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Abstract

In dynamic and unpredictable domains, such as the real world, agents are continually
faced with new requirements and constraints on the quality and types of solutions they
produce. Any agent design will always be limited in some way. Such considerations
highlight the need for self-referential mechanisms, i.e. agents with the ability to examine
and reason about their internal processes in order to improve and control their own
functioning.

Some emotional states, such as debilitating grief, could be considered as disruptive re-
sponses to new circumstances. In other words, the design is unable to ‘cope’ adaptively.
This research wishes to investigate the generation of such ‘emotional” states, their detec-
tion by self-referential mechanisms, and possible coping, prevention or solution strategies
within a unifying framework of an extant broad agent architecture.

There are many theories of emotionality. Sloman’s (1981) ‘attention filter penetration’
theory provides an architectural framework for the understanding of ‘emotional’ states
that involve partial loss of control of attention — so-called perturbant states. Beaudoin
(1994) has designed an agent architecture (NML1) that, when implemented, should ex-
hibit such states. Smith (1986) states three requirements for self-referential systems: a
theory of the self, the use of this theory in guiding the behaviour of the system, and the
ability to swap between action in the world and reasoning about the self. The NML1
design only meets the final requirement. Also, the design requirements for self-control of
problematic processing states have yet to be systematically addressed.

Therefore, this work will implement a prototype agent architecture, exhibiting some kind
of perturbant state, based on a revised NML1 design. The design will be extended to
meet the requirements for self-referential systems. The aim is to design and partially
implement an NML1 that is self-referential, can exhibit ‘emotional’ states, detect such
states, and try to do something about them.

Results from this research will contribute to autonomous agent design, emotionality,
internal perception and meta-level control; in particular, it is hoped that we will i. provide
a (partial) implementation of Sloman’s theory of perturbances within the NML1 design,
ii. investigate the requirements for the self-detection and control of processing states,
and iii. demonstrate the adaptiveness of, the need for, and consequences of, self-control
mechanisms that meet the requirements for self-referential systems.
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1 Introduction

The title of this proposal indicates that the aim of the research is to build an autonomous
agent, functioning in a simulated world, that enters into processing states that can be
characterised as ‘emotional’ from an information processing perspective. The word ‘emo-
tional’ can cause terminological confusion, and is here used to locate the research within
a particular field. Its use should not imply that emotions constitute a single phenomenon,
or that the research will address the full variety of emotional phenomena. A number of
theoretical positions are assumed, namely: an abstract machine ontology of the processes
implemented in human and animal brains', Sloman’s ‘attention filter penetration’ theory
of emotionality, and the design-based approach to the investigation and design of intelli-
gent artifacts. None of the positions are defended here as such a defence would lie outside
the scope of the thesis proposal.?

The subtitle — the control of emergent states in autonomous resource-bounded agents —
states the purpose of this research with greater precision. A type of emotional state —
a perturbant state — is considered as one form of emergent state arising from a complex
architecture meeting the requirements for autonomy in a dynamic and unpredictable
environment. The economy of such problematic emergent states (their origins, effects,
detection and control) is the topic of concern.

For self-control of emergent states an agent needs self-referential mechanisms, i.e. the
ability to examine its own internal processing, compare its current functioning to a theory
of normative functioning, and, if possible, control itself to further its achievement of
current intentions. An extant agent architecture — the NML1 design — will be used as a
starting point in design-space to explore these issues.

Therefore, the basic aim of the research is to design and build an autonomous agent
functioning in a dynamic and unpredictable domain that can exhibit a type of perturbant
state, which, depending on various factors, it may detect and attempt to control.

The following section considers autonomous agents, perturbances and their connection
with self-control. The next section states the goals of the research. The final section of
the introduction summarises the contents of the thesis proposal.

'See (Sloman, 92b).
However, see the appendix I for a summary of the design-based process and section 3.1.1 for an
exposition of the ‘attention filter penetration’ theory.



1.1 Autonomy, emotionality and self-control

Agent architectures are abstract machines designed for embodiment and autonomous be-
haviour within dynamic environments. The agents considered here have multiple motives,
gain information about the state of the environment via sensory modalities, and alter their
environments to achieve goals via efferent action. An autonomous agent should maintain
itself over time and be the source of its own control.

Autonomous behaviour implies that an agent has its own agenda within a world. For
example, consider a word-processing program that passively accepts commands from a
user and only occasionally attempts to control its own input by posting error messages
or rejecting illegal input. In contrast, an autonomous agent will have a set of concerns
that it will attempt to satisfy via action that affects its own input, i.e. it is an active
program, as opposed to reactive, and does not need a user to control its actions.

Humans and animals conform to this definition of autonomous agents. Humans, and
perhaps many animals, also exhibit emotionality. Indeed, the importance of emotional
behaviour can be understood by considering literature, which is replete with examples of
emotional behaviour — for instance, consider Greek tragedy with its grand themes of loss,
pain, jealously and suffering. Two questions immediately arise — what is ‘emotionality’,
and why is it such an important aspect of many autonomous agents, particularly humans?

The answers to these questions are interconnected. Consideration of the requirements for
autonomy and analysis of what constitutes emotional phenomena converge to an architec-
tural answer (Beaudoin & Sloman, 91 & 93). Resource-bounded autonomy in a sufficiently
rich, dynamic and unpredictable environment requires some type of selection process that
protects resource-limited processes from unnecessary interruption and computation. And
an essential characteristic of many emotional states is that they cause partial loss of con-
trol of attention. For example, a mother grieving for her departed daughter is unable
to think about anything else, despite the fact that she may have many pressing goals
to achieve. In other words, by performing a computational abstraction (physiological
responses and reports of subjective feelings are temporarily placed to one side) we can
posit that an important subset of emotional phenomena is closely connected with the
interruption of a resource-limited control mechanism. Autonomy and perturbances are,
therefore, architectural cousins; hence the importance of emotions in autonomous agents
such as ourselves. (These issues are developed further in later sections.)

In dynamic and unpredictable domains, such as the real world, agents are continually
faced with new requirements and constraints on the quality and types of solutions they
produce. Any agent design will always be limited in some way. It is finite, whereas the
world can potentially provide infinite combinations of sensory inputs — new situations —
that expose design flaws or limitations. For example, consider long-term debilitating grief
that can prevent the person from carrying on with their life. This could be an example



of an architecture responding maladaptively (with regard to pursuing its concerns® to a
new, unexpected eventuality. The need for learning arises here. However, learning will
be placed to one side in this proposal and instead we will concentrate on another type of
mechanism, probably formed by some kind of learning process, which is a design solution
to the problem of achieving greater adaptivity from an extant design: self-referential
mechanisms.

An immediate problem is what constitutes a ‘selt’. Without an answer we will be unable
to distinguish between a self-referential mechanism and other types of mechanism. ‘Self’
is a notoriously abstract concept and has different meanings within different research
fields. For our current purposes we will define the ‘selt” as the totality of architectural
elements at time 7', and a self-referential mechanism as a new architectural element
formed after time 7' designed to overcome a perceived limitation of the earlier design
and whose object of reference is either the earlier design or some subset of the earlier
design. Therefore, different self-referential mechanisms may refer to different ‘selves’.
This is an architecturally dependent, genealogical definition of the self, and allows us to
use such useful, intuitively graspable concepts such as ‘self-control” without commiting a
reification error with the concept ‘self’. 4

Investigation of dynamic, evolving, broad architectures is beyond the reach of current
research efforts. However, agent architectures are evolving even as these lines are read.
An examination of current designs in the Al literature for autonomous agency reveals a
number of common elements, namely: mechanisms for goal generation, goal management
and execution, i.e. the formation of intentions from beliefs and desires. For example, the
NML1 (Beaudoin, 94; Sloman et al., 94) design has generactivators (generate and react-
ivate goals), an interpreter that forms intentions from goals, and an execution subsystem.
Therefore, we can define this stage in the design of autonomous agents as what we mean
by the ‘self’. The self, therefore, is that which forms intentions from beliefs and desires
(and will differ in detail from architecture to architecture).

We can now link autonomy and perturbances with self-control. To recap, the requirements
for resource-bounded autonomy pose design problems. One design solution posited is
that of a filtering mechanism that protects resource-limited processing. Perturbances are
deemed to be closely connected to interruption of attention. Often perturbant states
can be considered disruptive rather than interrupting, as in the case of debilitating grief.
In other words, a complex architecture can enter into states that are maladaptive, i.e.
limitations of the extant design are revealed. A type of self-referential mechanism — a
self-control mechanism that can detect problematic states and attempt to do something

3The word ‘concern’ is used in a similar way to Frijda (1986), i.e. concerns are that which cause the
generation of goals. For example, the concern to prevent hunger may cause the generation of a goal to
eat fruit.

1A distinction is made between a self-referential mechanism and a self-referential system. The former
is a mechanism, embedded within a self-referential system, that refers to the ‘self’, whereas the latter is
a system that contains self-referential mechanisms referring to ‘itself’.



about it — would therefore be adaptive and improve the functioning of the extant design.

Some people experiencing grief are ‘stronger’ than others, can lay aside their pain and
make a supreme effort to rebuild their lives — they have better self-control.

1.2 Goals of research

The research is intended to contribute to three related areas: first, Sloman’s ‘attention
filter penetration’ theory of emotionality; second, the extension and implementation of
(probably a subset) of the NML1 agent architecture design; and third, consideration
of the requirements for self-control, in particular, how an agent could detect its own
problematic processing states, e.g. perturbant states, and try to do something about
them. This work, therefore, builds directly on previous work in the Attention and Affect
project (Wright, 93) and aims to extend the requirements, design and implementation of
the extant broad agent architecture. The design and implementation of a self-referential
agent, able to detect its own global processing states and employ self-control strategies
for improved functioning will be a new contribution to the field.

A number of questions need to be addressed, primarily:

o Does the NML1 design meet its requirements, i.e. will a prototype implementation
actually work in the domain?

o If not, in what ways will the design need to be improved, refined or altered?

e Does a working implementation enter into the expected problematic processing
states theoretically postulated? E.g., perturbant states that involve repeated inter-
ruption of ongoing processing by an insistent goal.

o How does this implementation relate to Sloman’s ‘attention filter penetration’ the-
ory of emotionality?

e In what ways the theory will need to be clarified and revised after the process of
implementing a demonstration of an ‘emotional” agent?

e What are the requirements for an agent to control its own (problematical) global
processing states?

o What set of designs for self-control mechanisms could satisfy these requirements?

e What consequences do self-control mechanisms have for the rest of the architecture
and how do they effect emotionality?



e Can any new theoretical conjectures be obtained, especially with regard to patho-
logies of human motive processing and extant psychological theories?

The consideration of such questions will encompass theories of emotion, agent architec-
tures, self-referential mechanisms such as self-modelling and self-control, internal percep-
tion, and meta-level control. The research will attempt to unify disparate concerns within
the design and implementation of a broad agent architecture.

However, it is important to have definite research aims that can be achieved in the time
available. And it is better to begin with modest aims and add new goals later rather
than be overly ambitious from the start. Consequently, I'll summarise two research goal
scenarios, one modest and the other ambitious.

Modest goals. Build a working prototype of the NML1 design, add a plausible emo-
tional scenario to the agent’s domain in order to explore the concept of perturbant states,
and relate this implementation to the ‘attention filter penetration’ theory of emotionality.
It is expected that the design of NML1 will be extended during this process. Require-
ments for and design of self-control mechanisms will be presented. Achievement of the
modest research goals will directly contribute to previous work in the Attention and Affect
project, the design of broad agent architectures, and to the understanding of emotionality.

Ambitious goals. Achievement of the modest goals, plus: implementation of self-
control mechanisms within the agent that can detect a class of problematic, global emer-
gent states, perform a diagnostic analysis based on a theory of the self, and attempt to
improve functioning by either preventing the emergent state, coping with it, or eradicat-
ing the state entirely. The implementation of self-control mechanisms in the agent will be
related to the space of possible designs for self-controlling mechanisms, including an ana-
lysis of the various design options that meet the requirements. How self-control is learnt
and mechanisms formed in a dynamic architecture will be considered, and such consid-
erations related to extant psychological theories of self-control (for example, (Kuhl, 92;
Kuhl & Kraska, 89; Heckhausen & Kuhl, 85; Rachlin, 94)). The varieties of self-control
of emotional episodes will be investigated, including how emotions may decay over time.
Achievement of the ambitious research goals will, in addition to the contributions made
by the modest goals, add to the understanding of the mechanisms for self-control in
people, especially with regard to emotional episodes, and help clarify the terminology
and concepts within psychological theories from a design-stance.

The title of this thesis proposal refers to the modest research aims and the subtitle to
the ambitious research aims. It is my expectation that the actual achievements of this
research will fall somewhere between these two scenarios.



1.3 Outline of proposal

The structure of the thesis proposal is as follows. Section 2 presents a literature re-
view of existing agent architectures from the field of Al. A distinction between reactive,
deliberative and hybrid architectures is made, and the problem of decision-theoretic con-
trol flagged. Critical comments are provided where appropriate and any similarities
between architectures highlighted. Requirements and constraints for autonomous agency
are briefly summarised. The review concludes with a summary of the NML1 architecture,
which will serve as the architectural basis of the research. Section 3 presents an overview
of emergent states, concentrating on problematic emergent states in a NMLI (or PRS)
architecture. The consideration of emergent states is linked to a discussion of emotions.
A few emotion theories are briefly discussed. Simon and Sloman’s ‘interrupt’ theories are
reviewed and the notion of a perturbant state introduced. The requirements for detect-
ing such global states by self-controlling mechanisms are discussed, followed by design
options for the control of such states and how this may relate to emotional behaviour.
Section 4 presents research aims, including a plausible emotional scenario that can be
implemented in the nursery domain to explore the issues outlined in section 3. Criteria
for success are given and how the research is to be evaluated. Finally, a high-level plan
is provided for the production of the final thesis within the time available.



2 Agent Architectures

The agent architectures reviewed in this section are attempts to provide mechanisms
for coherent and effective behaviour in complex, unpredictable and dynamic domains,
such as the real world. The requirements necessary to achieve such behaviour, and some
constraints on any proposed solutions, are outlined in section 2.1. In section 2.1.1 an
outstanding problem in the design of autonomous agents is flagged as an illustration
of the problems involved in such an endeavour. The following sections describe agent
architectures selected from the extant literature, providing critical comments where ap-
propriate. Agent architectures are classified according to which aspect of the requirements
for autonomy they are designed to address. For example, reactive architectures are con-
cerned with immediate responses to the current situation, deliberative architectures®(not
reviewed here) are concerned with goal-oriented planning, and hybrid architectures (both
uniform and layered) are concerned with combining both reactivity and deliberation. It
is assumed that any sophisticated, autonomous agent will need to combine both reaction
to unforeseen events and forward planning for effective operation; therefore, it is existing
hybrid architectures that are of most interest and relevance.

2.1 Requirements and constraints for agent design

A dynamic, unpredictable, real-time environment entails certain requirements for auto-
nomous agent functioning. For example, there will be too much information (both ex-
ternally in the environment, and internal within the agent) in any one current situation
(Hayes-Roth, 90). The agent will need to focus its attention and ignore irrelevances.
Information will be widely distributed both in time and space, requiring the agent to
search for relevant information and remember and recall past information. The quality
of sensory input will vary; in other words, the agent will need to be able to cope with in-
complete or partially incorrect information. Over time the environment will place diverse
demands on agent functioning: for example, at one moment the agent may have very
little to do and have the luxury of deliberation while at the next moment the agent may
need to perform many complex tasks quickly and efficiently. The unpredictability of the
environment renders complete planning prior to action impossible. Instead, opportunities
and threats will need to be constantly monitored for. Also, some planning will need to
be sketchy, the precise details chosen during execution. Therefore, an autonomous agent
needs to be robust, flexible and have the ability to cope with variable stress to survive in
a ‘real-world’ environment (Beer et al., 90).

A number of conditions need to be met for autonomous activity. The agent must be able

®Such as IRMA (Bratman), AUTODRIVE (Wood), Behaviour Hierarchies (Durfee & Montgomery),
Agent-Oriented programming (Shoham) and Homer (Vere and Bickmore). For an overview, see (Fer-
guson, 92).
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to react in a timely manner — acting at opportune moments and curtailing its reasoning
processes if necessary. The agent’s behaviour needs to be coherent, i.e global coordina-
tion of actions, otherwise the agent will be unable to successfully complete a plan. This
requires the ability to select between multiple motives (Sloman, 85), prioritise goals and
decide on a level of commitment towards current intentions. But to react to new, motiv-
ationally relevant events in the environment the agent will need to interrupt its ongoing
processing and switch its attention to new contingencies (Sloman, 87). And to detect such
events it must be able to generate motivations asynchronously to current processing. A
level of coarse-grained parallelism is therefore likely to be necessary (Maes, 90) to enable
execution of current intentions and at the same time check for new information that may
entail intention revision. The agent will need to be adaptable, i.e. alter its behaviour in
different and new situations. It will need to learn from mistakes and successes. There-
fore, architectures that model autonomous agency will need to integrate a wide range of
behavioural capabilities. (Bates et al., 91) term such architectures as ‘broad’.

Finally, the agent is constrained in various ways — it is not omniscient or omnipotent.
Its computational resources are assumed to be bounded. For example, humans find it
difficult to listen to more than one conversation at once. Also, the agent will be physically
constrained — it will only be able to move at a certain pace, manipulate a finite number
of objects and so on. Good design solutions will manage an agent’s finite resources as
efficiently as possible. The following section highlights one aspect of this: the problem of
resource-bound practical reasoning.

2.1.1 Decision-theoretic control

The need to meet temporal deadlines coupled with resource-boundedness requires that
an agent be able to control its search for solutions, trading quality of solution for speed of
response if need be. A number of methods have been proposed to deal with this problem.
(Boddy & Dean, 89) have described an expectation-driven iterative refinement frame-
work. Planning within this framework uses a set of decision procedures called anytime
algorithms that can return answers at any time but return better answers with more time.
The use of anytime algorithms together with a deliberation-scheduling algorithm, which
allocates resources to anytime algorithms according to projected expectations regarding
their performance, is put forward as a solution to time-dependent planning problems.
(Lesser et al., 89) provide an alternative to anytime algorithms.® They state that a prob-
lem solver should use different types of approximate processing to arrive at solutions, i.e.
depending on the time constraints and the nature of the problem the agent can employ dit-
ferent reasoning strategies with different computational costs. They provide a taxonomy
of approximations and dimensions of solution quality. For example, data approximations
can provide an abstract view of data resulting in a simpler search space. These two
approaches are particular cases of the more general problem of decision-theoretic control

6Although their framework can include iterative refinement of solutions.
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(rational deliberation under resource limitations). (Horvitz et al., 89) provide a model
of normative rationality under scare resources based on utility theory (or decision the-
ory). Reasoning about the utility of acting now or deliberating further, and controlling
this decision-theoretic inference itself, is a problem that needs to be solved for effective
autonomous functioning. They maintain that decision theory provides the foundations
for a principled approach to meta-level decision making and use measures of value and
utility to achieve this. They utilise Good’s (1968) distinction between type I and type
IT rationalities: type I is rationality that is consistent with the axioms of decision-theory
regardless of the cost of inference, and type II is behaviour that takes into account the
costs of the reasoning process itself. An autonomous agent in a dynamic environment
needs type Il rationality. However, (Horvitz, 87) moves the emphasis away from providing
a complete normative analysis of decision-making. He states that limited resources for
engineering and computation make such an analysis impossible. Also, in many situations
normative reasoning (i.e., basing one’s decisions on expected utility) is inadequate due
to agent resource limitations. In other words, knowledge about the reasoner itself needs
to be included in the reasoning problem. (Doyle, 89) proposes a theory of rational self-
government (a theory of efficient thinking) based on decision-theoretic rationality. Truly
rational thought is, in this conception, defined as each decision step having the maximum
expected value with respect to the agent’s expectations and preferences. Doyle argues
the need for focus of reasoning (selective rationality), and effective allocation of mental
resources; and he provides an analogy between political superstructures and the manage-
ment of rationality. (Bratman et al., 88) address the same problem of resource-bounded
reasoning and argues for the efficacy of a filtering mechanism that constrains the overall
amount of practical reasoning necessary. This is an architectural solution to the problem
of limited rationality, as opposed to using a revised utility theory. They provide an ab-
stract design for the practical reasoning component of an autonomous agent, including
a filter that protects the reasoning system and a filter override mechanism that allows
interruption when opportunities or threats to current intentions are detected.

Investigation of the utility of utility theory, and the proposal of various design solutions
to constrain reasoning, are current areas of research concern. Many unsolved problems
remain.

2.2 Reactive architectures

In reaction to the unrealistic requirements of classical planning a new design paradigm
has been proposed, notably by Rodney Brooks at MIT, that seeks to situate and test
agents within real world domains. Brooks has labelled this research paradigm ‘nou-
velle AT (Brooks, 90). Nouvelle Al declares that the physical symbol system hypothesis
of traditional Al is fundamentally flawed. An alternative hypothesis is counterposed:
the physical grounding hypothesis, which states that intelligence is decomposed into be-
haviours rather than functional, information processing modules. In Nouvelle Al each
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module produces a behaviour whereas in GOFAT (Good Old-Fashioned Al) combinations
of modules produce behaviour.

The subsumption architecture (Brooks, 91a) is an instance of Nouvelle AI. The beha-
viours of a physical robot are the building blocks of the architecture. Brooks has built a
sequence of subsumption architecture robots that operate successtully in the real world.
Each behaviour subsystem is a computational unit connected to others via wires that
form a layered architecture. There is no explicit representation of goals or other symbolic
structures. Some behaviours inhibit or prevent others, ‘subsuming’ the lower level beha-
viour into a higher level synthesis. For example, the behaviour avoid-obstacles could be
subsumed by the higher level behaviour chase-light to synthesise a behaviour of chasing
a light while avoiding obstacles. By adding layers of behaviour producing subsystems
Brooks hopes to engineer increasingly complex robots that are robust enough to operate

in the real world (Brooks, 91b).

The work of Agre and Chapman is very much in this vein. In (Agre & Chapman, 87)
they describe Pengi, an agent that plays a commercial arcade video game called Pengo, a
domain that places real-time demands on agent functioning. The design of Pengi is mo-
tivated by a theory of activity that emphasises the importance of routines in the dynamics
of everyday life. A routine is a pattern of interaction between an agent and its world, and
is not represented within the agent. In addition to routines, a new way of representing the
world is introduced, variously called indexical-functional aspects, indexical representation
(Chapman, 89) or deictic representation. A deictic representation represents only what is
necessary, immediate and functionally important to the agent in its current situation. For
example, instead of representing the location of a block as, say, (AT BLOCK-213 427
991), Pengi will employ unitary entities such as the-block-1'm-pushing that gain semantic
significance within a particular action context.

In addition to Pengi, Chapman has developed the Sonja system (Chapman, 90) that uses
instructions in the course of visually-guided activity. Sonja is an agent operating in the
Amazon domain; she has various tasks to perform and a human instructor can help and
guide Sonja via natural language commands. Sonja has the ability to interleave various
courses of action at once but, like Pengi, uses no explicit representation of plans. The
system, a la Brooks, is implemented as a digital circuit with explicit connections between
sub-elements. Underlying this system is the belief that the world is its own best model,
i.e. it is more efficient to look at the current, concrete situation for action selection than
relying on deliberation and complex, internal models of the real world.

The behaviour-based approach of Brooks and the concrete-situated approach of Agre
and Chapman share the fundamental concern of building architectures that are robust
and successful in real world domains. Both eschew traditional plan representation and
execution, and both believe that for Al to progress it must first solve the problems of
situated activity. Brooks’ robots are a practical demonstration of the efficacy of such
an approach for low-level behaviours. The strength of behaviour-based architectures lies
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in their ability to use local patterns of activity in their current surroundings as a basis
for generating pre-compiled or simple to compute action responses. However, claims and
theoretical assertions are made for Nouvelle Al that are untenable. As the behaviour-
based approach could be construed as a direct challenge to top-down research approaches
in particular and the catholicity of the design-based approach in general it is worthwhile
taking some time providing a critical overview.

2.2.1 Reactive architectures in context

First let us consider representations. Chapman states that diectic representation is a new
form of representation based on relationships, not identity, i.e. diectic representations
refer to relations between objects whereas identity representations refer to the objects
themselves (in Chapman’s view at least). This claim can easily be weakened: a strong
tradition of representing elements of the world in terms of their functionality in relation
to the viewing subject exists in philosophy, finding its definitive formulation in such
Existentialist thinkers as Heidegger, Husserl, Merleau-Ponty and Sartre (Cooper, 90).
Heidegger’s concept of ready-to-hand (zuhanden) is precisely the idea of constituting the
world in terms of functionality.

Diectic representations undoubtedly play a role; indeed, they may be a phylogenetically
older form of representation more suited to routine activity and simple stimulus-action re-
sponses on the level of insect-like intelligence. However, explicit representation schemes
are needed for more complex control tasks and behaviours. Recent work in planning
concerning the detection of opportunities ((Pryor, 94) see later) could provide an in-
termediate representational layer between diectic representations and traditional plan
representations via ‘reference features’ that link plans to functionally relevant features of
the environment.

Chapman criticises identity-based representation schemes as they ‘take for granted that
the world comes already neatly divided into objects.” This attacks traditional repres-
entation schemes from a differing set of assumptions. ‘Objective’ representations of the
world, the starting point of many Al implementations, can be the result of functional
differentiation of concepts through activity. That this formative process is ignored or
assumed by identity-based representation schemes is not an argument against their use
or existence.

Finally, there is an implicit assumption contained in the statement that the ‘world is
its own best model’; namely, that perception is the sole source of information about
the world. A ‘concrete’ situation for an agent also includes its own internal environment:
beliefs, desires, memories and so on. In many instances action selection will be more easily
achieved by ‘looking’ at past experience rather than the immediate, external environment;
for example, deciding to press the right button rather than the left because the previous
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time you pressed the left button you received a shock.

Chapman claims that ‘the problem of action selection is easy and has been overem-
phasised’ as ‘Sonja performs actions because they make sense in concrete situations, not
because they are the next step in a program’. This is clearly a case of solving a problem
by avoiding it: the requirements for Sonja are such that it is not faced with the problem
of multiple motives, or even multiple strategies for achieving the same action outcome.
For example, Sonja has no long-term goals and therefore the problem of such a goal con-
flicting with the demands of the immediate situation cannot arise. The problem of action
selection is effectively factored out. Also, some action selection requires forward planning
using hypothetical reasoning to search for solutions. The Sonja architecture is incapable
of providing this functionality.

Let us now examine the physical grounding hypothesis of Brooks. The first thing to note
is that it is not a hypothesis in any real sense, rather it is a design recommendation that
systems should be built bottom-up using behavioural decomposition and thereby generate
representations that are causally connected to the environment, i.e. physically ‘grounded’.
Counterposing this design attitude to the physical symbol system hypothesis, which is
essentially an ontological statement concerning the embodiment of abstract symbols in
physical machines, is misleading.

Brooks can be viewed as directly challenging a top-down design-based approach in the
following quote:

I, and others, believe that human level intelligence is too complex and little
understood to be correctly decomposed into the right subpieces at the mo-
ment and that even if we knew the subpieces we still wouldn’t know the right
interfaces between them. Furthermore, we will never understand how to de-
compose human level intelligence until we’ve had a lot of practice with simpler
level intelligences.

This argument can be summarised as bread today, jam tomorrow and falls prey to reductio
ad absurdum. Science would need to drop any pretensions to economic theory, social the-
ory, psychology and so on, and instead concentrate on non-complex phenomena; however,
even a simple Hydrogen atom is a rich, complex and unpredictable structure not entirely
captured by quantum theory. Nothing is simple. What Brooks ignores is a fundamental
idea underlying all scientific endeavour — that of levels of abstraction. A top-down de-
composition, taking as its starting point the external behaviour of a complex system, can
make strides towards a theory of intelligence at a high level of abstraction. Undoubtedly,
such a theory may be wrong and miss many significant details, but it may also contain
important elements that provide an explanatory framework that aids investigation of the
phenomena; and, more importantly, we can learn from our mistakes. There is a need for
both approaches. Bottom-up approaches need top-down theories to constrain possible
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design solutions and vice versa. It should be noted that the design-based approach recog-
nises this and subsumes both top-down, middle-out and bottom-up approaches within a
unifying framework.

Brooks provides a further argument, based on evolution, for concentrating on perception
and action within a bottom-up design approach. He states that it took much longer for
nature to solve the design problems of situated activity when compared to the time taken
to evolve higher level reasoning abilities; hence, the design problems of situated activity
must be harder and consequently Al should concentrate its efforts in this area. (Etzioni,
93) makes the point that there is no correlation between time taken to evolve and design
complexity; in fact, it is well known that evolution occurs in fits and starts (the notion
of punctuated equilibria) and is heavily dependent on factors such as climactic change.

There are many more arguments that can be marshalled against the behaviour-based ap-
proach and Nouvelle Al in general. For example, it is a trivial matter to demonstrate that
humans employ plans and think ahead. The assumption that non-trivial behaviour can
be strictly situationally determined has yet to be demonstrated. It is inconceivable how
any behaviour-based architecture could cope with explicit global task constraints, such
as deadlines. (Pryor, 94) makes the point that behaviour-based architectures make use of
world regularities at design-time (by pre-compilation of action selection in the connectiv-
ity of wires) but makes no provision for discovering such regularities at execution-time.
Brooks recognises there may be a problem when attempting to scale up the subsumption
architecture to accommodate many more behaviours. Therefore, the problem of coordin-
ation and control of behaviour producing subsystems remains. Such systems may lack
flexibility; for example, the reaction time of the system may diminish as the number of
behaviours increases. (Norman & Long, 94) illustrates how such behaviour-based sys-
tems become inefficient when a multiple-goals requirement is introduced and argues that
a symbol manipulating mechanism is necessary to overcome this drawback. (Etzioni,
93) shows that simulated domains, such as the UNIX operating system, can satisfy all
the real world requirements that Brooks deems necessary for situated activity; and he
also makes the important point that designing and implementing ‘softbots’, or simulated,
software robots, is a much speedier process than building real, physical machines.

The claims of greater validity made by Nouvelle AT over GOFAI cannot be supported.
Many of the arguments stem from designers starting from different sets of requirements.
It is highly likely that subsumption-like, behaviour producing subsytems exist in nature
and have evolved to solve the problems of situated activity outlined by Brooks, Chapman
and Agre. Different designs satisfy different regions of niche-space. To argue that one
approach is intrinsically superior to another is unnecessarily divisive. The design-based
approach views differing research paradigms, be they bottom-up, top-down or middle-
out, as essentially complementary. Al can afford to advance on all fronts, not just the
one.
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2.3 Hybrid architectures

Hybrid architectures are concerned with combining reactivity and deliberation”, i.e.
event-driven and goal-driven activity.

Layered hybrid architectures are designs that address the need for reactivity and
deliberation by proposing separate systems for each task and a layered control framework
for their integration within a single agent. Firby’s RAP system, Ferguson’s TouringMa-
chine, Pryor’s PARETO and Bates’ Hap are all examples of layered hybrid architectures,
although this list is by no means exhaustive.

2.3.1 Combining Reactive Action Packages with deliberation

(Firby, 87) makes the point that having to choose actions at execution time is unavoidable
in a complex, dynamic domain; i.e., reactive planning must occur at some level in any
autonomous system to maintain robustness. An agent cannot plan completely in advance:
uncertainty prevents correct reasoning, and urgency constrains the time available for such
reasoning. Reactive planning of some kind will therefore be needed. A more deliberative,
classical planning scheme could then be implemented upon such a reactive ground.

Consequently, Firby has proposed a model of purely reactive planning based on the
concept of Reactive Action Packages, or RAPs. Each RAP can be viewed as an inde-
pendent entity embodying a goal that competes for processing resources with other RAPs.
It is important to note that there is no prediction of future states within a RAP system
— plan selection is done entirely at execution time. A RAP may contain explicit sensory
tasks within its plan allowing the same plan execution mechanism to deal with action
execution and sensory guidance. Each RAP obeys three principles while running: which
action to execute next is based only on the current world state, when a RAP finishes
successfully it is guaranteed to have satisfied its goal, and a RAP will only fail if it does
not know of any way to reach its goal from the current state. Each RAP has a pre-defined
set of methods for achieving a goal and only need choose between these paths (called the
task net) rather than construct new ones. A RAP, therefore, is a structure that links a
goal, a success test for achievement of the goal, a collection of methods to achieve the
goal applicable in different contexts, and invocation conditions that determine when a
particular RAP is appropriate.

The RAP control algorithm is designed to address the problem of execution monitoring

"Not to be confused with systems that combine connectionist and symbolic mechanisms. The hybrid
architectures outlined here are designed to combine reactive and deliberative capabilities, and could
employ connectionist and/or symbolic methods to achieve this aim.
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and replanning in uncertain domains. A RAP interpreter and execution queue provide a
mechanism for coordinating competition between RAPs. Such a scheme allows interleaved
RAP execution as, for example, when a running RAP stops and returns to the execution
queue to wait for a subgoal to complete; in this situation the interpreter can choose
another RAP to run in its place. The problem of goal selection, or choosing which RAP
to run next, is based on temporal deadlines and an ordering on RAPs made by task nets.

Two limitations of the RAP system are outlined by Firby. A RAP may fail without
preventing the original conditions in the world from re-generating the failed RAP. This
could lead to an indefinitely long loop. Also, the RAP system cannot think ahead. Both
these limitations point to the need for an extra layer of control that places constraints on
RAP behaviour prior to execution; in other words, neither urgency or uncertainty obviate
the need for more deliberative decision making. Hence, in (Hanks & Firby, 90) the RAP
system is extended by considering the extra, deliberative layer of control needed in an
effective, autonomous agent.

The addition of planning ahead and reasoning abilities generates two new design prob-
lems: how to deliberate, and how to coordinate deliberation and reactive execution. This
problem is further divided into the representation problem (how to model a complex and
dynamic world) and the control problem (how to manage such information so that the
agent acts effectively and efficiently). Any solution to the control problem must be able
to curtail the deliberation process at any time in order to guarantee reactivity.

The combination of a RAP execution system with a deliberative layer forms a layered
architecture. The execution system has the task of generating atomic actions from a
plan using no projection, confirming the results of each action to ensure a step has
been achieved, and watching the environment for any threats and opportunities to its
current project. A deliberation system needs to incrementally improve the agent’s plans,
make predictions about the future state of the world, and react to new information and
assess how it affects the agent. Any agent architecture must coordinate an execution
system and a deliberative system. Hanks and Firby believe that the combination of an
execution system based on RAPs and a deliberation system based on a probabilistic world
model manager and projector will meet this criteria. Their layered architecture is still in
development and they provide few details of the deliberation system.

2.3.2 TouringMachines

Another example of a layered hybrid architecture is Ferguson’s TouringMachine (Fer-
guson, 92). The TouringMachine is an integrated software control architecture designed
for controlling the actions of autonomous agents operating in complex environments; in
particular, the TouringWorld, a multi-agent traffic domain. The design consists of sep-
arate activity-producing behaviours in a layered control framework, and in this sense
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resembles the behaviour producing subsystems of Brooks. However, there the similarities
end: the TouringMachine uses explicit goal and plan representation, and each activity
producing layer is not a simple control system connected via wires, but a more or less
sophisticated control algorithm.

The TouringMachine has three different control layers: a reactive layer, a planning layer
and a modelling layer. All layers operate concurrently and are independently motivated,
each with its own internal computational mechanisms. Each layer is also connected
independently to sensory input and effector output. These three layers are mediated by
an enveloping control framework.

Each layer is intended to model the agent’s environment at a different level of spatio-
temporal abstraction. For example, the reactive layer provides the agent with reactive
capabilities for immediate or short-term contingencies that higher level layers would have
insufficient time to compute responses to. In Ferguson’s implementation the reactive
layer is hard-wired, domain-specific and reactive, i.e. reminiscent of a behaviour-based
subsystem. The planning layer generates and executes plans of action to achieve the
agent’s goals. Use is made of sketchy, procedural plan structures and the system can
defer commitment to a specific subplan until run-time. The modelling layer’s function
is to attempt to detect and predict potential goal conflict situations; it achieves this by
monitoring execution (observation), abductive inference (explanation), and temporal and
counterfactual reasoning (prediction). The modelling layer will then attempt to avoid the
detected or foreseen goal conflicts. Also, using knowledge about its own functioning the
TouringMachine is able to project this knowledge onto other entities in the environment
and model their behaviour. The modelling layer, therefore, provides the agent with
reflective and predictive capabilities (what Ferguson calls metaplanning), i.e. a meta-
level layer of control. The integration of the three layers to produce consistent behaviour
is achieved using a control framework. This control framework consists of a set of control
rules (suppressors and censors) that resolve perception and action command conflicts
arising from instructions sent from different layers.

The TouringMachine architecture has been implemented and extensively tested in the
TouringWorld testbed. However, many of the planning problems in the TouringWorld are
problems of navigation: how to get from A to B, how to avoid collisions, how to arrive on
time and so on. The proposed architecture may be robust in such a domain but may not
generalise to richer domains. For example, the control framework, consisting of control
rules, shunts the control problem into a large collection of exception rules that could
prove unwieldy when the architecture is developed. The focus of attention mechanism
(i.e., deciding on what to concentrate processing power) relies on a ‘relatively static
focusing rule set’. In other words, there is no disciplined way of controlling attention in
this architecture. A final point is that the problem of decision-theoretic control (deciding
whether to deliberate further or act now) is avoided by having three layers running
concurrently, but the problem resurfaces within the mediating control framework.
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2.3.3 PARETO and reference features

PARETO (Pryor, 94) is a plan execution system that operates in an uncertain and
dynamic environment. Its embodiment and autonomous activity within such a simulated
domain entitles it to be classified as an agent architecture. The design of PARETO is
motivated by the view that information gathering and opportunity taking are essential
aspects to planning in an unpredictable domain. In addition, PARETO makes decisions
on the fly, filling in the details of sketchy plans at execution time. The system recognises
opportunities and threats to its current goals during plan execution by using a heuristic
based on reference features.

Pryor makes a distinction between the types of decision a planning system will need to
make — deferred and unforeseen. Deferred decisions arise due to the information needed
to make a decision not being available during plan formation. Deferred decisions, there-
fore, will require information gathering at execution time. The Cassandra system (Pryor
& Collins, 93) was designed to solve this problem in a traditional planning system by
including explicit decision and information gathering steps within its plan representation.
PARETO, however, was designed to address the problem of unforeseen decisions, which
are due to the unpredictability of the environment. Such decisions require opportunity
taking, i.e. detecting when an unforeseen situation is helpful for achieving a goal (an
opportunity) or harmful to a goal (a threat). PARETO recognises opportunities (and
threats) by using a filtering process based on reference features (Pryor & Collins, 92).
Reference features label functional stability, i.e. they mark the functionally important
aspects, relative to the agent’s goals, of the elements that comprise a situation. For ex-
ample, an agent may have an interview for a job and notice that a thread is showing on
their jacket. Before entering the interview room the agent spots a pair of scissors on a
desk; immediately, the agent uses the scissors to cut the thread. Thus an opportunity is
detected and taken. The reference feature used in such a transaction could have been the
functional label sharp. The goal to cut the thread would have been labelled with sharp
as one of its reference features, i.e. something sharp would be connected to the goal of
cutting the thread; and, in addition, the perceptual recognition of scissors would have
generated the reference feature sharp. A simple matching process would then detect the
opportunity. Such reference features are argued to be cheap to infer and readily avail-
able to the agent as they are computed anyway in the normal course of perception and
situated activity.

A hypothesis — the critical factor hypothesis — underlies the use of reference features.
It states that the presence of a single factor is often crucial for the existence of an
opportunity in a given situation (the presence of sharp in the above example). This
hypothesis can be directly contrasted with the behaviour-based programming paradigm
that does not attempt to use the inherent stability of the world. The critical factor
hypothesis maintains that many situation elements remain constant across many different
situations. As stated earlier, the use of reference features or something similar would
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provide a mediating representational scheme between, for example, Agre and Chapman’s
diectic representations and traditional goal representations. Pryor adumbrates such an
idea:

Reference features form the basis of an effective filter for opportunities because
they constitute an intermediate level of conceptualising the world between the
physical vocabulary provided by perception and the functional vocabulary
required to reason about goals.

The PARETO plan execution system is based on Firby’s RAP system, extending it via
a layered control architecture consisting of a robot control, plan execution and reasoning
layer. It operates in the TRUCKWORLD domain consisting of a road system, various
storage buildings, building sites in need of materials and a delivery truck. The system
has two kinds of goals: preservative goals (such as maintaining the truck’s fuel supply)
and delivery goals (such as requests for materials from workmen at the building sites).
For example, the delivery truck may be travelling to SITE 1 to deliver bricks; on the
way it notices a petrol station and takes advantage of the opportunity to satisty its fuel
preservation goal.

In PARETO reference features are used not only to detect opportunities but also for
resolving goal conflicts and as a principle for goal selection (deciding what to do next).
An additional filter mechanism is used to detect goal conflicts using a simple character-
isation of goal interactions using the reference features involved in RAPs and a table of
known, problematic interactions between the reference features (with a number of addi-
tional conditions). For example, a goal could be tagged with the label urgent and possible
interactions with other goals detected using this. This strategy for detecting goal con-
flicts is justified with the notion of effective independence, i.e. there are no significant
interactions between an agent’s goals, unless there is evidence to the contrary. Therefore,
reference features help to focus the agent’s reasoning when attempting to detect goal
interactions.

PARETO also utilises reference features to tackle the problem of deciding what to do
next. It chooses tasks for which there are known or predicted opportunities. Chapter
8 of Pryor’s thesis is dedicated to providing heuristic principles for goal selection based
on ideas such as main and side tasks, task priorities and opportunities. These principles
could be extended and perhaps provide domain-independent heuristics for goal selection.

A few critical comments are in order. No methodology is provided for choosing the ret-
erence features of situation elements, and it appears that they may have been chosen
in an ad hoc fashion. However, addressing this problem is an instance of the more gen-
eral problem of integrating learning and the acquisition of reference features — an area
Pryor highlights for future research. A central claim for the opportunity taking filter
process based on reference features is that it is computationally inexpensive; however,
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no mathematical argument is provided to support this claim. Such an analysis could
show, for instance, that there is no combinatorial explosion of reference feature match-
ing. A reference feature mechanism for opportunity taking will need to be augmented
by more sophisticated, deliberative reasoning; PARETO’s reasoning layer (although not
implemented) is designed to address this issue. But how successful are reference fea-
tures? — The PARETO implementation is able to operate autonomously and detect and
take opportunities in a dynamic domain. The use of reference features is an elegant and
simple solution to the problem of opportunity taking, and, along with the critical factor
hypothesis, is an important contribution to the field of planning and autonomous agency.

2.3.4 HAP and interactive drama

Hap (Loyall & Bates, 91) (Reilly, 93) is the reactive architectural component of Tok, a
broad agent architecture (i.e., exhibits a wide range of behavioural capabilities) designed
to operate in an environment that supports user participation in interactive drama (Bates,
94). The aim of the Hap architecture is to provide robust, reactive behaviour (like the
hard-wired architectures of Brooks and Agre and Chapman) but also allow a sophisticated
range of goal-directed, higher level actions.

Hap provides many of the mechanisms found in other agent architectures — such as
arbitrary demons, multiple active goals, and situated, run-time interpretation of plans —
but also claims to provide three unique features: mechanisms for detecting opportunities
and threats, an easily extendable plan library, and flexible mechanisms for determining
goal success without explicit characterisation of what constitutes success.

Loyall and Bates state that Hap is similar to Firby’s RAPs and Georgeftf’s PRS by
providing explicit representation of goals, supporting reactivity and handling multiple
active goals. As these other architectures are reviewed elsewhere I will concentrate on
the three unique features of Hap.

Hap can recognise the spontaneous achievement of a goal or subgoal by associating a
success test with each goal node. If this test evaluates to true then the goal has been
achieved and need not be pursued. This is opportunity recognition of a sort (but note
it is an impoverished opportunity detection mechanism compared to Pryor’s PARETO).
Additionally, threats can be detected (but not predicted) by use of a context condition
associated with each plan. If this condition fails to evaluate to true at any time during
plan execution then the plan can no longer be pursued, i.e. a threat to the plan has
occurred.

Plans can be added to a plan library at any time without the need to change existing

plans. In order to maintain coherent behaviour the notion of plan specificity is associated
with each plan. Specificity of plans imposes a partial ordering on plans. If more than
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one plan is applicable to a given goal the Hap architecture will choose the more specific
plan.

A proposition need not be evaluated to true or false in order to determine whether a plan
has succeeded. Instead, plan success occurs when a plan finishes. This subsumes the case
of an explicit plan success test by allowing a success predicate to be the final step in the
plan. This weakened plan success criterion was motivated by considering types of plans
that afford no immediate success criterion, such as attempting to communicate with a
friend by posting a letter.

It is debatable whether the above three features of the Hap architecture are unique —
other systems can detect opportunities and threats, and allow extension of plan libraries.

Uniform hybrid architectures are designs that address the need for reactivity and
deliberation by proposing a single control framework that integrates these capabilities
within an agent, i.e. do not have separate subsystems dealing with reactive and deliber-
ative functionality. Hayes-Roth’s Guardian system, Fehling’s Heuristic Control Virtual
Machine and Georgeft’s Procedural Reasoning System are examples of uniform hybrid
architectures.

2.3.5 Intelligent control

In (Hayes-Roth, 90) the characteristics of real-world environments are outlined and an
attempt made to formalise the requirements that an agent operating in such a world must
satisfy. (Hayes-Roth, 91b) presents a design based on a blackboard architecture with a
‘satisficing’ execution cycle designed to meet these requirements. It is an architecture that
can trade quality for speed of response under dynamic goals and resource and performance
constraints.

The proposed agent architecture has three subsystems that operate in parallel: the per-
ceptual, cognitive and action subsystems. Each subsystem may have an arbitrary amount
of internal differentiation. A communications interface routes data among the various
input-output buffers of the different subsystems. For example, environmental stimuli
enter the perceptual subsystem which selectively filters the input under attentional para-
meters determined by the cognitive subsystem; the communications interface routes this
information either directly to action subsystems (fast reactions) or via the cognitive sub-
system where the stimuli compete with other perceptions or internally generated events
for processing time. The cognitive subsystem performs all knowledge-based reasoning
and can send effector commands to the action subsystem. All input-output buffers of the
subsystems have limited capacity with best-first retrieval (defined along dimensions such
as relevance, importance, recency and urgency) and worst-first overflow. All reasoning
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within the cognitive subsystem utilises a global memory that represents all information
using a conceptual graph formalism. Such a global memory could include important
knowledge such as differing reasoning strategies for differing circumstances and perhaps
meta-knowledge about the differences between the various strategies.

The cognitive subsystem contains three major data structures: a cognitive buffer holding
information about events produced by reasoning actions; an agenda that holds executable
reasoning operations; and a control plan representing the agent’s intended course of
action as determined by reasoning operations. The cognitive subsystem satisficing cycle
consists of three major processes: an agenda manager identifies operations and rates the
importance and urgency of the operations with regard to the current control plan; a
scheduler determines which identified operations to execute and when and records each
successive operation as the next operation to be performed; and the executor executes the
next operation, making all necessary changes to global memory. The satisficing cycle,
instead of triggering all possible actions and executing the best one, uses the current
control plan to focus decision-making and trigger only a few important actions. The
control plan, in addition, focuses the attention of perception subsystems and imposes a
temporal order on plan execution (Hayes-Roth, 91a, 93a & 93b).

The GUARDIAN system (Hayes-Roth, 90 & 91b), an implementation of the above design,
monitors intensive care patients and has been shown to successfully respond to urgent
patient needs and also perform longer-term diagnostic reasoning.

There are a number of unresolved problems with Hayes-Roth’s architecture. Such a sys-
tem may encounter difficulties dealing with highly urgent goals that require deliberation.
As it stands, the architecture can either respond quickly via reflex-like connections from
perception to action, or via a cognitive subsystem. Only in the latter case could de-
liberation occur and it is not clear how the architecture could guarantee reactivity in
this case. Best-first retrieval from input-output buffers occurs across four dimensions
(see above). It is not clear how these dimensions interact, or if they are indeed ortho-
gonal, nor how they are computed. In addition, there is no good reason given why the
input-output buffer capacity is limited. The executor drivers compute the urgency and
importance of effector commands in order to prioritise them for execution. The goals
that generate these commands are also analysed in terms of urgency and importance
(and other factors). In other words, the computation of these dimensions is distributed
throughout the architecture and inefficient repetition may occur. The prioritisation of
effector commands by an execution subsystem may cause problems when attempting to
synchronise many execution commands across many execution subsystems; for example,
synchronising hand and arm movements. The control plan and satisficing cycle operate
in a mysterious way: it would not be possible from any of the above referenced papers to
implement the proposed design — there are too many gaps and unanswered questions and
lack of an explicit design methodology. It may be the case that the architectural solutions
Hayes-Roth proposes are domain dependent due to the application-driven nature of the
work.
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2.3.6 The Heuristic Control Virtual Machine

The Heuristic Control Virtual Machine (HCVM) (Fehling et al., 89) is a particular im-
plementation of the Schemer model, which is a general computational model of problem-
solving systems. The Schemer model is intended to model systems that are capable
of autonomous, real-time performance via event-directed, reflective control of reasoning
and action. Fach Schemer implementation is a domain independent architectural frame-
work for building problem-solving systems especially suited for resource-bounded problem
solving. The architecture combines features of blackboard architectures with modularity,
information hiding and abstract data machines normally found in object-oriented sys-
tems. A number of successful applications of Schemer have been developed, including
automated performance management of avionics systems, monitoring and task manage-
ment in a distributed information-processing system, and intelligent, real-time control of
a material composition process.

There are four major components of the HCVM: a collection of modular procedures
called handlers, an object-oriented global blackboard called the data space, a distrib-
uted triggering mechanism that determines which handlers should be executed (based
on occurrences of certain patterns in the data space), and an agenda-based scheduler
for determining which procedures are executed and when. The HCVM recognises two
different kinds of control regimes: event-driven procedure invocation and direct proced-
ure invocation. (These two control regimes are analogous to top level goal creation and
subgoal creation). Invoked handlers may be placed on the agenda, assigned priorities and
scheduled for execution.

Handlers contain procedural knowledge. There are two types of handlers — task handlers
and knowledge handlers. Task handlers are explicitly called by other handlers whereas
knowledge handlers are called whenever certain patterns of data are present. A simple
priority scheme is used for ordering tasks (and their constituent handlers) based on the
idea of different levels of importance. The same mechanism — an agenda-based scheduler
— can accommodate meta-level layers of control; for example, scheduling capabilities
may be enhanced by using ‘control-knowledge’ handlers that respond to patters in data
space, in particular the state of the agenda and various history-list structures of recent
processing. When executed these ‘control-knowledge’ handlers can directly manipulate
the agenda. Therefore, control knowledge (or meta-level control) can be distributed
within many ‘control-knowledge’ handlers whose object is the scheduling mechanism.
The inclusion of the agenda and other structures as part of the data space allows for a
limited kind of ‘self-perception’. Interruption or non-interruption of current processing is
achieved by the body of a handler explicitly specifying its interrupt conditions. When an
interrupt condition is met control can pass to a higher level handler or the agenda-based
scheduler. The degree of reactivity of the architecture is limited by the grain sizes of
the parallel problem-solving components. Also, the body of a handler may be an entire,
embedded HCVM system or systems. Consequently, a handler may be an arbitrarily
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complex abstract machine.

The HCVM architecture shares many striking similarities with the PRS system and
NML1 (next sections), in particular the use of procedural knowledge and meta-level
control procedures. One problem with HCVM as it stands is the need to explicitly specity
interrupt conditions, which could cause problems of how to detect when the conditions are
met (and the computational expense of such a process) and possible interactions between
complex hierarchies of handlers each with their own interrupt conditions. However, it
appears that Schemer-II (sketched in (Fehling et al., 89)) has begun to address this
problem.

2.3.7 The Procedural Reasoning System

Georgeft’s Procedural Reasoning System (PRS) (Georgeff & Ingrand, 89) aims to achieve
a balance between acting and decision making. It has many features in common with
Firby’s RAP system but is designed to provide more powerful mechanisms for balancing
decision making requirements against the constraints on time and information that are
typical of complex domains.

PRS consists of a database containing the current beliefs or facts about the world, a set
of current goals to be realised, a set of plans (called knowledge areas) describing processes
for achieving goals, and an intention structure containing plans chosen for execution.
An interpreter manipulates these components, selecting appropriate plans based on the
system’s beliefs or goals, and places these plans on the intention structure for execution.

PRS is an example of a BDI-architecture (Belief-Desire-Intention architecture) (Rao
& Georgeff, 91 & 92), which is a formalisation of an autonomous agent based on a
branching-time, possible-worlds model of behaviour. Although this formalisation restricts
the flexibility of the agent by requiring the agent’s intentions to be consistent, it is useful
for characterising the major components of an autonomous agent. Informally, Beliefs are
all the statements the agent believes are true in the world, Desires are all the states-of-
affairs the agent would like to bring about in the world (including its own processing) and
Intentions are commitments to action formed from the interaction of Beliefs and Desires.
Any architecture that has explicit representations of Beliefs, Desires and Intentions can
be viewed as an instantiation of a BDI-architecture.

Goals in PRS are specified using procedural logic. The use of a procedural logic is
motivated by the belief that much commonsense knowledge about the world is in the
form of procedures or sequences of actions for achieving goals. In (Georgeff, Lansky &
Bessiere, 85) a formalism is provided for a procedural logic that serves as an executable
program specification language suitable, it is claimed, for constructing complex systems.
It extends existing logics, such as temporal, dynamic or interval-based, by being able
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to express sequencing, conditional selection, nondeterministic choice, iteration and hier-
archical abstraction. This expressive power is used to automatically generate behaviours
for achieving goals. In other words, the procedural logic offers the same advantages of
some programming languages, such as Prolog, but is applicable in a dynamic rather than
a static domain. The interpreter, in this scheme, can then be viewed as the operational
semantics of the procedural language, i.e. takes the knowledge representation and uses
it in a world. In brief, the procedural logic is concerned with processes, making use of
such temporal operators as Ip (make proposition p true), 7p (test p) and #p (preserve
p), which can be combined with other conditions in an arbitrarily complex way. The
operators of many standard planning systems, such as NOAH, SIPE etc., are restricted
forms of process descriptions.

Each element of procedural knowledge, or knowledge area (KA), is a belief of the system
about the utility of performing certain action sequences in particular contexts. The KA
consists of an invocation condition and a body. The interpreter matches system beliefs
to KA invocation conditions; if unification occurs the KA can be chosen for execution
(i.e., become an intention) and its body run. At any one moment, the intention structure
can contain a number of intentions, some of which may be suspended, conditionally
suspended or deferred. Subgoals of executing intentions are posted as new goals of the
system; otherwise, primitive actions are directly executed.

Goal descriptions are not restricted to specifying desired behaviours in an external world
but can also apply to the internal behaviour of the system. These descriptions are called
metalevel goal specifications and have corresponding metalevel KAs — that is, information
about the manipulation of the beliefs, desires and intentions of the PRS itself. For
example, metalevel KAs could include various methods for choosing amongst multiple
applicable KAs, modifying and manipulating intentions, and computing the amount of
reasoning that can be undertaken given the real-time constraints of the problem domain
(i.e., decision-theoretic control and goal selection knowledge can be encoded within KAs).
This is why PRS is probably the best example of a uniform hybrid architecture — no extra
architectural element or mechanism is required to support deliberative processes as they
are treated as another form of procedural knowledge.

The interpreter is relatively inflexible and stringently bounded in execution time, yet can
be overridden whenever the system can bring more powerful decision-making knowledge
to bear. Such knowledge is encoded in metalevel KAs and can be invoked when needed;
however, these processes are themselves interruptible; therefore, reactivity is maintained.

The PRS architecture has been implemented within a physical robot concerned with

navigation and emergency tasks (Georgeff & Lansky, 89) (i.e., must interrupt its ongoing
intentions at certain junctures) and used for fault isolation and diagnosis in the Space

Shuttle.
The features of PRS that Georgeff believes have contributed to its success are its partial
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planning strategy (not examined here), its reactivity, its use of procedural knowledge and
its metalevel, or reflective, capabilities.

One problem with the PRS system as it stands is the metalevel KA invocation prob-
lem. The interpreter checks for invocation conditions once every cycle and problems can
arise when invocation conditions for a particular KA are asserted during the cycle. The
KA, therefore, may be invoked late or — if the conditions cease to hold before the next
unification process — not at all.

One attraction of the PRS architecture is the simplicity of its interpreter and the addition
of extra control knowledge in metalevel KAs. It also presents a flexible, architectural
framework for the development of autonomous agency.

2.4 NML1

The NML1 architecture is based on Georgeff’s Procedural Reasoning System, but extends
PRS by allowing asynchronous goal generation, richer goal representation, a structured
goal database, greater parallelism and a goal filtering mechanism. It is briefly summarised
here; for a detailed description see (Beaudoin, 94).

The main components of NML1 are as follows: it has a perceptual module that records
information about the environment; a perceptual control module that directs sensing
operations based on control strategies and current activities; various goal generactivators
(i.e., generate or re-activate generated goals) that respond to motivationally relevant
information in a world model; an interrupt filter that can suppress generated goals; an
interpreter that finds management procedures (similar to Georgeff’s knowledge areas) that
are applicable to goals, selecting some for execution; and an effector driver that performs
physical actions within the environment. The NML1 architecture can be divided into
three aspects: vigilation, management and meta-management.

Vigilation processes include perceptual processes, asynchronous goal generation and goal
filtering. Perceptual processes take information from the environment and store this in-
formation in NML1’s world model. Various asynchronous, parallel goal generactivators,
expressing agent concerns (e.g., eat food), search the world model for firing conditions; if
met, the goal generactivator constructs a goal representation and proposes it as a candid-
ate for filtering. The filtering mechanism suppresses goals or allows them to ‘surface’ to
the management system based on current filtering thresholds and the heuristic insistence
measure of the candidate goal. The insistence of a goal is an inexpensively computed
measure of the urgency and importance of a goal. The filter mechanism is designed
to protect resource-bounded processing from unnecessary computation and interruption.
For example, the goal to eat food would not surface had the agent recently eaten because
the goal’s insistence measure would be very low. The filter threshold level can be dynam-
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ically altered by management processes according to the current processing situation. For
example, if the management system is processing many highly important goals the filter
threshold level could be raised to prevent disturbance. If a goal surfaces it is managed.

Management processing refers to goal economy once a goal has surfaced (Sloman, 94a).
A surfaced goal needs to be decided, i.e. whether it should be rejected, scheduled for
execution, scheduled for deciding, postponed, conditionally suspended, expanded, par-
tially expanded and so on. The interpreter performs these tasks by invoking applicable
management procedures, which can contain various forms of procedural knowledge as per
knowledge areas in PRS, and runs them in parallel. The interpreter itself does not engage
in any of the management functions; rather, management procedures are considered as
independent processes with dedicated processors. The goal database is a data structure
that facilitates management of goals; it contains decisions made about goals and other
relevant information. Once a management procedure for a goal has been scheduled for
execution and is running it can dispatch effector commands to an effector module that
performs actions in the agent’s environment.

As in PRS there can be meta-level control, called meta-management processes in NML1.
(Sloman, 93c) has provided a recursive definition of meta-management:

A meta-management process is any goal-directed process whose goal refers to
either a management or meta-management process. E.g., deciding whether to
decide whether to adopt a goal, deciding when to decide whether to adopt a
goal, deciding whether to expand a goal, deciding whether which management
process to run now, deciding whether there’s too much goal-switching going
on or too many interrupts of management processes, etc.

Meta-management is concerned with assessing the priorities of various management func-
tions, deciding when to ‘think” about certain tasks, deciding whether the agent needs
to change its current processing, determining whether all relevant issues have been con-
sidered, deciding whether management processes are taking too long to arrive at decisions,
and detecting problematic processing states or episodes.

Beaudoin claims the strengths of the NML1 architecture are as follows: it benefits from
the advantages of PRS, the interpreter and management processes are interruptible, plan-
ning and physical action can occur simultaneously or interleaved, asynchronous goal gen-
erators can respond to opportunities in the environment, and meta-management processes
allow more ‘reflective’ control than, for example, behaviour-based systems.
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2.4.1 An alternative view of the architecture

The figure on the opposite page is an abstract conception of the NML1 architecture. It
is inspired by a cell analogy: management and meta-management processes are regarded
as the cell ‘nucleus’ and the world model together with goal generating mechanisms are
regarded as a surrounding ‘cytoplasm’. Below the analogy is outlined, providing an
alternative view of NMLI.

The NML1 architecture is analogous to a cell body — both are autonomous systems, both
communicate with an external world and both have internal processes. The nucleus of a
cell contains genetic material that codes for amino acids that fold into proteins; in other
words, the nucleus contains the genetic ‘program’ for cell functioning. The management
system in NML1 controls agent functioning: it manages intentions and also forms them
from candidate goals. Both the nucleus and the management system are the real ‘brains’
of the system. The nuclear membrane in a cell partitions the nucleus from the surround-
ing cell cytoplasm while allowing transfer of RNA material to and from the nucleus.
The filter mechanism in NML1 protects the management system from candidate goals
formed by generating mechanisms, but allows some goals to surface into the management
system. The cytoplasm of a cell is the protoplasm excluding the nucleus, i.e. the sur-
rounding chemical ‘soup’ and various organelles. The belief-desire substrate of NML1 is
a ‘soup’ of beliefs (a globally accessible world model®), various desires (agent concerns)
and a set of generating mechanisms that form candidate goals from beliefs and desires
(generactivators in the current design). A generactivator, for example, could be compared
to a cell organelle, such as a mitochondrion, that forms energy by utilising the chemical
energy stores in the surrounding cytoplasm. Both the mitochondria and generactivat-
ors are autonomous entities, functioning in a substrate that they use to form output.
The enclosing cell membrane can both ingest and egest material. NML1 can be thought
as having an enclosing perception-action surface that can receive information from and
perform actions in the environment. The following table summarises the analogy.

Animal cell NML1

nucleus management processes
nuclear membrane filter mechanism

cytoplasm belief-desire substrate
organelles goal generating mechanisms
cell membrane perception-action surface

8Management procedures can also be classified as beliefs as they express a declarative fact about the
utility of certain actions in certain contexts.

30



3 Emergent States

What is an emergent state? — An emergent state could be defined as a global pattern
of behaviour arising from a set of interacting architectural elements that have not been
explicitly programmed to exhibit the global pattern. There are many analogous examples
of such emergent phenomena to be found in science and philosophy. For example, the
amoeba-like undulating of a school of fish or the flight pattern of a flock of birds, or the
political superstructure that arises from the economic base in Marxist socio-philosophy.
It is not our aim to investigate the concept and varieties of emergent phenomena; rather,
it is sufficient to realise that, for our purposes, an emergent state is a global state of
affairs resulting from the dynamic interaction of many architectural elements.

The following subsection contains a discussion on what may constitute an ‘emotion’
(although we do not assume that this concept refers to a single phenomenon) and how
this may relate to emergent states in an architecture. The next subsection reviews the
theoretically postulated problematical (from a control perspective) emergent states that
could possibly occur in an NML1 (or PRS) —like architecture, followed by an outline of the
design problems that need to be solved in order to detect such states. The concluding
subsection discusses self-control and how self-referential mechanisms could be used to
avoid, prevent or solve the postulated problematic emergent states and thereby achieve
increased agent adaptivity.

3.1 Emotions and some theories

The literature on emotion is extensive and it would not be possible — or useful — to provide
a full review here. Instead, a brief, general overview is given and Simon’s and Sloman’s
design-based theory reviewed more fully.

However, it should be noted that there are difficulties contained within the literature on
emotion. (Read & Sloman, 93) highlights the problem that different researchers (e.g.,
psychologists, biologists, cognitive scientists etc.) often use different vocabulary for the
same phenomena or use the same vocabulary for differing phenomena. In other words,
there is much terminological confusion in the literature. In addition, (Pfeifer, 92) makes
the point that no consensus has been reached on what actually constitutes emotion, and
that the study of this area is riven by differing ‘schools of thought’.

(Sloman, 92a) distinguishes three types of emotion theories: semantics -based, phenomena
-based, and design-based. Semantics-based theories analyse language use for meanings;
for example, analysis of the word ‘anger’ into constituent elements. Phenomena-based
theories assume that the object of theory is known and attempt to correlate other phe-
nomena with it; for example, psychologists assume they know what emotions are and
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investigate contemporaneous phenomena, such as physiological causes and effects. In
contrast, design-based theories take the stance of an engineer attempting to build a sys-
tem that exhibits the phenomena to be explained, i.e. it here serves as a methodology
for discovering generative mechanisms. The design-based approach is deemed essential,
for without an understanding of architectures it will be difficult, if not impossible, to
resolve terminological confusions and provide clearer distinctions and new vocabularies
for the explanation of the phenomena we currently label as ‘emotional’. Some examples
of semantics-based and design-based theories are briefly presented below.

Examples of semantics-based theories are (Wierzbicka, 92) and (Dyer, 87).? Wierzbicka
defines emotion concepts in terms of ‘universal semantic primitives’ such as ‘good’, ‘bad’,
‘know’, ‘want’, ‘happen’ and ‘do’. For example, frustration can be defined as: I want
to do something, I can’t do this, therefore I feel bad; or amazement can be defined as:
something happened, 1 didn’t know before that this can happen, if I knew about this I
would have thought this cannot happen, therefore I feel something. Wierzbicka claims
that her prototypical scripts for each emotion state define necessary and sufficient condi-
tions for the use of the applicable emotion concept. One consequence of the definitions
that this theory provides is that such apparent synonyms as ‘sad’” and ‘unhappy’ can be
distinguished as different conceptual structures.

(Dyer, 87) describes BORIS, a system that takes as input a number of narratives and
reasons about what kind of emotional states the protagonists will be in. For example,
BORIS may reason that a character is frightened if this character is alone and being
followed by a shadow. To achieve such reasoning BORIS has domain knowledge about
particular scenarios built-in. BORIS includes definitions of emotion concepts in terms of
abstract goal situations based on the theoretical claim that all affects can be represented
in terms of a positive or negative state of arousal coupled with intentional information.
For instance, the affect ‘happy’ can be represented as a positive feeling of arousal coupled
with the achievement of a goal. In other words, BORIS reasons about emotional labels
based on an operational semantics of emotion concepts.

Frijda and Swagerman’s ACRES system and Pfeifer’s FEELER system are examples
of design-based models of emotionality. (Frijda & Swagerman, 87) present the ACRES
(Artificial Concern REalisation System) model built to explore Frijda’s theory of emotion.
It is a query database system with a number of concerns it wishes to fulfill. For example,
ACRES wants correct input, does not like to be kept waiting and wishes to continue to
operate. And, to confuse matters, ACRES’ knowledge domain is about emotions.

Frijda regards emotions as ‘manifestations’ of a system operating in an uncertain en-
vironment that attempts to satisfy multiple concerns. Designing a system that realises
concerns will reveal the functional need for emotional phenomena. (Frijda, 86) proposes
a seven stage emotion process consisting (very briefly) of an analyser (codes the stimulus

9Although Dyer’s BORIS system is really a mixture of semantics-based and design-based approaches
— often research projects are ‘fuzzy’ and do not fit perfectly into the classificatory scheme.
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event), a comparator (stimulus event is evaluated with regard to the agent’s concerns),
a diagnoser (determines what the agent can do about the current situation), an evalu-
ator (determines the urgency, difficulty and importance of the stimulus event), an action
proposer (including physiological change generators) and, finally, an actor that executes
physical or cognitive actions. This seven stage process is reproduced in ACRES. Frijda
and Swagerman claim that the program’s behaviour exhibits much of human and animal
emotional behaviour; for example, response interference (normal responses are changed
in emotional situations), goal changing and social signalling of emotional states.

(Pfeifer, 92) provides a critical review of his FEELER (Framework for Evaluation of
Events and Linkages into Emotional Responses) (1988) model of emotional processes. A
situation is presented to the system which arrives at an appropriate emotional response
via production rules. The left-hand side of the rule corresponds to the dimensions of the
classification of various emotions (such as positive or negative evaluation) and the right-
hand side generates the ‘emotional’ response. Pfeifer makes the point that FEELER 1is
not a model of the generative mechanisms underlying emotional responses but rather a
program that reasons about emotions. Meuller’s (1990) DAYDREAMER program can
similarly be criticised.

3.1.1 Simon and Sloman’s design-based theory

H. A. Simon (1967), in a seminal paper, presents the beginnings of a design-based theory
of emotionality. Simon outlines a number of important themes and ideas, primarily:
that human behaviour is characterised by having multiple goals, that motivation can be
thought of as that which controls attention at any given time, and that human behaviour,
in many circumstances, can be interrupted. These ideas form the basis of his proposal
that there is a close connection between the operation of an interrupt system and much
of what is generally called emotional behaviour.

Any interrupting stimulus (e.g., the presence of a predator) '° is supposed to interrupt
ongoing goals in the central nervous system and substitute new goals to deal with the
altered situation producing, amongst other things, emotional behaviour (e.g., the flight—
fight—fright response). Other effects of an interrupting stimulus include arousal of the
autonomic nervous system and production of feelings of emotion. Simon’s computa-
tional theory is primarily concerned with goal interruption and consequent change of
behaviour, rather than physiological and subjective affects. In other words, this theory
views cognition (computational processes) as determining, i.e. any response program (to
the interruption) controls the activation of the autonomic nervous system producing the
feelings of emotion, and not vice versa.

YEnvironmental stimuli are not the only entities that can activate emotion (cause interruption of
ongoing ‘programs’): ‘memory images’ and ‘drives’ may also interrupt current goals.

33



Interruption is needed to serve the real-time needs of the organism. Simon distinguishes
three types: needs arising from uncertain (or unpredicted) environmental events (as in the
predator example), various physiological needs (internal stimuli; for example, hunger),
and ‘cognitive associations’ (e.g., memory associations that cause anxiety).

Simon also flags the issue of adaptivity versus non-adaptivity of interruption. The emo-
tional stimulus is to be considered as generally more interrupting than disrupting serving
the real needs of the organism based upon some normative evaluation. However, in certain
cases, the emotion-producing stimulus may be persistent and intense causing the invoked
program response to be repeatedly interrupted resulting in maladaptive behaviour.

Issues of learning emotional behaviour are also raised. Learning can change the efficacy
of certain stimuli to cause interruption, or allow new associations to cause previously un-
interrupting stimuli to interrupt. In addition, the organism may acquire new or modified
response patterns to interrupting stimuli. Learning will tend to reduce emotionality of
response as situations become more familiar.

Simon summarises his own theory as follows:

The theory explains how a basically serial information processor endowed
with multiple needs behaves adaptively and survives in an environment that
presents unpredictable threats and opportunities. The explanation is built on
two central mechanisms: 1. A goal-terminating mechanism [goal executor]

. 2. An interruption mechanism, that is, emotion, allows the processor to
respond to urgent needs in real time.

A. Sloman’s ‘attention filter penetration’ theory (Sloman & Croucher, 81; Sloman, 85;
Sloman, 87; Sloman, 92¢) is an extension of Simon’s theory. It introduces new, archi-
tectural detail implicit in Simon’s paper. A variable threshold interrupt filter (or filters)
is proposed that controls the ability of new motivators, thoughts or percepts to disturb
or divert attention. The need for a filter mechanism relies on the assumption that on-
going activities use resources, both cognitive and physical, that are limited; therefore,
these activities will need protecting from interruption to ensure adaptive behaviour. The
variability of the threshold allows the level of protection to be dependent on context.

Sloman’s theory focuses on interruption of current cognitive processing rather than Si-
mon’s focus on interruption of current goals. Emotional states involve a disposition to
divert attention without necessarily disturbing ongoing goals or actions. Three dimen-
sions along which motivational states can vary are distinguished: insistence, importance
and urgency. The insistence of a motivator is its propensity to generate emotional states
(interrupt ‘attention’), and is a heuristic calculation of the importance and urgency of
the motivator, i.e. only important or urgent (or both) motivators need to interrupt at-
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tention. It is heuristic as it needs to be computed inexpensively without diverting the
very resources the filter mechanism is designed to protect.

Insistence, therefore, is a dispositional state — it has a tendency, or potential, to disturb
and divert attention but need not actually surface through the filter or disturb ongoing
processing. Sloman describes the strong potential for disturbance and diversion of at-
tention as a characteristic of many of the states called emotional. These states can exist
without diversion of attention; for example, jealousy can persist even though other activ-
ities occupy attention for some time. One consequence of this theory is that there are
only differences of degree between emotional and non-emotional motivational states; and,
in addition, states that have high insistence but do not have any motivation or positive
or negative evaluation, such as a very catchy tune, have much in common with emotional
states. The theory also implies that many different emotional states can co-exist.

In this theory ‘emotions’ are emergent from an architecture meeting the requirements for
autonomy and real-time response in a dynamic and unpredictable environment. Unlike,
say, Dyer’s BORIS system that explicitly represents emotional states within data struc-
tures, the ‘attention filter penetration’ theory views emotions as a dynamic state of an

architecture.

3.2 Problematic emergent states

Architectures are complex abstract machines. The intricate clockwork mechanisms of
nineteenth century automata are mere simplicities when compared to the complexity of,
for example, a modern day operating system. It is not an easy task to posit the possible
states such architectures can enter from an analysis of the design alone. Hence the need
for implementation. Despite this, (Beaudoin, 94) has outlined some possible problematic
control states that could occur in the NML1 architecture. Undoubtedly this list will not
be exhaustive. Also, as the architecture is developed and new features added the variety
of control states it can exhibit will increase.

I will make a small change in terminology: Beaudoin’s problematic control states will
be renamed problematic control episodes to emphasise that they are dynamic processes
12 Here follows a brief summary of
Beaudoin’s postulated emergent states. Note that they all can be considered maladaptive

with regard to the agent satistying its set of concerns.

occurring over (perhaps lengthy) periods of time.

e Oscillation between decisions. This is the case where management processes
are dispatched that are incompatible with previous management decisions. This

'However, this does not preclude the possible representation of this dynamic, global state for com-
municative and control purposes.
P2However, ‘state’ and ‘episode’ can be considered synonymous for the purposes of this proposal.
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is not to be confused with the problem within planning of a new action violating
previous sub-goals. Here we are concerned with decision making, not the execution
of those decisions. Beaudoin gives the example of a person who is faced with the
choice of wearing a green or a red tie and selects a green tie only to change his
mind and select a blue tie and so on repeatedly. Meta-management needs to detect
such processing states and arbitrate. This category of processing states is also
intended to cover such situations where a physical action commences only to be
interrupted by another goal only to be interrupted by (perhaps) the original goal
and so forth. Empirically, these kinds of states bring to mind the experimental
paradigm of laboratory rats in a shuttle-box (Mackintosh, 83) that are presented
with food at one end of a corridor. On each occasion food is taken the rat is shocked,
which results in the rat, depending upon its desire to eat, oscillating about a point
near the food.

e Perturbance. A perturbant episode is when a goal has been postponed or rejected
but nevertheless keeps resurfacing and disrupts ongoing processing. This disrup-
tion is likely to interfere with the management of other, important goals. Strategies
for dealing with this situation could involve satisfying the perturbing goal or sup-
pressing its activation. A perturbant episode is the technical name for the type
of information processing state that the ‘attention filter penetration’ theory posits
as characteristic of many emotional states. The above definition of a perturbant
episode needs to be extended to include entities other than goals that can cause
disruption of ongoing processing, for example Simon’s physiological drives and ‘cog-
nitive associations’.

e High busyness. Busyness can be viewed as a measure of management stress or
load; it is defined as ‘the extent to which there are important, urgent, and adopted
unsatisfied (but potentially satisfiable) goals that require management and/or ac-
tion relative to the amount of time which is required to manage or execute the goals’
(Beaudoin, 94). High busyness implies greater likelihood of meta-management pro-
cessing — for example, goals will be more likely to be postponed, or decisions made
such as ‘think about this later’ and so on. Also, the filter threshold may need to be
increased when busyness is high in order to suppress goal surfacing.

e Maundering. Maundering occurs when a goal is being managed without having
decided, at a meta-management level, to manage it. The agent, therefore, could
manage a goal that is not urgent or important relative to other pressing goals.
Colloquially, this could be understood as daydreaming or even ‘fiddling while Rome

burns’.13

It might be argued that the above problematic control episodes will be unique to the
NML1 architecture and therefore have no wider significance. A number of responses
can be given to such objections. A perturbant episode, which is the control episode

13T have not described digressions here, which are similar to maundering; see (Beaudoin, 94) for details.
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of most interest to us, has psychological validity (i.e., appears to be congruent with
our own subjective experience of some emotional states) and, in addition, is deemed to
be a common aspect of many architectures satsifying the requirements for autonomy
in a dynamic environment.'* High busyness is architecturally independent, ie. is a
result of the constraints of the specified niche-space; however, the actual details of high
busyness will differ from design to design. Oscillating between decisions, high busyness
and maundering also have psychological validity with correlates in our own subjective
experience of mentality. In other words, such states or episodes are not unique to NML1
(or PRS) —like architectures. On the contrary, it appears that NML1 may share these
features with people, albeit on an abstract level of conceptualisation.

The above control episodes have yet to be demonstrated to occur in an implementation of
NMLI. It may be that a prototype implementation will lack the architectural richness to
exhibit some of the episodes. However, it should be possible to demonstrate a relatively
simple form of perturbant episode using the idea of an other-model, which is a process
that attempts to predict the behaviour of other agents in the environment. This idea will
be extended in section 4.1 where details of the proposed implementation will be given.

It is expected that implementation work will reveal limitations in the above character-
isations of problematic control episodes. For example, a perturbant episode may refer
to many types of perturbance varying along dimensions such as the episode length, the
control oscillation frequency (the rate at which ongoing processing is repeatedly inter-
rupted), semantic content (what the perturbing goal is about), intensity (which may be
interconnected with subjective evaluation of the episode as positive or negative, e.g. con-
trast a grieving mother with the athlete who cannot stop thinking about the Olympic
gold medal he/she has just won), the source of the perturbance and also diagnosis of the
episode by a self-referential mechanism and the control strategies elicited, if any.

The NML1 architecture will need to control its own global processing states otherwise
it will not be well adapted to its niche. An architecture that cannot detect its own
busyness and respond accordingly will be at a competitive disadvantage to architectures
that can. Evolutionary pressure may have forced designs to become self-modifying and
develop some type of learning that can form self-referential mechanisms to perform this
meta-level control task. The detection of such control episodes and efficacious strategies
to deal with them is undoubtedly an important component of intelligence.

3.3 The detection of emergent states

Before discussing the requirements for the detection of emergent states (and therefore
problematic control episodes) it will be instructive to review some related work on self-

MWhether perturbant episodes are a necessary feature of resource-bounded architectures with multiple
motives in dynamic environments is a research question.
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reference from the literature.

(Smith, 86) distinguishes three camps within Al that are concerned with investigating
the idea of a ‘self’: the autoepistemic tradition, mainly concerned with formal ideas
of introspection and how systems reason about their own knowledge and beliefs; the
circumstantial tradition, arising mainly from philosophy and linguistics and concerning
itself with the self-relativity of thought and language; and, finally, the control camp that
investigates meta-level reasoning and inference about control. (The research described
here can be classified as belonging to the control camp.) Importantly, he states that
no clear, single concept of what constitutes a ‘self” has emerged capable of unifying
these disparate efforts. Neither has an adequate explanation been provided for why self-
reference is important for systems that fully participate in a world. In other words, why
is it that humans have the concept I, why can they introspect, and why can they reflect
about themselves and their relation to the world in a detached manner? Smith’s partial
answer is based on the assertion that the regularities underlying self-reference arise from
necessary architectural requirements for any embedded system.

Smith states that there is a ‘tension’ between the need for effective situated activity
and the detachment necessary for general-purpose reasoning. For example, an indexical
representation, such as there’s-something-to-the-right gains unambiguous meaning only
in a certain context but, by being so, facilitates local inference and close connection to
action; however, such representations are limited in their expressive power, possibilities
for general-purpose use and communication with other architectural elements.

Self-referential mechanisms are proposed as a design solution to the need for local effect-
iveness together with general-purpose use of representations in detached reasoning. He
distinguishes three self-referencing mechanisms — autonymy, introspection and reflection
— that overcome different kinds of representational relativity (e.g., there’s-something-to-
the-right is relative to the system that asserts it). Each mechanism is based on distinct
notions of the self: self as unity, self as complex system, and self as independent agent.

A system must represent its own relativity in order to causally connect abstract gen-
eralisations to indexical representations to action, i.e. represent its own finitude and
particularness. For example, there’s-something-to-the-right could not be communicated
unless a notion of self was introduced and what is implicit in the representation is rendered
explicit, i.e. there’s-something-to-the-right becomes generalised to RIGHT (something,
I); this could then be communicated as ‘there’s something to the right of me!’. This
example relies on the notion of self as unity, or I. Another reason given for the need
for self-reference is that, typically, as long as some aspect of internal architecture isn’t
represented the system will behave in the ‘standard’ way with respect to that aspect.
Explicit representation of implicit information paves the way for more flexible behaviour;
without it, a system is locked into its primitive ways of doing things.

Smith provides three requirements for self-reference. The system must possess a theory
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of the self, i.e. what it thinks it is, how it should behave, what structure it has and so
forth. This theory must be embedded within the system so that it can play a causal role
in guiding the behaviour of the system. And finally a mechanism is needed for swapping
between action in the world and detached reasoning about the self. NMLI1, at the present
stage, meets only one of the requirements for self-reference. It can swap between action
and detached reasoning due to the design of its interpreter and management procedures.
The architectural mechanism to satisfy this requirement exists. However, NML1 does
not have a theory of itself, nor does such a theory play a causal role in determining its
behaviour.

A system is said to be autonymic if it is capable of using a name for itself in a causally
connected way (Smith states that some email systems are capable of this). A system
is introspective if it possesses causally connected self-referential mechanisms that render
explicit some of the otherwise implicit internal structure of the system. And a reflective
system is one that can represent the external world, including itself and its circumstances
so that it renders explicit its own particularity, i.e. it can reason about itself as an agent
within a world.

How do Smith’s ideas relate to the research undertaken here? We are not interested in
linking abstract representations to indexical representations; therefore, we can put the
notion of autonymic systems to one side. However, an NML1 that can function in the
world, detect its own global processing states, classify and diagnose such states, and
attempt to do something about them, would be an introspective and reflective system.
Therefore, we need to consider Smith’s high-level requirements for self-reference. The
need for a theory of the self is of importance: without knowledge of how the system
works or is supposed to work it will not be possible for a self-referential mechanism
to be casually efficacious. In particular, if we wish to design mechanisms that detect
problematic control episodes we need a theory of the normative functioning of the self —
for example, how is it possible to detect when things go wrong without knowing when
things are going right? Also, to attempt to do something about such problematic episodes
it will be necessary to have a theory of what junctures are suitable for intervention by a
self-control mechanism.

We are now in a position to sketch out high level requirements (and not design solutions)
for the detection of problematic control episodes.

o A theory of the self, including a theory of normative functioning and a theory of
problematic control episodes. The question of how this knowledge is obtained will
be placed to one side. Any such theory must be partial otherwise there will be
the problem of infinite regress of a theory of the self that includes a mechanism
with a theory of the self and so on. Smith provides three reasons why self-reference
will be limited and perfect self-knowledge impossible: i. the complexity of the cal-
culations involved, ii. theory-relativity (no theory can render everything explicit),
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and iii. circumstantial relativity!'® is beyond the causal reach of the agent; in other
words, implicit aspects of the architecture will remain opaque to other mechan-
isms (consider abstract data structures). Sloman (1994b) has also made the point
that complete self-knowledge would be of little use anyway: ‘perception, inner or
outer, needs to give affordances, not complete factual information’, i.e. functional
requirements determine what need be known (and any extra information would be
superfluous).

A mechanism, or set of mechanisms, that uses a theory of the self for detection of
problematic control episodes, in a manner analogous to the role of knowledge in
external perception.

Such a mechanism must sample (sense) information from the self. This is a kind
of ‘internal perception” where the agent is the self-referential mechanism and the
environment is the internal structure of the agent. Such information gathering or
data sampling must not affect the functioning of the self to any great degree; or,
more precisely, the operation of the self-referential mechanism must not invalidate
its theory of the self. For example, visual perception in the physical world is passive:
i.e., looking at a scene does not change the scene. Is it possible to mimic this process
within an architecture and have mechanisms that can inspect ongoing processing
without interfering with the object of inspection?

A self-referential mechanism requires that critical junctures of the self be transpar-
ent. For example, to detect ‘busyness’ it would be necessary to sample the intention
structure of the self; therefore, information about the intention structure, such as
the number of pending, satisfiable goals, needs to be available to the mechanism.
How this transparency is achieved is a design question.

The opacity of some architectural elements (and the problem of circumstantial
relativity) may need to be avoided or overcome by extra reasoning. This case is
analogous to inferring the shape of an occluded object in visual perception.

Facilities for recording sampled data over a period of time.

‘Unobtrusiveness’ — the mechanism must not interfere with the limited resources of
other systems.

A lexicon of problematic control episode concepts.'®

The detection mechanism must provide a mapping from the space of perceivable
system states (which, for example, would be an n-dimensional space if n quantitat-
ive architectural junctures are sampled) to a space of labelled problematic control

15Circumstantial relativity states that a ‘great deal of the full significance of a representational system
will not, in general, be directly or explicitly represented by any of the representational structures of
which 1t 1s composed. Instead it will be contributed by the attendant circumstances.’

16(Sloman, 94b) has pointed out that children can get into certain states yet be unable to classify them
properly due to lack of appropriate concepts. The child who maintains that he has a ‘“fizzing’ in his foot
only to be told that he is suffering from pins-and-needles is an amusing example of such lack.
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episodes.!™ Note that the space of perceivable system states will not be identical
with the space of system states. What is ‘looked” for will be determined by the
theory of the self. There is likely to be information loss during such a mapping
process.'® Also, some system states may not map onto a label, or may map onto
many labels, or be at the boundary of two or more labels. This raises the possibility
of anoetic states — states in which the system is unsure of its own state.

The above is merely a sketch of high-level requirements, not a full requirements analysis
for the self-detection of problematic control episodes. Such a task will be an object of
research and will be aided by prototype implementation.

Many possible designs could satisfy the above requirements. Many design decisions need
to be made, which makes this a fruitful area of research. The research will attempt
to explore generic designs for self-detection; however, implementation solutions will be
constrained by what we take the ‘self’ to be — in this case the NML1 design.

Two examples of possible design solutions readily come to mind. Many development
environments provide tracing facilities that allow the control path of a program to be
recorded and viewed. Perhaps similar techniques could be used in our agent. Or, al-
ternatively, the self-referential mechanism could model the self and run a simulation in
parallel. When the normative model and reality diverge the mechanism could then at-
tempt to label the unexpected control state. Another design option concerns whether the
self-referential mechanism could be a specialised meta-management process or an entirely
separate mechanism.

3.4 Self-control: coping with emergent states

Self-control needs more than self-detection of global problematic control episodes — it
requires the selection of remedies and their application within the system. The medical
analogy is clear: self-control can be viewed as a three-stage process consisting of diagnosis
(detecting what the problematic control episode is), selecting strategies for dealing with
the episode (selection of medication and prognosis), and their application within the
system (treatment).

The possible strategies for controlling such states will be numerous, the exact details
differing from architecture to architecture. Enumerating and classifying such strategies
will be a research aim. Below I will simply sketch some high level requirements for
self-control intermixed with issues that will need to be addressed.

170r, mappings from qualitative descriptions to labels, or parsing of system states into complete
interpretations, or complex stages of analysis at successively higher levels of abstraction and so forth.

BInvestigation of the process of learning finer-grained concepts for system states could be an area of
research.
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o A set of remedies/strategies will be needed that express knowledge about the util-
ity of control actions for each problematic emergent state. There may be many
strategies for each control state that apply in different contexts. For example, rais-
ing the attention filter in states of high busyness may be an efficacious strategy
under some circumstances but would be disastrous if the agent needed to be con-
tinually aware of new, highly important motivationally relevant events.!? The rep-
resentation of such control actions is a design question.

o Strategies could treat symptoms. Consider the strategy of counting sheep in order
to fall asleep at night. If we assume that the person cannot sleep because he is
continually ruminating over things that have occured during the day, the counting
sheep strategy could be viewed as a meta-level decision to concentrate deliberative
resources on a task that requires full attention. This is an example of treating
symptoms, i.e. the cause of the insomnia remains but its ability to attract processing
resources is diminished due to the conscious selection of an ‘attention-expensive’
task. Or, alternatively, consider the grieving Mother who turns to drink in order
to dull her painful thoughts and emotional responses (whether this is an effective
strategy is by the by).

o Strategies could treat causes. For example, a control strategy could reduce the in-
tensity of a perturbance, or it could turn off the generating mechanism. However,
it appears that the latter option is not always immediately possible. Grief is an ex-
ample where, for whatever reason, the source of the perturbance cannot be removed.
There could be various reasons for this, such as a meta-level control mechanism not
having the necessary causal powers due to opacity, circumstantial relativity, or due
to the architectural design; or the source of the perturbance may be widely distrib-
uted across an information store; or, in the case of the loss of a loved one, many of
the grieving person’s concepts, goals, opinions, beliefs are saturated with and groun-
ded upon the other’s existence (and in this case the complexity of the adjustment
would require time). Another possibility is that, for example, the other-model of the
departed person could have its rationale for generating candidate goals removed,
and thereby have its direct route to management closed; however, such a model
may have effects on many other parts of the architecture that will, in turn, gener-
ate candidate goals. Therefore, the model could still have indirect causal powers.
Analysis of these issues will also be an object of research.

o Strategies could cure. It may be possible to eradicate the production of certain prob-
lematic emergent states entirely. Take the example of oscillating between decisions.
It may be that an architecture can learn to recognise this state of affairs quickly
and easily and build new architectural links that ‘hard-wire’ this control knowledge
in the form of a cognitive reflex. In other words, the self-control mechanism effects

19Consider a child-minder who is extremely busy caring for three babies in a room. She knows that
another child is in the kitchen, which she can view through an open door. The three babies are so
demanding that she concentrates all her attention on them, so much so that she fails to notice the child
in the kitchen reach for a hot iron.
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a design change instead of invoking control strategies. Or it may be possible to con-
struct deeper design changes that will prevent the production of the state in the first
place. Curative strategies will involve dynamic architectures, design modification
and learning. This problem can itself be analysed into many sub-problems.?® Psy-
chological evidence exists for some kind of self-modelling, reflection and self-repair,

e.g. (Kuhl & Kraska, 89).

o Strategies could utilise. Another type of self-control strategy is to use the problem-
atic control state for normative ends. (Sloman, 94b) has pointed out the example
of a teacher who discovers that he can control his class the angrier he becomes — in
this case, the relaxation of self-control helps achieve the teacher’s goals. In other
words, a new use is found for the state and strategies employed to allow or cause
that state to happen when the use is needed. However, investigation of this type of
control strategy would require, I believe, a richer typology of problematic control
episodes.

o A decision mechanism will be required that can select strategies for application.

o The selected control strategy will need to be applied to the self. The varieties
of modes of application may cover the full range of causal properties in software
systems. As stated before, there will be constraints on the application of control
strategies that will depend on the causal powers of the self-control mechanism and
the structure of the surrounding architectural environment. For example, (Smith,
86) states that, given psychological self-knowledge, it is hard for humans to become
the person they can so easily represent themselves to be. This is the a more general
case of the possibility of diagnosing and representing what needs to be done (the
goal of the control strategy) contrasted with the difficulty of actually achieving the
control aim within the architecture. Let us briefly consider some varieties of causal
connection that self-control mechanisms could employ. At a first approximation I
can distinguish three types of causal connection that could be used by a self-control
mechanism on the self: structural, procedural and direct. Structural changes would
include such strategies as altering the causal connections between mechanisms (for
example, preventing an other-model from generating goals that are candidates for
filtering), replacement of mechanisms (for example, replacing an interpreter with
one more suitable for the current processing situation), or addition of mechanisms
(for example, the construction of a cognitive reflex). Procedural changes would
include strategies that alter the inner details of mechanisms (i.e., intra-mechanism
change as opposed to structural/inter-mechanism change), such as altering proced-
ural constants, using parameterised procedures to alter functioning in useful ways,
biasing the outputs or inputs from procedures, and so on. Direct changes would
include strategies that employ extra processing to alter global functionality (for

20For example, the design problem would need to be identified by assigning blame, a modification to
the design selected, repair work effected on the design followed by some kind of verification process to
check whether the new design performs better than before, i.e. a real improvement in the design has
been achieved.
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example, the cessation of maundering by the firing of a meta-management process
that decides whether a goal, which is currently being deliberated to the exclusion
of others, should actually be adopted for deliberation). I am not at all happy with
the above typology of casual connections from self-control mechanisms to the self.
More thought, requirements and design work will help clarify these concepts and
ideas.

The requirements and design options for self-controlling mechanisms are only touched
upon here, which is why this topic is suitable for sustained research. I hope that con-
sideration of the effects of self-control may shed some light on the processes underlying
the decay of emotions.?! Emotional decay may be a particular case of how self-referential
mechanisms may affect affect.

3.5 Pathologies of self-control

Without some knowledge of the designs and design options for self-control mechanisms
it is difficult to determine why and how errors in self-control may occur, and how these
errors may relate to human pathologies. It may be that we are trying to run before we
can walk. - It will be necessary to review extant psychological theories of pathologies of
self-control before this subject can be broached in earnest. However, even the sketchy
requirements for self-control outlined above suggest possibilities for errors in self-control.
Such errors in the architecture could be caused by physical damage, chemical imbalance,
developmental aberrations, design errors and so on. Consider the following.

o Cognitive reflexes embodying learnt control knowledge could have been built incor-
rectly, or built unnecessarily.

e The theory of the self may be incorrect. Depending on the complexity and struc-
ture of this knowledge there will be more or fewer different types of theory errors.
For example, the theory of normative behaviour may be faulty causing self-control
mechanisms to produce maladaptive behaviour; or errors in the theory of what
techniques are causally efficacious for self-control may cause the pursuit of improved
adaptation to result in its opposite. There will be many subtleties.

e The theory of the self may be used incorrectly. The self-control mechanism may
use the theory in an erroneous way.

e Errors may occur during internal perception. The self-control mechanism may
believe the self is in a state that it is not. This could cause inappropriate control
strategies to be fired.

*IFrijda, in a recent paper (in Cognition and Affect, vol. 8, no. 4, 1994), highlights this as an area of
emotion research so far ignored.
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o There may be a lack of architectural transparency, i.e. incomplete self-knowledge.
A little knowledge can be dangerous — if there is insufficient information it will
not be possible for self-control mechanisms to decide which control strategies to
elicit. This type of error will be dependent on design solutions for architectural
transparency.

e Control strategies may be poorly formed, or dysfunctional. This is analogous to
the case of faulty plans in planning.

The use of such words as ‘incorrect’, ‘errors’, ‘poor’, ‘dysfunctional’, ‘faulty’ all comprise
value judgements on the behaviour of mechanisms within the architecture. However, how
are such evaluations to be made without criteria for normative behaviour? The agent’s
theory of the self serves, for self-control purposes, as such a normative basis. However, how
can we state that the self-theory itself is erroneous: on what basis do we make this claim?
The evaluation will have to be made from an observer’s standpoint and a knowledge of the
requirements of the agent’s niche. This is a particular case of the more general problem
within psychology of making value judgements on human behaviour. Ignorance of this
theoretical problem can produce a tendency to medicalise difference and interpret it as
aberrance. If this research proceeds in a theoretical direction and approaches problems
in human psychology it will be important to be aware of such issues.

However, the above possibilities for errors in self-control only scratch the surface. Much
more work needs to be done, both in terms of reviewing extant literature and analysis.
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4 Research Aims

In the introduction the goals of the research were split into modest and ambitious research
aims. In this section the aims will be considered in greater detail followed by criteria for
evaluation of the work. First, however, a scanario for implementation will be presented
that will be used to investigate perturbance and self-control.

4.1 An emotional scenario

A framework is needed for the implementation of prototype NML1s. Initial implementa-
tion (modest aims of the research) is to investigate the generation and effect of perturbant
states. Therefore, we need a plausible scenario from the real world that can be modelled.

A child-minder has spent all week looking after Jack and Jill. She now knows
that both children like to be fed every two hours. She leaves the room for
a few minutes to answer the phone, but when she returns she discovers that
Jack has disappeared. She searches the room but there is no sign of him.
It is time that the children are fed, and Jill begins to wail. Shortly, Jill’s
mother returns to collect her. The child-minder tries to converse with Jill’s
mother, but her thoughts are continually disrupted by the thought that Jack
has disappeared and will be wanting his food. The child-minder is in a terrible
state.

The child-minder has ongoing processing (talking to Jill’s mother) continually disrupted
by the negatively valenced thought that Jack has disappeared. This is an example of a
perturbant state. How can we model a similar process using the chosen agent architec-
ture?

NML1’s current environment is the nursery domain (Sloman, 94¢; Sloman & Humphreys,
92). The nursery domain consists of a number of rooms separated by walls and connected
via doors. Babies wander around the nursery and need to be cared for. For example,
they will need feeding at regular intervals, or given medical care if they catch certain
illnesses, or can get injured by bumping into objects, falling down ditches or by having
fights with other babies. It is the task of the child-minder, NML1, to ensure that the
babies are well cared for. For example, a concern of NML1 might be to grab babies when
they are near ditches and remove them to a safe distance. The nursery domain provides a
rapidly changing and unpredictable environment that places variable stress on the agent
architecture. NML1 will need to arbitrate between multiple motives while maintaining
reactivity to external events.
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The above emotional scenario can be modelled in the nursery domain. The idea of an
other-model will be introduced as a stop-gap solution to the difficulty of ensuring early
prototypes of NML1 enter perturbant states. An other-model simulates some aspect of
the behaviour of another agent in the environment. For our implementation, we will
devise an other-model?? that can predict when a baby will need recharging at a recharge
point. After a period of time a particular baby will be removed from the nursery. The
other-model for this baby will remain and generate a motivator to recharge the missing
baby. This is likely to be (depending on the current processing state) a highly insistent
motivator that surfaces. A management process will attempt to satisfy the motivator
by finding the baby and taking it to a recharge point. This management process will
fail because the baby is missing. However, the other-model will continue to generate the
motivator, which may now be rejected after deliberation or scheduled for execution again.
In this way, current, ongoing processing will be repeatedly interrupted and the agent will
be in a type of perturbant state.

A prototype implementation conforming to the above description would be a good base
point to begin a more detailed implementation of perturbance, problematic emergent
states and their detection and control. The scenario would need to be extended to include
self-referential mechanisms and strategies for dealing with certain global processing states.

An important point needs to be made here about a prototype implementation. In section
2.7 the problem of decision-theoretic control and goal selection was highlighted. For a
working agent architecture these issues need to be addressed, but it is not the aim of
the research to investigate, in any great detail, such problems. However, solutions to the
problems of decision-theoretic control will have relevance to emergent states and perturb-
ance. Here we need to re-state the theoretical basis of the research — that we need to
employ a ‘divide and conquer’ strategy and factor out some aspects of autonomous agency
in order to investigate and build broad architectures. The difficulties of decision-theoretic
control will be one such factor we will underemphasise. In prototype implementations we
will use heuristic techniques and domain-dependent solutions. The principles that Pryor
(1994) provides in Chapter 8 (‘Deciding What to Do Next’) of her thesis, or similar, could
be modified and used in prototype NML1s.

At the time of writing a nursery domain has been implemented and a child-minder with
vigilational functionality. The agent has simulated coarse-grained parallelism including a
perceptual process, motivator generactivators and an effector (claw) that can manipulate
objects in the environment. The child-minder can notice when a baby is too close to a
ditch, update its world model and dispatch commands to the claw to pick up the baby and
remove it to a safe distance. There is no plan formation, motivator filtering, interpreter
or management processes. The next step in any prototype implementation will be to
provide these features.

2ZFerguson’s TouringMachines have models of other entities in the environment and it may be that
some techniques from this work can be modified and used with NMLI.
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4.2 Aims and evaluation

As stated earlier, the research wishes to investigate three related areas — the ‘attention
filter penetration’ theory of emotionality, the extension of the design and implementation
of an agent architecture, and the self-control of emergent states in autonomous agents.
Perturbance is considered as one form of emergent phenomenon that can be the object
of self-control. A design-based methodology can unify these research concerns within the
design and implementation of a broad agent architecture.

Many models of emotional processes exist in the literature (e.g., see section 3.1); however,
Sloman’s ‘attention filter penetration’ theory has yet to be tested by computer modelling.
Also, the final NML1 design has yet to be implemented. There has been much work on
‘self-control” in psychology; however, this term often refers to different phenomena (e.g.,
abstinence now for greater reward later, as opposed to controlling fear or embarassment
in social situations). It is my belief that extant theories of self-control will benefit from a
design-based analysis grounded in the requirements for autonomous agency. Therefore,
this work can build upon and potentially contribute to three areas of research. In par-
ticular, a systematic investigation of the requirements for the detection and control of
global processing states and an exploration of the possible design options would be a new
contribution to the field.

It will be useful, in addition to distinguishing modest and ambitious research aims, to
separate theoretical and practical aims. The implementation goal of the research will be
relatively modest; depending on time and success the implementation will be extended
to incorporate more of the developed theory. This is a flexible research strategy but with
defined aims. Consequently, the research should aim to build a prototype NML1 that can
operate autonomously in a (relatively simple) nursery domain with the ability to switch
attention between goals successfully and exhibit some form of perturbant state. This is
the ‘base-level”’ modelling aim of the research.

Below, two research scenarios are provided, one modest and the other ambitious. It is
my expectation that the actual achievements of this research will fall somewhere between
these two scenarios. A decision will need to be made at some future point whether
to consider perturbant states as one form of emergent state that can be the object of
self-control, and therefore direct the research towards an investigation of self-control, or,
alternatively, direct the research towards an investigation of emotionality and regard selt-
control only to the extent it may affect emotional states. It is a question of emphasis.
The decision is postponed because the fruitfullness of each approach will only become
apparent after preliminary work.

Modest goals. Build a working prototype of the NML1 design, add a plausible emo-
tional scenario to the agent’s domain in order to explore the concept of perturbant states,
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and relate this implementation to the ‘attention filter penetration’ theory of emotionality.
In particular, consider how extensions to the design could increase the variety and type
of perturbant states and how this may relate to people. It is expected that the design
of NMI1 will be extended and refined during this process. The requirements for and
design of self-control mechanisms in autonomous agents will be presented. Achievement
of these modest aims will build on previous work in the Attention and Affect project, the
design of broad agent architectures, the understanding of emotionality and mechanisms
for self-control.

Ambitious goals. Achievement of the modest goals, plus: implementation of self-
control mechanisms within the agent that can detect a class of problematic, global emer-
gent states, perform a diagnostic analysis based on a theory of the self, and attempt to
improve functioning by either preventing the emergent state, coping with it, or eradic-
ating the state entirely. For example, the agent may detect that it is in a state of high
busyness that is adversely affecting its normal functioning; therefore, the agent could
employ the strategy of raising its filter threshold level to prevent further motivators from
surfacing. The implementation of self-control mechanisms in the agent will be related to
the space of possible designs for self-controlling mechanisms, including an analysis of the
various design options that meet the requirements. It is my hope that this aim will be
furthered by making design-space exploration less analytic and more automatic by using
methodological techniques from system design (see thesis timetable). How self-control is
learnt and mechanisms formed in a dynamic architecture will be considered, and such
considerations related to extant psychological theories of self-control (for example, (Kuhl,
92; Kuhl & Kraska, 89; Heckhausen & Kuhl, 85; Rachlin, 94)). Such considerations may
have some bearing on cognitive development theories. The varieties of self-control of
emotional episodes will be investigated, including how emotions may decay over time.
Achievement of the ambitious research goals will, in addition to the contributions made
by the modest goals, add to the understanding of the mechanisms for self-control in
people, especially with regard to emotional episodes, and help clarify the terminology
and concepts within psychological theories from a design-stance.

How is this research to be evaluated? From my own perspective I will determine whether
the research is successful by comparing what I achieve with what my original aims were.
Achievement of the modest aims would constitute modest success and so forth. However,
how is the research to be evaluated from the outside?

The work, as stated above, aims to contribute to three current areas of research. By how
much the research provides new and useful contributions to these fields is one, and the
most important, dimension of evaluation.

However, there is the difficulty of evaluating computer models in Al. (Chapman, 90)
provides a weak justification of implementations: he considers the process of implement-
ation as a special form of understanding, which renders explicit what is implicit in any
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design. An implementation, therefore, serves as an exemplary illustration of a theory.
It can demonstrate that a design meets its requirements, i.e. that the theory can ex-
plain the chosen phenomena. The design-based approach, in addition to the above,
considers implementations not as end-points but as moments in the process of explora-
tion of design-space. Knowledge gained through implementation will feed back into the
investigation of requirements and designs. In this conception, therefore, implementation
is a necessary part of the methodological whole. Designing computer models of cognitive
processes without implementation would be like an engineer providing successive designs
for bridges without ever testing those designs against reality. However, the design-based
approach shares with software engineering the same difficulties of ‘proving’ that an im-
plementation meets its requirements. Design validation is a difficult problem. If i. the
implementation has provided a deeper understanding of the requirements, design and
various design options, and ii. exhibits the required behaviour (i.e., successful operation
within the chosen domain based on some commonsense yardstick) or fails but provides
knowledge concerning why the design failed then, I believe, the computer model can be
judged worthwhile.

The requirements and design work of the research are partly motivated by perceived
inadequacies of previous agent designs. For example, the problematic emergent episodes
postulated as occurring in NML1 are non-adaptive — hence the need for additional control
mechanisms. Proposed solutions to these problems will contribute to agent design in
general. Discovering design options will contribute to an understanding of a region of
design-space. And it is likely that new problems and new solutions will be uncovered in
the course of research.

In addition to the above, there are at least three ways to determine whether the research
will provide an original contribution to knowledge.

o New predictions from theory. For example, it may be that an understanding of
self-control mechanisms from a design-stance will predict certain behavioural phe-
nomena (in humans or animals) not so far noticed, or currently unexplained, or so
far confused with other, similar phenomena.

o New possibilities. New ways of designing agents or mechanisms may be provided
that extend our understanding of the design possibilities and the respective beha-
vioural correlates. (This is exploration of design-space).

e New (superior) ways of talking about known phenomena. For example, an extant
psychological theory of self-control could be refined, clarified or modified using the
design-based approach. Reducing terminological confusion and providing clearer
concepts would be a step forward.

Success on any of these fronts would constitute an original contribution.
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4.3 Thesis Plan

All timetables are provisional and subject to revision. The following table sketches out
how I hope the research will progress. Two prototype stages are distinguished. The
prototype I NML1 will have rudimentary goal filtering, a simple interpreter and a small
collection of management processes that can be used to perform straightforward beha-
viours in the domain, such as recharging babies and preventing them from falling into
ditches. Also, there will be simple heuristics for goal selection. The prototype II NML1
will have the functionality of the first prototype, plus a more sophisticated interpreter
and management processes, and an other-model that predicts aspects of baby behaviour.
Prototype II should generate a type of perturbant state as per the emotional scenario.
In addition, a number of ideas for papers and technical documents have been included in
the timetable. Hopefully, these will act as landmarks and serve to summarise the results
from different aspects of the research. The titles of these papers are subject to revision
also.

From talking to other research students it seems that their thesis proposal timetables
have been shown to be, with the benefit of hindsight, overly optimistic given the time
available. Therefore, I have allowed six months for the writing of the thesis, which, if
things do not go according to plan, can be ‘eaten into’. It is my aim to achieve the modest
aims by the end of 1995 leaving nine months to attempt the ambitious aims and thesis
write up.
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Year 2

Year 3

Modest goals achieved.

Month

October
November
December

January
February
March

April
May

June

July
August
September

October
November
December

January
February
March

April

May

June

July
August
September

Research

Continue coding prototype NML1; write a paper entitled
Exploring Design-Space with QOC. By December should
have prototype I completed.

Literature review of concepts of self-control in
Al cognitive science and psychology; write a document
entitled The Varieties of Self-control.

Continue coding NML1: extend functionality, and implement
emotional scenario. By the end of June should have prototype
IT completed.

Requirements analysis for self-control of global states. Discuss
various design options. Summarise this work in a paper entitled

A Proposal for a Design-Based Study of Self-control.

Review relevant literature on emotions. Investigate the
varieties of perturbant state in theory and practice;
write a document: The Varieties of Perturbant State.

Add self-control mechanisms to NML1 implementation.
Provide a design-based critique of a theory of self
control from the field of psychology.

Tie up odds and ends and begin writing thesis.
Write papers if appropriate.

Aim to complete thesis. Submit. Proposed thesis title:
A Design-Based Study of Self-Control
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5 Appendix: The Design-Based Process

The design-based approach, drawing its inspiration from software engineering® and con-
ceptual analysis in philosophy?*, is a methodology that enables exploration of an abstract
space of possible designs for functioning agents (Sloman, 93a). Individual humans and
animals are loci in design-space, along with other systems yet to exist. Such a space is
difficult to picture — it is hyperdimensional, structured, highly complex, with both qualit-
ative and quantitative dimensions. We do not possess sufficiently powerful formalisms or
techniques to automatically search design-space. Evolution took billions of years and as
many design decisions to arrive at the functioning systems we see today — squeezing such
a natural process, in all its richness and complexity, into a few years research remains
a task beyond us. The design-based approach helps us conceptualise and simplify the
task to arrive at preliminary answers. When used as a methodology to adumbrate the
virtual machines implemented in existing organisms (including humans) it relies on the
assumed congruity between design decisions ‘taken’ by evolution under environmental
and competitive pressures and the design decisions taken by the designer when moving
from requirements to design.

The design-based approach is a wunifying methodology. It views the disparate research
methods and aims within Artificial Intelligence (and other computational sciences, such
as cognitive science) as different but related ways of arriving at designs. For example, a
bottom-up approach may be useful for deriving designs for insect-like robots (see section
2.2) whereas a top-down, requirements analysis for autonomous agency may be useful
for arriving at a broad, high level functional decomposition of important elements of an
architecture. Both research paradigms are applications of the design-based approach.

5.1 A summary

The following is a summary of an idealised conception of the design-based process.

The process can begin by specifying initial, general requirements normally written in
natural language.?> There is a highly complex mapping from requirements to designs
(Sloman & Cognition and Affect Group, 94). The set of requirements can be viewed as
a topography of a region of niche-space, which defines a type of designs over a region of
design-space. Each design is a member of the type, satisfying the specified requirements.
To illustrate: biologists classify environmental niches and the organisms that inhabit
them; an environmental niche can be thought of as specifying a set of general requirements

e f. (Bell et al., 92).

24See (Sloman, 78).

Z5Formal specification techniques could be used but would conflict with the rapid prototyping approach
used in this project.
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that all designs within that niche must meet in order to survive — for example, a marine
habitat could specify the type marine, and include such organisms as sharks, octopii,
crabs and so on. Supersets of the requirements, i.e. collections of different requirements,
specify a typology over design-space; and supersets at different levels of abstraction can
form a hierarchical tazonomy of types of designs as per the classificatory schemes of plant
and animal life.

The actual requirements will be determined by the aims of the research, i.e. what is to
be investigated, and depending on their specificity will encompass fewer or more designs
meeting the requirements. Requirements can be functional — specifying what the sys-
tem should do; or data requirements — inputs and outputs to the system, data storage
within the system and so on; or various constraints — such as performance constraints,
target language limitations and hardware limitations; or guidelines — for example, heur-
istics for resolving requirements with more than one implementation strategy?®. After
requirements analysis?” we have a requirements list Niche = {ry,ry,...,7,} where r; is one
requirement statement?®. The requirements are decomposed?® and a high level, architec-
tural design is derived. That is, from Niche we get the list Design = {dy, ds, ..., d, } where
d; is one design decision. Further functional decomposition and analysis, and recursive
application of requirements analysis and design for sub-components of the architecture
(e.g. subprograms, subroutines, procedures, functions, processes etc.) leads to lower level
design decisions being added to Destgn that approach the limit of implementation details.
In other words, the structure of Design increases in complexity forming a hierarchical
structure. There are three categories of design decision that follow.?°

e Decisions linked directly to initial requirements.

e Decisions linked indirectly to requirements via higher level design decisions (higher
level decisions become ‘requirements’ for lower levels).

e Decisions that are arbitrary, but placed within Design at a functional level (de-
cisions made where previous decisions or requirements do not prescribe a unique

260r encompass such considerations as evolvability, empirical observation etc. See (Read, 93) for an
exposition of Systemic Design, a particular form of the design-based approach, that emphasises these
factors.

2TRequirements analysis may proceed bottom-up or middle-out as well as top-down. Empirical data
can constrain design-space by making requirements more specific and so on.

Z8What constitutes one requirement statement is problematical. Only a general guideline can be
given: the statement should be simple, concise and clear, and not contain conjunctives. E.g. the
requirement that the agent’s environment is complex and dynamic could be split into the following
requirement statements: r; = ‘environment is rich enough to provide multiple sources of motivation’; ry
= ‘environment is constantly changing with time’ etc.

ZNormally by using the functional decomposition method; but other approaches could be used, such
as object-oriented design or the data flow method.

39These three cases map onto the six categories of design decision listed by the Attention and Affect
project (Sloman et al., 92). Case 1 maps onto decisions made wrt requirements, empirical data and
to test a theory; case 2 is equivalent to decisions made wrt previous decisions; and case 3 maps onto
arbitrary decisions or decisions made due to hardware or software limitations.
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decision to be made.) These decisions are unlinked, i.e. not derived from require-
ments, but placed in the functional hierarchy (note also that they do not invalidate
or contradict any requirement statement). Arbitrary is defined as the list of all
arbitrary design decisions in Design.

What is the nature of design decision linkage? — As requirements and design decisions are
not specified formally linking a requirement to a design decision, or a design decision to a
lower level decision, rests solely on analysis. The quality of such analysis will determine
the validity of the design with regard to the initial requirements. A d; € Design is
strongly linked to a d; € Design or ry € Niche if d; or ry uniquely determines d;, i.e. no
other design decision would meet the requirements.

Prototype implementation can begin once a sufficiently specific design is derived from the
requirements. Implementation will reveal holes in the design and suggest new require-
ments. This is a feedback process with progressive refinement of requirements, design
and implementation.

5.2 Exploring design-space

Producing an implementation is not sufficient for interesting science — we need to ex-
plore neighbouring designs to explore trade-offs between design options and alternative
implementation strategies (Sloman, 93b; Beaudoin, 93). Requirements do not uniquely
determine a design, instead they specify a region of niche-space that maps onto a region
of design-space in a non-trivial way.

There are at least two ways of exploring design-space: i. exploring different designs
within a general type specified by Nuche by considering design options for d; € Arbetrary,
and combinations of d; € Arbitrary (exploring possible systems designed to function in
the same region of niche-space); or ii. exploring niche-space by considering changes to
r; € Niche, or adding to or deleting from Niche (exploring systems designed to function
in different regions of niche-space). Case i. is of most interest in this research (Niche
remains fixed).

A significant (with regard to the aims of the exploration) d; € Arbitrary is chosen.?
For example, it may be that a number of methods exist for updating a memory store
within an architecture; but the actual method used was chosen on an arbitrary basis.
Choosing different design options for the update method may have ‘knock-on’ effects for

31In other words, design options emanate from arbitrary design decisions as we assume that all other
d; € Design are linked and therefore uniquely specified by Niche or some previous d; € Design. But as
linkage relies on argument strong linkage will be rare. Therefore, this is a simplifying assumption. Actual
exploration of design-space for an existing design may well discover design options for some d; € Design.
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other elements of the architecture. To discover what these effects may be as many possible
replacements for d; that still satisfy requirements (be they initial requirements or previous
design decisions) are considered and a replacement set for the chosen design decision,
Replacements = {dy,ds, ...,d,}, is formed that is unlikely to be complete, i.e. it is likely
that some replacement options are overlooked. For each significant d; in Replacements
(e.g., qualitatively different update methods), d; € Arbitrary is replaced with d; and
the consequences for every dp € Design linked to d; is calculated. In other words, the
consequences of the replacement decision d; for the rest of the design are considered,
i.e. all parts of the architecture that are ‘dependent’ on the memory update method.
This process of ‘checking the consequences’ can either be achieved by re-implementation
of dependent parts of the design (time consuming), by intuitive analysis or perhaps
mathematical analysis. When all consequences have propagated through the design a
neighbouring design is formed with different properties but still satisfying Neche. The
propagation of consequences is complicated by the fact that replacement design decisions
may be structural or quantitative, and that quantitative changes may cause qualitative
changes in other parts of the design. Exploration of the designs satisfying Niche need
not proceed by considering the options for one design decision at a time — combinations
of alternative design decisions can be considered. Discovering which combination of
alternatives is significant will be problem dependent. The exploration is open-ended, and
the size of the region of design-space satistying Niche will be extremely large, even when
the problem requirements are well specified. The extent and scope of the exploration will
also be problem dependent. *?

This method requires the designer to explicitly categorize each d; € Design within one
of the three types of design decision. This categorization facilitates reasoning about the
consequences of design options. Without such categorization design-space exploration
becomes a ‘hit and miss’ affair. Choosing replacement sets for design decisions at higher
functional levels (e.g. architectural layer or sub-component layer) will explore fewer
and more significant design options than exhaustively finding Replacements for every
d; € Arbitrary.

One of the uses of prototyping in traditional software engineering is to aid the require-
ments analysis and design stages of the software development process. Knowledge gained
through prototype implementation can clarify requirements and criticise design decisions.
For example, initial design decisions can be shown to be inefficient, unwieldy, incompat-
ible and incomplete etc. when attempts are made at implementation.

Research resource limitations (time, number of people, money) entail pragmatism. Hence,
prototype development is used in conjunction with the design-based approach. But prob-
lems can arise: for example, prototypes are usually developed in a ‘dirty’ manner —
incomplete requirements analysis, implicit design decisions, unstructured code and so on.

32If Arbitrary = {} then Niche uniquely specifies a design Design; however if Arbitrary # {} then the
size of the region of design-space satisfying Niche will be some function of Arbitrary and the respective
replacement sets Replacements; for every d; € Arbitrary.
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Implicit design decisions made during prototype development can make the subsequent
exploration of design-space incomplete and the consequences of changing an aspect of
the design may not be fully explored. Retrospective theoretical analysis can tend to rely
on the researcher’s memory if design decisions are not explicitly logged. Due to the use
of natural language specification the analysis of design-space remains informal. — Such
difficulties will not be solved overnight. Much research and theoretical effort will be
needed to tackle these problems. But any research that attempts to investigate an area
of design-space will need to be aware of the pitfalls and attempt to avoid them.

5.2.1 A note on QOC

(MacLean et al., 91)* present a semiformal notation called QOC (Questions, Options,
and Criteria) that is intended to represent the design space surrounding an artifact. 1
have yet to study their paper in any depth, but from a quick perusal it appears that such
a technique could be very useful for design-space analysis in the design-based approach.
It may help to avoid or solve some of the pitfalls highlighted above. Below is the abstract
quoted in full:

Abstract

Design Space Analysis is an approach to representing design rationale. It uses a
semiformal notation, called QOC (Questions, Options, and Criteria), to represent
the design space around an artifact. The main constituents of QOC are Questions
identifying key design issues, Options providing possible answers to Questions, and
Criteria for assessing and comparing the Options. Design Space Analysis also takes
account of justifications for the design (and possible alternative designs) that reflect
considerations such as consistency, models and analogies, and relevant data and
theory. A Design Space Analysis does not produce a record of the design process
but is instead a coproduct of design and has to be constructed alongside the artifact
itself. Our work is motivated by the notion that a Design Space Analysis will repay
the investment in its creation by supporting both the original process of design and
subsequent work on redesign and reuse by (a) providing an explicit representation to
aid reasoning about the design and about the consequences of changes to it and (b)
serving as a vehicle for communication, for example, among members of the design
team or among the original designers and later maintainers of the system. Our
work to date emphasises the nature of the QOC representation over processes for
creating it, so these claims serve as goals rather than objectives we have achieved.

I intend to write a document that examines whether QOC will be of use in the design-
based approach.

33Thanks to Russell Beale for pointing out this work to me.
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