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Abstract

Whilst | agreelargely with JaniceGlasgav’s positionpaper therearea numberof rele-
vantsubtleandimportantissueghatshedoesnotaddressgoncerninghevarietyof forms
and techniquesof representatioravailable to intelligent agents,and issuesconcerned
with differentlevelsof descriptionof the sameagentwherethatagentincludesdifferent
virtual machinesat differentlevelsof abstractionl shallalsosuggestvaysof improving
on herarray-basedepresentatioby usinga generahetwork representatiorthoughl do
not know whetherefficientimplementationsrepossible.

1 Intr oduction

JaniceGlasgav’s positian paperdiscusseslebatesoncernedvith therelative meritsof usingpropo-
sitionalandvisualor spatialrepresentationis avarietyof contextsandfor avarietyof tasks.Hercon-
clusionis that“thereareadvantageso extendingandenhancinglescriptve knowledgerepresentation
techniquedo include functionsfor generating transformingand inspectingspatialrepresentations
of images”. Sherecommendshe study of theseadditicnal representationdiorms and techniques
not only for engineeringasks(i.e. designingintelligent artifacts)but alsofor the scientifictask of
explaining humanabilities, especiallyabilitiesthatappearto dependon our useof visualimagery

In whatfollows | shall make a numberof criticismsof her paper but let me startby makingit
plain that| broadly sympathizewith her position, and have beenmaking closely relatedpointsin
several papersandonebook over the last 21 years(Sloman1971;1975;1978; 1985;1989; 1993).
Indeed) conjecturghatagreatdealof humanmentalability dependsruciallyonsophisicatedvisual
representationadnd processingcapabilitiesthat we sharewith mary other animalswith powerful
visualsystemsbut which arestill notunderstoodtall. | shallenlage on this below.

My criticismsof Glasgav’'s paper therefore are criticismsfrom a standpant thatis very similar
to hers.Themainpointsareasfollows:

1. WhereasGlasgav contraststwo main forms of representationpropositonal and
depictve, | think therearemany differentforms of representatiowhosepropertiesneed
to beexploredandcontrastedSloman1985).
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2. Therearemary ambiguties andproblemsthatshedoesnot mention,concerningvhat
it means for an agentor mechanisnto be using one or other type of representation,
especiallywheredifferentvirtual machinesn animplementationhierarchyexist within
theindividual concerned.

3. Theuseof rectangulaarraysto represenspatialinformationseemdo involve arbitrary
and unfortunaterestrictionsthat might be overcomeby a more generalnetwork-based
representation.

Ideally, points(1) and(2) needio beembeddedh afull theoryof thenatureandrole of representations
in intelligentagentsThereis nospacdor suchafull discussbnhere,sol canmerelyhopeto highlight
themainpoints.

2 Requirementsfor a generaltheory of represenation

The conceptof representatiolis onethatis widely understoodntuitively, but is very hardto define
in a preciseway. Thisis partly becauset coversa very wide rangeof casesandalsobecausets
boundariesareto someextentindeterminate.Moreover, nothingis intrinscally a representatiomr
notarepresentatioranything canbearepresentatiofor abehaing systenwith suitablecapabilities.

A representatiofor a behaing systemis an objector structureeitherwithin the systemor in its
ernvironmentthatencodesnformatian thatis accessibler manipulbleby the system andusableby
it in orderto performsomefunctionor achieze somegoal.

The information encodedmay be control information (e.g. programsor other structuresthat
generater modify behaior) or factual informationaboutthe agentor its environment. The factual
information may be particular, thatis, concernedwith certainindividual objects,agents,places,
regions,times,etc. or general, thatis, applicableto whole classe®f individuals. Generainformatian
mayvary in its degreeof specificity: the mostspecificinformationis applicableto or concernedvith
relatively small restrictvely definedclasseswhereadessspecific,or more general,informationis
concernedvith wider classes.

The representingbjectsandstructuresmay have very differentkinds of ontological status.For
examplea representatiomay be an explicitly isolatablephysicalobject,suchasaflag on a ship,or
it maybeimplicit in relationsbetweenobjects(for instanceusingthe directionbetweenwo objects
thatdo not representrything to corvey a directionin which to move), or it may not be a physcal
objector relationshipat all, but exist only in avirtual machinewhich is only indirectly implemented
in physcal objects.Computerdatastructuressuchasarrays,symiol networksor lists of propositiors
are typically entitiesin suchvirtual machines,and operationson them are operationsin a virtual
machine suchastheLisp or Prologvirtual machines.

Theseconsiderationsre relevantto the positionpaperin several ways, which will now be dis-
cussedseparately

2.1 Complexity correspondence$®etweenvirtual machines

Whererepresentationsxist in virtual machines they may be implementedin lower level virtual
machineswhich alsomake useof non-physical objects. Thus, a Lisp or Prologvirtual machineis
typically implemenédin something lik e a Vax virtual machineor a Sparcvirtual machinewherethe
lower level virtual machinemay itself be implementeceitherdirectly in hardware,or only indirectly
via microcode.



Whenphysicalstructureglirectly or indirectlyimplementstructuresn anabstracvirtual machine
thereis no needfor the physical structurego beisomorphicwith theabstracstructuresFor example
a ‘sparsearray’ in a virtual machinemay have mary more componentghan the corresponding
underlyingimplementation.A sparsearrayis onein which the vastmajority of componenthave
some'‘default’ value (e.g. 0) sothatall that needbe representeaxplicitly (using clever indexing
schemes)s the small subsetof cells whosevaluesdiffer from the default. A user(whetherperson
or program)of an efficiently implementedsparsearrayof size1,000,000y 1,000,000may be quite
unableto tell the differencebetweenanimplementationusinga million million cellsandoneusing
efficient sparsecodingtechniquesin eithercasethe virtual machinestructurewould have the same
numberof cellswith values eventhoughthey differ enormoust in the sizeof theunderlyingphysical
structuresused. (A virtual sparsearraycouldactuallybetoo large to fit into the physicaluniverseif
implemenédisomorphcally.)

Corversely the indexing structuresand mechanismsequiredto make a virtual structurework
efficiently cantake up spacehatdoesnotcorrespondo componergof thestructurdtself. Soin some
caseghe phystcal implementabn may usesignificantlymorecomponentshanthevirtual structure.

Similar commeng canbe madeaboutprocessingteps. Thereneedbe no systematiacorrespon-
dencebetweemumbersof stepsin a high level virtual machineandnumbersof phystcal operations
implemening thosesteps.In asparserray or in anobject-orientedhierarchymakinguseof inherited
defaultvaluesjt maybepossilte to changdhecontentof ahugenumberof cellsin avirtual structure
in memorysimply by alteringonecell in alower level implementaton machine.

Corverselya simpleoperationin a high level virtual machinemay requiremary low level steps
andultimately a large numberof phystal steps. Thusfor example,considera network containirg
lists of wordscomprisirg sentenceatits nodessuchas

[The hungrycatchasedhefrightenedmous]

A single stepin a high level virtual machine,suchas unlinking this list from the network, could

correspondo a very large numberof operationsn alower level implementatiormachine gspecially
if the network structureusesa rich index to facilitate searche®f variouskinds: removing oneitem

may requirea considerableaumberof alterationsn the indexing structureshatassociatevordsand
phrasesvith locationsin the network wherethey areused.

This lack of correspondencbetweervirtual structuresand procesesandthe low level physcal
structureandprocessethatimplementhemis onereasorwhy the phrasephysicalsymbolsystem”
introducedby Newell and Simonto describeAl modelsof cognitian is a sourceof greatconfusion,
andshouldbedroppedby the Al researclcommurity.

For thesereasonsthe discus®n of easeof programmingand run time efficiency of visual or
spatialrepresentationseedgo take accounf theimplicationsof usingvirtual machineshatcanbe
implemened in differentways: if whatis conceptuallysimgde actuallyrequiresenormougphyscal
complity atruntime, thenit maybe practicallyuseless.

A goodexampleof this is the easewith which it is possilbe to programcertainproblems e.g.
constraintsatistction problems,in Prolog. Unfortunatelythe clearestProlog programsoften take
inordinatelylongto run becausef the simple-mirdeddepthfirst searclstrateyy built into Prolog. Of
courseonecanimplementdifferentstrateiesin a Prologprogram thoughoftenat the costof easeof
programming

Glasgav claims(Section2.3) thathersymbolicarraysprovide “succinctandholistic encodingas
well astheir provision for updatirg andchange’andgoesonto claimthat“theseadvantagegranslate



into computationakfficiengy”. Similarly in Section4.1.1whendiscusang transitve inferenceshe
claimsthatit is possibleto “read off” certainfactsdirectly from asymbolc arrayrepresentationt is

far from obvious exactly whatis beingclaimedhere.In orderto supportefficiency claimsregarding
the useof array-manipulatingirtual machinesn contrastwith someothertype of virtual machine
(e.g. alogic machine),t is necessaryo shov both (a) thatthe compleity of processingon certain
tasksis muchreducedby usingthe array virtual machineand (b) that the compleity doesnot re-

surfacein theimplementatiorof thearraymachinein alower level machine ascouldeasilyhappen,
for exampk, if theindexing thatfacilitatesrapidtraversalacrosghe arraysmadeuseof list-searching
in the implementationvirtual machine. Claims of type (a) aretrivial, sincean arbitrarily comple

operatiorcanalwaysbeencodedn asingle namedunction,defininganew virtual machineoperation,
which makescertaintasksvery simde andefficient from the programmess viewpoint.

2.2 Virtual machinesin the brain

Secondgevenif both(a) and(b) have beenestablishedt still leavesopenthepossibiity thatthelower
level machineusespropositonal representationandinferencetechniques.

The questionwhetherpropositonal or depictve representationand techniquesare usedby a
particular machine,or the humanbrain, is ambiguas insofar as the answermay be different at
differentlevels. For exampk in amachineusingthespatialarrayprocessingirtual machinedescribed
by Glasgav something quite differentwill be goingon at the machinecodelevel. In principle, the
lowestlevel machinemight be alogic processingnachinejn which casea non-proposibnal virtual
machinecould be implemenédin alower level propositonal machine a possbility not allowed for
by Glasgav.

This pointwasmadeby Hayes(1974)in hisattackon my paper(Sloman1971).It ledto aslightly
revisedversionof the defenseof analogicalrepresentations (Sloman1975),acknavledgingthat
they couldin principle be implementedn propositonal structuresaslong asthe relevantindexing
operationsaandneighborhod relationshipsareimplementedefficiently.

2.3 Theunreliability of intr ospection

Third, whenhumansubjectsreportthe useof visual or spatialimagesfor solving problemsor per
forming tasks,this needsto be taken with a pinch of salt. Althoughwe clearly have some internal
self-monitorng capabilities,thesewill have evolved to sene specific biological needsand need
be no more accurateat telling us what's really going on in our minds, for scientific explanatory
purposesthanvisual perceptioris at telling usaboutthe internalphysicalstructureof objectsin our
ervironment.(Whatis really goingon contrastswith the phenomenlogy of whatis goingon, which
is whatintrospectiorrevealsaccuratelyby definition) Introspectve reportscan,at best,reportsome
propertiesof a high level virtual machine,andevenif thisis somekind of spatialimageprocessing
machine,that doesnot rule out the possibilty of an underlyingimplementatn thatis completely
different,for instanceusingpropositims andlogical inferences(Theremaybe otherevidenceruling
thatout.)

To what extentthe humanbrain usesvirtual machineswhat sortsof virtual machinesand how
mary layersof implementatiorthereare,areall still openquestionsintrospectiorcertainlysugges
thatwe (sometines)useimagesthatwe canmanipulate put this could merelyreportsomeabstract
propertiesof a high level virtual machine or it could be completelydeceptve. It is clearthatsome
of the statesthat peoplereportasstatesin which they areinspectinginner picturesdo not have the
samepropertiesasstatesn which real externalpicturesareinspected For exampk, it maybe easier
to readitemsoff theinnerimagetraversingit in onedirectionthananotherdirection. This suggest



thatananisotropt internalrepresentatiors used(e.g. usinglinkedlists), unlike computerarraysor
realpaintings.

The only thing that is certainis that human(and someother animal) brains have extremely
powerful waysof usingvisualinformatian that we do not understandat all, andwhich may not be
capableof beingrepresenteefficiently on corventioral computers.In fact, it is likely thatwe have
notyetevenlearntto asktheright questims.

3 Towards a generdized theory of represenations

A full theoryof representationsyhetherphysial or virtual, would have to distinguisharbitraryand
systematicepresentationddumanbeingsarecertainlyable,in appropriatecontexts, to useanything

to represenarything, for instanceusinga pebbleto represena person.Although thisis interestimg

andworth explaining, the more profoundcaseis the useof a system of representationgf which a
setof stringsof wordsin a languagds onecase,anda setof networks for representinglacesand
routesbetweerthemanother The useof hierarchieof arraysasdescribedy Glasgav is yetanother
system.

Thereare (at least)two importantimplicatiors of usinga system, namelythe ability to encode
novel informatian, andthe ability to solve problemsby transformingrepresentations a principled
way that generatesiew representationsvithin the system. Suchtransformationsan play a role
in makinginferencesforming plans,creatingdesigns,and so on. (This goesagainstthe frequent
commenimadeby philosghersthatthe essencef representationr symbolsmis arbitrariness.)

3.1 Syntax

A preconditiorfor systematidy is thatrepresentationsanvary, andthe formsof permittedvariation
aredefinedby a syntax.

It is commonto stressthat what makes a representatiompictorial is a type of correspondence
betweenrepresentingtructuresand whatis represented What is not so often appreciatedthough
Glasgav doesmentionthis, is the importanceof available transformatios. In particular what |
have previoudy called Fregean,or applicatve, representationpermit substitition of sub-structures
without changingthe remainderof the representationwhereashis is not possiblefor all forms of
representatione.g.in apictureincludingagiraffe in afield, it is not normally possilte to replacethe
giraffe with anelephantvithoutaffectingsomethingelsein theimage becaus¢hey occludedifferent
partsof the background.By contrasttheres no backgroundhat shavs throughwhen a large sub-
expressions replacedoy a smalleronein anapplicatve representatiorsuchasalogical formulaor
computermprogram.

Thereare several additioral dimensims in which representationadystemscan differ regarding
permittedmodesof variation,including:

e whethercontinuaisor only discretetransformatiosarepermitted,

e whethertransformatiaos changethe complity of representationsr not (for examplea rep-
resentatiorin the form of a fixed sizevectorof numericalvaluescanbe transformedonly by
changingthe numbersandthis will not alter the compleity, whereasmodifying a structural
descriptionor parsetreecanchangets compleity),

e whethernew ‘atomic’ elementanbeintroducedor whetherthe basicsymiwnls arefixed(e.g.
naturallanguagesontainanalphabepermiting newv wordsto beformedwhenneededaswell
asnovel sentencesomposeaf old words).



Onereasonwhy differencesn kind of variabiity areimportantin intelligentagentsaspointedoutin
Sloman(1971),is thatdifferentrepresentationthat sharemetaphgical or epistemabgicaladequag
(asdefinedby McCarthyandHayes(1969)) candiffer in heuristc adequag becausef differences
in thewaysthatthey constrainsearchspacesA representatiothatdoesnot allow irrelevantoptiors
to be constructeccan generatea much smallersearchspacethanonethat doesallow them. Thus,
whereasa logical notatian would allow a conjunctian of assertiongboutA beingcloseto B, B being
closeto C andA beingaverylongway away from C, a spatialrepresentatiowith the usualmetrical
propertiesvould not, andthis couldbe animportantconstrainin someproblems.

3.2 Semantics

A representationasystemincludesnot only syntax, but also semants, i.e. what information is
encodedorwhatthingsarerepresentedt is oftenassumedhattheessencef pictorialrepresentation
is isomaphismwith the ‘scene’representedandGlasgav writesasif thisis so,atleastin the cases
sheconsiders.However, it is very importantto notethatin generalthis is not a requirement:for
example2-D imagescan represenB3-D configurationswith which they are not at all isomarphic,
sincethey do not includerelationshps like depthor ‘partially hidden’ even thoughthey represent
them.

Thecompleity of non-isonorphicsemanticorrespondendeetweenmageandscends familiar
to thosewho work in compuer vision. Local substructuresn 2-D imagesare usually inherently
ambiguousandcanbe interpretedonly in termsof context, wherethe contet alsoconsistsof frag-
mentsthat areambiguais. Whenthis inherentambiguty and mutualdependences combinedwith
noise,partial occultationof oneobjectby anotheyandself-occultatiorof invisible partsof anobject
by visible parts, the resulting ‘semantic’ correspondenceletweenimagesand what they depict
canonly be definedin termsof very complex constraint-optnizing rulesthatinclude referenceto
backgroundknowledgeof the relevant portion of the world. (Constraintsatistctionwould suffice
wereit notfor the noisetypically foundin naturalimages.)lt maybeimpossibleto specifyprecisely
the correspondencieetweenmageandscenewithoutintroducinga collectionof intermediatdayers
of representatiosuchasis comma in computervision systemsgspeciallywhereimagesare not
producedby a simple projectionmechanismput include conventioral elementsasin cartoonsand
paintings(for moreon this see(Sloman1989)).

Typical attemps by logiciansto generalizeheir semantiddeasto copewith picturesfail to take
accountof this complity, andthe sameappeardo betrue of Glasgav’'s account(in Section3.4) of
depictive representations termsof mappingdetweenpartsandrelations.

Anotherexamplewherealgorithnic compositonal semanticdreaksdown, of course,is natural
languagewherewordsand phrasesare heaily context dependenandoften a greatdeal of knowl-
edgeaboutthe spealer, the cultureandthe specificcircumstancesf utterancemay be requiredfor
disambigiation.

A full theoryof semanticsvould notmerelyhave to explain how differentformsof representation
work in corveying factual informationaboutwhatis thecase put would alsohave to accounfor other
kinds of information, e.g. control informatian. For exampk, a computerprogramembodiesa great
dealof controlinformation aboutwhatto do when,andit seemsvery likely thatmary learntaction
sequencemcludinghow to saythings,how to performroutinetasks how to dotheeightsonereeland
otherdanceshow to sing songsandhow to play muscal instrumentsareall encodedn formalisns
whoseprimarysemantiaole is controlnot descriptian.

Insofar asGlasgav is drawing attentionto the needto considerdifferenttypesof representational



formalisms the pointis strengthenedly drawing attentionto the variety of typesof semantics.

3.3 Pragmatics

Thatlastpointis relatedto thefactthatinformationcanbeencodedor mary differentpurposesA full
theoryof representationseeddo take accountotonly of syntaxandsemanticdut alsopragmatics,
thatis, thevarietyof purpose®r functionsfor whichtherepresentationsanbeused.Withouta study
of thepragmatic®of a systenof representatiofasusedoy aparticularagentor classof agentsjt will
not be possiblefully to appreciatehe prosandconsof usingthatsystenratherthansomeothet

Glasgav refersto Marr (1982) who describeghe ‘quintessentiafact of humanvision — that it
tellsaboutshapeandspaceandspatialarrangementdf objectsin the 3-D ervironment.l have argued
(Sloman1989)thatthisis a grosslyoversinplified view of therole of vision, sincethe outputsof a
visual systemcanincludecontrol signals(e.g. posturecontrol, saccadiaontrol),informationabout
2-D relationsin the optic array that are useful for fine control of behaior, suchassightirg a gun
or moving in a straightline, and,above all, informationabouta hostof what Gibson(1979)called
‘affordances’whichincludesnot only geometricapropertiesof objectsbut alsotheir causalpowers,
functionalroles,andeventhe mentalstatesof otheragents.

An illustration of this pointis provided by the differencesetweenfamiliar ambiguas pictures
which causevisual ‘flips’: the Necker cube flips betweeninterpretationgthat differ only in the
waysthat Marr is concernedwith, i.e. geometricalpropertiesandrelations. By contrastwhenthe
familiar“duck-rabbit” pictureflips whatchangess notinformation about‘shapeandspaceandspatial
arrangementbut far moreabstracinformationaboutwhatsortof animalis depicted the functional
roles of things depicted(the rabbit’s ears,the duck’s bill) andwhich way the animalis facing, an
attribute thatimplicitly refersto the objectasan agentcapableof moving, perceving things,andso
on.

It seemsat leastpossibé thatthe visual systemhassomeway of combiningfactualand control
informationsothatduring skilled performance®f variouskinds (e.g. leapingacrossocks, sportirg
contests)it simultaneouslyprovidesinformation aboutwhat is in the environmentand whatto do
aboutit.

Although Glasgav's paperis not primarily aboutvision, it is concerneavith the power of visual
representationgnd, like Marr, apparentlyassumeshat visual representationare concernecdxclu-
sively with therepresentationf informationaboutspatialarrangemenandmotion. If, however, real
biologicalvisualsystemsarefar morepowerful andversatie thanthat,andcanencodeandmanipulate
a hostof additionalkinds of biologically relevantinformation,including modal informationabout
whatis andis not possble in the situation, as describedn Sloman(1989),then perhapshat may
helpto explain why peoplebelieve they areusingvisualimagerywhenthey think aboutall sortsof
problemsthatarenot inherentlyvisual. For example,the differencebetweendepthfirst andbreadth
first searchs oftenbestunderstoodiisually, thoughthereis a non-visualabstractharacterizatiomf
the differencein termsof operationson queuesand operationson stacks. Similarly, mary abstract
mathematicaideas,ncludingthe conceptof anunendingsequencef numbersare oftenthoughtof
in visualterms,thoughreal vision cannotcopewith infinite sets. How do mathematiciansisualize
infinite sequences?

If the humanvisual mechanismdoescontain somevery powerful representationahpparatus,
including transformationmechanismsthen perhapspeoplein Al and cognitve sciencewho are
interestedn explaining or modeling intelligencewould do well to studyvisual systens sincethey
may provide far more powerful meansof manipulathg informationfor a variety of purposeghan



arnything so far developed in computatbnal vision experimentsjncluding the experimentsreported

by Glasgav. Unfortunately | do not think anyoneunderstandsnuchabouthow vision works, since

existing modelsseemo becompletelylackingin thegeneralityflexibility andspeedhatcharacterize
humanand(some)animalvision.

4 Glasgon'srepresentdions

Glasgav reportson computatimal experimentsusing representationbasedon hierarchiesof rect-
angulararrays. It is very commonfor computerbasedmageprocessingandinterpretationsystens
to make useof rectangulaarraysbecausehesemapin a simpleway ontothe linearaddress-spaces
typically provided by widely available generalpurposecomputerarchitectures.Moreover, as her
examplesshaow, rectangulaarrayscanbeusedfor solvingcertainsimplekindsof problemsnvolving
spatialrelationshps, whereall the directionsinvolvedfall into two orthogonalsets(left—right and
up—down, or east—wesandnorth—suth).

The problemis thatrectangulaarraysquantizespacdn a particularway thatmay not be suitable
for all tasks.Animal retinasdemonstrata wider variety of waysof dividing up 2-D spacejncluding
the useof approximatelyconcentricrings of receptve fields whosediametersvary with the distance
from thecenter As Funt(1983)hasshavn this structurecanbe usefulfor certainoperationsnvolving
rotation,expansioror contractiorof images.Overlappirg fieldscanalsobe usefulfor somepurposes.

Both Funt’s andGlasgav’s representationattemptto maprepresenteitemsontolocationson a
2-D surface,albeitat varyingresolutions Both representationsave therestrictionthateachlocation
in the representatiomasneighborsin only two orthogaal directions,along cartesianco-ordinates
in the caseof Glasgav, and along radial and tangentialdirectionsin the caseof Funt. Thisis a
seriousrestrictionwhendealingwith structuregequiringa richer setof neighborlood relationshig.
Both Glasgav’'s and Funt’s representationseemto be specialcasesof a more generalclass of
representationthatpresere partial orderinginformationby mappingrelationshpslik e connectvity
on a transportnetwork, onto arcsin a network in the computey allowing as mary neighborsin as
mary directionsasneeded.For exampk a representatiof a road network could usesomenodes
wheretherearetwo links to neighborssomewheretherearethree,somewheretherearefour, andso
on. An electroniccommuncationsnetwork couldusemuchhighernodeconnectvity.

If avisualreasoningsystemwereto usea generalizechetwork ratherthanaregulararray it could
combinespatialand otherrelationshipsfor examplecausalrelationshipssuchas support,contain-
ment, transferof torque, pivoting, etc. Justas Glasgav's rectangulararraysare hierarchical,with
somearraycellsoccupiedoy higherresolution arrays,sotoo cananetwork be hierarchicawith some
nodesoccupiedoy sub-netgiving moredetail. This would supportsimilar operationsf zoomingin
andout, andusingeachlevel in the hierarchyasa sortof index to the moredetailedinformation at
lower levels. A moregeneralrepresentatiomvould alsopermitcrosslinks supportiig pathsthatare
frequentlytraversedbetweenoneportion of a detailednetwork andanother In particulay insteadof
beingstuckwith inaccurateelationshipsarisingout of theuseof arectangulagrid, precisedirection
and distancelinks could be insertedwheneer they are required,addingimportantredundang, as
discussedh the next section.

Obviously, generabperationgor inserting,comparing searchingandmeiging suchnetworkswill
be more comple thanthe operationson rectangulararraysdescribedoy Glasgav. Neverthelessit
shouldbe possibé in principle to implementgeneralizedrersionsof all the operationslescribedy
Glasgav, e.g. generatingnetworks, addingor deletinglinks or nodes,composiig and superimps-
ing networks (by meiging commonlinks and nodes),scanning,rotating, focusingand unfocusing



attention(by moving up and down the hierarchy). In fact a generalizechetwork would supporta
richer variety of scanningoperationsuy allowing differentsortsof links to be traversedin different
scansatherthanefficiently supportingonly horizontalandvertical scans.If certaintypesof links
form chainswithout brancheghe nodesthatthey join canbe given numerical'coordinates’ thereby
permitting rapidtransitve inferencef exactly thesortdiscussedby Glasgav (Section4.1.1).

Rotation, however, could not be definedin general,exceptfor subnetsincorporatingmetrical
information.However, Glasgav doesnotpointoutthatrotatingasub-porton of arectangulaarrayby
angleshatarenot multiplesof 90 degreess actuallya complex operationthatintroducedistortiors
andlosesinformatian, which is onereasorwhy Funtusedconcentricrings of cells. A moregeneral
representatiogould includefrequentlyused‘rotation-pathvays’, therebysuperimpsingsomethiig
like Funt's andGlasgav’'s representations.

Sucha generalizechetwork-maniplating mechanisnwould provide what Glasgav describesas
‘succinctandholigtic encoding’of importantandfrequentlyusedoperationdy providing a suitable
highlevel virtual machinen whichthesearesimple operationsyithouttherestrictionsof herrectan-
gulararrayrepresentation.

The network mechanismgroposedhere are not original. They are very similar to network
representationthathave frequentlybeenusedin Al andelsavhere.For example,Glasgav (Section
4.2) discusseshe useof suchnetworks by Winstonin his work on learningstructuraldescriptioss.
(For somereasorsheclaimsin Section3.1thatWinstan’s networksandMinsky’s framesystens use
propositonsto expressrelationshipswhich is surelya mistale, eventhoughthey canbe translated
into propositias, just as her own arrayscan.) Shereportsthat Winston had difficulties matching
sub-netvarkswithin his network andthensuggestshatthe useof herarrayrepresentationanreduce
the complity of the matchingprocess.Therearetwo problemswith this claim, namelythatit is
not obviousthat arrayscan reducethe problemsignificantly as far as clutteredreal-life scenesare
concernedandsecondlythatinsofar asarraysdo helptheir structurecanbe simulatedby a subsebf
links in a generalpurposenetwork, which is exactly what an experiencedsoftware engineemould
do.

Making thesegeneralizedchetwork operationgruly efficient at the lowestimplementationlevel
mightrequirethedesignof nev computerarchitecturesThereis somescopefor theuseof parallelism
in network processingjust asthereis with the arrayrepresentationln both caseshowever, the fact
thatthe hierarchyof resolutonsis variableand canchangedynamicallymeanghattherecannotbe
a fixed allocationof processorgo ‘locations’ in the representationwhich complicateshe task of
implemening sucha systemon highly parallelcompuers. Neverthelesshumanvisual processing
copeswith rich andcomple, yet very rapidly changing sceneandimagestructuresyhich seemso
be an existenceproof of the possibiity of somesort of mechanisnthat meetsthe need,evenif we
have noideaat presentiow it works!

5 The needfor redundancy

Oneunolvious aspectof the way in which a spatialrepresentatiolelpsconstrainproblemsolving
is thatit supportsa certainkind of redundang of informationby making certainrelationsexplicit
(in the relevant virtual machine)that might otherwisehave to be inferred. For example,an array
representatioallows rapidtraversalfrom a cell to its neighborsgitherby following pointersor by a
simplecompuation of memoryoffsetsat the machinelevel, dependingon the implementabn used
for thearray As Glasgav herselfpointsout (Section2 andelsavhere)the arrayrepresentationloes
not necessarilyencodeary information that cannotbe encodedpropositiorally: it is not superior



in expressve power. All it doesis provide rapid accesgo the informationvia conceptually simple
operations.Shealsoadmitsthat clever indexing schemeganprovide rapid accesdor propositional
representationBy eliminatirg the needfor lengthylist searchegcompareHayes(1974)andSloman
(1975)).

| believe thatthereis animportantpointthatshehasnot noticed,namelythatthis requirementor
redundanencodingn formsthatsupportrapidaccesso relevantinformationis ageneral requirement
for intelligence. This is illustrated by the fact that it is not possibé for anyone who hasmerely
understoodPeancs five axiomsfor arithmetic,or someother equivalent setof basicarithmetical
principles,to make sensibleuseof arithmetic. Insteadit is necessaryo memorize mary particular
consequencegf thesebasicaxiomsin sucha way thatthey canbe rapidly retrieved whenneeded.
This is the fundamentatruth on which mary ‘old fashioned’educationapracticesare based.even
if they arenon-optinal for educationapurposedecausdhey oftenkill motivation More ‘radical’
practicesoftenthrow outthe babywith the bathwaterbecausehey do notreplacethe old functionof
building up a rich storeof redundantbut rapidly accessiblénformation. (Comparethe discusson of
learningfactsaboutthe numbersequencén Sloman(1978),ChapterB.)

If the humanbrain providesgeneralmethoddor storinginformatian usingefficient mechanisra
for creatingcrosslinkagesandindexes that supportrapid accessvy storing redundaninformation,
thenit couldturn out thatthe phenomenahat seemto be basedon something like Glasgav’s array
representationarein factbasednthe moregenerahetwork manipulatiig mechanisms.

I do not know whethersuchgeneralnetwork mechanismsould provide a sufiiciently fastand
powerful information processingengine,or whethersometotally differentway of looking at the
problemis needed.

6 Conclusion

Although | agreewith muchof the spirit of whatis claimedin JaniceGlasgav’s posiion paper |
have hadto find fault with it in partbecausef whatit doesnt say In particularthe paperdiscusses
propositonalandspatialrepresentationaithout poining out thatthereis a hugevariety of different
formsof representatiomvolving differencesn syntax,semanticandpragmaticsandthatintelligent
agentsmay needto use mary different forms for different purposes. Moreover, althoughclaims
are madeaboutefficiengy of the array-basedepresentationtheseare justified only at the level of
the array-processingirtual machine Jeaving openquestionsaboutthetotal efficiency includingthe
low level implementation. Furthermore| have suggestedhat the useof arraysimposesarbitrary
restrictionson the kinds of relationshipghatcanberepresenteé@asily whereaghereis noreasorto
believe thathumanvisualsystens have theserestrictions. have suggestethatwe cangeneralizehe
advantageof rectangulamrraysby usinglessconstrainechetwork representationggombinedwith
embeddedtoordinatesystemsassociatedvith certainclassesf links that can be scannedthough
it is not at all clear how efficiently the requiredgeneralnetwork-maniplating proceduresan be
implemenédon corventionalcomputetardware.

| have alsopointedoutthattheadvantageslaimedfor symbolc spatialrepresentationarein facta
specialcaseof theadwantage®f representationthatarehighly redundanin orderto provideefficient
acces9aths. In a fuller discussiorit would alsobe necessaryo relatethis point to the distinctian
betweersolvingproblemsby manipulatng descriptions of someclassof entities,andsolvingthemby
simulating the behavior of those entities. Most of the contrastgointedout by Glasgav amountto the
contrastbetweemmakinginferenceausingdescriptionsand simulating processesWhich stratgy is
betterwill dependnthekind of problemandwhatsortsof analyticaltechnique$iave beendeveloped
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for manipulathg descriptions

Finally, althoughl agreewith Glasgav thatthe manipubtionof spatialandvisualrepresentations
playsa very importantrole in humanmentalprocessesgincluding mentalprocesses congenitaly
blind individualswho, afterall, still have mostof the neuralapparatusievelopedfor visualpurposes
by evolution), neverthekssl suspecthatwe do not really understandaat all how visual informatian
(spatialandnon-spatial)s encodedn thehumanbrainin orderto make thesecapabilitiessogenerally
andrapidly applicable. The apparensuccessn tracingthe low level neuralrepresentationf some
imagefeaturegnayhave divertedattentionfrom thelargerissueof how thebrainrepresentproperties
andrelationsof percevedobjectsouttherein theworld.
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