Qualitative Decision Support using Prioritised
Soft Constraints

Brian Logan and Aaron Sloman

School of Computer Science, University of Birmingham,
Birmingham B15 2TT UK

{b.s.logan, a. sl onan}@s. bham ac. uk

Abstract

A key assumption of all problem-solving approaches basedtility theory
is that we can assign a utility or cost to each state. Thisrim tequires that all
criteria of interest can be reduced to a common ratio scat®veider, many real-
world problems are difficult or impossible to formulate inrtes of minimising a
single criterion, and it is often more natural to expressbfgm requirements in
terms of a set of constraints which a solution should sati$fythis paper, we
present a decision support system for route planning in ¢exrtprrains based on
a novel constraint-based search proceddrewith bounded costs (ABC), which
searches for a solution which best satisfies a set of pgedtsoft constraints, and
illustrate the operation of the system in a simple route mitagn problem. Our
approach provides a means of more clearly specifying pnotgelving tasks and
more precisely evaluating the resulting solutions as astfasiaction.

1 Introduction

A key assumption of all problem-solving approaches based on utilégrihis that
we can assign atility or costto each state. This in turn requires that all criteria of
interest can be reduced to a common ratio scale. For example, in a game of chess it
is assumed that all the pieces and their positions on the board can be giatuea v
on a common scale. Similarly, in decision theory, it is assumed that,x@mple,
the inconvenience of carrying an umbrella and the discomfort of gettigigcan be
expressed as commensurable (dis)utilities. However, many real-watdems are
difficult or impossible to formulate in terms of minimising a gla criterion. These
difficulties are particularly apparent when utility theory is used as thisloda decision
support system and information about relative utilities must belgghby the user.

In this paper, we consider decision support systems for multi-aitgrdoblems,
where the relative importance of criteria change both between problemsiueimdy
the problem-solving process as the implications of the user’s prafesdmecome ap-
parent. We define a class of generalised constraint-based search problems which ad
mits both prioritised constraints (i.e., constraints which are motess important) and
soft constraints (i.e., constraints which can be satisfied to a greaterser ldsgree),
and present a generalisation of the well-knadnsearch algorithm4* with bounded
costs A B(C), which searches for a solution which best satisfies a set of prioritefed s
constraints. We then briefly describe an implemented route planningnsysised on

ABC and illustrate the advantages of our approach in a simple route plaprobg

lem. We conclude by arguing that constraints form an appropriate intdréegen the
user and the planner, by providing a means of more clearly specifyinggme$olving

tasks and more precisely evaluating the resulting plans as a basis for.actio

2 Anexample: route planning

As a motivating example, consider the problem of planning a routeangplex terrain
consisting of hills, valleys, impassable areas etc. Such problems arcsmnection
with path planning for a mobile robot, planning routes for forgsiperations or plan-
ning a route for a new road or railway line among others. In each case, aenahb
factors will be important in evaluating the quality of a plan: the kangf the route; the
maximum negotiable gradient; the degree of visual intrusion @rcdse of an environ-
mental impact assessment of a new railway line); the degree to which tioeisding
terrain is visible from the route (when surveying an area); and soroany particular
problem, some of these criteria will affect the feasibility of the eputhile others are
simply preferences. Route planning is a good example of a wide clasgzisiah sup-
port tasks, where a range of different criteria must be traded-off atgamesanother to
obtain an acceptable solution.

The problem of finding a route in a complex environment can be forradlas one
of finding aminimum-cosfor low-cost) route between two locations in a digitised map
which represents a complex terrain of variable altitude, where the costoftais an
indication of its quality [1]. In this approach, planning is seen as a sqanailem
in the space of partial plans, allowing many of the classic search algaritiuch as
A* [5] or variants such agl? [11] to be applied. However, while such planners are
complete and optimal (or optimal to some boudt can be difficult to formulate the
planning task in terms of minimising a single criterion (cost funa}i

One approach to incorporating multiple criteria into the planniragpss is to de-
fine a cost function for each criterion and use, e.g. a weighted sum of thast®fs
as the function to be minimised. For example, we can define a ‘vigilubst’ for
being exposed and combine this with cost functions for the lengtheoptan or the
time required to execute the plan, to form a composite function whichbeansed
to evaluate alternative plans. In general, the relationship between thatavaigd the
solutions produced is complex, and it often not clear how the differesttfooctions
should be combined to give the desired behaviour across all magnéndeg for the
costs. This makes it hard to specify what kinds of plans a planner shoadidge and
hard to predict what it will do in any given situation; small changes imtbigght of one
criterion can result in large changes in the resulting plans. Changingpgtidunction
for a particular criterion involves changing not only the weight faatthost, but the
weights for all the other costs as well. Moreover, if different criteriaracge or less
important in different situations, we need to find sets of weights for s@ahtion.

At best the amount of, e.g., time or energy, we are prepared to sacrifice &nrem
hidden is context dependent. In general, the criteria which determineutléygof
a solution are incommensurable. For example, the alternatives may owisdbeed
on an ordinal scale, with some of the criteria referring to the feasibilitthe plan
while others refer to properties that are merely desirable. It is diffiqutde how
to convert such problems into a multi-criterion optimisation pesblwithout making
ad-hoc assumptions.

3 Search with prioritised soft constraints

In many cases an acceptable solution will be constrained to attain some acceptable
range of values on one or more of the criteria, and it is often more natueapress the
problem requirements in terms of a set of constraints which the solutigst satisfy.
In the remainder of this paper we describe a new approach which involvesimpdan
to satisfy an ordered set of constraints rather than attempting to finebwest cost
plan to achieve a goal [8]. Instead of using a cost function afguments (one for
each criterion) which computes e.g. a weighted sum of its inputs, we uist @f |
constraints where the order of the constraints reflects their importanceffdct, we
replace the optimisation problem solved by the planner with a satigfariconstraint
satisfaction problem that allows optimisation as a special case. For exawbler
than finding the least cost path on the basis of both the time requirexkeute the
plan and the visibility, we might specify a route that takes time lbast and is at
least 50% concealed, or that takes time less thand minimises visibility (subject to
the time constraint).

This approach provides a means of more clearly specifying problem-gaksks
and more precisely evaluating the resulting plans: a plan can be characterisstd as
isfying certain constraints and only partially satisfying or not $gitig) others. For
example, a particular plan might satisfy the requirement that the timrenthk less
thanz, but violate the requirement that the plan be at least 50% concealed.

We consider three main types of constraint:

1. requirements that certain parts of the terrain should be visited adede.g. that
the route should not be visible from a given position, or sH@awoid no-go (i.e.
impassable) areas (simple predicates wite or falsevalues);

2. limits on some property of the plan such as the time required to exesegree
of visibility etc. (functions with values constrained to fall in soméerval); and

3. optimisation constraints such as the requirement that the plandshewals short
as possible (functions with values to be minimised or maximisedydiad), for
example, a value being as close as possible to some constant).

Constraints are represented as bounds on éo&tsostis a measure of path quality
relative to some criterion, and can be anything for which an ordering celatn be
defined: e.g., numbers, booleans, or more generally a label from an ordeoéthbets
(e.g., 'tiny’, ‘'small’, ‘medium’, ‘large’, ‘huge’) etc. Acost functions a function from a
plan and a terrain model to a cost. Different cost functions use differstrizations of
the basic topographic model. For example, the no-go cost of a plan enegrbputed
using a thresholded maximum gradient map, a visibility cost may be atedsing a
visibility map which represents the degree to which each cell in the modelecaedn
from a particular location and so on. @onstraintis a relation between a cost and a
set of acceptable values for the cost, for example the boolean valeg “ = 100’, an
open interval such as< 10", * > 20’, or * < O + €’ (i.e. within e of the optimum value
0). Costs are used to determine if a plan satisfies a constraint, whereasrugstre
used to control backtracking.

1The notion of ‘constraint’ developed below is closer to thaFox [4] than that of e.g. O-Plan [12] or
UMCP [3], though in both cases there are significant diffeesn

3.1 Valid Plans

A (possibly partial) plan which satisfies all the constraints is tervedil. The con-
cept of validity is complicated by the difficulty of evaluating a partiamphgainst the
constraints. Constraints are typically properties of a complete plaai@bot directly
applicable to the partial plans produced by the planner. We thereforewsalar cri-
terion which allows us to evaluate partial plans: unless we can prove fzatial plan
cannot satisfy the constraints, we make the assumption that the plaitier able to
find a completion of the plan which does satisfy the constraints. IEtimstraints are
admissible e.qg. if the associated cost function always returns an underestimate of the
true cost of the cheapest completion of a partial plan for an upper bounthonise-
tion constraint, then we can guarantee that if a partial plan fails to satispnstraint,
all extensions of that plan will also fail to satisfy the constraimgsithe cost of the
plan can only increase as the plan is extended. Optimisation constradrntiice fur-
ther difficulties in that the optimum is usually not known when plagnibegins; we
can only estimate the optimum by attempting to produce a plan, and thentbest
estimate of the optimum is continually revised throughout thermpfamprocess.

3.2 Planordering

If the problem is over-constrained, there will be no solution whialisies all the
constraints. In such situations, it is often possible to disistygamong the invalid so-
lutions, as the violation of some (sets of) constraints will begradfle to others. We
order plans on the basis of the number of important constraints ttesfys compar-
ing the value of each constraint in the constraint list in turn untilfiwd a constraint
which is satisfied by only one of the plans, and preferring the plan wdatikfies the
constraint. This is essentially lexicographic ordering on fixed lebgthlean strings in
whichtrueis preferred tdfalse

The total ordering on constraints is used to order partial plans intiva&gace
classes, with those which satisfy all the constraints in the first atgrice class, those
that satisfy all but the last constraint in the second equivalence class and Bor the
purposes of comparison, we view the goal as thk €onstraint, i.e. a complete plan
which fails to satisfy some of the constraints is preferred to a validgdqulan. (It is
clear that, in the general case, this ordering cannot be produced using aedesght
cost function.)

If the problem is under-constrained, there may be many valid solutibnsuch
cases, we prefer plans which over-satisfy the constraints, i.e., where ihheome
‘slack’ between the cost of a path and the bound on the cost defined by aatainstr
This is important if we are looking for the optimal solution bus@for other reasons.
For example, solutions which over-satisfy time or energy constrairgoften more
robust in the face of unexpected problems during the execution ofléime /e asso-
ciate each constraint with asrdering relationwhich defines a partial order over the
estimated total costs for that constraint, depending on how well the satsifies’ the
constraint. For example, if a constraint requires that a solutiorfgatiertain property
and the associated cost function is boolean valued, then the value ‘truefésrpd to
‘false’. Similarly, if a constraint is to find a route with ‘medium better concealment,
then ‘small’ would be preferred to ‘large’. In generaluif andwv, are values and;
is a constant, then the following constraints could have the assodiatedngs:v; is
preferred tow, if

Form of constraint on cost Cost ordering

v< 0O, +e€ v1 < U9
v < ky v1 < U2
v > ky v1 > U2
v=Fk |k1 — v1] < k1 — v

Theseslack orderingsallow us to sub-order plans within an equivalence class, with
those plans which have the greatest slack being the most preferred. Sspvéor
violated constraints, the sub-ordering may favour plans which arerctossatisfying

the constraint. This can be useful in the case of ‘soft’ constraintsreviminor viola-
tions are acceptabfeSeveral ordering strategies are possible. For example we could
order the equivalence classes using the costs for the most importatriagongr the

cost for the most important violated constraint. In our work to date have used a
lexicographic ordering over costs to sub-order the equivalence classes.

3.3 A* with Bounded Costs

The search strategy used by the planner is similad’to We use two lists, awPEN
list of unexpanded nodes (partial plans), andLasEeD list which records all non-
dominated plans to each point visited by the planner. At each cycle, we takedee
with the greatest slack in the first non-empty equivalence class fromrhbalist and
put it oncLOSED. Call this noden. If n is a valid solution and all the constraints are
admissible we return the plan and stop. Otherwise we generate alldbessors of,
and for each successor we cost it and determine its equivalence class. We resmove fr
oPENandcLosEDall paths dominated by any of the successors ahd discard any
successor which is dominated by any patloeENor cCLOSED. One plarp, dominates
another plarp, if both plans terminate in the same point, and there is at least one cost
fi such thatf;(p,) < fi(ps) and there is no cogt; such thatf; (p,) > f;(ps). We add
any remaining successors@®EN, in order, and recurse.

If the constraints are admissible, the first complete plan found atify the great-
est number of most important constraints; if slack ordering is usésiptan also has
greatest slack. If the constraints are not admissible, we can never besshex@found
the best plan without an exhaustive search: even if we have a plan whiffesall the
constraints, there may be another plan with greater slack. The planner eefzoirger
to the best plan found to date, which is returned if the planner is ingerduby the
user or after some pre-determined number of expansions have been perbafoexh
complete, valid plan has been found. The plans returned by the planremmrastated
with the constraints they satisfy and the amount of slack for each cansamrad the
user can use these annotations to to determine if the best plan foundcem$titutes
an acceptable solution in the current context (see below section 4 below).

Given reasonable assumptions regarding the constradi®€; is both complete
and optimal [9]. However, as might be expected, the additional fléxitf ABC
involves a certain overhead compared with. The lexicographic ordering of plans
requires the comparison &fconstraint values for each pair of plans. If we sort within
equivalence classes, we must also perform an additiogah comparisons, where

2Favouring plans which over-satisfy the constraints hasatiiditional advantage of reducing the like-
lihood that the plan will violate the constraint as the léngt the plan increases, reducing the amount of
backtracking. (If the cost functions are admissible, therested cost of a plan will typically increase as the
plan is expanded.)

m is the number of plans in the equivalence class. In addition, we mustteiple
constraint values of the plans in ti@ENlist when we obtain a better estimate of the
optimum value for an optimisation constraint.

There is also a storage overhead associated with this approach. For each plan we
must now holdk constraint values in addition to tikecosts from which the constraint
values are derived. More importantly, we must remember all the nonvdded plans
from the start point to each point visited by the planner rather tharthesminimum
cost plan as withd* since: (a) it may be necessary to ‘trade off’ slack on a more im-
portant constraint to satisfy another, less important constraint; lanid hay not be
possible to satisfy all the constraints, in which case we must backtwaglptan in a
lower equivalence class. In some cases remembering all the non-dominatedgsians
be a significant overhead. However, there are a number of ways rounddblsim, in-
cluding more intelligent initial processing of the constraints asgdmditising the Pareto
surface. For example we can require that the planner retain no morg gHans to any
given point, by discarding any plan which is sufficiently similar to arstixg plan to
that point. (In the limit, this reduces té* where we only remember one plan to each
point.)

4 Route planning with ordered constraints

In this section, we present an example application of Ali&C' algorithm and illus-

trate the flexibility of our approach compared to conventional approachesl lwas
weighted sum cost functions. We briefly describe a simple decisiorosugystem for
route planning based cABC' and illustrate its operation in a simple route planning
problem® The decision support system is implemented as a time-sliced constraint-
based planner that plans to achieve a single goal at a given level of absti@uti@n
abstract model generator that can produce a (more) abstract version of a giaén ter
model. The planner currently supports six constraint types:

e energy constraints bound a non-linear ‘effort’ function which retuanglue
expressing the ease with which the plan could be executed;

¢ time constraints bound the time required to execute the plan, asgtingmgent
is moving at a constant speed of one cell per timestep;

e no-go constraints bound the maximum gradient of any cell traversecetpidh;

e region constraints require that the plan should pass through omai@ points
in a given circular region;

e concealed route constraints require that none of the steps in the plasitile v
from one or more observation positions; and

e observation constraints require that the plan should pass througloromore
points from which an agent can observe a target position.

The interface to the system consists of two main windows or contro¢lpaas
shown in Figure 1. The larger window shows the currently selected nemadel, the
start and end positions of the plan, graphical representations ofgraitonstraints,

3The application described in this section is for illustratpurposes only, and ignores many criteria that
a real route planning system would have to address, e.gigmam radius of curvature.

and the output of the planner in the form of one or more plans and trdgaration

about progress on the current problem. The second, smaller, windset @hbottom
right) is used to set constraint parameters and to control the behafithe planner,
e.g., to decide whether hierarchical planning should be used. (Additaindiows

showing models and plans at different levels of abstraction can be dispfaediser

chooses to use hierarchical planning.) A third window (not shownguifé 1) is used
to select the terrain model and control the output of trace information.

Select and
place new:

Place start and end

stare

Prepare constraints

for the planner

Figure 1: Planner control panels.

Constraints which take a location in the terrain as a parameter (i.e. hregpo-
cealed route and observation constraints) are specified graphically, by craating
stance of the constraint type and placing its graphical representationagiphapriate
location on the model. Other parameters, e.g., the visual range of an ehsand
the parameters for non-positional constraints (i.e., energy, time @y ronstraints)
are specified using the parameter control panel. There is a default ordegnghev
constraints, with feasibility (no-go) constraints being the mogtartant, followed by
positional constraints, and finally preference constraints (energy amd, thowever
the default ordering can be over-ridden by the user. If there are sevesitibpal con-
straints, their ordering is also specified graphically.

The start and end position, together with any constraints specified hys#drede-
fine the goal which is passed to the planner. To achieve these goalsatimepbften
has to produce plans of several hundred steps at the resolution of thenbdel. The
resulting search problems are intractable, and it is necessary to sim@ifyrtfolem
in order to limit the search. One way to do this is to first generate anaabgitan
which is then refined to give a detailed plan in the base model. If the stbhe dérrain
model exceeds a user-selectable threshold, the planner will attempt to fiad &
an abstract model at a larger scale. If the resulting scaled model is still {pofiar
practical planning, the planner will attempt to find a plan in an abstracfitrescaled
model, and so on. This process is repeated until the abstract model is smajheio
plan in effectively.

The resulting abstract plans are used to guide the planning process lat¢he
below. Each abstract plan is used to define a ‘corridor’ within which thamér will

search for a refinement of the abstract plan at the next lower level of abstractie
corridor is itself represented as a constraint, an ‘abstract plan constraimth is
simply added to the existing list of constraints at the next lowegllef abstraction to
give a new planning goal. The position at which the abstract plan @nsis inserted
into the original list of constraints determines how important itdsstay within the
corridor defined by the abstract plan. For example, if we put the abstettphstraint
first in the list of constraints, the planner will abandon all the ottwrstraints before
it leaves the corridor. If we put it last, the abstract plan constraistngply advice
to the planner, which it may ignore in an attempt to satisfy the othert@ints. The
resulting, more detailed, plan is used to construct a new corridor tsti@n further
refinement at the next lower level of abstraction. Successive refinements ralymres
repeated displacement of the centreline of the corridor at lower levels abatish
and helps to eliminate artifacts introduced by the abstraction prdcess.

4.1 Anexampleplan

As an example of the operation of the system, consider the problenaioiplg from
coordinates (223, 162) to (160, 43) in &0 x 400 grid of spot heights representing
a 20km x 20km region of a synthetic terrain model (shown in Figure 1). Fag2
shows an (enlarged) region of the terrain model (lighter shades of gpeggent higher
elevations). In this example we use only two constraints: thaireetaken to execute
the plan should be less than 500 timest@ps 500), and that the energy cost should
be less than 25,00@¢ < 25,000). There is a conflict between the two constraints, in
that shorter plans involve traversing steeper gradients and so reqoieeanergy to
execute.

Figure 2 shows the plan returned by tH&C planner. It requires 263 timesteps
and 24,968 units of energy to execute, i.e. it just satisfies the energtraiahs A
straight line path would have given maximum slack on the first (timestaint, but
the planner has traded slack on the more important constraint by fallpaimore
circuitous route along the river valley to satisfy the second, les®itapt constraint
(energy).

While trading off slack on the first constraint to satisfy the secondtaimt, the
planner will neverprefer a path which satisfies only the second constraint to a path
which satisfies the first constraint. To obtain the same behaviouranithighted sum
cost function of the formw, t + woe we must ensure that the ratioof to w, is greater
than the maximal value dé(p,) — e(ps)|/|t(pa) — t(ps)| for any two plang, and
py. But then a planner minimising ¢ + wqe will never trade off slack on the first
constraint to satisfy the second one. In contrast, if it were impassibsatisfy both
constraints, e.g. for the constraints: 250 ande < 25,000, the ABC planner would
satisfy the time constraint while coming as close as possible tdygafgthe energy
constraint.

5 Related work

Our work has similarities with work in both optimisation (e.g., histic search for
path finding problems and decision theoretic approaches to planning) asttaion
satisfaction (e.qg., planning as satisfiability).

4Other problems caused by abstraction, or averaging, mayrestask specific abstraction procedures.

Figure 2: Planning with two constraints.

ABC is a strict generalisation od*: with a single optimisation constraint its be-
haviour is identical toA*. However unlike heuristic search and decision theoretic
approaches, we do not require that all the criteria be commensurable. Theemp
sis on non-dominated solutions has some similarities with Pardgtmigption which
also avoids the problem of devising an appropriate set of weights omposite cost
function. However the motivation is different: the aim of Pareto mjgation is to re-
turn some or all of the non-dominated solutions for further cogrsition by a human
decision maker. In contrast, when slack ordering is use8(will return the most
preferred solution from the region of the Pareto surface boundeddihehconstraints
which are satisfied in the highest equivalence class. If an optimal solstioot re-
quired (i.e., a slack ordering is not used), the algorithm will retamg solution which
satisfies the constraints; such a solution will not necessarily be Raptoal.

ABC also has a number of features in common with constraint satisfaction tech-
nigues. However, algorithms for boolean CSPs assume that: (a) all aiotstare
boolean (i.e., they are either true or false), (b) all constraints are ggughortant
(i.e., the solution to an over-constrained CSP is not defined), andda)uimber of
variables is known in advance. Dubois et al. [2] introduce Fuzzy ConstBaitisfac-
tion Problems (FCSP), a generalisation of boolean CSPs, which supjuoitigation
of constraints and preference among feasible solutions. In additic®PE@llow un-
certainty in parameter values and ill-defined CSPs where the set of constrhints w
define the problem is not precisely known. However, in common withenconven-
tional techniques, their approach assumes that the number of variableswa kno
advance. For many problems, this assumption is invalid, for exampleuie plan-
ning the number of steps in the plan is not normally known in advancer8leauthors,
for example [6, 7], have described iterative techniques which can be apytied the
number of variables is unknown. However the problems to which thesaitpets
have been applied are considerably smaller than the route planning peotolevhich
ABC has been applied which typically involve more than 100,000 states andgilans

more than 500 steps. Moreover these approaches are incapable of handiiiig@di
or soft constraints.

ABC has many of the advantages of FCSPs and iterative techniques: it can handle
prioritised and soft constraints (though not uncertain values or casésdh the set of
constraints which define the problem is not precisely known) and prablemere the
number of variables is not known in advance.

6 Conclusions and further work

In this paper, we have argued that classic search algorithms make veny atsump-
tions, such as the assumption of commensurability, which do notfbolthany real-
world problems. We have presented a new approach to formulating aridgsotulti-
criterion search problems which relaxes some of these assumptions.

By using an ordered set of prioritised soft constraints to represemnéthgérements
on the solution we avoid the difficulties of formulating an apprajarset of weights for
a composite cost function. Changing the relative importance of tterieror introduc-
ing new cost functions or constraints does not require re-computatiarights. The
ordering over constraints blurs the conventional distinction betwesnlate (hard)
constraints and preference (soft) constraints. In our approach, all aomstare pref-
erences that the problem-solver will try to satisfy, trading off slack emore important
constraint to satisfy another, less important, constraint, and it i® tipe user to de-
cide how important these are in the current context, for example ihatgshould be
terminated if one of the constraints is violated.

Constraints provide a means of more clearly specifying problem+sphaisks and
more precisely evaluating the resulting solutions. There is a Stifaigvard correspon-
dence between the ‘real problem’ and the constraints passed to the prafiien-A
solution can be characterised as satisfying some constraints (to a grelessasrde-
gree) and only partially satisfying or not satisfying others. Annotaplans with the
constraints they satisfy means that the implications of adoptingeguting the cur-
rent best plan are immediately apparent, and facilitates the integratioe ptahner
into a decision support system (or the architecture of an agent, seediompéx[10])
by providing a convenient interface between the user’s problem and tletidngs of
the planner. If a satisfactory solution cannot be found, the degnehitdh the various
constraints are satisfied or violated by the best plan found so far can béousecide
whether to change the order of the constraints, relax one or more conswaeven to
redefine the goal, before making another attempt to solve the problemapgptoach
moves the complex constraint evaluation problem which is both consgeécific and
context sensitive out of the planner and into the decision suppstesy

We currently have an initial implementation of a time-sliced constrbaged plan-
ner, based onl BC', which will plan a route from an initial point to a destination point
satisfying a number of boolean and interval constraints [8]. Howeeectirent im-
plementation does not support optimisation constraints and furtbe i required to
complete the implementation and improve its performance. More worls@sreces-
sary to characterise the performance implicationd BiC relative toA*. Another area
which we wish to explore is that of mixed initiative planning. Faemple, it would
be straightforward to allow the user to ‘sketch’ an initial plan, eithieeatly on the
base model, or in one of the abstract models produced by the planner,atiisus
generate an abstract plan constraint to guide subsequent search by the planner.

The present work is the first step in the development of a hybrid agprto search

10

with prioritised soft constraints. It raises many new issues relatpdei@rence order-
ings over solutions (‘slack ordering’) and the relevance of differenstraint orderings
for different kinds of problems. However, we believe that the incréaslexibility of
our approach outweighs the increase in computational cost associated Bdth

Acknowledgements

We wish to thank the members of the Cognition and Affect and EEBIC I(Een-

ary and Emergent Behaviour Intelligence and Computation) groups atcti@oBof
Computer Science, University of Birmingham for useful discussionscamiments.
Natasha Alechina read an earlier version of this paper and made many useful com-
ments. This research is partially supported by a grant from the Defencedfieed and
Research Agency (DERA Malvern).

References

[1] C. Campbell, R. Hull, E. Root, and L. Jackson. Route planningdiT. In Pro-
ceedings of the Fifth Conference on Computer Generated Forces and Belzviour
Representatiorpages 233-244. Institute for Simulation and Training, 1995.

[2] D. Dubois, H. Fargier, and H. Prade. Possibility theory in constisatisfaction
problems:; Handling priority, preference and uncertainfpplied Intelligence
6:287-309, 1996.

[3] K. Erol, J. Hendler, D. Nau, and R.Tsuneto. A critical look at critinsHTN
planning. InProceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, IJCAI-95pages 1592-1598, 1995.

[4] M. Fox. Constraint-directed search: a case study of job-shop schedukidD
thesis, Carnegie Mellon University, 1983.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for theibgtideter-
mination of minimum cost path$EEE Trans. Syst. Sci. Cyber$SC-4(2):100—
107, 1968.

[6] H. Kautz and B. Selman. Pushing the envelope: Planning, propcaaitiogic,
and stochastic search. Rroceedings of the Thirteenth National Conference on
Artificial Intelligence, AAAI-96pages 1194-1201. AAAI Press/MIT Press, 1996.

[7] V. Liatsos and B. Richards. Least commitment—an optimal planni@degy. In
Proceedings of the 16th Workshop of the UK Planning and Sched8jiegial
Interest Grouppages 119-133. University of Durham, Dec 1997.

[8] B. Logan. Route planning with ordered constraints.Phoceedings of the 16th
Workshop of the UK Planning and Scheduling Special Interest Guages 133—
144. University of Durham, Dec 1997.

[9] B. Loganand N. Alechinad* with bounded costs. Technical Report CSRP-98-3,
School of Computer Science, University of Birmingham, 1998.

11

[10] B. Logan and A. Sloman. Agent route planning in complex terraifechnical
Report CSRP-97-30, School of Computer Science, University of Birhang
1997.

[11] J. Pearl.A¥ — an algorithm using search effort estimatéSEE Transactions on
Pattern Analysis and Machine Intelligene&4):392—-399, 1982.

[12] A. Tate, B. Drabble, and J. Dalton. Reasoning with constraintsmiihPlan2.
In Proceedings of ARPI Workshop, Tucson Arizdlargan Kaufmann, 1994.

12

