
Qualitative Decision Support using Prioritised
Soft Constraints

Brian Logan and Aaron Sloman
School of Computer Science, University of Birmingham,

Birmingham B15 2TT UKfb.s.logan,a.slomang@cs.bham.ac.uk
Abstract

A key assumption of all problem-solving approaches based onutility theory
is that we can assign a utility or cost to each state. This in turn requires that all
criteria of interest can be reduced to a common ratio scale. However, many real-
world problems are difficult or impossible to formulate in terms of minimising a
single criterion, and it is often more natural to express problem requirements in
terms of a set of constraints which a solution should satisfy. In this paper, we
present a decision support system for route planning in complex terrains based on
a novel constraint-based search procedure,A� with bounded costs (ABC), which
searches for a solution which best satisfies a set of prioritised soft constraints, and
illustrate the operation of the system in a simple route planning problem. Our
approach provides a means of more clearly specifying problem-solving tasks and
more precisely evaluating the resulting solutions as a basis for action.

1 Introduction

A key assumption of all problem-solving approaches based on utility theory is that
we can assign autility or cost to each state. This in turn requires that all criteria of
interest can be reduced to a common ratio scale. For example, in a game of chess it
is assumed that all the pieces and their positions on the board can be given a value
on a common scale. Similarly, in decision theory, it is assumed that, for example,
the inconvenience of carrying an umbrella and the discomfort of getting wet can be
expressed as commensurable (dis)utilities. However, many real-world problems are
difficult or impossible to formulate in terms of minimising a single criterion. These
difficulties are particularly apparent when utility theory is used as the basis of a decision
support system and information about relative utilities must be supplied by the user.

In this paper, we consider decision support systems for multi-criteria problems,
where the relative importance of criteria change both between problems, andduring
the problem-solving process as the implications of the user’s preferences become ap-
parent. We define a class of generalised constraint-based search problems which ad-
mits both prioritised constraints (i.e., constraints which are moreor less important) and
soft constraints (i.e., constraints which can be satisfied to a greater or lesser degree),
and present a generalisation of the well-knownA� search algorithm,A� with bounded
costs (ABC), which searches for a solution which best satisfies a set of prioritised soft
constraints. We then briefly describe an implemented route planning system based on

1



ABC and illustrate the advantages of our approach in a simple route planningprob-
lem. We conclude by arguing that constraints form an appropriate interfacebetween the
user and the planner, by providing a means of more clearly specifying problem-solving
tasks and more precisely evaluating the resulting plans as a basis for action.

2 An example: route planning

As a motivating example, consider the problem of planning a route in acomplex terrain
consisting of hills, valleys, impassable areas etc. Such problems arise in connection
with path planning for a mobile robot, planning routes for forestry operations or plan-
ning a route for a new road or railway line among others. In each case, a number of
factors will be important in evaluating the quality of a plan: the length of the route; the
maximum negotiable gradient; the degree of visual intrusion (in the case of an environ-
mental impact assessment of a new railway line); the degree to which the surrounding
terrain is visible from the route (when surveying an area); and so on. In any particular
problem, some of these criteria will affect the feasibility of the route, while others are
simply preferences. Route planning is a good example of a wide class of decision sup-
port tasks, where a range of different criteria must be traded-off against one another to
obtain an acceptable solution.

The problem of finding a route in a complex environment can be formulated as one
of finding aminimum-cost(or low-cost) route between two locations in a digitised map
which represents a complex terrain of variable altitude, where the cost of aroute is an
indication of its quality [1]. In this approach, planning is seen as a searchproblem
in the space of partial plans, allowing many of the classic search algorithms such asA� [5] or variants such asA�� [11] to be applied. However, while such planners are
complete and optimal (or optimal to some bound�), it can be difficult to formulate the
planning task in terms of minimising a single criterion (cost function).

One approach to incorporating multiple criteria into the planning process is to de-
fine a cost function for each criterion and use, e.g. a weighted sum of these functions
as the function to be minimised. For example, we can define a ‘visibility cost’ for
being exposed and combine this with cost functions for the length of the plan or the
time required to execute the plan, to form a composite function which canbe used
to evaluate alternative plans. In general, the relationship between the weights and the
solutions produced is complex, and it often not clear how the different cost functions
should be combined to give the desired behaviour across all magnitude ranges for the
costs. This makes it hard to specify what kinds of plans a planner should produce and
hard to predict what it will do in any given situation; small changes in theweight of one
criterion can result in large changes in the resulting plans. Changing thecost function
for a particular criterion involves changing not only the weight for that cost, but the
weights for all the other costs as well. Moreover, if different criteria aremore or less
important in different situations, we need to find sets of weights for eachsituation.

At best the amount of, e.g., time or energy, we are prepared to sacrifice to remain
hidden is context dependent. In general, the criteria which determine the quality of
a solution are incommensurable. For example, the alternatives may only beordered
on an ordinal scale, with some of the criteria referring to the feasibility of the plan
while others refer to properties that are merely desirable. It is difficult to see how
to convert such problems into a multi-criterion optimisation problem without making
ad-hoc assumptions.

2



3 Search with prioritised soft constraints

In many cases an acceptable solution will be constrained to attain some acceptable
range of values on one or more of the criteria, and it is often more naturalto express the
problem requirements in terms of a set of constraints which the solution must satisfy.
In the remainder of this paper we describe a new approach which involves planning
to satisfy an ordered set of constraints rather than attempting to find the lowest cost
plan to achieve a goal [8]. Instead of using a cost function ofn arguments (one for
each criterion) which computes e.g. a weighted sum of its inputs, we use a list of
constraints where the order of the constraints reflects their importance. In effect, we
replace the optimisation problem solved by the planner with a satisficing or constraint
satisfaction problem that allows optimisation as a special case. For example,rather
than finding the least cost path on the basis of both the time required toexecute the
plan and the visibility, we might specify a route that takes time less thant and is at
least 50% concealed, or that takes time less thanu and minimises visibility (subject to
the time constraint).

This approach provides a means of more clearly specifying problem-solving tasks
and more precisely evaluating the resulting plans: a plan can be characterised assat-
isfying certain constraints and only partially satisfying or not satisfying others. For
example, a particular plan might satisfy the requirement that the time taken be less
thanx, but violate the requirement that the plan be at least 50% concealed.

We consider three main types of constraint:

1. requirements that certain parts of the terrain should be visited or avoided e.g. that
the route should not be visible from a given position, or should avoid no-go (i.e.
impassable) areas (simple predicates withtrueor falsevalues);

2. limits on some property of the plan such as the time required to execute, degree
of visibility etc. (functions with values constrained to fall in some interval); and

3. optimisation constraints such as the requirement that the plan should be as short
as possible (functions with values to be minimised or maximised, including, for
example, a value being as close as possible to some constant).

Constraints are represented as bounds on costs.1 A costis a measure of path quality
relative to some criterion, and can be anything for which an ordering relation can be
defined: e.g., numbers, booleans, or more generally a label from an ordered setof labels
(e.g., ‘tiny’, ‘small’, ‘medium’, ‘large’, ‘huge’) etc. Acost functionis a function from a
plan and a terrain model to a cost. Different cost functions use different abstractions of
the basic topographic model. For example, the no-go cost of a plan may be computed
using a thresholded maximum gradient map, a visibility cost may be computed using a
visibility map which represents the degree to which each cell in the model can be seen
from a particular location and so on. Aconstraintis a relation between a cost and a
set of acceptable values for the cost, for example the boolean value ‘true’, ‘= 100’, an
open interval such as ‘< 10’, ‘> 20’, or ‘� O+ �’ (i.e. within � of the optimum value
O). Costs are used to determine if a plan satisfies a constraint, whereas constraints are
used to control backtracking.

1The notion of ‘constraint’ developed below is closer to thatof Fox [4] than that of e.g. O-Plan [12] or
UMCP [3], though in both cases there are significant differences.

3



3.1 Valid Plans

A (possibly partial) plan which satisfies all the constraints is termedvalid. The con-
cept of validity is complicated by the difficulty of evaluating a partial plan against the
constraints. Constraints are typically properties of a complete plan andare not directly
applicable to the partial plans produced by the planner. We therefore use aweaker cri-
terion which allows us to evaluate partial plans: unless we can prove that apartial plan
cannot satisfy the constraints, we make the assumption that the plannerwill be able to
find a completion of the plan which does satisfy the constraints. If theconstraints are
admissible, e.g. if the associated cost function always returns an underestimate of the
true cost of the cheapest completion of a partial plan for an upper bound or minimisa-
tion constraint, then we can guarantee that if a partial plan fails to satisfya constraint,
all extensions of that plan will also fail to satisfy the constraint, since the cost of the
plan can only increase as the plan is extended. Optimisation constraints introduce fur-
ther difficulties in that the optimum is usually not known when planning begins; we
can only estimate the optimum by attempting to produce a plan, and the current best
estimate of the optimum is continually revised throughout the planning process.

3.2 Plan ordering

If the problem is over-constrained, there will be no solution which satisfies all the
constraints. In such situations, it is often possible to distinguish among the invalid so-
lutions, as the violation of some (sets of) constraints will be preferable to others. We
order plans on the basis of the number of important constraints they satisfy, compar-
ing the value of each constraint in the constraint list in turn until wefind a constraint
which is satisfied by only one of the plans, and preferring the plan whichsatisfies the
constraint. This is essentially lexicographic ordering on fixed lengthboolean strings in
which true is preferred tofalse.

The total ordering on constraints is used to order partial plans into equivalence
classes, with those which satisfy all the constraints in the first equivalence class, those
that satisfy all but the last constraint in the second equivalence class and soon. For the
purposes of comparison, we view the goal as the 0th constraint, i.e. a complete plan
which fails to satisfy some of the constraints is preferred to a valid partial plan. (It is
clear that, in the general case, this ordering cannot be produced using a weighted sum
cost function.)

If the problem is under-constrained, there may be many valid solutions. In such
cases, we prefer plans which over-satisfy the constraints, i.e., where there is some
‘slack’ between the cost of a path and the bound on the cost defined by a constraint.
This is important if we are looking for the optimal solution but also for other reasons.
For example, solutions which over-satisfy time or energy constraintsare often more
robust in the face of unexpected problems during the execution of the plan. We asso-
ciate each constraint with anordering relationwhich defines a partial order over the
estimated total costs for that constraint, depending on how well the cost ‘satisfies’ the
constraint. For example, if a constraint requires that a solution satisfy a certain property
and the associated cost function is boolean valued, then the value ‘true’ is preferred to
‘false’. Similarly, if a constraint is to find a route with ‘medium’ or better concealment,
then ‘small’ would be preferred to ‘large’. In general, ifv1 andv2 are values andk1
is a constant, then the following constraints could have the associatedorderings:v1 is
preferred tov2 if

4



Form of constraint on costv Cost orderingv < Oe + � v1 < v2v < k1 v1 < v2v > k1 v1 > v2v = k1 jk1 � v1j < jk1 � v2j
Theseslack orderingsallow us to sub-order plans within an equivalence class, with
those plans which have the greatest slack being the most preferred. Conversely, for
violated constraints, the sub-ordering may favour plans which are closer to satisfying
the constraint. This can be useful in the case of ‘soft’ constraints, where minor viola-
tions are acceptable.2 Several ordering strategies are possible. For example we could
order the equivalence classes using the costs for the most important constraint or the
cost for the most important violated constraint. In our work to date, we have used a
lexicographic ordering over costs to sub-order the equivalence classes.

3.3 A� with Bounded Costs

The search strategy used by the planner is similar toA�. We use two lists, anOPEN

list of unexpanded nodes (partial plans), and aCLOSED list which records all non-
dominated plans to each point visited by the planner. At each cycle, we take thenode
with the greatest slack in the first non-empty equivalence class from theOPEN list and
put it onCLOSED. Call this noden. If n is a valid solution and all the constraints are
admissible we return the plan and stop. Otherwise we generate all the successors ofn,
and for each successor we cost it and determine its equivalence class. We remove from
OPENandCLOSEDall paths dominated by any of the successors ofn and discard any
successor which is dominated by any path onOPENor CLOSED. One planpa dominates
another planpb if both plans terminate in the same point, and there is at least one costfi such thatfi(pa) < fi(pb) and there is no costfj such thatfj(pa) > fj(pb). We add
any remaining successors toOPEN, in order, and recurse.

If the constraints are admissible, the first complete plan found will satisfy the great-
est number of most important constraints; if slack ordering is used, this plan also has
greatest slack. If the constraints are not admissible, we can never be sure we have found
the best plan without an exhaustive search: even if we have a plan which satisfies all the
constraints, there may be another plan with greater slack. The planner retainsa pointer
to the best plan found to date, which is returned if the planner is interrupted by the
user or after some pre-determined number of expansions have been performedbefore a
complete, valid plan has been found. The plans returned by the planner areannotated
with the constraints they satisfy and the amount of slack for each constraint and the
user can use these annotations to to determine if the best plan found so farconstitutes
an acceptable solution in the current context (see below section 4 below).

Given reasonable assumptions regarding the constraints,ABC is both complete
and optimal [9]. However, as might be expected, the additional flexibility of ABC
involves a certain overhead compared withA�. The lexicographic ordering of plans
requires the comparison ofk constraint values for each pair of plans. If we sort within
equivalence classes, we must also perform an additionallogm comparisons, where

2Favouring plans which over-satisfy the constraints has theadditional advantage of reducing the like-
lihood that the plan will violate the constraint as the length of the plan increases, reducing the amount of
backtracking. (If the cost functions are admissible, the estimated cost of a plan will typically increase as the
plan is expanded.)

5



m is the number of plans in the equivalence class. In addition, we must update the
constraint values of the plans in theOPEN list when we obtain a better estimate of the
optimum value for an optimisation constraint.

There is also a storage overhead associated with this approach. For each plan we
must now holdk constraint values in addition to thek costs from which the constraint
values are derived. More importantly, we must remember all the non-dominated plans
from the start point to each point visited by the planner rather than justthe minimum
cost plan as withA� since: (a) it may be necessary to ‘trade off’ slack on a more im-
portant constraint to satisfy another, less important constraint; and (b) it may not be
possible to satisfy all the constraints, in which case we must backtrack to a plan in a
lower equivalence class. In some cases remembering all the non-dominated planscan
be a significant overhead. However, there are a number of ways round this problem, in-
cluding more intelligent initial processing of the constraints and discretising the Pareto
surface. For example we can require that the planner retain no more thanp plans to any
given point, by discarding any plan which is sufficiently similar to an existing plan to
that point. (In the limit, this reduces toA� where we only remember one plan to each
point.)

4 Route planning with ordered constraints

In this section, we present an example application of theABC algorithm and illus-
trate the flexibility of our approach compared to conventional approaches based on
weighted sum cost functions. We briefly describe a simple decision support system for
route planning based onABC and illustrate its operation in a simple route planning
problem.3 The decision support system is implemented as a time-sliced constraint-
based planner that plans to achieve a single goal at a given level of abstraction and an
abstract model generator that can produce a (more) abstract version of a given terrain
model. The planner currently supports six constraint types:� energy constraints bound a non-linear ‘effort’ function which returnsa value

expressing the ease with which the plan could be executed;� time constraints bound the time required to execute the plan, assuming the agent
is moving at a constant speed of one cell per timestep;� no-go constraints bound the maximum gradient of any cell traversed by the plan;� region constraints require that the plan should pass through one ormore points
in a given circular region;� concealed route constraints require that none of the steps in the plan be visible
from one or more observation positions; and� observation constraints require that the plan should pass through one or more
points from which an agent can observe a target position.

The interface to the system consists of two main windows or control panels as
shown in Figure 1. The larger window shows the currently selected terrain model, the
start and end positions of the plan, graphical representations of positional constraints,

3The application described in this section is for illustrative purposes only, and ignores many criteria that
a real route planning system would have to address, e.g., minimum radius of curvature.

6



and the output of the planner in the form of one or more plans and trace information
about progress on the current problem. The second, smaller, window (inset at bottom
right) is used to set constraint parameters and to control the behaviour of the planner,
e.g., to decide whether hierarchical planning should be used. (Additionalwindows
showing models and plans at different levels of abstraction can be displayedif the user
chooses to use hierarchical planning.) A third window (not shown in Figure 1) is used
to select the terrain model and control the output of trace information.

Figure 1: Planner control panels.

Constraints which take a location in the terrain as a parameter (i.e., region, con-
cealed route and observation constraints) are specified graphically, by creatingan in-
stance of the constraint type and placing its graphical representation at theappropriate
location on the model. Other parameters, e.g., the visual range of an observer, and
the parameters for non-positional constraints (i.e., energy, time and no-go constraints)
are specified using the parameter control panel. There is a default ordering over the
constraints, with feasibility (no-go) constraints being the most important, followed by
positional constraints, and finally preference constraints (energy and time), however
the default ordering can be over-ridden by the user. If there are several positional con-
straints, their ordering is also specified graphically.

The start and end position, together with any constraints specified by theuser, de-
fine the goal which is passed to the planner. To achieve these goals, the planner often
has to produce plans of several hundred steps at the resolution of the base model. The
resulting search problems are intractable, and it is necessary to simplify the problem
in order to limit the search. One way to do this is to first generate an abstract plan
which is then refined to give a detailed plan in the base model. If the size ofthe terrain
model exceeds a user-selectable threshold, the planner will attempt to find aplan in
an abstract model at a larger scale. If the resulting scaled model is still too large for
practical planning, the planner will attempt to find a plan in an abstraction of the scaled
model, and so on. This process is repeated until the abstract model is small enough to
plan in effectively.

The resulting abstract plans are used to guide the planning process at thelevel
below. Each abstract plan is used to define a ‘corridor’ within which the planner will

7



search for a refinement of the abstract plan at the next lower level of abstraction. The
corridor is itself represented as a constraint, an ‘abstract plan constraint’, which is
simply added to the existing list of constraints at the next lower level of abstraction to
give a new planning goal. The position at which the abstract plan constraint is inserted
into the original list of constraints determines how important it isto stay within the
corridor defined by the abstract plan. For example, if we put the abstract plan constraint
first in the list of constraints, the planner will abandon all the otherconstraints before
it leaves the corridor. If we put it last, the abstract plan constraint issimply advice
to the planner, which it may ignore in an attempt to satisfy the other constraints. The
resulting, more detailed, plan is used to construct a new corridor to constrain further
refinement at the next lower level of abstraction. Successive refinements may result in
repeated displacement of the centreline of the corridor at lower levels of abstraction
and helps to eliminate artifacts introduced by the abstraction process.4

4.1 An example plan

As an example of the operation of the system, consider the problem of planning from
coordinates (223, 162) to (160, 43) in an400 � 400 grid of spot heights representing
a 20km� 20km region of a synthetic terrain model (shown in Figure 1). Figure 2
shows an (enlarged) region of the terrain model (lighter shades of grey represent higher
elevations). In this example we use only two constraints: that the time taken to execute
the plan should be less than 500 timesteps(t < 500), and that the energy cost should
be less than 25,000(e < 25; 000). There is a conflict between the two constraints, in
that shorter plans involve traversing steeper gradients and so require more energy to
execute.

Figure 2 shows the plan returned by theABC planner. It requires 263 timesteps
and 24,968 units of energy to execute, i.e. it just satisfies the energy constraint. A
straight line path would have given maximum slack on the first (time) constraint, but
the planner has traded slack on the more important constraint by following a more
circuitous route along the river valley to satisfy the second, less important constraint
(energy).

While trading off slack on the first constraint to satisfy the second constraint, the
planner will neverprefer a path which satisfies only the second constraint to a path
which satisfies the first constraint. To obtain the same behaviour witha weighted sum
cost function of the formw1t+w2e we must ensure that the ratio ofw1 tow2 is greater
than the maximal value ofje(pa) � e(pb)j=jt(pa) � t(pb)j for any two planspa andpb. But then a planner minimisingw1t + w2e will never trade off slack on the first
constraint to satisfy the second one. In contrast, if it were impossible to satisfy both
constraints, e.g. for the constraintst < 250 ande < 25; 000, theABC planner would
satisfy the time constraint while coming as close as possible to satisfying the energy
constraint.

5 Related work

Our work has similarities with work in both optimisation (e.g., heuristic search for
path finding problems and decision theoretic approaches to planning) and constraint
satisfaction (e.g., planning as satisfiability).

4Other problems caused by abstraction, or averaging, may require task specific abstraction procedures.

8



Figure 2: Planning with two constraints.ABC is a strict generalisation ofA�: with a single optimisation constraint its be-
haviour is identical toA�. However unlike heuristic search and decision theoretic
approaches, we do not require that all the criteria be commensurable. The empha-
sis on non-dominated solutions has some similarities with Pareto optimisation which
also avoids the problem of devising an appropriate set of weights fora composite cost
function. However the motivation is different: the aim of Pareto optimisation is to re-
turn some or all of the non-dominated solutions for further consideration by a human
decision maker. In contrast, when slack ordering is used,ABC will return the most
preferred solution from the region of the Pareto surface bounded by the the constraints
which are satisfied in the highest equivalence class. If an optimal solutionis not re-
quired (i.e., a slack ordering is not used), the algorithm will returnany solution which
satisfies the constraints; such a solution will not necessarily be Paretooptimal.ABC also has a number of features in common with constraint satisfaction tech-
niques. However, algorithms for boolean CSPs assume that: (a) all constraints are
boolean (i.e., they are either true or false), (b) all constraints are equally important
(i.e., the solution to an over-constrained CSP is not defined), and (c) the number of
variables is known in advance. Dubois et al. [2] introduce Fuzzy ConstraintSatisfac-
tion Problems (FCSP), a generalisation of boolean CSPs, which support prioritisation
of constraints and preference among feasible solutions. In addition, FCSPs allow un-
certainty in parameter values and ill-defined CSPs where the set of constraints which
define the problem is not precisely known. However, in common with more conven-
tional techniques, their approach assumes that the number of variables is known in
advance. For many problems, this assumption is invalid, for example, inroute plan-
ning the number of steps in the plan is not normally known in advance. Several authors,
for example [6, 7], have described iterative techniques which can be appliedwhen the
number of variables is unknown. However the problems to which these techniques
have been applied are considerably smaller than the route planning problems to whichABC has been applied which typically involve more than 100,000 states and plansof

9



more than 500 steps. Moreover these approaches are incapable of handling prioritised
or soft constraints.ABC has many of the advantages of FCSPs and iterative techniques: it can handle
prioritised and soft constraints (though not uncertain values or cases inwhich the set of
constraints which define the problem is not precisely known) and problems where the
number of variables is not known in advance.

6 Conclusions and further work

In this paper, we have argued that classic search algorithms make very strong assump-
tions, such as the assumption of commensurability, which do not holdfor many real-
world problems. We have presented a new approach to formulating and solving multi-
criterion search problems which relaxes some of these assumptions.

By using an ordered set of prioritised soft constraints to represent therequirements
on the solution we avoid the difficulties of formulating an appropriate set of weights for
a composite cost function. Changing the relative importance of the criteria or introduc-
ing new cost functions or constraints does not require re-computationof weights. The
ordering over constraints blurs the conventional distinction between absolute (hard)
constraints and preference (soft) constraints. In our approach, all constraints are pref-
erences that the problem-solver will try to satisfy, trading off slack ona more important
constraint to satisfy another, less important, constraint, and it is upto the user to de-
cide how important these are in the current context, for example if planning should be
terminated if one of the constraints is violated.

Constraints provide a means of more clearly specifying problem-solving tasks and
more precisely evaluating the resulting solutions. There is a straightforward correspon-
dence between the ‘real problem’ and the constraints passed to the problem-solver. A
solution can be characterised as satisfying some constraints (to a greater orlesser de-
gree) and only partially satisfying or not satisfying others. Annotating plans with the
constraints they satisfy means that the implications of adopting or executing the cur-
rent best plan are immediately apparent, and facilitates the integration of the planner
into a decision support system (or the architecture of an agent, see for example [10])
by providing a convenient interface between the user’s problem and the functions of
the planner. If a satisfactory solution cannot be found, the degree towhich the various
constraints are satisfied or violated by the best plan found so far can be usedto decide
whether to change the order of the constraints, relax one or more constraints or even to
redefine the goal, before making another attempt to solve the problem. Our approach
moves the complex constraint evaluation problem which is both constraint specific and
context sensitive out of the planner and into the decision support system.

We currently have an initial implementation of a time-sliced constraint-based plan-
ner, based onABC, which will plan a route from an initial point to a destination point
satisfying a number of boolean and interval constraints [8]. However the current im-
plementation does not support optimisation constraints and further work is required to
complete the implementation and improve its performance. More work is also neces-
sary to characterise the performance implications ofABC relative toA�. Another area
which we wish to explore is that of mixed initiative planning. For example, it would
be straightforward to allow the user to ‘sketch’ an initial plan, either directly on the
base model, or in one of the abstract models produced by the planner, and use this to
generate an abstract plan constraint to guide subsequent search by the planner.

The present work is the first step in the development of a hybrid approach to search

10



with prioritised soft constraints. It raises many new issues related topreference order-
ings over solutions (‘slack ordering’) and the relevance of different constraint orderings
for different kinds of problems. However, we believe that the increasein flexibility of
our approach outweighs the increase in computational cost associated withABC.

Acknowledgements

We wish to thank the members of the Cognition and Affect and EEBIC (Evolution-
ary and Emergent Behaviour Intelligence and Computation) groups at the School of
Computer Science, University of Birmingham for useful discussions andcomments.
Natasha Alechina read an earlier version of this paper and made many useful com-
ments. This research is partially supported by a grant from the Defence Evaluation and
Research Agency (DERA Malvern).

References

[1] C. Campbell, R. Hull, E. Root, and L. Jackson. Route planning in CCTT. In Pro-
ceedings of the Fifth Conference on Computer Generated Forces and Behavioural
Representation, pages 233–244. Institute for Simulation and Training, 1995.

[2] D. Dubois, H. Fargier, and H. Prade. Possibility theory in constraint satisfaction
problems: Handling priority, preference and uncertainty.Applied Intelligence,
6:287–309, 1996.

[3] K. Erol, J. Hendler, D. Nau, and R.Tsuneto. A critical look at critics in HTN
planning. InProceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, IJCAI-95, pages 1592–1598, 1995.

[4] M. Fox. Constraint-directed search: a case study of job-shop scheduling. PhD
thesis, Carnegie Mellon University, 1983.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths.IEEE Trans. Syst. Sci. Cybern., SSC–4(2):100–
107, 1968.

[6] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. InProceedings of the Thirteenth National Conference on
Artificial Intelligence, AAAI-96, pages 1194–1201. AAAI Press/MIT Press, 1996.

[7] V. Liatsos and B. Richards. Least commitment—an optimal planning strategy. In
Proceedings of the 16th Workshop of the UK Planning and SchedulingSpecial
Interest Group, pages 119–133. University of Durham, Dec 1997.

[8] B. Logan. Route planning with ordered constraints. InProceedings of the 16th
Workshop of the UK Planning and Scheduling Special Interest Group, pages 133–
144. University of Durham, Dec 1997.

[9] B. Logan and N. Alechina.A� with bounded costs. Technical Report CSRP-98-3,
School of Computer Science, University of Birmingham, 1998.

11



[10] B. Logan and A. Sloman. Agent route planning in complex terrains.Technical
Report CSRP-97-30, School of Computer Science, University of Birmingham,
1997.

[11] J. Pearl.A�� – an algorithm using search effort estimates.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 4(4):392–399, 1982.

[12] A. Tate, B. Drabble, and J. Dalton. Reasoning with constraints within O-Plan2.
In Proceedings of ARPI Workshop, Tucson Arizona. Morgan Kaufmann, 1994.

12


