considered and evaluated before @glecich

as planning, scheduling and decision making. These processes are resuitetk li

for example, there are only a finite number of goals the agent can attend tp @han
time. In the hide-and-seek agents, the deliberative layer consists ofrtt@ieecom-
ponents: visibility reasoning, belief revision and route plannifpe reflective layer
controls the activities of the deliberative layer, providing globahitaring and ‘self-
evaluation’ functions. For example, the reflective layer is responéillscheduling
competing goals within the agent. The agents are implemented usiSgMh&GENT
toolkit [13].

AN ARCHITECTURE FOR HIDE AND SEEK AGENTS

META-MANAGEMENT
processes

inner inner
erception, action
RESOURCE-LIMITED REFLECTIVE
IANAGEMENT PROCESSES
9 &
b3 - ok
nevisio! visibility planai
6 O reasoning n@ .
Variable
Motive hreshold
activation attention
filter
Automatic (pre-attentive)

processes Feedback

perception action

Reflexes (some learnt)

THE ENVIRONMENT

Figure 2: The Agent Architecture

The route planning capabilities of the hide-and-seek agents is distiibgross the
deliberative and meta-management layert the deliberative layer, the route plan-
ning component is implemented as a time-sliced constraint-based plannetahsit
to achieve a single goal at a given level of abstraction and an abstract modeagen
tor that can produce a (more) abstract version of a given terrain model. Bhsge
components are controlled by a collection of planning rules. At the reftelayer, the
planning capabilities of the agent are controlled by a collection of meta-reamef
rules, which decide when to plan, what sorts of plans are required and hotveifort
the agent can afford to spend on planning.

4At present, the role of the reactive layer in route plannistimited to goal generation.



4.1 The Deliberative Layer

At the deliberative level, agent tasks are represented as goajeals a description

of a states in which certain propositions are true and in which certain actions have
been performed. Goals are represented as state descriptions consistingeftsv a
conjunction of propositions which should be true in stgtéor example that the agent
should be at some location or that the time should not be later thae sorat, and a
list of actions which should have been performed in some state prigiftm example
that the agent should have observed some locatibmsimple cases such goals can be
achieved without planning. For example, if the goal is to be at the cuorem adjacent
position and any actions to be performed can be performed in the currest thtan
the deliberative layer can simply invoke behaviours defined at the reaayiee to e.g.
move to an adjacent location.

However, in more complex cases, such goals give rise to sub-goalgaahaan,
the execution of which will result in the agent being in a state in whiehgropositions
are true and which will allow the actions to be performed during its etecu For
example, the task of observing a location to discover if it is occupied bes@nton-
straint that the plan should pass through at least one cell from whic¢hrdpet location
is visible. In some cases, tasks are decomposed into more than one comstriie
plan. For example, ‘observing a target location from concealment’ is bro&em into
two constraints: that the plan should pass through at least one (concslasedyation
position, and that no step in the plan should be visible from trgetgosition. (We
assume that visibility is asymmetric and that certain configuratiortseofetrrain allow
an agent to observe a location without itself being seen by an agent at thathodar
example, an agent can ‘peek’ over a ridge to observe another agent in the hext val
without itself being seen.)

Route planning goals are generated either in response to changes in tbemrit
which are outside the scope of the simple hard-wired behaviours at#utive layer or
from higher level goals communicated to the agent by other agents. To athéses
goals, the hide-and-seek agents often have to produce plans of sevehadsteps at
the resolution of the base model. The resulting search problems eaetatile, and it
is necessary to simplify the problem in order to limit the search. Onetway this is
to first generate an abstract plan which can then be refined to give a detailed thlan in
base model. If the size of the terrain model exceeds a (context dependeshidial,
the planning rules generate a goal to produce a plan in an abstract model gera lar
scale, together with goals to produce scaled versions of the abstract megieied
by the cost functions and constraints (e.g. no-go and visibilityetg)dIf the resulting
scaled models are still too large for practical planning, a further absttactgwal is
produced. This process is repeated until the abstract model is small eropigim tin
effectively.

When an (abstract) plan is produced at some level of abstraction, this capde us
to guide the planning process at the level below. The abstract plan isadefine a
‘corridor’ within which the planner will search for a refinement of the tadst plan at
the next lower level of abstraction. The corridor is itself representedcamstraint, an
‘abstract plan constraint’, which is simply added to the existinglistonstraints at the
next lower level of abstraction to give a new planning goal. The josét which the
abstract plan constraint is inserted into the original list of conssaietermines how
important it is to stay within the corridor defined by the abstract plaor example,
if we put the abstract plan constraint first in the list of constraitite, planner will
abandon all the other constraints before it leaves the corridor. If wét past, the



abstract plan constraint is simply advice to the planner, which it mayréggimoan
attempt to satisfy the other constraints.

The resulting, more detailed, plan is used to construct a new corpdmaristrain
further refinement at the next lower level of abstraction. Successive refingmey
result in repeated displacement of the centreline of the corridor at lowelsle¥ ab-
straction and helps to eliminate artifacts introduced by the abstractimegs

4.2 The Reflective Layer

At the reflective layer, a collection of meta-management rules monitor thgggss of
the deliberative layer, and determine the order in which goals, includimng planning
goals (abstract plan goals, plan refinement goals or plan execution), aresawces

The default strategy is to find a complete plan at one level of abstractifored
starting to refine it at a lower level of abstraction. However the reag-tiitemands on
the agent and/or uncertainties about the the terrain and the positiogealsdf other
agents mean that this is often not an appropriate approach. However meta-managem
rules allow context dependent plan abstraction and refinement, allowing ¢mé tag
decide when and how far to abstract, when to accept an abstract plan as the basis of
future action, when to start refining the abstract plan and how much obiildtbe
refined to the level of basic actions.

Typically, the agent will have to act before the planner has found a vala/en
a complete plan. This can happen when, for example, the time requireddagaro
and then execute a plan exceeds the time available to achieve the goal andrthe ag
must plan and act concurrently, or when there is an immediate threat to theadgent
its current location. We therefore arrange for the planner to return eise (possibly
partial) plan it can find within a given time-slice (typically 200 milonds though
this is problem and processor dependent). It is then up to the planulieg at the
meta-management level to decide whether the plan is acceptable in the circumstances,
in which case the agent can begin execution of the plan, or whether the péronsd
be allowed to continue searching for a better glali.the agent is pressed for time,
a decision may be taken to accept a partial plan or a complete plan which violates
some constraints as the basis of further plan refinement or action in tirerement.
Conversely, if the situation allows, the planner can be restarted ancdruanbther
time-slice. The architecture allows the agent to plan on several differetraatisn
levels in parallel while simultaneously executing some initial fragnadrthe base-
level plan, and ensures that any further refinement of an abstract plan is enhwih
the already executed portion of the base-level plan.

This approach moves the complex constraint evaluation problem (e.oclbeara
constraintis to be being satisfied) which is both constraint specific artdxisensitive
out of the planner and into the meta-management layer. The meta-management rules
allow the agent to explicitly monitor the progress of the plannereteanine when a
satisfactory plan has been found, to relax or re-order the constraints Whgainner
is not making progress, or to interrupt the planner if the situatizeinges sufficiently
to invalidate the current plan.

5Other problems caused by abstraction, or averaging, mayreetask specific abstraction procedures.

60bviously, if we can show that there is no plan which satisfiesr enough of the constraints, there is
no point in giving the planner more time to search for a bgiten; the only option is to relax one or more
of the constraints. However this is difficult to determinagheut exhaustive search, unless the cost functions
are admissible: if the most optimistic estimate of the dostall the plans on th@PENIist fail to satisfy the
constraint, then the constraint can never be satisfied.

10



5 A simple example

In this section, we illustrate the use of ordered constraints withexample plans pro-
duced by the current implementation. The planner currently suppores s@nstraint

types:

e energy constraints bound a non-linear ‘effort’ function which retuanglue
expressing the ease with which the plan could be executed—the cosbfuncti
is based on the 3D distance travelled with an additional non-linear pefoalty
going uphill;

¢ time constraints establish an upper bound on the time required to eximut
plan (or equivalently on the length of the plan), assuming the ageragat
a constant speed of one cell per timestep;

e N0-go constraints establish an upper bound on the maximum gradient oéthn
traversed by the plan;

e concealed route constraints enforce a requirement that none of the stées in t
model be visible from one or more observation positions;

e region constraints enforce a requirement that the plan should pasgthome
or more points in a given circular region;

e observation constraints enforce a requirement that the plan shouldnpasgh
one or more points from which an agent can observe a target position; and

e concealed observation constraints require that the plan should pasghiooe
or more points from which an agent can observe another agent while remaining
concealed from it.

We consider the problem of planning from coordinates (223, 162)66,(43) in
an400 x 400 grid of spot heights representing a 20kim20km region of a synthetic
terrain model. In this example we use only two constraints, a timstcaint and an
energy constraint. Figure 3(a) shows an (enlarged) region of the tenade! (lighter
shades of grey represent higher elevations).

In the first case we require that the time taken to execute the plan sheuéss
than 500 timestep@ < 500), i.e. it should not exceed 25km at a constant speed of one
cell (50m) per timestep, and the energy cost should be less than 25,8005, 000).
The resulting plan (plarl), shown in Figure 3(a), is 263 steps long (13.15km) and has
an energy cost of 24,968, i.e. it just satisfies the energy constraintai§jist line path
would have given maximum slack on the first constraint, but the plahasrtraded
slack on the more important constraint to satisfy the second, lesstampaonstraint.

Figure 3(b) shows what happens if we relax the energy constraint such that
50,000. The plan (planB) now goes over the ridge rather than following a more
circuitous route along the river valley. The energy cost has increased&t38ut the
time taken to execute the plan has reduced. The length is now 7.25km, ighfuh
shortest plan which satisfies the new, relaxed, energy constraint.

Plan B is the is the sort of plam* with a weighted sum cost function would
produce if the weights were chosen in such a way as to ensure that the tisteagut
were never violated. In contrast, if it were impossible to satishhlmanstraints, e.qg.
if £ < 250 ande < 25,000, the ABC planner would satisfy the time constraint while
coming as close as possible to satisfying the energy constraint.
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Figure 3: Planning with two constraints.

6 Conclusions and further work

We have presented a new approach to real-time route planning in comsitervains
based on a novel constraint-based search procedure and illustrated howptioiacip
can be embedded within an agent architecture. The feasibility of the theordgeal i
is demonstrated by an actual implementation inghe AGENT toolkit.

Our approach has a number of advantages over much of the work found in the
literature. By using an ordered set of constraints to represent the reauiteran
the plan we avoid the difficulties of formulating an appropriate seweights for a
composite cost function. There is a straightforward correspondenaeéethe ‘real
problem’ and the constraints passed to the planner. As a result, it iseoe@ssary
to establish that the solution with least cost actually satisfies theragrtston the
plan. Changing the relative importance of the criteria or introdunigg cost functions
or constraints does not require re-computation of weights. The totiriog over
constraints blurs the conventional distinction between absolute)(bandtraints and
preference (soft) constraints. In our approach, all constraints are preésrémt the
planner will try to satisfy, trading off slack on a more important doaist to satisfy
another, less important, constraint, and it is up to the agent to decidénfortant
these are in the current context, for example if planning should banated if one of
the constraints is violated, or if the agent should accept an invalid omipkie plan
when under time pressure.

Constraints provide a means of more clearly specifying agent tasks armdpmesr
cisely evaluating the resulting plans: a plan can be characterised as sgtisfyie
constraints (to a greater or lesser degree) and only partially satisfyingtsatisfy-
ing others. Annotating plans with the constraints they satisfyifatsls the integration
of the planner into the architecture of an agent by providing a convenigface
between the condition-action rules that coordinate the agent’s behswndthe func-
tions of the planner. We do not have to choose a cost threshold bédtosh it is safe
to start executing a plan; the implications of executing the currentflastare im-
mediately apparent. This approach moves the complex constraint evaluaildem
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(e.g. how close a constraint is to be being satisfied) which is bothredmtsspecific
and context sensitive out of the planner and into the reflective fayer.

We currently have an initial implementation of a time-sliced constraased plan-
ner, based onl BC', which will plan a route from an initial point to a destination point
satisfying a number of boolean and interval constraints [9]. Howeeectirent im-
plementation does not support optimisation constraints and furtbe i required to
complete the implementation and improve its performance. More worls@sreces-
sary to establish the optimality and/or completenesd BfC' and to characterise its
performance implications relative t&*.

Another area which we hope to explore is the extension and refineméa ofdta-
management planning rules which control the basic planner. For examptylid be
interesting to investigate utilising information about violatedstasints to redefine the
problem when an acceptable (e.g. valid) plan cannot be found in a reasonabletamou
of time. By monitoring the progress of the planner, e.g. the numbeoistraints sat-
isfied by the current best plan returned at the end of each time-slice, the agkht cou
get some idea of the difficulty of the planning problem. If the plardues not appear
to be making progress, e.g. all the plans found so far violate one o# mportant
constraints, the agent could elect to change the order of the constraiats pne or
more constraints or even to redefine the goal, before making another attesgive
the problem. We believe that the separation of the agent’s overall plgmaipabili-
ties into a series of basic components controlled by a collection of pigrnles will
facilitate the incremental development of additional capabilities and thietion of
more complex real-time planning strategies.
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