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Abstract
Whilst I agreelargely with JaniceGlasgow’s positionpaper, therearea numberof rele-
vantsubtleandimportantissuesthatshedoesnotaddress,concerningthevarietyof forms
and techniquesof representationavailable to intelligent agents,and issuesconcerned
with differentlevelsof descriptionof thesameagent,wherethatagentincludesdifferent
virtual machinesat differentlevelsof abstraction.I shallalsosuggestwaysof improving
onherarray-basedrepresentationby usingageneralnetwork representation,thoughI do
notknow whetherefficient implementationsarepossible.

1 Intr oduction
JaniceGlasgow’sposition paperdiscussesdebatesconcernedwith therelativemeritsof usingpropo-
sitionalandvisualor spatialrepresentationsin avarietyof contextsandfor avarietyof tasks.Hercon-
clusionis that“thereareadvantagesto extendingandenhancingdescriptiveknowledgerepresentation
techniquesto include functionsfor generating,transformingand inspectingspatialrepresentations
of images”. Sherecommendsthe studyof theseadditional representationalforms and techniques
not only for engineeringtasks(i.e. designingintelligent artifacts)but alsofor the scientifictaskof
explaining humanabilities,especiallyabilitiesthatappearto dependonouruseof visualimagery.

In what follows I shall make a numberof criticismsof her paper, but let me startby makingit
plain that I broadlysympathizewith her position, andhave beenmakingclosely relatedpoints in
several papersandonebook over the last 21 years(Sloman1971;1975;1978;1985;1989;1993).
Indeed,I conjecturethatagreatdealof humanmentalability dependscruciallyonsophisticatedvisual
representationalandprocessingcapabilitiesthat we sharewith many otheranimalswith powerful
visualsystems,but whicharestill notunderstoodat all. I shallenlargeon thisbelow.

My criticismsof Glasgow’s paper, therefore,arecriticismsfrom a standpoint that is very similar
to hers.Themainpointsareasfollows:

1. WhereasGlasgow contraststwo main forms of representation,propositional and
depictive, I think therearemany differentformsof representationwhosepropertiesneed
to beexploredandcontrasted(Sloman1985).
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2. Therearemany ambiguitiesandproblemsthatshedoesnotmention,concerningwhat
it means for an agentor mechanismto be using one or other type of representation,
especiallywheredifferentvirtual machinesin an implementationhierarchyexist within
theindividualconcerned.

3. Theuseof rectangulararraysto representspatialinformationseemsto involvearbitrary
andunfortunaterestrictionsthat might be overcomeby a moregeneralnetwork-based
representation.

Ideally, points(1) and(2) needtobeembeddedin afull theoryof thenatureandroleof representations
in intelligentagents.Thereisnospacefor suchafull discussionhere,soI canmerelyhopetohighlight
themainpoints.

2 Requirementsfor a generaltheory of representation
Theconceptof representationis onethat is widely understoodintuitively, but is very hardto define
in a preciseway. This is partly becauseit coversa very wide rangeof cases,andalsobecauseits
boundariesareto someextent indeterminate.Moreover, nothingis intrinsically a representationor
notarepresentation:anythingcanbearepresentationfor abehaving systemwith suitablecapabilities.

A representationfor a behaving systemis anobjector structureeitherwithin thesystemor in its
environmentthatencodesinformation that is accessibleor manipulableby thesystem,andusableby
it in orderto performsomefunctionor achievesomegoal.

The information encodedmay be control information (e.g. programsor other structuresthat
generateor modify behavior) or factual informationabouttheagentor its environment.The factual
information may be particular, that is, concernedwith certain individual objects,agents,places,
regions,times,etc.or general, thatis, applicableto wholeclassesof individuals.Generalinformation
mayvary in its degreeof specificity:themostspecificinformationis applicableto or concernedwith
relatively small, restrictively definedclasses,whereaslessspecific,or moregeneral,informationis
concernedwith widerclasses.

The representingobjectsandstructuresmayhave very differentkindsof ontological status.For
examplea representationmaybeanexplicitly isolatablephysicalobject,suchasa flag on a ship,or
it maybeimplicit in relationsbetweenobjects(for instanceusingthedirectionbetweentwo objects
that do not representanything to convey a directionin which to move), or it may not be a physical
objector relationshipat all, but exist only in a virtual machinewhich is only indirectly implemented
in physical objects.Computerdatastructures,suchasarrays,symbol networksor listsof propositions
are typically entitiesin suchvirtual machines,and operationson them are operationsin a virtual
machine,suchastheLisp or Prologvirtual machines.

Theseconsiderationsarerelevant to the positionpaperin several ways,which will now be dis-
cussedseparately.

2.1 Complexity correspondencesbetweenvirtual machines
Whererepresentationsexist in virtual machines,they may be implementedin lower level virtual
machineswhich alsomake useof non-physical objects. Thus,a Lisp or Prologvirtual machineis
typically implementedin something like a Vax virtual machineor a Sparcvirtual machinewherethe
lower level virtual machinemayitself beimplementedeitherdirectly in hardware,or only indirectly
via microcode.
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Whenphysicalstructuresdirectlyor indirectly implementstructuresin anabstractvirtual machine
thereis noneedfor thephysicalstructuresto beisomorphicwith theabstractstructures.For example
a ‘sparsearray’ in a virtual machinemay have many more componentsthan the corresponding
underlyingimplementation.A sparsearray is one in which the vastmajority of componentshave
some‘default’ value (e.g. 0) so that all that needbe representedexplicitly (usingclever indexing
schemes)is the small subsetof cells whosevaluesdiffer from the default. A user(whetherperson
or program)of anefficiently implementedsparsearrayof size1,000,000by 1,000,000maybequite
unableto tell thedifferencebetweenan implementationusinga milli on million cellsandoneusing
efficient sparsecodingtechniques.In eithercasethevirtual machinestructurewould have thesame
numberof cellswith values,eventhoughthey differ enormously in thesizeof theunderlyingphysical
structuresused.(A virtual sparsearraycouldactuallybetoo largeto fit into thephysicaluniverseif
implementedisomorphically.)

Conversely, the indexing structuresandmechanismsrequiredto make a virtual structurework
efficiently cantakeupspacethatdoesnotcorrespondto componentsof thestructureitself. Soin some
casesthephysical implementation mayusesignificantlymorecomponentsthanthevirtual structure.

Similar comments canbemadeaboutprocessingsteps.Thereneedbeno systematiccorrespon-
dencebetweennumbersof stepsin a high level virtual machineandnumbersof physical operations
implementing thosesteps.In asparsearray, or in anobject-orientedhierarchymakinguseof inherited
defaultvalues,it maybepossible tochangethecontentsof ahugenumberof cellsin avirtual structure
in memorysimply by alteringonecell in a lower level implementationmachine.

Converselya simpleoperationin a high level virtual machinemay requiremany low level steps
andultimately a large numberof physical steps.Thusfor example,considera network containing
listsof wordscomprising sentencesat its nodes,suchas

[Thehungrycatchasedthefrightenedmouse]

A singlestepin a high level virtual machine,suchas unlinking this list from the network, could
correspondto a very largenumberof operationsin a lower level implementationmachine,especially
if thenetwork structureusesa rich index to facilitatesearchesof variouskinds: removing oneitem
mayrequirea considerablenumberof alterationsin theindexing structuresthatassociatewordsand
phraseswith locationsin thenetwork wherethey areused.

This lack of correspondencebetweenvirtual structuresandprocesesandthe low level physical
structuresandprocessesthatimplementthemis onereasonwhy thephrase“physicalsymbolsystem”
introducedby Newell andSimonto describeAI modelsof cognition is a sourceof greatconfusion,
andshouldbedroppedby theAI researchcommunity.

For thesereasons,the discussion of easeof programmingand run time efficiency of visual or
spatialrepresentationsneedsto takeaccountof theimplicationsof usingvirtual machinesthatcanbe
implemented in differentways: if what is conceptuallysimple actuallyrequiresenormousphysical
complexity at run time,thenit maybepracticallyuseless.

A goodexampleof this is the easewith which it is possible to programcertainproblems, e.g.
constraintsatisfactionproblems,in Prolog. Unfortunatelythe clearestPrologprogramsoften take
inordinatelylongto runbecauseof thesimple-mindeddepthfirst searchstrategy built into Prolog.Of
courseonecanimplementdifferentstrategiesin aPrologprogram,thoughoftenat thecostof easeof
programming.

Glasgow claims(Section2.3) thathersymbolicarraysprovide “succinctandholisticencodingas
well astheirprovision for updating andchange”andgoesonto claimthat“theseadvantagestranslate
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into computationalefficiency”. Similarly in Section4.1.1whendiscussing transitive inferenceshe
claimsthatit is possibleto “readoff ” certainfactsdirectly from asymbolic arrayrepresentation.It is
far from obviousexactly what is beingclaimedhere.In orderto supportefficiency claimsregarding
the useof array-manipulatingvirtual machinesin contrastwith someothertype of virtual machine
(e.g. a logic machine),it is necessaryto show both(a) that thecomplexity of processingon certain
tasksis muchreducedby usingthe arrayvirtual machineand(b) that the complexity doesnot re-
surfacein theimplementationof thearraymachinein a lower level machine,ascouldeasilyhappen,
for example, if theindexing thatfacilitatesrapidtraversalacrossthearraysmadeuseof list-searching
in the implementationvirtual machine. Claimsof type (a) are trivial, sincean arbitrarily complex
operationcanalwaysbeencodedin asinglenamedfunction,defininganew virtualmachineoperation,
whichmakescertaintasksverysimple andefficient from theprogrammer’sviewpoint.

2.2 Virtual machinesin the brain
Second,evenif both(a)and(b) havebeenestablishedit still leavesopenthepossibility thatthelower
level machineusespropositional representationsandinferencetechniques.

The questionwhetherpropositional or depictive representationsand techniquesare usedby a
particularmachine,or the humanbrain, is ambiguous insofar as the answermay be different at
differentlevels.For examplein amachineusingthespatialarrayprocessingvirtualmachinedescribed
by Glasgow something quite differentwill be goingon at the machinecodelevel. In principle, the
lowestlevel machinemight bea logic processingmachine,in which casea non-propositional virtual
machinecouldbe implemented in a lower level propositionalmachine,a possibility not allowedfor
by Glasgow.

Thispointwasmadeby Hayes(1974)in hisattackonmy paper(Sloman1971).It led to aslightly
revisedversionof the defenseof analogicalrepresentationsin (Sloman1975),acknowledgingthat
they could in principlebe implementedin propositional structures,aslong asthe relevant indexing
operationsandneighborhood relationshipsareimplementedefficiently.

2.3 The unreliability of intr ospection
Third, whenhumansubjectsreportthe useof visual or spatialimagesfor solvingproblemsor per-
forming tasks,this needsto be taken with a pinch of salt. Although we clearly have some internal
self-monitoring capabilities,thesewill have evolved to serve specific biological needsand need
be no more accurateat telling us what’s really going on in our minds, for scientific explanatory
purposes,thanvisualperceptionis at telling usabouttheinternalphysicalstructureof objectsin our
environment.(Whatis reallygoingoncontrastswith thephenomenology of whatis goingon,which
is whatintrospectionrevealsaccurately, by definition.) Introspective reportscan,at best,reportsome
propertiesof a high level virtual machine,andevenif this is somekind of spatialimageprocessing
machine,that doesnot rule out the possibility of an underlyingimplementation that is completely
different,for instanceusingpropositionsandlogical inferences.(Theremaybeotherevidenceruling
thatout.)

To what extent the humanbrain usesvirtual machines,whatsortsof virtual machines,andhow
many layersof implementationthereare,areall still openquestions. Introspectioncertainlysuggests
thatwe (sometimes)useimagesthatwe canmanipulate,but this couldmerelyreportsomeabstract
propertiesof a high level virtual machine,or it couldbecompletelydeceptive. It is clearthatsome
of the statesthatpeoplereportasstatesin which they areinspectinginner picturesdo not have the
samepropertiesasstatesin which realexternalpicturesareinspected.For example, it maybeeasier
to readitemsoff the inner imagetraversingit in onedirectionthananotherdirection. This suggests
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thatananisotropic internalrepresentationis used(e.g. usinglinkedlists), unlike computerarraysor
realpaintings.

The only thing that is certain is that human(and someother animal) brains have extremely
powerful waysof usingvisual information that we do not understandat all, andwhich may not be
capableof beingrepresentedefficiently on conventional computers.In fact, it is likely thatwe have
notyet evenlearntto asktheright questions.

3 Towards a generalized theory of representations
A full theoryof representations,whetherphysical or virtual, would have to distinguisharbitraryand
systematicrepresentations.Humanbeingsarecertainlyable,in appropriatecontexts, to useanything
to representanything, for instance,usinga pebbleto representa person.Although this is interesting
andworth explaining, the moreprofoundcaseis the useof a system of representations,of which a
setof stringsof wordsin a languageis onecase,anda setof networks for representingplacesand
routesbetweenthemanother. Theuseof hierarchiesof arraysasdescribedby Glasgow is yetanother
system.

Thereare (at least)two importantimplications of usinga system, namelythe ability to encode
novel information, andtheability to solve problemsby transformingrepresentationsin a principled
way that generatesnew representationswithin the system. Suchtransformationscan play a role
in makinginferences,forming plans,creatingdesigns,andso on. (This goesagainstthe frequent
commentmadeby philosophersthattheessenceof representationor symbolismis arbitrariness.)

3.1 Syntax
A preconditionfor systematicity is thatrepresentationscanvary, andtheformsof permittedvariation
aredefinedby a syntax.

It is commonto stressthat what makes a representationpictorial is a type of correspondence
betweenrepresentingstructuresandwhat is represented.What is not so often appreciated,though
Glasgow doesmentionthis, is the importanceof available transformations. In particular, what I
have previously calledFregean,or applicative, representationspermit substitution of sub-structures
without changingthe remainderof the representation,whereasthis is not possiblefor all forms of
representation:e.g.in apictureincludingagiraffe in afield, it is notnormallypossible to replacethe
giraffe with anelephantwithoutaffectingsomethingelsein theimage,becausethey occludedifferent
partsof the background.By contrastthere’s no backgroundthat shows throughwhena large sub-
expressionis replacedby a smalleronein anapplicative representation,suchasa logical formulaor
computerprogram.

Thereareseveral additional dimensions in which representationalsystemscandiffer regarding
permittedmodesof variation,including:

� whethercontinuousor only discretetransformationsarepermitted,
� whethertransformations changethe complexity of representationsor not (for examplea rep-

resentationin the form of a fixed sizevectorof numericalvaluescanbe transformedonly by
changingthe numbers,andthis will not alter the complexity, whereasmodifying a structural
descriptionor parsetreecanchangeits complexity),

� whethernew ‘atomic’ elementscanbeintroducedor whetherthebasicsymbols arefixed(e.g.
naturallanguagescontainanalphabetpermitting new wordsto beformedwhenneeded,aswell
asnovel sentencescomposedof old words).
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Onereasonwhy differencesin kind of variability areimportantin intelligentagents,aspointedout in
Sloman(1971),is thatdifferentrepresentationsthatsharemetaphysicalor epistemologicaladequacy
(asdefinedby McCarthyandHayes(1969))candiffer in heuristic adequacy becauseof differences
in thewaysthatthey constrainsearchspaces.A representationthatdoesnot allow irrelevantoptions
to be constructedcangeneratea muchsmallersearchspacethanonethat doesallow them. Thus,
whereasa logicalnotation wouldallow aconjunction of assertionsaboutA beingcloseto B, B being
closeto C andA beingavery longwayaway from C, a spatialrepresentationwith theusualmetrical
propertieswouldnot,andthiscouldbeanimportantconstraintin someproblems.

3.2 Semantics
A representationalsystemincludesnot only syntax,but also semantics, i.e. what information is
encoded,or whatthingsarerepresented.It isoftenassumedthattheessenceof pictorialrepresentation
is isomorphismwith the‘scene’represented,andGlasgow writesasif this is so,at leastin thecases
sheconsiders.However, it is very importantto note that in generalthis is not a requirement:for
example2-D imagescan represent3-D configurations,with which they are not at all isomorphic,
sincethey do not includerelationships like depthor ‘partially hidden’ even thoughthey represent
them.

Thecomplexity of non-isomorphicsemanticcorrespondencebetweenimageandsceneis familiar
to thosewho work in computer vision. Local substructuresin 2-D imagesare usually inherently
ambiguousandcanbe interpretedonly in termsof context, wherethe context alsoconsistsof frag-
mentsthatareambiguous. Whenthis inherentambiguity andmutualdependenceis combinedwith
noise,partialoccultationof oneobjectby another, andself-occultationof invisible partsof anobject
by visible parts, the resulting ‘semantic’ correspondencesbetweenimagesand what they depict
canonly be definedin termsof very complex constraint-optimizing rulesthat includereferenceto
backgroundknowledgeof the relevant portion of the world. (Constraintsatisfactionwould suffice
wereit not for thenoisetypically foundin naturalimages.)It maybeimpossibleto specifyprecisely
thecorrespondencebetweenimageandscenewithout introducinga collectionof intermediatelayers
of representationsuchas is common in computervision systems,especiallywhereimagesarenot
producedby a simpleprojectionmechanism,but includeconventional elementsasin cartoonsand
paintings(for moreon thissee(Sloman1989)).

Typical attempts by logiciansto generalizetheir semanticideasto copewith picturesfail to take
accountof this complexity, andthesameappearsto betrueof Glasgow’s account(in Section3.4)of
depictiverepresentationsin termsof mappingsbetweenpartsandrelations.

Anotherexamplewherealgorithmic compositional semanticsbreaksdown, of course,is natural
language,wherewordsandphrasesareheavily context dependentandoften a greatdealof knowl-
edgeaboutthe speaker, the cultureandthe specificcircumstancesof utterancemay be requiredfor
disambiguation.

A full theoryof semanticswouldnotmerelyhaveto explainhow differentformsof representation
work in conveying factual informationaboutwhatis thecase,but wouldalsohaveto accountfor other
kindsof information, e.g. control information. For example, a computerprogramembodiesa great
dealof control information aboutwhat to do when,andit seemsvery likely thatmany learntaction
sequencesincludinghow to saythings,how to performroutinetasks,how to dotheeightsomereeland
otherdances,how to singsongsandhow to play musical instrumentsareall encodedin formalisms
whoseprimarysemanticrole is controlnotdescription.

InsofarasGlasgow is drawing attentionto theneedto considerdifferenttypesof representational
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formalisms, thepoint is strengthenedby drawing attentionto thevarietyof typesof semantics.

3.3 Pragmatics
Thatlastpointis relatedto thefactthatinformationcanbeencodedfor many differentpurposes.A full
theoryof representationsneedsto takeaccountnotonly of syntaxandsemanticsbut alsopragmatics,
thatis, thevarietyof purposesor functionsfor whichtherepresentationscanbeused.Withoutastudy
of thepragmaticsof asystemof representation(asusedby aparticularagentor classof agents)it will
notbepossiblefully to appreciatetheprosandconsof usingthatsystemratherthansomeother.

Glasgow refersto Marr (1982)who describesthe ‘quintessentialfact of humanvision – that it
tellsaboutshapeandspaceandspatialarrangement’of objectsin the3-D environment.I haveargued
(Sloman1989)that this is a grosslyoversimplified view of therole of vision, sincetheoutputsof a
visualsystemcanincludecontrolsignals(e.g. posturecontrol,saccadiccontrol), informationabout
2-D relationsin the optic array that areuseful for fine control of behavior, suchassighting a gun
or moving in a straightline, and,above all, informationabouta hostof what Gibson(1979)called
‘affordances’,which includesnotonly geometricalpropertiesof objectsbut alsotheir causalpowers,
functionalroles,andeventhementalstatesof otheragents.

An illustration of this point is provided by the differencesbetweenfamiliar ambiguous pictures
which causevisual ‘flips’: the Necker cube flips betweeninterpretationsthat differ only in the
waysthat Marr is concernedwith, i.e. geometricalpropertiesandrelations. By contrastwhenthe
familiar“duck-rabbit”pictureflipswhatchangesisnotinformationabout“shapeandspaceandspatial
arrangement”but far moreabstractinformationaboutwhatsortof animalis depicted,thefunctional
rolesof thingsdepicted(the rabbit’s ears,the duck’s bill) andwhich way the animal is facing, an
attribute that implicitly refersto theobjectasanagentcapableof moving, perceiving things,andso
on.

It seemsat leastpossible that thevisual systemhassomeway of combiningfactualandcontrol
informationsothatduringskilled performancesof variouskinds(e.g. leapingacrossrocks,sporting
contests)it simultaneouslyprovides information aboutwhat is in the environmentandwhat to do
aboutit.

Although Glasgow’s paperis not primarily aboutvision, it is concernedwith thepower of visual
representations,and,like Marr, apparentlyassumesthatvisual representationsareconcernedexclu-
sively with therepresentationof informationaboutspatialarrangementandmotion. If, however, real
biologicalvisualsystemsarefarmorepowerfulandversatilethanthat,andcanencodeandmanipulate
a hostof additionalkinds of biologically relevant information, including modal informationabout
what is and is not possible in the situation, asdescribedin Sloman(1989), thenperhapsthat may
help to explain why peoplebelieve they areusingvisual imagerywhenthey think aboutall sortsof
problemsthatarenot inherentlyvisual. For example,thedifferencebetweendepthfirst andbreadth
first searchis oftenbestunderstoodvisually, thoughthereis a non-visualabstractcharacterizationof
the differencein termsof operationson queuesandoperationson stacks.Similarly, many abstract
mathematicalideas,includingtheconceptof anunendingsequenceof numbers,areoftenthoughtof
in visual terms,thoughreal vision cannotcopewith infinite sets.How do mathematiciansvisualize
infinite sequences?

If the humanvisual mechanismdoescontain somevery powerful representationalapparatus,
including transformationmechanisms, then perhapspeoplein AI and cognitive sciencewho are
interestedin explaining or modeling intelligencewould do well to studyvisual systems sincethey
may provide far morepowerful meansof manipulating informationfor a variety of purposesthan
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anything so far developed in computational vision experiments,including the experimentsreported
by Glasgow. Unfortunately, I do not think anyoneunderstandsmuchabouthow vision works,since
existing modelsseemto becompletelylackingin thegenerality, flexibil ity andspeedthatcharacterize
humanand(some)animalvision.

4 Glasgow’s representations
Glasgow reportson computational experimentsusingrepresentationsbasedon hierarchiesof rect-
angulararrays. It is very commonfor computer-basedimageprocessingandinterpretationsystems
to make useof rectangulararraysbecausethesemapin a simpleway ontothe linearaddress-spaces
typically provided by widely available generalpurposecomputerarchitectures.Moreover, as her
examplesshow, rectangulararrayscanbeusedfor solvingcertainsimplekindsof problemsinvolving
spatialrelationships,whereall the directionsinvolved fall into two orthogonalsets(left—right and
up—down, or east—westandnorth—south).

Theproblemis thatrectangulararraysquantizespacein aparticularway thatmaynotbesuitable
for all tasks.Animal retinasdemonstrateawidervarietyof waysof dividingup2-D space,including
theuseof approximatelyconcentricringsof receptive fieldswhosediametersvary with thedistance
from thecenter. As Funt(1983)hasshown thisstructurecanbeusefulfor certainoperationsinvolving
rotation,expansionor contractionof images.Overlapping fieldscanalsobeusefulfor somepurposes.

Both Funt’s andGlasgow’s representationsattemptto maprepresenteditemsontolocationson a
2-D surface,albeitat varyingresolutions.Both representationshave therestrictionthateachlocation
in the representationhasneighborsin only two orthogonal directions,alongcartesianco-ordinates
in the caseof Glasgow, and along radial and tangentialdirectionsin the caseof Funt. This is a
seriousrestrictionwhendealingwith structuresrequiringa richersetof neighborhoodrelationships.
Both Glasgow’s and Funt’s representationsseemto be specialcasesof a more generalclassof
representationsthatpreserve partialorderinginformationby mappingrelationshipslike connectivity
on a transportnetwork, onto arcsin a network in the computer, allowing asmany neighborsin as
many directionsasneeded.For example a representationof a roadnetwork could usesomenodes
wheretherearetwo links to neighbors,somewheretherearethree,somewheretherearefour, andso
on. An electroniccommunicationsnetwork couldusemuchhighernodeconnectivity.

If avisualreasoningsystemwereto useageneralizednetwork ratherthanaregulararray, it could
combinespatialandotherrelationships,for examplecausalrelationshipssuchassupport,contain-
ment, transferof torque,pivoting, etc. JustasGlasgow’s rectangulararraysarehierarchical,with
somearraycellsoccupiedby higherresolution arrays,sotoocananetwork behierarchicalwith some
nodesoccupiedby sub-netsgiving moredetail. This wouldsupportsimilar operationsof zoomingin
andout, andusingeachlevel in thehierarchyasa sortof index to themoredetailedinformation at
lower levels. A moregeneralrepresentationwould alsopermitcrosslinks supporting pathsthatare
frequentlytraversedbetweenoneportionof a detailednetwork andanother. In particular, insteadof
beingstuckwith inaccuraterelationshipsarisingoutof theuseof a rectangulargrid, precisedirection
anddistancelinks could be insertedwhenever they are required,addingimportantredundancy, as
discussedin thenext section.

Obviously, generaloperationsfor inserting,comparing,searchingandmergingsuchnetworkswill
be morecomplex thanthe operationson rectangulararraysdescribedby Glasgow. Nevertheless,it
shouldbepossible in principle to implementgeneralizedversionsof all theoperationsdescribedby
Glasgow, e.g. generatingnetworks,addingor deletinglinks or nodes,composing andsuperimpos-
ing networks (by merging commonlinks and nodes),scanning,rotating, focusingandunfocusing
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attention(by moving up anddown the hierarchy). In fact a generalizednetwork would supporta
richer varietyof scanningoperationsby allowing differentsortsof links to be traversedin different
scans,ratherthanefficiently supportingonly horizontalandvertical scans.If certaintypesof links
form chainswithout branchesthenodesthat they join canbegivennumerical‘coordinates’,thereby
permitting rapidtransitive inferencesof exactly thesortdiscussedby Glasgow (Section4.1.1).

Rotation,however, could not be definedin general,except for subnetsincorporatingmetrical
information.However, Glasgow doesnotpointoutthatrotatingasub-portionof arectangulararrayby
anglesthatarenotmultiplesof 90degreesis actuallyacomplex operationthatintroducesdistortions
andlosesinformation, which is onereasonwhy Funtusedconcentricringsof cells. A moregeneral
representationcould includefrequentlyused‘rotation-pathways’, therebysuperimposingsomething
likeFunt’s andGlasgow’s representations.

Sucha generalizednetwork-manipulatingmechanismwould provide whatGlasgow describesas
‘succinctandholistic encoding’of importantandfrequentlyusedoperationsby providing a suitable
highlevel virtual machinein whichthesearesimpleoperations,withouttherestrictionsof herrectan-
gulararrayrepresentation.

The network mechanismsproposedhere are not original. They are very similar to network
representationsthathave frequentlybeenusedin AI andelsewhere.For example,Glasgow (Section
4.2) discussesthe useof suchnetworksby Winstonin his work on learningstructuraldescriptions.
(For somereasonsheclaimsin Section3.1thatWinston’s networksandMinsky’s framesystems use
propositionsto expressrelationships,which is surelya mistake, even thoughthey canbe translated
into propositions, just asher own arrayscan.) Shereportsthat Winstonhaddifficultiesmatching
sub-networkswithin hisnetwork andthensuggeststhattheuseof herarrayrepresentationcanreduce
the complexity of the matchingprocess.Therearetwo problemswith this claim, namelythat it is
not obvious that arrayscanreducethe problemsignificantlyas far asclutteredreal-life scenesare
concerned,andsecondlythatinsofar asarraysdo helptheir structurecanbesimulatedby a subsetof
links in a generalpurposenetwork, which is exactly what an experiencedsoftwareengineerwould
do.

Making thesegeneralizednetwork operationstruly efficient at the lowest implementationlevel
mightrequirethedesignof new computerarchitectures.Thereis somescopefor theuseof parallelism
in network processing,just asthereis with thearrayrepresentation.In bothcases,however, thefact
that thehierarchyof resolutionsis variableandcanchangedynamicallymeansthat therecannotbe
a fixed allocationof processorsto ‘locations’ in the representation,which complicatesthe taskof
implementing sucha systemon highly parallelcomputers. Nevertheless,humanvisual processing
copeswith rich andcomplex, yet very rapidly changing,sceneandimagestructures,which seemsto
be an existenceproof of the possibility of somesort of mechanismthat meetsthe need,even if we
haveno ideaat presenthow it works!

5 The needfor redundancy
Oneunobviousaspectof theway in which a spatialrepresentationhelpsconstrainproblemsolving
is that it supportsa certainkind of redundancy of informationby makingcertainrelationsexplicit
(in the relevant virtual machine)that might otherwisehave to be inferred. For example,an array
representationallows rapidtraversalfrom a cell to its neighbors,eitherby following pointersor by a
simplecomputationof memoryoffsetsat themachinelevel, dependingon the implementation used
for thearray. As Glasgow herselfpointsout (Section2 andelsewhere)thearrayrepresentationdoes
not necessarilyencodeany information that cannotbe encodedpropositionally: it is not superior
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in expressive power. All it doesis provide rapid accessto the informationvia conceptually simple
operations.Shealsoadmitsthatclever indexing schemescanprovide rapidaccessfor propositional
representationsby eliminating theneedfor lengthylist searches(compareHayes(1974)andSloman
(1975)).

I believe thatthereis animportantpoint thatshehasnotnoticed,namelythatthis requirementfor
redundantencodingin formsthatsupportrapidaccessto relevantinformationisageneral requirement
for intelligence. This is illustratedby the fact that it is not possible for anyone who hasmerely
understoodPeano’s five axiomsfor arithmetic,or someother equivalent set of basicarithmetical
principles,to make sensibleuseof arithmetic. Insteadit is necessaryto memorize many particular
consequencesof thesebasicaxiomsin sucha way that they canbe rapidly retrieved whenneeded.
This is the fundamentaltruth on which many ‘old fashioned’educationalpracticesarebased,even
if they arenon-optimal for educationalpurposesbecausethey often kill motivation. More ‘radical’
practicesoftenthrow out thebabywith thebathwaterbecausethey do not replacetheold functionof
building up a rich storeof redundantbut rapidly accessibleinformation. (Comparethediscussion of
learningfactsaboutthenumbersequencein Sloman(1978),Chapter8.)

If thehumanbrainprovidesgeneralmethodsfor storinginformation usingefficient mechanisms
for creatingcrosslinkagesandindexes that supportrapid accessby storing redundantinformation,
thenit could turn out that thephenomenathatseemto bebasedon something like Glasgow’s array
representationsarein factbasedon themoregeneralnetwork manipulating mechanisms.

I do not know whethersuchgeneralnetwork mechanismscould provide a sufficiently fastand
powerful information processingengine,or whethersometotally different way of looking at the
problemis needed.

6 Conclusion
Although I agreewith muchof the spirit of what is claimedin JaniceGlasgow’s position paper, I
have hadto find fault with it in partbecauseof what it doesn’t say. In particularthepaperdiscusses
propositionalandspatialrepresentationswithout pointing out thatthereis a hugevarietyof different
formsof representationinvolvingdifferencesin syntax,semanticsandpragmatics,andthatintelligent
agentsmay needto usemany different forms for different purposes. Moreover, althoughclaims
aremadeaboutefficiency of the array-basedrepresentationstheseare justified only at the level of
thearray-processingvirtual machine,leaving openquestionsaboutthetotal efficiency includingthe
low level implementation. Furthermore,I have suggestedthat the useof arraysimposesarbitrary
restrictionson thekindsof relationshipsthatcanberepresentedeasily, whereasthereis no reasonto
believethathumanvisualsystemshavetheserestrictions.I havesuggestedthatwecangeneralizethe
advantagesof rectangulararraysby usinglessconstrainednetwork representations,combinedwith
embeddedcoordinatesystemsassociatedwith certainclassesof links that canbe scanned,though
it is not at all clear how efficiently the requiredgeneralnetwork-manipulating procedurescan be
implementedonconventionalcomputerhardware.

I havealsopointedoutthattheadvantagesclaimedfor symbolic spatialrepresentationsarein facta
specialcaseof theadvantagesof representationsthatarehighly redundantin orderto provideefficient
accesspaths. In a fuller discussionit would alsobe necessaryto relatethis point to the distinction
betweensolvingproblemsby manipulatingdescriptions of someclassof entities,andsolvingthemby
simulating the behavior of those entities. Mostof thecontrastspointedoutby Glasgow amountto the
contrastbetweenmakinginferencesusingdescriptionsandsimulatingprocesses.Which strategy is
betterwill dependonthekind of problemandwhatsortsof analyticaltechniqueshavebeendeveloped
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for manipulatingdescriptions.

Finally, althoughI agreewith Glasgow thatthemanipulationof spatialandvisualrepresentations
playsa very important role in humanmentalprocesses(including mentalprocessesin congenitally
blind individualswho,afterall, still have mostof theneuralapparatusdevelopedfor visualpurposes
by evolution), neverthelessI suspectthat we do not really understandat all how visual information
(spatialandnon-spatial)is encodedin thehumanbrainin orderto makethesecapabilitiessogenerally
andrapidly applicable.Theapparentsuccessin tracingthe low level neuralrepresentationof some
imagefeaturesmayhavedivertedattentionfrom thelargerissueof how thebrainrepresentsproperties
andrelationsof perceivedobjectsout therein theworld.
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